
A Appendix

A.1 TPPE Method

We present the pseudo code for TPPE in this paper, using the Insertion mode as an example.

Algorithm 1 TPPE Embedding Method of Insertion
Input: The input text x, the number of tokens n, the candidate punctuations pi, the feature extraction

function ffe(x)
Output: the embedding of adversarial candidate text xadv

for i = 1 to n do
Ei

pos = PE(i)
end for
for i = 1 to k do
Ei

punc = ffe(pi)
end for
Etext = ffe(x)
for i = 1 to n do

for j = 1 to k do
Exij

adv
= Etext +Eposi +Epunc

end for
end for
Exadv

=
[
Ex11

adv
,Ex12

adv
, . . . ,Exik

adv
,Ex21

adv
, . . . ,Exnk

adv

]
return Exadv

According to Alg. 1, we reduce the query time complexity from O (kn) of Insertion to O (1) by
using the TPPE method. At the same time, we can infer that the time complexity of other attack
modes also becomes O (1).

A.2 Substitute Model

In our study, we assume the worst-case scenario of applying punctuation-level attacks. The victim
model is a black-box model where only prediction labels are available instead of function scores. In
this scenario, we train a substitute function fsub to transform the black-box scenario into a white-box
scenario by collecting the training datasets X . Specifically, we query the text function and derive the
prediction labels ypre. Then, we train the substitute functionfsub using the input text and label ypre
as paired data. After training fsub, we transform the black-box scenario into a white-box scenario.

Substitute Datasets. We denote the training datasets as X and obtain the adversary labels of X after
querying the text function f . The adversary labels are denoted as ypre. In the replacement training
process, we use X as input data and the loss of cross-entropy as the loss function for the replacement
function fsub.

Substitute Architecture. In the substitute model training process, we embed the input text using
the Bert pre-trained model. Two fully connected layers are adopted after the embedding layer, and a
Softmax layer is adopted to predict the label of the input text.

Substitute Training Algorithm. We train the substitute function fsub for 10 epochs with a learning
rate of 0.00002, a batch size of 100, and stop training when the loss of the validation data is less than
0.001. The selected substitute architecture is adopted to train the substitute model of the text model
f .

A.3 TPPEP Method

Directly querying fsub to determine which punctuation should be deployed is also time-consuming
due to multiple queries. Instead, we can iteratively attack the input text x and quickly gain the
adversarial text xadv after training the classification model from the TPPE of xadv to the prediction
of xadv by f(x). We also propose a search method called Text Position Punctuation Embedding and
Paraphrase (TPPEP) to achieve a single-shot attack. We analyze the worst-case scenario for TPPEP:

14



Table 8: The results of the effect of position on the fooling rate

preceding middle subsequent
Insertion 25.48% 38.81% 35.72%

Displacement 41.70% 42.00% 16.31%
Replacement 17.08% 38.91% 44.01%

Deletion 17.48% 39.89% 42.62%

Table 9: The results of multiple attacks

Dataset model mode Top-10 Top-20 Top-30
Cola ELECTRA Insertion 74.59% 75.17% 76.51%

Displacement 77.89% 78.93% 79.41%
Replacement 50.60% 59.31% 63.92%

Deletion 5.94% 5.94% 5.94%
Cola XLMR Insertion 76.51% 83.41% 85.81%

Displacement 80.29% 80.73% 80.73%
Replacement 15.20% 18.14% 19.61%

Deletion 5.85% 5.85% 5.85%
QQP DistillBERT1 Insertion 26.86% 30.61% 32.68%

Displacement 23.46% 26.16% 26.67%
Replacement 14.77% 16.87% 17.93%

Deletion 6.03% 6.03% 6.03%
QQP DistillBERT2 Insertion 29.21% 31.81% 35.55%

Displacement 19.88% 22.50% 23.09%
Replacement 24.46% 26.48% 27.54%

Deletion 6.96% 6.96% 6.96%
Wanli RoBERTa Insertion 37.02% 45.36% 49.60%

Displacement 15.96% 20.41% 23.07%
Replacement 25.58% 33.11% 36.89%

Deletion 6.16% 6.16% 6.16%
Wanli DeBERTa Insertion 44.70% 53.00% 56.00%

Displacement 26.74% 32.65% 35.41%
Replacement 22.51% 29.34% 33.97%

Deletion 8.98% 8.98% 8.98%

zero query, black-box function, hard-label output, single-punctuation limitation, and single-shot
attack. We describe the TPPEP method as being decomposed into two parts: training and searching.

TPPEP Training Algorithm. To achieve the goal of zero query, the substitute function fsub is
trained to fit the text function f . We query fsub to obtain the embedding of the text Etext and apply
the TPPE method to obtain the embedding of the adversarial candidate text xadv , which is denoted as
Exadv

. We transform the attacking task into a paraphrasing task. Specifically, Exadv
and Etext are

concatenated as input data to predict whether the attack is successful (label 1) or not (label 0). The
pseudo code of the algorithm is presented in Alg. 2.

TPPEP Searching Algorithm. After training the TPPEP model fp, we consider all candidate
adversarial texts xadv of input text x and calculate the embedding ED of both xadv and x. We then
apply the TPPEP method to ED and calculate the score of the successful attack. The adversarial
candidate text with the highest paraphrasing score calculated by the TPPEP method is chosen to
deploy the attack.

A.4 Defense Method

We have initiated a comprehensive discussion on defensive strategies to counter punctuation-level
attacks. In practical systems, we thoroughly investigate various defense approaches, including
pre-completion and post-completion of training.

15



Algorithm 2 TPPEP Training

Input: The training data D =
{(

x1,x1
adv, y

1
att

)
,
(
x2,x2

adv, y
2
att

)
, · · · ,

(
xN ,xN

adv, y
N
att

)}
. The xi

is input text, the xi
adv is adversarial candidate text, and yiatt is the result of attacking (successful

attacking is denoted as label 1; else denoted as label 0). The max train epoch emax, the substitute
model fsub, the embedding model TPPE

Output: The trained TPPEP model fp
for i = 1 to N do
Ei

text = fsub(x
i)

Ei
xadv

= TPPE(xi
adv)

The input embedding Ei = concat(Ei
text,E

i
xadv

)
end for
The embedding of training data ED =

{(
E1, y1att

)
,
(
E2, y1att

)
, · · · ,

(
EN , yNatt

)}
for i = 1 to emax do

// Train fp on ED to adjust the parameters θfp
θfp ← train(fp,ED)

end for
fp = fp(ED; θfp)
return fp

Table 10: The results of Preceding Language Modifier

Without PLM With PLM
mode TOP-1 TOP-3 TOP-5 TOP-1 TOP-3 TOP-5

ELECTRA Insertion 28.76% 52.64% 63.57% 20.81% 28.19% 32.79%
Displacement 43.05% 60.12% 76.03% 22.16% 33.33% 39.61%

XLMR Insertion 67.40% 73.06% 73.83% 23.39% 33.75% 39.31%
Displacement 36.05% 66.35% 73.44% 20.69% 25.49% 30.02%

A.4.1 Preceding Language Modifier

In response to this challenge, we re-train the model using adversarial training, which can be pro-
hibitively costly and impractical. To address this issue, we have developed a modifier to restore the
attacked text as closely as possible to its original form. This modifier is created using a Seq2Seq
model trained using pairs of original and attacked texts. We have found this approach to be a viable
solution. So, we employ the extensive language model CoEdIT-XXL (11 billion parameters) to obtain
the modifier. For our experiments, we have chosen the susceptible CoLA dataset. The experimental
results, depicted in Table 10, showcase the effectiveness of the proposed modifier.

A.4.2 Adversarial Training

Prior to model training, we simultaneously evaluate the outcomes of both adversarial training
techniques. Adversarial training is a machine learning technique that trains a model in the presence
of intentionally generated adversarial examples. The experimental results are presented in Table
11. Adversarial training has a limited impact on the accuracy of the text model. However, after
carrying out adversarial training, the model demonstrates improved robustness and achieves favorable
performance against punctuation-level attacks.

A.5 Comparative Supplementary Experiment to Benchmark Methods

We conducted a comparative analysis involving Single-shot and single punctuation attack (S3P ) and
alternative attack methods. We selected TextFooler, Bert-attack, and DeepWordBug as benchmark
methods. We employed Fool Rate (%), Perturbed Words (%), Semantic Similarity, and Number
of Queries as evaluation metrics. Since S3P perturbs a single punctuation, we restricted the other
algorithms to focus on a single word but allowed multiple attacks on that word. The experimental
results are presented in Table 12. Notably, the S3P algorithm achieved state-of-the-art results in
terms of Fool Rate, Perturbed Words, Semantic Similarity, and Average Number of Queries. This
underscores the effectiveness of our punctuation-level attack strategy. In contrast to other algorithms,

16



Table 11: The results of adversarial training. “Displacement” is the fool rate of Displacement

Accuracy Displacement
datasets clean_train adv_train clean_train adv_train

cola 79.13% 79.63% 75.69% 63.88%
qqp 88.27% 88.81% 32.24% 20.36%

wanli 67.21% 66.41% 61.09% 50.11%
average 78.20% 78.28% 56.34% 44.78%

Table 12: The result of TPPEP and benchmark methords
ELECTRA XLMR

Cola Fool Rate Semantic Sim Number of queries Perturbed Words Fool Rate Semantic Sim Number of queries Perturbed Words
Insertion 67.40% 0.9919 1 0.00% 28.76% 0.9925 1 0.00% Label

Displacement 36.05% 0.9936 1 0.00% 43.05% 0.9933 1 0.00% Label
Deletion 5.18% 0.9965 1 0.00% 4.89% 0.9965 1 0.00% Label

Replacement 24.64% 0.9927 1 0.00% 6.62% 0.9894 1 0.00% Label
Bert-attack 14.38% 0.9602 14.1 10.88% 21.00% 0.9616 14.3 10.88% Score

DeepWordBug 35.86% 0.9752 12.1 10.88% 31.93% 0.9704 12.0 10.88% Score
TextFooler 18.60% 0.9810 10.2 10.88% 19.85% 0.9854 10.2 10.88% Score

Hossein 28.57% 0.9752 6.3 10.88% 27.04% 0.9855 8.1 10.88% Score
Nora 23.30% 0.9954 11.1 10.88% 13.61% 0.9855 11.1 10.88% Score
QQP DistilBERT1 DistilBERT2

Insertion 14.72% 0.9978 1 0 8.67% 0.9986 1 0 Label
Displacement 8.52% 0.9966 1 0 7.21% 0.9966 1 0 Label

Deletion 3.94% 0.9975 1 0 5.06% 0.9977 1 0 Label
Replacement 7.59% 0.9955 1 0 16.70% 0.9972 1 0 Label
Bert-attack 9.19% 0.9574 30.9 3.76% 8.11% 0.9574 28.9 3.76% Score

DeepWordBug 10.36% 0.9849 24.6 3.76% 10.88% 0.9837 23.7 3.76% Score
TextFooler 8.08% 0.9960 24.0 3.76% 7.96% 0.9890 22.8 3.76% Score

Hossein 3.68% 0.9876 8.1 3.76% 4.12% 0.9877 9.3 3.76% Score
Nora 9.21% 0.9916 27.9 3.76% 11.56% 0.9936 28.1 3.76% Score
Wanli RoBERTa DeBERTa

Insertion 8.44% 0.9936 1 0 15.28% 0.9910 1 0 Label
Displacement 5.12% 0.9980 1 0 10.28% 0.9978 1 0 Label

Deletion 3.22% 0.9988 1 0 5.74% 0.9987 1 0 Label
Replacement 8.48% 0.9942 1 0 6.92% 0.9967 1 0 Label
Bert-attack 23.28% 0.9686 33.3 3.10% 26.95% 0.9456 35.6 3.10% Score

DeepWordBug 12.48% 0.9724 23.3 3.10% 14.43% 0.9795 23.2 3.10% Score
TextFooler 20.58% 0.9884 24.4 3.10% 17.10% 0.9958 24.5 3.10% Score

Hossein 7.20% 0.9885 7.1 3.10% 5.96% 0.988853 8.2 3.10% Score
Nora 4.12% 0.9876 33.3 3.10% 4.12% 0.987668 33.3 3.10% Score

our approach achieves higher fooling rates through zero-word perturbations, single-query attacks,
improved semantic retention, and reduced perceptual impact.

A.5.1 Analysis of Punctuation-Level Attacks

Our analysis has focused on the factors influencing the Fool Rate of punctuation-level attacks. In
the main part, we emphasize the importance of vectorizing post-adversarial text by incorporating
information about punctuations and their positions. Therefore, we investigate how the combination of
position and punctuation information influences the average Fool Rate. Table 13 presents the impact
of different punctuation mark types on the Fool Rate, listing the eight punctuation marks with the
highest average deception rates. Remarkably, the “?” punctuation mark demonstrates the highest
average Fool Rate, an impressive 13.27%. This suggests that, when taking into account the Cola,
QQP, and Wanli datasets, along with their corresponding six models, for a specific sample subject to
iterative insertion, deletion, replacement, or displacement of the “?” punctuation mark, the average
Fool Rate is 13.27%.

In Table 8, “preceding” is used to refer to the initial one-third of the positions in the sentence, while
“subsequent” indicates the final one-third of the position configurations in the sentence. With respect
to insertion attacks, optimal results are achieved through the central segment of the inserted sentence.
As for replacement and displacement attacks, heightened effectiveness is observed in the subsequent
portion of the attacked sentence.

A.6 Attack Convergence Discussion

The outcomes of multiple attacks are presented in Table 9. We observe a significant increase in
the fooling rate of the model following multiple attacks. The fool rates are gradually converging.
Additionally, we noted that beyond a certain threshold of attack iterations, the magnitude of the
fooling rate enhancement becomes relatively stable. In such cases, we posit that it is appropriate to
proceed with the next punctuation-level attack process.

17



Table 13: The results of the effect of punctuation on the fooling rate

Punctuation ? , ？ ： ， ！ . !
Fool Rate 13.27% 13.11% 11.77% 10.93% 10.57% 10.29% 10.08% 9.37%

A.7 Broader Impacts and Discussions

We are currently expanding the applicability of both TPPE and TPPEP methods to various NLP tasks.
The promising performance across multiple tasks, including tasks like TC, paraphrasing, NLI, sss,
summarization, and T2I, has instilled optimism regarding the future of punctuation-level attacks.

18


