
Block-local learning with probabilistic latent
representations

Anonymous Author(s)
Affiliation
Address
email

Abstract

The ubiquitous backpropagation algorithm requires sequential updates across1

blocks of a network, introducing a locking problem. Moreover, backpropaga-2

tion relies on the transpose of weight matrices to calculate updates, introducing a3

weight transport problem across blocks. Both these issues prevent efficient par-4

allelisation and horizontal scaling of models across devices. We propose a new5

method that introduces a twin network that propagates information backwards from6

the targets to the input to provide auxiliary local losses. Forward and backward7

propagation can work in parallel and with different sets of weights, addressing the8

problems of weight transport and locking. Our approach derives from a statistical9

interpretation of end-to-end training which treats activations of network layers as10

parameters of probability distributions. The resulting learning framework uses11

these parameters locally to assess the matching between forward and backward12

information. Error backpropagation is then performed locally within each block,13

leading to “block-local” learning. Several previously proposed alternatives to error14

backpropagation emerge as special cases of our model. We present results on vari-15

ous tasks and architectures, including transformers, demonstrating state-of-the-art16

performance using block-local learning. These results provide a new principled17

framework to train very large networks in a distributed setting and can also be18

applied in neuromorphic systems.19

1 Introduction20

Recent developments in machine learning have seen deep neural network architectures scaling to21

billions of parameters [Touvron et al., 2023, Brown et al., 2020]. This development has boosted22

the capabilities of these models to unprecedented levels but simultaneously pushed the computing23

hardware on which large network models are running to its limits. It is therefore becoming increas-24

ingly important to distribute learning algorithms over a large number of independent compute nodes.25

However, today’s machine learning algorithms are ill-suited for distributed computing. The error26

backpropagation (backprop) algorithm requires an alternation of inter-depended forward and back-27

ward phases, introducing a locking problem (the two phases have to wait for each other) [Jaderberg28

et al., 2016a]. Furthermore, the two phases rely on the same weight matrices to calculate updates,29

introducing a weight transport problem across blocks [Grossberg, 1987, Lillicrap et al., 2014a]. These30

two issues make efficient parallelisation and horizontal scaling of large machine learning models31

across compute nodes extremely difficult.32

We propose a new method to address these problems by distributing a globally defined optimisation33

algorithm across a large network of nodes that use only local learning. Our approach uses a message-34

passing approach that uses results from probabilistic models and communicates uncertainty messages35

forward and backwards between compute nodes in parallel. To do so, we augment a network36

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.

architecture with a twin network that propagates information backwards from the targets to the37

input to provide uncertainty measures and auxiliary targets for local losses. Forward and backward38

messages comprise information about extracted features and feature uncertainties and are matched39

against each other using local probabilistic losses. Importantly, forward and backward propagation can40

work in parallel, reducing the locking problem. Inside each block, conventional error backpropagation41

is performed locally (“block-local”). These local updates can be used in the forward network and its42

backward twin for adapting parameters during training. The developed theoretical learning provides a43

new principled method to distribute very large networks over multiple compute nodes. The solutions44

emerging from this framework show striking similarities to earlier models that used random feedback45

weights as local targets [Lee et al., 2015, Meulemans et al., 2020, Lillicrap et al., 2020, Ernoult et al.,46

2022] but also provide a principled way to train these feedback weights.47

In summary, the contribution of this paper is threefold:48

1. We provide a theoretical framework on how interpreting the representations of deep neural49

networks as probability distributions provides a principled approach for block-local training50

of these networks. This can be used to distribute learning and inference over many interacting51

neural network blocks for various neural network architectures.52

2. We demonstrate an instance of this probabilistic learning model on several benchmark53

classification tasks, where classifiers are split into multiple blocks and trained without54

end-to-end gradient computation.55

3. We demonstrate how this framework can be used to allow deep networks to produce56

uncertainty estimates over their predictions. This principle is showcased on an autoencoder57

network that automatically predicts uncertainties alongside pixel intensity values after58

training.59

2 Related work60

A number of methods for using local learning in DNNs had been introduced previously. Lomnitz et al.61

[2022] introduced Target Projection Stochastic Gradient Descent (tpSGD), which uses layer-wise62

SGD and local targets generated via random projections of the labels, but does not adapt the backward63

weights. LocoProp [Amid et al., 2022] uses a layer-wise loss that consists of a target term and a64

regularizer, which is used however to enable 2nd order learning and does not focus on distributing65

the gradient optimization. Jimenez Rezende et al. [2016] used a generative model and a KL-loss for66

local unsupervised learning of 3D structures.67

Some previous methods are based on probabilistic or energy-based cost functions and use a contrastive68

approach with positive and negative data samples. Contrastive learning Chen et al. [2020], Oord69

et al. [2019] can be used to construct block-local losses Xiong et al. [2020], Illing et al. [2021].70

Equilibrium propagation replaces target clamping with a target nudging phase [Scellier and Bengio,71

2017]. Another interesting contrastive approach was recently introduced [Hinton, 2022, Ororbia and72

Mali, 2023, Zhao et al., 2023]. However, it needs task-specific negative examples. [Han et al., 2018]73

uses a local predictive loss to improve recurrent networks’ performance. In contrast to these methods,74

our approach does not need separate positive and negative data samples and focuses on block-local75

learning. A number of methods have been proposed based on predictive coding framework Millidge76

et al. [2022], Salvatori et al. [2022] but with a focus on biologically motivated generative models77

Ororbia and Mali [2019, 2022a,b], Ororbia and Kifer [2022]. Recently Ororbia et al. [2023] proposed78

a promising approach based on a recursive local loss.79

Feedback alignment [Lillicrap et al., 2020, Sanfiz and Akrout, 2021] and related methods [Akrout80

et al., 2019] uses random projections to propagate gradient information backwards. Jaderberg et al.81

[2016b] used pseudo-reward functions which are optimized simultaneously by reinforcement learning82

to improve performance. Random feedback alignment [Amid et al., 2022, Refinetti et al., 2021] and83

related approaches [Clark et al., 2021, Nøkland, 2016, Launay et al., 2020], use fixed random feedback84

weights to back-propagate errors. [Jaderberg et al., 2017] used decoupled synthetic gradients for85

local training. Target propagation [Lee et al., 2015, Meulemans et al., 2020] demonstrates non-trivial86

performance with random projections for target labels instead of errors [Frenkel et al., 2021, Ernoult87

et al., 2022, Shibuya et al., 2023]. In contrast to these methods, we provide a principled way to adapt88

feedback weights.89

2

Figure 1: Illustration of use of block-local representations as learning signals on intermediate network
layers. A deep neural network architecture NA is split into multiple blocks (forward blocks) and
trained on an auxiliary local loss. Targets for local losses are provided by a twin backward network
NB .

Other methods [Belilovsky et al., 2019, Löwe et al., 2019] used greedy local, block- or layer-wise90

optimization. Notably, Nøkland and Eidnes [2019] achieved good results by combining a matching91

and a local cross-entropy loss. In contrast to our method they used a similarity matching loss across92

mini-batches such that their method cannot be parallelized across data samples. [Siddiqui et al.,93

2023] recently used block-local learning based on a contrastive cross-correlation metric over feature94

embeddings [Zbontar et al., 2021], demonstrating promising performance. [Wu et al., 2021] used95

greedy layer-wise optimization of hierarchical autoencoders for video prediction. [Wu et al., 2022]96

used an encoder-decoder stage for pretraining. In contrast to these methods, we do not rely solely97

on local greedy optimization but provide a principled way to combine local losses with feedback98

information without locking and weight transport across blocks and without contrastive learning.99

3 A probabilistic formulation of distributed learning100

At a high level, our method interprets the activations of a neural network as the parameters of101

probability distributions of latent variables. We use these intermediate representations at each block102

to derive block local losses. These latent variables over multiple blocks implicitly define a Markov103

chain, which allows us to tractably minimize the block’s local loss. We show that the derived block104

local losses and the resulting block local learning (BLL) are a general form of various existing local105

losses and provide an upper bound to a global loss.106

3.1 Using latent representations to construct probabilistic block-local losses107

Learning in deep neural networks can be formulated probabilistically [Ghahramani, 2015] in108

terms of maximum likelihood, i.e. the problem is to minimize the negative log-likelihood109

L = − log p (x,y) = − log p (y |x) − log p (x) with respect to the network parameters θ.110

For many practical cases where we may not be interested in the prior distribution p (x), we would111

like to directly minimize L = − log p (y |x).112

This probabilistic interpretation of deep learning can be used to define block-local losses and distribute113

the learning over multiple blocks of networks by introducing intermediate latent representations. The114

idea is illustrated in Fig. 1. A neural network that computes the distribution log p (y |x) takes x as115

3

input and outputs the statistical parameters to the conditional distribution. The deep neural network116

is split at an intermediate layer k (in Fig. 1 we used k ∈ (1, 2)) and end-to-end estimation of the117

gradient is replaced by two estimators that optimize the sub-networks x→ zk and zk → y separately.118

To do this, consider the gradient of the log-likelihood loss function119

−∇L = ∇ log p (y |x) , (1)

where∇ is the vector differential operator over parameters θ. For any deep network, it is possible120

to choose any intermediate activation at layer k as latent representations zk, such that p (y |x) =121

Ep(zk |x,y) (p (y | zk) p (zk |x)), where Ep () denotes expectation with respect to p. Therefore, the122

representations of y depend on x only through zk as expected for a feed-forward network. Using this123

conditional independence property, the log-likelihood (1) expands to124

−∇L = ∇ log p (y |x) = Ep(zk |x,y) (∇ log p (y | zk) +∇ log p (zk |x)) . (2)

This well-known result is the foundation of the Expectation-Maximization (EM) algorithm [Demp-125

ster et al., 1977] (see Sec. S1.4 for details). Computing the marginal with respect to p (zk |x,y)126

corresponds to the E-step and calculating the gradients corresponds to the M-step. The sum inside127

the expectation separates the gradient estimators into two parts: x→ zk and zk → y. Importantly,128

the two parts can have separated parameter spaces θ(a)
k and θ

(b)
k , such that the gradient estimators129

become independent.130

However, the E-step is impractical to compute for most interesting applications because of the131

combinatorial explosion in the state space of zk. To get around this, we use a variational lower bound132

to EM, based on the ELBO loss LV = − log p (y |x) +DKL (q | p) ≥ L [Mnih and Gregor, 2014],133

where DKL (q | p) is the Kullback-Leibler divergence and q (zk |x,y) is an auxiliary variational134

distribution that substitutes the intractable posterior p (zk |x,y). We demonstrate that this approach135

can be used to split gradients in a similar fashion to Eq. (2), yielding a distributed approximate136

solution to Eq. 1. In the next section, we describe how we construct the variational distribution q.137

3.2 Auxiliary latent representations138

As described earlier, the output of any layer of a DNN can be interpreted as parameters to a distribution139

over latent random variable zk. The sequence of blocks across a network therefore implicitly defines140

a Markov chain x→ z1 → z2 → . . . (see Fig. 2A). This probabilistic interpretation of hidden layer141

activity is valid under relatively mild assumptions, studied in more detail in the Supplement. It is142

important to note that the network at no point produces samples from the implicit random variables143

zk, but they are introduced here only to conceptualize the mathematical framework. Instead the144

network outputs the parameters to αk(zk) which is the probability distribution over zk (e.g. means145

and variances if αk is Gaussian). The network thus translates αk−1 → αk → . . . by outputting the146

statistical parameters of the conditional distribution αk(zk) and taking αk(zk−1) parameters as input.147

More precisely, the network implicitly computes a marginal distribution148

αk (zk) = p (zk |x) = Ep(zk−1 |x) (pk (zk | zk−1)) = Eαk−1(zk−1) (pk (zk | zk−1)) , (3)

where Ep () denotes expectation with respect to the probability distribution p. Consequently, the149

network realizes a conditional probability distribution p (y |x) (where x and y are network inputs150

and outputs, respectively). And by the universal approximator property of deep neural networks,151

an accurate representation of this distribution can be learnt in the network weights through error152

back-propagation (as demonstrated for the example in Fig. 2). Eq. (3) is an instance of the belief153

propagation algorithm to efficiently compute conditional probability distributions.154

To construct the variational distribution q we introduce the backward network NB that propagates155

messages βk backwards according to Eq. 4 (see Fig. 1 for an illustration). Inference over the posterior156

distribution p (zk |x,y) for any latent variable zk can be made using the belief propagation algorithm,157

propagating messages αk (zk) forward through the network using Eq. (3). In addition messages158

βk (zk) need to be propagated backward according to159

βk (zk) = p (y | zk) = Epk(zk+1 | zk) (p (y | zk+1)) = Epk(zk+1 | zk) (βk+1 (zk+1)) , (4)

such that the posterior p (zk |x,y) can be computed up to normalization160

ρk (zk) = p (zk |x,y) ∝ p (zk |x) p (y | zk) = αk (zk) βk (zk) . (5)

4

We make use of the fact that, through Eq. (3), the parameters of a probability distribution p (zk |x)161

are a function of the parameters to p (zi |x), for 0 < i < k, e.g. if α is assumed to be Gaussian162

we have
(
µ (αk) , σ

2 (αk)
)
= f

(
µ (αi) , σ

2 (αi)
)
, where µ (.) and σ2 (.) are the mean and vari-163

ance of the distribution respectively. Thus, if a network outputs
(
µ (αi) , σ

2 (αi)
)

on layer i and164 (
µ (αk) , σ

2 (αk)
)

on layer k, a suitable probabilistic loss function will allow the network to learn f165

from examples. Therefore, the conditional distributions pk (zk | zk−1) and the expectation in Eq. (3)166

are only implicitly encoded in the network weights. Clearly, the sub-networks that compute the167

transition from one latent variable to the next can have separated parameter spaces. We will study the168

exponential family of probability distributions for which this observation can be formalized more169

thoroughly.170

Exponential family distributions: To derive concrete losses and update rules for the forward171

and backward networks, we assume that αk are from the exponential family (EF) of probability172

distributions, given by173

αk (zk) =
∏
j

αkj (zkj) =
∏
j

h(zkj) exp (T (zkj)ϕkj −A (ϕkj)) , (6)

with base measure h, sufficient statistics T , log-partition function A, and natural parameters ϕkj .174

This rich class contains the most common distributions, such as Gaussian, Poisson or Bernoulli, as175

special cases. For the example of a Bernoulli random variable we have zkj ∈ {0, 1}, T (zkj) = zkj176

and A (ϕkj) = log
(
1 + eϕkj

)
[Koller and Friedman, 2009]. We will later see that the EF can be177

used to construct local learning signals at each block that can be computed using only the mean µ178

and variance σ2 of the distribution.179

A network directly implements an EF distribution if the activations akj encode the natural parameters,180

akj = ϕkj . Using this result, a feed-forward DNN NA : x → y, can be split into N blocks181

by introducing implicit latent variables zk : x → zk → y, and generating the respective natural182

parameters. In principle, blocks can be separated after any arbitrary layer, but some splits may turn183

out more natural for a particular network architecture. Conveniently, if both αkj and βkj are members184

of the EF with natural parameters akj and bkj , then ρkj is also EF with parameters akj + bkj . We185

will use this property to deconstruct a single global loss into multiple block-local losses.186

3.3 Illustrative example: forward-backward networks as an autoencoder187

Before we establish our main result to show how the ELBO loss LV can be used to deconstruct a DNN188

into local blocks, we demonstrate how representations of Bayesian uncertainty can emerge in DNNs189

by using appropriate probabilistic losses. We consider the autoencoder network illustrated in Fig. 2A190

and use it to learn representations for the Fashion-MNIST dataset [Xiao et al., 2017]. The CNN191

comprises a bottleneck layer y that implicitly splits the architecture into a decoder and encoder part192

(Fig. 2A). It is well known that such a network is able to learn compact representations and features193

that allow it to reconstruct the gray scale pixel intensities of a given input [Kingma and Welling,194

2013]. Here we demonstrate that autoencoders are also able to learn representations of uncertainties,195

i.e. to automatically output high uncertainties for pixel values that are poorly represented in the learnt196

features.197

To show this, we augmented the pixel representations on the inputs and outputs with additional198

channels that represented the logarithms of the variances of a Gaussian distribution (see Supplement199

for details). The input and outputs now represent the parameters of probability distributions, where200

the variances are proxies for the uncertainties. An appropriate loss function for this architecture is201

one that measures the distance between probability distributions. We used the Kullback-Leibler (KL)202

divergence between Gaussian distributions. This augmentation to conventional deep auto-encoders203

requires us to also provide uncertainty values for training data samples. Since the Fashion-MNIST204

dataset does not contain this information, we set the variances of pixels for all training samples to the205

same small constant values, reflecting high confidence (low variance) in the training set. Thus, during206

training, the network has only seen the same constant inputs (and outputs) for the variance channels.207

Fig. 2B shows representative sample outputs for the test dataset after training. As expected, the208

network is able to represent the means of gray scale values in the dataset well and generalize to209

new images. Interestingly, the network also learned meaningful representations of the variances.210

Although the network has only seen constant values for the variances during training, it is able to211

5

Figure 2: Zero shot learning of predicted uncertainties. A: Gaussian convolutional autoencoder
network. Variance inputs and outputs are set to a constant during the whole training process. The
network implements an implicit Markov chain. B: Example images showing self-prediction of
uncertainties. C: Uncertainty mismatch metrics throughout learning. D: The network in (A) can be
‘folded’ to provide targets for local losses ℓ0, ℓ1, . . .

infer information about its own uncertainty during testing. The true MSE errors between inputs and212

predictions qualitatively match the pixel-level variance predictions across a wide variety of inputs.213

For example, the network poorly represents the logo on the shirt (leftmost example) and predicts214

high variance in the output for these pixels. Other samples like the trousers (second from left) that215

are well represented correctly predict low variance. To further quantify this result, we developed216

additional metrics that measure the mismatch between estimated and true prediction errors (Fig. 2C,217

see Supplement for details). These metrics consistently decrease throughout training even though218

they were not directly minimized. These results suggest that DNNs are able to represent uncertainties219

well enough that they show zero-shot generalizations to unseen data from very limited training data.220

3.4 Modularized learning using local variational losses221

The autoencoder example described in Section 3.3 shows that DNNs can represent probability222

distributions well in principle, and also provides an idea of how probabilistic losses could be223

constructed locally at any layer. By ‘folding’ the network along the bottleneck layer y we are able224

to construct a sequence of pairs of auxiliary targets (z1, z′1), (z2, z
′
2), . . . (see Fig. 2D). Finally, by225

introducing suitable loss functions ℓ0, ℓ1, . . . , the mismatch between the encoder and decoder parts226

of the network can be minimized on a per-layer basis.227

The forward and backward networks NA and NB can be used to construct local loss functions Lk228

at blocks k. In the Supplement, we show in detail that minimizing Lk locally and in parallel at all229

blocks implements an approximation to the minimization of the log-likelihood loss L (Eq. 1), without230

propagating gradients end-to-end. To arrive at this result, we take the forward αk and posterior231

messages ρk to be given by EF distributions with natural parameters ϕkj and γkj . Using this we232

show in the Supplementary text S1 in detail that the objective to optimize the log-likelihood loss (1)233

can be approximated by optimizing local losses ℓk independently at every block. Thus the network234

6

parameters can be optimized using a modularized gradient estimator, given by (see Sec. S1.3)235

−∇ℓk =
∑
j

(
µ (ρkj)− µ (αkj)

)︸ ︷︷ ︸
forward weight

∇ϕkj + σ2 (ρkj) (ϕkj − γkj)︸ ︷︷ ︸
posterior weight

∇γkj , (7)

where µ(·) and σ2(·) are means and variances of EF distribution, which can be easily expressed236

through natural paramters (see Sec. S1.3 for details and examples). Note that the gradients of the237

natural parameters ϕkj and γkj are computed independently and modulated by the forward and238

posterior weight, respectively, that act here as local larning signals.239

The result in Eq. (7) holds for general EF distributions. For the special case of Bernoulli random240

variables we get241

−∇ℓk =
∑
j

(ρkj − αkj)∇akj − ρkj (1− ρkj) bkj (∇akj +∇bkj) , (8)

where akj = fj(ak−1) and bkj = gj(bk+1), are the outputs of the forward and backward network at242

block k,243

ρkj = S (akj +mbkj) and αkj = S (akj) , (9)

where m is a mixing parameter described below and S(x) = (1 + e−x)
−1 is the sigmoid/logistic244

function.245

The Bernoulli solution in Eq. (8) is convenient because it is a single parameter distribution (mean246

and variance share one parameter) such that all channels in z can be treated independently. Also the247

structure of Eq. 9 is well suited for a DNN implementation. In our experiments, we focus on this248

Bernoulli variant of the general result in Eq. (7). In the Supplement, we study a number of other249

relevant members of the EF. Furthermore, it is interesting to study the structure of Eq. (8) more250

carefully. The first term minimizes the mismatch between the forward and the posterior distribution251

with respect to the forward blocks. The second term is the uncertainty-weighted backward activation252

bkj which modulates local gradients (see Supplement). Therefore, the backward activations bkj253

act directly as learning signals for local updates. The BLL method is therefore related to feedback254

alignment and target propagation where backward information is provided through random weights.255

However, since the gradients of the backward blocks appear in the second term, our model also256

provides a principled way to optimize the backward flow of information from the targets.257

Data mixing schedule: The equation for the posterior distribution Eq. 9 contains a data mixing258

parameter m, with 0 ≤ m ≤ 1, that scales the influence of the backward messages in the posterior259

distribution. This parameter serves two important functions, (1) It scales the balance between forward260

and backward messages in the posterior distribution ρ and (2) it scales the first term in the parameter261

updates Eq. 8. We found that a annealing schedule for this parameter that decreases m slowly262

during learning works well in practice. If not stated otherwise, we used m = (1 + τ M)
−1 in our263

experiments, where M is the index of the current epoch and τ is a scaling parameter (see the section264

S1.3.4 in the Supplement for further details).265

4 Experimental results266

We evaluated the BLL model on a number of vision and sequence learning tasks. All models used the267

Bernoulli BLL gradients described in Eq. (8) for local optimization. Additional details of the network268

models can be found in the Supplement.269

4.1 Block-local learning of vision benchmark tasks270

We compare the performance of our Block Local Learning (BLL) algorithm with that of end-to-end271

backprop (BP) and Feedback Alignment (FA) Lillicrap et al. [2014b] , Local Error Signals (LES)272

Nøkland and Eidnes [2019] and Greedy Layerwise Learning (GLL) Belilovsky et al. [2019]. Three273

datasets are considered: MNIST, Fashion MNIST and CIFAR10 together with two residual network274

architectures [He et al., 2016]: ResNet-18 and ResNet-50, each trained with one of the three methods275

(BP, FA, BLL). The results for LES and GLL are directly taken from their respective paper. These276

methods are not directly comparable to ours as outlined above but used here as a reference benchmark.277

7

MNIST Fashion-MNIST CIFAR-10
test-1 test-3 train-1 test-1 test-3 train-1 test-1 test-3 train-1

ResNet-18 + BP 99.5 100 99.7 92.7 99.3 96.0 95.2 99.3 100
ResNet-50 + BP 99.5 99.9 100 93.4 99.4 97.9 94.0 99.2 99.8

VGG8B + LES 99.6 - - 95.3 - - 94.4 - -
CNN + GLL - - - - - - 88.3 - -

ResNet-18 + FA 99.0 99.9 100 87.9 98.6 92.1 70.4 92.5 80.9
ResNet-50 + FA 98.9 99.9 100 83.1 97.9 83.7 70.3 92.0 79.3

ResNet-18 + BLL 99.4 100 99.6 92.6 99.2 97.0 82.2 95.6 83.9
ResNet-50 + BLL 99.4 99.8 99.2 93.9 99.3 97.5 84.2 96.9 87.6

Table 1: Classification accuracy (% correct) on vision tasks. BP: end-to-end backprop, FA: feedback
alignment, BLL: block local learning, LES: Local Error Signals with predsim loss as reported in
[Nøkland and Eidnes, 2019], GLL: Greedy Layerwise Learning as reported in [Belilovsky et al.,
2019]. Test-1, test-3 and train-1 represent the top-1, top-3 test accuracy and top-1 training accuracy
respectively.

The BLL architectures were split into 4 blocks that were trained locally using the Bernoulli loss278

in Eq. (8). Splits were introduced after residual layers of the ResNet architecture by grouping279

subsequent layers into blocks. Group sizes were (4,5,4,5) for ResNet-18 and (12,13,12,13) for280

ResNet-50. Backward twin networks were here constructed simply by using the same network281

architecture (ResNet-18 or ResNet-50) in reverse order, introducing appropriate splits to provide282

intermediate targets. For CIFAR-10 gradients were propagated between two neighboring blocks283

(see Supplement for details and a comparison with purely local gradients). The kernels of ResNet-284

18/ResNet-50 + FA architectures used during backpropagation are fixed and uniformly initialised285

following the Kaiming He et al. [2015] initialisation method. The bias is set to one.286

The results are summarized in Table 1. Test top-1, top-3 and train top-1 accuracies are shown. Top-3287

accuracies count the number of test samples for which the correct class was among the network’s288

3 highest output activations. See Supplement for results over multiple runs. BLL achieved good289

performance on MNIST and Fashion-MNIST, closely matching end-to-end training and outperforming290

FA networks. Note that in contrast to FA and BP, BLL does not need to compute error gradients at291

the output but can work directly with the target labels. Performance on CIFAR-10 was significantly292

lower than BP but outperformed FA. Interestingly the performance on the training set was close to293

perfect for ResNet-50 suggesting over-fitting the task.294

4.2 Block-local transformer architecture for sequence-to-sequence learning295

Transformer architectures are in principle well suited for distributed computing due to their modular296

network structure that comprises a repetition of homogeneous blocks. We demonstrate a proof-of-297

concept result on training a transformer with BLL. We used a transformer model with 20 self-attention298

blocks with a single attention head each. Block local losses were added after each layer and blocks299

were trained locally. A backward twin network was constructed by projecting targets through dense300

layers and used the Bernoulli loss Eq. (8) for local training (see Fig. 3 A for an illustration). The301

transformer was trained on a sequence-to-sequence task, where a random permutation of numbers302

0..9 was presented on the input and had to be re-generated at the output in reverse order. We trained303

the network for 5 epochs.304

BLL achieves convergence speed that is comparable to that of end-to-end BP on this task. Fig. 3 B305

shows learning curves of BLL and BP. Both algorithms converge after around 3 epochs to nearly306

perfect performance. BLL also achieved good performance for a wide range of network depths.307

Fig. 3 C shows the performance after 5 epochs for different transformer architectures. Using only 5308

transformer blocks yields performance of around 99.9% (average over five independent runs). The309

test accuracy on this task for the 20 block transformer was 99.6%. These results suggest that the BLL310

method is equally applicable to transformer architectures.311

8

Figure 3: Block local learning of transformer architecture. A: Illustration of the transformer twin
network. B: Learning curves of block local (BLL) and backprop (BP) training. C: Test accuracy vs.
number of blocks in the transformer model. Error bars show standard deviations over 5 runs.

5 Discussion312

In this work, we have demonstrated a general purpose probabilistic framework for rigorously defining313

block-local losses for deep architectures. This not only provides a novel way of performing distributed314

training of large models but also hints at new paradigms of self-supervised training that are biologically315

plausible. We have also shown that our block-local training approach outperforms existing local316

training approaches while still getting around the locking and weight transport problems. Our method317

introduces a twin network that propagates information backwards from the targets to the input318

and automatically estimates uncertainties on intermediate layers. This is achieved by representing319

probability distributions in the network activations. The forward network and its backward twin can320

work in parallel and with different sets of weights.321

The proposed method may also help further blur the boundary between deep learning and probabilistic322

models. A number of previous models have shown that DNNs are capable of representing probability323

distribution [Abdar et al., 2021, Pawlowski et al., 2017, Tran et al., 2019, Malinin and Gales, 2019].324

Unlike these previous methods, our method does not require Monte Carlo sampling or contrastive325

training, but instead exploits the log-linear structure of exponential family distributions to efficiently326

propagate uncertainty-aware messages through a network using a belief-propagation strategy. We327

have demonstrated that implicit uncertainty messages can be learnt from sparse data and accurately328

represent the network’s performance.329

Greedy block-local learning has recently shown compelling performance on a number of tasks330

[Nøkland and Eidnes, 2019, Siddiqui et al., 2023]. These methods use local losses with an information-331

theoretic motivation but are agnostic to global back-propagating information. In future work, it may332

be interesting to combine these approaches with the proposed model to get the best of both worlds.333

Being able to produce block-level uncertainty predictions can also be useful for enhancing the sparsity334

of the network and using optimal amount of compute for predictions. The uncertainty predictions335

can also be used to handle missing labels, and for evaluating the model’s confidence about its336

predictions. Since the framework is flexible enough to apply to self-supervised training, it can be337

used on unlabelled and multi-modal datasets as well. Due to the local nature of the training process,338

our method is particularly attractive for application on neuromorphic systems that co-locate memory339

and compute and use orders of magnitude less energy if the computation is local.340

This work addresses potential problems of modern ML: The estimation of uncertainties in neural341

networks is an important open problem and understanding the underlying mechanisms better will342

likely help to make ML models safer and more reliable. Also the main focus of this work, which is on343

distributing large ML models over many compute nodes may make these model more energy efficient344

in the future. The energy consumption and resulting carbon footprint of ML is a major concern and345

the proposed model may provide a new direction to approach this problem. This method may enable346

training of larger models which also come with associated risks in terms of biases and inappropriate347

use in the real world. It is also not known what biases using this method itself and extensions with348

sparsity may introduce in the models predictions.349

9

References350

Moloud Abdar, Farhad Pourpanah, Sadiq Hussain, Dana Rezazadegan, Li Liu, Mohammad351

Ghavamzadeh, Paul Fieguth, Xiaochun Cao, Abbas Khosravi, U Rajendra Acharya, et al. A352

review of uncertainty quantification in deep learning: Techniques, applications and challenges.353

Information Fusion, 76:243–297, 2021.354

Mohamed Akrout, Collin Wilson, Peter Humphreys, Timothy Lillicrap, and Douglas B Tweed. Deep355

learning without weight transport. Advances in neural information processing systems, 32, 2019.356

Ehsan Amid, Rohan Anil, and Manfred Warmuth. LocoProp: Enhancing BackProp via local loss357

optimization. In Proceedings of The 25th International Conference on Artificial Intelligence and358

Statistics, pages 9626–9642. PMLR, 2022. URL https://proceedings.mlr.press/v151/359

amid22a.html.360

Eugene Belilovsky, Michael Eickenberg, and Edouard Oyallon. Greedy layerwise learning can scale361

to ImageNet. In Proceedings of the 36th International Conference on Machine Learning, pages 583–362

593. PMLR, 2019. URL https://proceedings.mlr.press/v97/belilovsky19a.html.363

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal364

Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and365

Qiao Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL366

http://github.com/google/jax.367

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,368

Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel369

Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,370

Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott371

Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya372

Sutskever, and Dario Amodei. Language Models are Few-Shot Learners. arXiv:2005.14165 [cs],373

July 2020. URL http://arxiv.org/abs/2005.14165.374

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for375

contrastive learning of visual representations. In International conference on machine learning,376

pages 1597–1607. PMLR, 2020.377

David Clark, L F Abbott, and Sueyeon Chung. Credit assignment through broadcasting a global error378

vector. In Advances in Neural Information Processing Systems, volume 34, pages 10053–10066.379

Curran Associates, Inc., 2021. URL https://proceedings.neurips.cc/paper/2021/hash/380

532b81fa223a1b1ec74139a5b8151d12-Abstract.html.381

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the EM382

algorithm. 39(1):1–22, 1977. ISSN 00359246. doi: 10.1111/j.2517-6161.1977.tb01600.x. URL383

https://onlinelibrary.wiley.com/doi/10.1111/j.2517-6161.1977.tb01600.x.384

Maxence M Ernoult, Fabrice Normandin, Abhinav Moudgil, Sean Spinney, Eugene Belilovsky, Irina385

Rish, Blake Richards, and Yoshua Bengio. Towards scaling difference target propagation by386

learning backprop targets. In International Conference on Machine Learning, pages 5968–5987.387

PMLR, 2022.388

Charlotte Frenkel, Martin Lefebvre, and David Bol. Learning without feedback: Fixed random389

learning signals allow for feedforward training of deep neural networks. 15, 2021. ISSN 1662-390

453X. URL https://www.frontiersin.org/articles/10.3389/fnins.2021.629892.391

Zoubin Ghahramani. Probabilistic machine learning and artificial intelligence. Nature, 521(7553):392

452–459, 2015.393

Stephen Grossberg. Competitive learning: From interactive activation to adaptive resonance. Cogni-394

tive science, 11(1):23–63, 1987.395

Kuan Han, Haiguang Wen, Yizhen Zhang, Di Fu, Eugenio Culurciello, and Zhongming Liu. Deep396

predictive coding network with local recurrent processing for object recognition, 2018. URL397

http://arxiv.org/abs/1805.07526.398

10

https://proceedings.mlr.press/v151/amid22a.html
https://proceedings.mlr.press/v151/amid22a.html
https://proceedings.mlr.press/v151/amid22a.html
https://proceedings.mlr.press/v97/belilovsky19a.html
http://github.com/google/jax
http://arxiv.org/abs/2005.14165
https://proceedings.neurips.cc/paper/2021/hash/532b81fa223a1b1ec74139a5b8151d12-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/532b81fa223a1b1ec74139a5b8151d12-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/532b81fa223a1b1ec74139a5b8151d12-Abstract.html
https://onlinelibrary.wiley.com/doi/10.1111/j.2517-6161.1977.tb01600.x
https://www.frontiersin.org/articles/10.3389/fnins.2021.629892
http://arxiv.org/abs/1805.07526

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing399

human-level performance on imagenet classification, 2015.400

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image401

recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,402

pages 770–778, 2016.403

Geoffrey Hinton. The forward-forward algorithm: Some preliminary investigations. arXiv preprint404

arXiv:2212.13345, 2022.405

Bernd Illing, Jean Ventura, Guillaume Bellec, and Wulfram Gerstner. Local plasticity406

rules can learn deep representations using self-supervised contrastive predictions. In Ad-407

vances in Neural Information Processing Systems, volume 34, pages 30365–30379. Cur-408

ran Associates, Inc., 2021. URL https://proceedings.neurips.cc/paper/2021/hash/409

feade1d2047977cd0cefdafc40175a99-Abstract.html.410

Max Jaderberg, Wojciech Marian Czarnecki, Simon Osindero, Oriol Vinyals, Alex Graves, David411

Silver, and Koray Kavukcuoglu. Decoupled Neural Interfaces using Synthetic Gradients.412

arXiv:1608.05343 [cs], August 2016a. URL http://arxiv.org/abs/1608.05343.413

Max Jaderberg, Volodymyr Mnih, Wojciech Marian Czarnecki, Tom Schaul, Joel Z. Leibo, David414

Silver, and Koray Kavukcuoglu. Reinforcement learning with unsupervised auxiliary tasks, 2016b.415

URL http://arxiv.org/abs/1611.05397.416

Max Jaderberg, Wojciech Marian Czarnecki, Simon Osindero, Oriol Vinyals, Alex Graves, David417

Silver, and Koray Kavukcuoglu. Decoupled neural interfaces using synthetic gradients. In418

Proceedings of the 34th International Conference on Machine Learning, pages 1627–1635. PMLR,419

2017. URL https://proceedings.mlr.press/v70/jaderberg17a.html.420

Danilo Jimenez Rezende, S. M. Ali Eslami, Shakir Mohamed, Peter Battaglia, Max Jaderberg, and421

Nicolas Heess. Unsupervised learning of 3d structure from images. In Advances in Neural Informa-422

tion Processing Systems, volume 29. Curran Associates, Inc., 2016. URL https://proceedings.423

neurips.cc/paper/2016/hash/1d94108e907bb8311d8802b48fd54b4a-Abstract.html.424

Diederik P. Kingma and Max Welling. Auto-Encoding Variational Bayes. arXiv:1312.6114 [cs, stat],425

December 2013. URL http://arxiv.org/abs/1312.6114.426

Daphne Koller and Nir Friedman. Probabilistic graphical models: principles and techniques. MIT427

press, 2009.428

Julien Launay, Iacopo Poli, François Boniface, and Florent Krzakala. Direct feedback alignment scales429

to modern deep learning tasks and architectures. In Advances in Neural Information Processing Sys-430

tems, volume 33, pages 9346–9360. Curran Associates, Inc., 2020. URL https://proceedings.431

neurips.cc/paper/2020/hash/69d1fc78dbda242c43ad6590368912d4-Abstract.html.432

Dong-Hyun Lee, Saizheng Zhang, Asja Fischer, and Yoshua Bengio. Difference target propagation.433

In Machine Learning and Knowledge Discovery in Databases: European Conference, ECML434

PKDD 2015, Porto, Portugal, September 7-11, 2015, Proceedings, Part I 15, pages 498–515.435

Springer, 2015.436

Timothy P. Lillicrap, Daniel Cownden, Douglas B. Tweed, and Colin J. Akerman. Random feedback437

weights support learning in deep neural networks. arXiv:1411.0247 [cs, q-bio], November 2014a.438

URL http://arxiv.org/abs/1411.0247.439

Timothy P. Lillicrap, Daniel Cownden, Douglas B. Tweed, and Colin J. Akerman. Random feedback440

weights support learning in deep neural networks, 2014b.441

Timothy P. Lillicrap, Adam Santoro, Luke Marris, Colin J. Akerman, and Geoffrey Hinton. Backprop-442

agation and the brain. 21(6):335–346, 2020. ISSN 1471-0048. doi: 10.1038/s41583-020-0277-3.443

URL https://www.nature.com/articles/s41583-020-0277-3.444

Michael Lomnitz, Zachary Daniels, David Zhang, and Michael Piacentino. Learning with local445

gradients at the edge, 2022. URL http://arxiv.org/abs/2208.08503.446

11

https://proceedings.neurips.cc/paper/2021/hash/feade1d2047977cd0cefdafc40175a99-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/feade1d2047977cd0cefdafc40175a99-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/feade1d2047977cd0cefdafc40175a99-Abstract.html
http://arxiv.org/abs/1608.05343
http://arxiv.org/abs/1611.05397
https://proceedings.mlr.press/v70/jaderberg17a.html
https://proceedings.neurips.cc/paper/2016/hash/1d94108e907bb8311d8802b48fd54b4a-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/1d94108e907bb8311d8802b48fd54b4a-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/1d94108e907bb8311d8802b48fd54b4a-Abstract.html
http://arxiv.org/abs/1312.6114
https://proceedings.neurips.cc/paper/2020/hash/69d1fc78dbda242c43ad6590368912d4-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/69d1fc78dbda242c43ad6590368912d4-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/69d1fc78dbda242c43ad6590368912d4-Abstract.html
http://arxiv.org/abs/1411.0247
https://www.nature.com/articles/s41583-020-0277-3
http://arxiv.org/abs/2208.08503

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts, 2017.447

Sindy Löwe, Peter O’ Connor, and Bastiaan Veeling. Putting an end to end-to-end: Gradient-isolated448

learning of representations. In Advances in Neural Information Processing Systems, volume 32.449

Curran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/hash/450

851300ee84c2b80ed40f51ed26d866fc-Abstract.html.451

Andrey Malinin and Mark Gales. Reverse kl-divergence training of prior networks: Improved452

uncertainty and adversarial robustness. Advances in Neural Information Processing Systems, 32,453

2019.454

Alexander Meulemans, Francesco Carzaniga, Johan Suykens, João Sacramento, and Benjamin F455

Grewe. A theoretical framework for target propagation. Advances in Neural Information Processing456

Systems, 33:20024–20036, 2020.457

Beren Millidge, Tommaso Salvatori, Yuhang Song, Rafal Bogacz, and Thomas Lukasiewicz. Pre-458

dictive coding: towards a future of deep learning beyond backpropagation? arXiv preprint459

arXiv:2202.09467, 2022.460

Andriy Mnih and Karol Gregor. Neural variational inference and learning in belief networks. In461

International Conference on Machine Learning, pages 1791–1799. PMLR, 2014.462

Arild Nøkland and Lars Hiller Eidnes. Training neural networks with local error signals. In463

International conference on machine learning, pages 4839–4850. PMLR, 2019.464

Arild Nøkland. Direct feedback alignment provides learning in deep neural net-465

works. In Advances in Neural Information Processing Systems, volume 29. Curran466

Associates, Inc., 2016. URL https://proceedings.neurips.cc/paper/2016/hash/467

d490d7b4576290fa60eb31b5fc917ad1-Abstract.html.468

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive469

coding, 2019. URL http://arxiv.org/abs/1807.03748.470

Alexander Ororbia and Daniel Kifer. The neural coding framework for learning generative models.471

Nature communications, 13(1):2064, 2022.472

Alexander Ororbia and Ankur Mali. Convolutional neural generative coding: Scaling predictive473

coding to natural images. arXiv preprint arXiv:2211.12047, 2022a.474

Alexander Ororbia and Ankur Mali. The predictive forward-forward algorithm. arXiv preprint475

arXiv:2301.01452, 2023.476

Alexander G Ororbia and Ankur Mali. Biologically motivated algorithms for propagating local target477

representations. In Proceedings of the aaai conference on artificial intelligence, volume 33, pages478

4651–4658, 2019.479

Alexander G Ororbia and Ankur Mali. Backprop-free reinforcement learning with active neural480

generative coding. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36,481

pages 29–37, 2022b.482

Alexander G Ororbia, Ankur Mali, Daniel Kifer, and C Lee Giles. Backpropagation-free deep483

learning with recursive local representation alignment. In Proceedings of the AAAI Conference on484

Artificial Intelligence, volume 37, pages 9327–9335, 2023.485

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor486

Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward487

Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,488

Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An Imperative Style, High-Performance489

Deep Learning Library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché Buc,490

E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems 32, pages491

8024–8035. Curran Associates, Inc., 2019. URL http://papers.neurips.cc/paper/492

9015-pytorch-an-imperative-style-high-performance-deep-learning-library.493

pdf.494

12

https://proceedings.neurips.cc/paper/2019/hash/851300ee84c2b80ed40f51ed26d866fc-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/851300ee84c2b80ed40f51ed26d866fc-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/851300ee84c2b80ed40f51ed26d866fc-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/d490d7b4576290fa60eb31b5fc917ad1-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/d490d7b4576290fa60eb31b5fc917ad1-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/d490d7b4576290fa60eb31b5fc917ad1-Abstract.html
http://arxiv.org/abs/1807.03748
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

Nick Pawlowski, Andrew Brock, Matthew CH Lee, Martin Rajchl, and Ben Glocker. Implicit weight495

uncertainty in neural networks. arXiv preprint arXiv:1711.01297, 2017.496

Maria Refinetti, Stéphane d’Ascoli, Ruben Ohana, and Sebastian Goldt. Align, then memorise:497

the dynamics of learning with feedback alignment, 2021. URL http://arxiv.org/abs/2011.498

12428.499

Tommaso Salvatori, Luca Pinchetti, Beren Millidge, Yuhang Song, Tianyi Bao, Rafal Bogacz, and500

Thomas Lukasiewicz. Learning on arbitrary graph topologies via predictive coding. Advances in501

neural information processing systems, 35:38232–38244, 2022.502

Albert Jiménez Sanfiz and Mohamed Akrout. Benchmarking the accuracy and robustness of feedback503

alignment algorithms, 2021. URL http://arxiv.org/abs/2108.13446.504

Benjamin Scellier and Yoshua Bengio. Equilibrium propagation: Bridging the gap between energy-505

based models and backpropagation. Frontiers in computational neuroscience, 11:24, 2017.506

Tatsukichi Shibuya, Nakamasa Inoue, Rei Kawakami, and Ikuro Sato. Fixed-weight difference target507

propagation. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 37, pages508

9811–9819, 2023.509

Shoaib Ahmed Siddiqui, David Krueger, Yann LeCun, and Stéphane Deny. Blockwise self-supervised510

learning at scale, 2023. URL http://arxiv.org/abs/2302.01647.511

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée512

Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand513

Joulin, Edouard Grave, and Guillaume Lample. LLaMA: Open and Efficient Foundation Language514

Models, February 2023. URL http://arxiv.org/abs/2302.13971.515

Dustin Tran, Mike Dusenberry, Mark Van Der Wilk, and Danijar Hafner. Bayesian layers: A module516

for neural network uncertainty. Advances in neural information processing systems, 32, 2019.517

Bohan Wu, Suraj Nair, Roberto Martin-Martin, Li Fei-Fei, and Chelsea Finn. Greedy hierarchi-518

cal variational autoencoders for large-scale video prediction. In Proceedings of the IEEE/CVF519

Conference on Computer Vision and Pattern Recognition, pages 2318–2328, 2021.520

Kan Wu, Jinnian Zhang, Houwen Peng, Mengchen Liu, Bin Xiao, Jianlong Fu, and Lu Yuan. TinyViT:521

Fast pretraining distillation for small vision transformers, 2022. URL http://arxiv.org/abs/522

2207.10666.523

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmarking524

machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.525

Yuwen Xiong, Mengye Ren, and Raquel Urtasun. LoCo: Local contrastive representation learning.526

In Advances in Neural Information Processing Systems, volume 33, pages 11142–11153. Cur-527

ran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/hash/528

7fa215c9efebb3811a7ef58409907899-Abstract.html.529

Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and Stéphane Deny. Barlow twins: Self-supervised530

learning via redundancy reduction, 2021. URL http://arxiv.org/abs/2103.03230.531

Gongpei Zhao, Tao Wang, Yidong Li, Yi Jin, Congyan Lang, and Haibin Ling. The cascaded forward532

algorithm for neural network training. arXiv preprint arXiv:2303.09728, 2023.533

13

http://arxiv.org/abs/2011.12428
http://arxiv.org/abs/2011.12428
http://arxiv.org/abs/2011.12428
http://arxiv.org/abs/2108.13446
http://arxiv.org/abs/2302.01647
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2207.10666
http://arxiv.org/abs/2207.10666
http://arxiv.org/abs/2207.10666
https://proceedings.neurips.cc/paper/2020/hash/7fa215c9efebb3811a7ef58409907899-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/7fa215c9efebb3811a7ef58409907899-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/7fa215c9efebb3811a7ef58409907899-Abstract.html
http://arxiv.org/abs/2103.03230

Supplementary Information534

S1 A probabilistic formulation of distributed learning535

S1.1 Markov chain model536

Here we provide additional details to the learning model presented in Section 3 of the main text. To537

establish these results we consider the Markov chain model x→ z1 → z2 → · · · → y of a DNN with538

inputs x, outputs y and intermediate representations zk at block k. To simplify the notation we will539

define the input z0 := x and output zN := y layers, and z = {zk}, 1 ≤ k < N , the auxiliary latent540

variables. A DNN NA suggests a conditional independence structure given by the fully factorized541

Markov chain of random variables zk542

p (y, z |x) = p (z1 . . . zN | z0) =

N∏
k=1

pk (zk | zk−1) . (S1)

The computation of messages αk comes naturally in a feed-forward neural network as the flow of543

information follows the canonical form, input→ output. Every block of the network thus translates544

αk−1 → αk by outputting the statistical parameters of the conditional distribution p (zk |x) and takes545

p (zk−1 |x) as input. This interpretation is viable for a suitable split of any DNN into N blocks, that546

fulfils a mild set of conditions (see Section S1.3 for details). It is important to note that the random547

variables (z1, z2, . . .) are only implicit. The network generates the parameters to the probability548

distribution and at no points needs to sample values for these random variables.549

S1.2 Using latent representations to construct probabilistic block-local losses550

Many commonly used loss functions in deep learning have a probabilistic interpretation, e.g. the cross551

entropy loss of a binary classifier is identical to the Bernoulli log likelihood, and the mean squared552

error is up to a constant equivalent to the log-likelihood of a Gaussian with constant variance. In553

this formulation, the outputs of the DNN are interpreted as the statistical parameters to a conditional554

probability distribution (e.g. the mean of a Gaussian) and the loss function measures the support of555

observed data samples x and y.556

To introduce intermediate block-local representations zk in the network we consider a variational557

upper bound to the log-likelihood loss (Eq. 1 of the main text)558

LV = − log p (y |x) + 1

N

N∑
k=1

DKL (qk | pk) ≥ L , (S2)

where pk and qk are true and variational posterior distributions over latent variables p (zk |x,y) and559

q (zk |x,y), respectively. Using the Markov property (S1) assuming a fully factorized distribution,560

implies the conditional independence561

p (y, zk |x) = p (y | zk) p (zk |x) . (S3)
Using this Eq. S2 becomes562

LV = − log p (y |x) + 1

N

N∑
k=1

DKL (qk | pk)

=
1

N

N∑
k=1

Eqk

(
log

q (zk |x,y)
p (y, zk |x)

)

=
1

N

N∑
k=1

Eqk

(
log

q (zk |x,y)
p (zk |x)

− log p (y | zk)
)

=
1

N

N∑
k=1

DKL (ρk(x,y) |αk(x))− Eqk (log p (y | zk))

=
1

N

N∑
k=1

ℓk − Eqk (log p (y | zk)) . (S4)

14

Eq. S4 is an upper bound on log-likelihood loss L = − log p (y |x) ≤ LV . Since L is strictly563

positive, minimizing LV to zeros implies that also L becomes zero Mnih and Gregor [2014].564

S1.3 General exponential family distribution565

To arrive at a result for the gradient of the first (KL-divergence) term ℓk in Eq. S4 we seek distributions566

for which the marginals can be computed in closed form. We assume forward messages α and567

posterior ρ be given by general exponential family distributions568

αk (zk) =
∏
j

αkj (zkj) =
∏
j

h(zkj)exp (T (zkj)ϕkj −A (ϕkj)) (S5)

ρk (zk) =
∏
j

ρkj (zkj) =
∏
j

h(zkj)exp (T (zkj) γkj −A (γkj)) (S6)

with base measure h, sufficient statistics T , log-partition function A, and natural parameters ϕkj and569

γkj . Using this the KL loss becomes570

ℓk = DKL (ρk |αk) =
∑
j

Eρkj
(T (zkj) (ϕkj − γkj)−A (ϕkj) +A (γkj)) , (S7)

and thus571

−∇ℓk =
∑
j

(
Eρkj

(T (zkj))− Eαkj
(T (zkj))

)
∇ϕkj +(

Eρkj

(
T (zkj)

2
)
− Eρkj

(T (zkj))
2
)

︸ ︷︷ ︸
σ2(ρkj)

(ϕkj − γkj)∇γkj , (S8)

which by defining µ (p) = Ep (T (zkj)) can be written in the compact form572

−∇ℓk =
∑
j

(µ (ρkj)− µ (αkj))∇ϕkj + σ2 (ρkj) (ϕkj − γkj)∇γkj .

This is the result Eq. (7) of the main text.573

S1.3.1 Example: Bernoulli random variables574

For the example of a Bernoulli random variable we have T (zkj) = zkj , A (γ) = log (1 + eγ),575

Eρkj
(T (zkj)) = ρkj , and furthermore σ2 (ρkj) = ρkj (1− ρkj). We get576

−∇ℓk =
∑
j

(ρkj − αkj)∇ϕkj + ρkj (1− ρkj) (ϕkj − γkj)∇γkj . (S9)

Using the ansatz ϕkj = akj and γkj = akj + bkj , ρkj = S(akj + bkj) = p (zkj = 1 |x,y) with577

akj = fj(ak−1) and bkj = gj(bk+1) we further get578

−∇ℓk =
∑
j

(ρkj − αkj)∇akj − ρkj (1− ρkj) bkj (∇akj +∇bkj) . (S10)

For the Bernoulli case it is also easy to verify that our approach is sound. Here, the natural parameters579

are given by the logg-odds akj = log
p(zkj=1 |x)
p(zkj=0 |x) and bkj = log

p(y | zkj=1)
p(y | zkj=0) . Plugging this into580

the expression for ρkj we get ρkj = S (akj + bkj) = S
(
log

p(zkj=1 |x)
p(zkj=0 |x) + log

p(y | zkj=1)
p(y | zkj=0)

)
=581

p (zkj = 1 |x,y).582

S1.3.2 Example: Gaussian random variables with constant variance583

For the example of a Gaussian random variable with constant variance we have T (zkj) = zkj ,584

Eρkj
(T (zkj)) = ϕkj , and furthermore σ2 (ρkj) = σ2 (= const). We get585

−∇ℓk =
∑
j

(γkj − ϕkj)∇ϕkj + σ (ϕkj − γkj)∇γkj (S11)

Using the ansatz ϕkj = akj and γkj = akj + bkj , we further get586

−∇ℓk =
∑
j

(1− σ) bkj∇akj − σ bkj∇bkj . (S12)

15

S1.3.3 Example: Poisson random variables587

For the example of a Poisson random variable we have T (zkj) = zkj , A (γ) = eγ , Eρkj
(T (zkj)) =588

eγkj , furthermore σ2 (ρkj) = ρkj = eγkj and αkj = eϕkj . Using again ϕkj = akj and γkj =589

akj + bkj , we get590

−∇ℓk =
∑
j

(ρkj − αkj)∇akj − ρkj bkj (∇akj +∇bkj) , (S13)

S1.3.4 Estimating the log-likelihood loss through posterior mixing591

Finally we show how the remaining term Eqk (log p (y | zk)) in Eq. S4 can be estimated locally. First592

we note that the − log p (y | zk) is of the same form as the log-likelihood loss (Eq. (1) of the main593

text), i.e. the likelihood of the data labels y of the residual network zk → y. Thus treating zk as594

block-local input data and minimizing the augmented ELBO loss from layer zk → zN minimizes595

another lower bound on the global loss L. By inserting Eq. S4 recursively into itself we get596

L2 =
1

N

N∑
k=1

(
ℓk +

1

N − k

N∑
l=k+1

(
Eqk (DKL (ρl(zk,y) |αl(zk)))− Eqk→ql (log p (y | zl))

))

=

N∑
k=1

ℓk
N

+

N∑
l=k+1

ℓ
(2)
kl

N(N − k)
− 1

N(N − k)
Eqk→ql (log p (y | zl)) , (S14)

where we used the short-hand notation Eqk→ql (f (zl)) = Eqk (Eql (f (zl))). Note that the forward597

network is able to compute this expression since each block computes the required marginal locally598

by Eq. (3). That is, the data is augmented by choosing a block k and instead of propagating αk into599

block k + 1 the posterior ρk is propagated forward. By iterating another recursion we get600

L3 =

N∑
k=1

ℓk
N

+

N∑
l=k+1

ℓ
(2)
kl

N(N − k)
+

N∑
l′=l+1

ℓ
(3)
kll′

N(N − k)(N − l)

− 1

N(N − k)(N − l)
Eqk→ql→ql′ (log p (y | zl′)) ,

where ℓ
(3)
kll′ = Eqk→ql (DKL (ρl(zk,y) |αl(zk))). This result implies a hierarchy of loss functions601

0 ≤ L ≤ L1 ≤ L2 ≤ ..., where LN consists only of DKL-terms between forward messages α and602

posteriors ρ that were generated by propagating different paths qk → ql → ql′ → . . . through the603

network. While this posterior mixing would be computable in principle in our model, it turns out to604

be quite expensive since exponentially many (exponential in the number of blocks N) such paths605

have to be considered.606

We therefore used a different approach by introducing the mixing parameter m in Eq. 8 to redefine607

the posterior ρkj = S (akj +mbkj), and replacing in Eq. S10. We found that combining the simple608

first-order loss L̃V =
∑N

k=1 ℓk, which only uses local KL-losses along the main forward-backward609

paths through the network, with a suitable schedule that slowly anneals the mixing parameter m610

towards zero during training gives quite good results in practice. We used m = (1 + τ M)
−1 in our611

experiments, where M is the index of the current epoch and τ is a scaling parameter that was set612

to τ = 0.5 if not stated otherwise. In the transformer example in Fig. 3 we used a constant mixing613

m = 0.01 throughout training. In the implementation gradients were stopped between blocks to614

achieve block-local learning.615

The rational behind this approach is the following: We make use here once again of the linearity616

of the EF distributions. To that end, multiple paths through the forward-backward twin-network617

can be superimposed to produce mixed representations. Furthermore, in the limit m→ 0 we have618

ρkj = αkj . Therefore the posterior mixing described above can be omitted since small m imply619

ℓk ≈ ℓ
(2)
lk ≈ ℓ

(3)
jlk . . . , i.e. all paths through the network that end in node k give rise to approximately620

the same expectation. Clearly there is a trade-off between small values of m that gives rise to to the621

mixing approximation and large values that enable better learning signals. In experiments we found622

that the annealing schedule that bootstraps learning with initially large values of m and then makes623

the approximation progressively more precise as learning advances performs well in practice. We624

also found that including m only in the loss as described in Eq. 8 of the main text (and not during625

inference also for large values) to be sufficient.626

16

S1.4 EM interpretation of the model627

As outlined above the model can be closely linked to the EM algorithm. The split of gradient628

estimators using the Markov assumption is a key property of algorithms derived from EM, and also629

the key property exploited in BLL. Here, we briefly recap the derivation in [Dempster et al., 1977]630

that was used in Eq. 2 for the sake of completeness631

−∇L = ∇ log p (y |x) =
1

p (y |x)
∇p (y |x)

=
1

p (y |x)
∇Ezk

(p (y | zk) p (zk |x))

= Ep(zk |x,y) (∇ log p (y | zk) +∇ log p (zk |x)) ,

where in the last step we used that p (y |x) is constant under the expectation and p(y | zk)p(zk |x)
p(y |x) =632

p (zk |x,y).633

S2 Experimental procedure634

S2.1 Forward-backward networks as autoencoder635

For the convolutional autoencoder in Section 3.3 of the main text we used a convolutional neural net-636

work with 2 layers with leaky ReLu activation function for decoder and encoder. Batch normalization637

was used after the convolution/deconvolution layers. Encoder network in addition used max-pooling638

after each convolution layer. The bottleneck layer (y) had 128 channels. Fashion MNIST images were639

augmented with 28x28 pixel images as targets for the uncertainty outputs, giving a total input/target640

size of 56x28. Uncertainty inputs/targets were set to a constant of 0.2 during training for all channels641

and training samples.642

Network output images were also split into 2 28x28 patches corresponding to training mean and643

uncertainty channels. Let µ∗
n and s∗n denote mean and uncertainty channels of training sample n,644

respectively, and let µn and sn be the corresponding network outputs. For training and testing we645

used the Gaussian Kullback-Leibler divergence loss646

LKL =
1

2M

M∑
n=1

(
sn − s∗n +

es
∗
n + (µ∗

n − µn)
2

esn
− 1

)
, (S15)

where M is here the number of training samples and sn corresponding to log variances. The Adam647

optimizer with learning rate of 0.001 was used for training. For validation to further assess the648

mismatch between estimated and true prediction errors in Fig. 2 of the main text, we also used the649

MSE matching loss650

LMM =
1

M

M∑
n=1

(
(µ∗

n − µn)
2 − esn

)2
, (S16)

that estimates the distance between the empirical MSE of predictions, and the MSE estimator loss651

LME =
1

M

M∑
n=1

sn , (S17)

that is a global uncertainty estimator (mean variance predicted by the network). Uncertainty outputs652

in Fig. 2B were clipped to min and maximum range for the 5 examples given and presented as653

grayscale images.654

S2.2 Block-local learning with vision benchmark tasks655

BLL Architectures used in Section 4 were adapted from ResNet-18 and ResNet-50 architectures.656

Batch normalization was used after the convolution layers as is standard for ResNet architectures.657

These networks were split into 4 blocks that were trained locally. Backward twin networks were658

constructed using the same network in reverse order, again split into 4 blocks to provide intermediate659

17

Figure S1: Training accuracy vs. number of splits.

losses. The ResNet-18, for example, with its group sizes (4,5,4,5) was reversed into a group sizes660

of (5,4,5,4). Any convolution in the forward network with a stride more that 1 (i.e, Downsampling)661

was appended with an Upsampling layer of same stride in the backward network. Gradients were662

blocked after every layer in forward and backward networks and auxiliary losses (Eq. (8) of the main663

text) added for block local learning. For CIFAR10 experiments, additional tests were conducted with664

stopping gradients only after every two neighboring blocks.665

Pseudo code of the BLL learning algorithm is shown in Tab. S4. The algorithm shows a high level of666

parallelism. The activations of the forward and backward networks can be updated in parallel (for667

loop marked with *). Also the parameter updates can run in parallel (code lines marked with **). In668

contrast, in standard error back-propagation, backward updates are completely stale until losses are669

computed at the end of the forward pass.670

S2.2.1 MNIST and FashionMNIST vision tasks671

MNIST images were pre-processed by normalization to mean 0 and stds 1. FashionMNIST images672

were in addition augmented with random horizontal flips. MNIST is a freely available dataset673

consisting of 60,000 + 10,000 (train + test) grayscale images of handwritten digits published under674

the GNU General Public License v3.0. FashionMNIST is a freely available dataset consisting of675

60,000 + 10,000 (train + test) grayscale images of fashion items published under the MIT License676

(MIT) [Xiao et al., 2017]. After the submission of the main paper we ran additional trials with FA677

that gave better results on Fashion-MNIST and CIFAR10, which were included in Table S2 and will678

be added in the main paper after the revision. Overall we found the trial-by-trial variability of FA679

high compared to other methods analyzed.680

The impact of the number of splits used for training the ResNet-18 architecture for FMNIST if studied681

in Fig. S1. 2-5 splits were studied, corresponding to 3-6 blocks that were trained using the local BLL682

loss. The number of splits had no significant impact on the training performance suggesting good683

scaling abilities.684

S2.2.2 CIFAR10 vision task685

The BLL networks for CIFAR10 experiments also used the ResNet architectures as described in686

Section S2.2. We used an Adam optimizer with a learning rate of 0.01, momentum of 0.9 and weight687

decay of 0.002. Additionally, we used a Cosine annealing learning rate scheduler [Loshchilov and688

Hutter, 2017] with max iterations set to 140. The batch size was chosen to be 128 to maximize GPU689

utilization. We performed minimal hyperparameter (Learning rate, LR scheduler Tmax) tuning to690

obtain current results.691

18

Figure S2: t-SNE analysis of layer representations for CIFAR10 trained with ResNet-50.

MNIST
test-1 test-3 train-1

(mean±std) (mean±std) (mean±std)

ResNet-18 + BP 99.5±0.1 99.9±0.01 99.9±0.03
ResNet-50 + BP 99.5±0.06 99.9±0.0 99.9±0.1
ResNet-18 + FA 98.5±0.1 99.9±0.03 99.6±0.1
ResNet-50 + FA 98.9±0.06 99.9±0.03 100±0.0

ResNet-18 + BLL 99.3±0.1 100±0.0 99.5±0.3
ResNet-50 + BLL 99.1±0.4 99.9±0.1 99.2±0.2

Table S1: Classification accuracy (% correct) for 5 runs on MNIST vision tasks. BP: end-to-end
backprop, FA: feedback alignment, BLL: block local learning. Test-1, test-3 and train-1 represent the
top-1, top-3 test accuracy and top-1 training accuracy respectively.

In Fig. S2 we further study the representations that emerged in the forward and backward networks692

using the t-SNE analysis. Analysis was performed for the output representations for 128 test samples.693

Individual clusters were formed in the forward network for the different image classes. This is true in694

particular for deeper layers but representations also separate classes in intermediate layers, suggesting695

non-trivial learning in the whole network. Backward networks are strongly clustered but extremely696

sparse due to the high sparsity in the inputs (class labels).697

S2.2.3 Feedback alignment698

Resnet-18 and Resnet-50 architectures were also adapted for training with Feedback Alignment699

Lillicrap et al. [2014b], for comparison. To do so, random and fixed kernels B, were used during700

backpropagation, while different ones, W, were used during the forward pass. Only W were701

updated and learned. Both kernels were of the same dimensionality (output_channel, input_channel,702

Kernel_Width, Kernel_Height) at each layer. Kernels were uniformly initialised using the Kaiming703

He et al. [2015] initialisation method. The bias term was set to one.704

S2.3 Hardware and software details705

Most of our experiments were run on NVIDIA A100 GPUs and some initial evaluations and the706

MINST experiments were conducted on NVIDIA V100 and Quadro RTX 5000 GPUs. In total we707

used about 90,000 computational hours for training and hyper-parameter searches. ResNet18 and708

ResNet50 models and experiments were implemented in PyTorch [Paszke et al., 2019]. Transformer709

model for sequence-to-sequence learning was implemented in JAX [Bradbury et al., 2018].710

19

Fashion-MNIST
test-1 test-3 train-1

(mean±std) (mean±std) (mean±std)

ResNet-18 + BP 92.7±0.1 99.2±0.7 99.3±0.1
ResNet-50 + BP 93.4±0.6 99.4±0.05 97.9±1.2
ResNet-18 + FA 88.2±0.3 98.7±0.2 94.3±0.8
ResNet-50 + FA 86.6±0.7 98.6±0.1 91.1±2.2

ResNet-18 + BLL 92.3±0.25 99.2±0.08 94.8±1.3
ResNet-50 + BLL 93.4±0.26 99.1±0.18 97.7±0.91

Table S2: As in Table S1. Classification accuracy (% correct) for 5 runs on FashionMNIST vision
tasks.

CIFAR-10
test-1 test-3 train-1

(mean±std) (mean±std) (mean±std)

ResNet-18 + BP 92.5±1.5 98.3±0.3 99.1±0.1
ResNet-50 + BP 91.1±1.1 98.7±0.2 98.1±0.9
ResNet-18 + FA 72.0±0.6 92.8±0.1 81.2±2.2
ResNet-50 + FA 62.5±0.4 88.2±0.2 66.9±1.1

ResNet-18 + BLL 81.3±0.73 95.82±0.1 84.5±0.64
ResNet-50 + BLL 83.7±0.57 96.2±0.2 87.0±0.67

Table S3: As in Table S1. Classification accuracy (% correct) for 5 runs on CIFAR10 task.

for all pairs x,y in the training data set, and learning rate η do
a0,bN ← x,y
for 1 ≤ k ≤ N do *

ak ← fk (ak−1)
end for
for N ≥ k ≥ 1 do *

bk−1 ← gk (bk)
end for
for 1 < k < N do **

compute ρk and αk according to Eq. 9
θ
(a)
k ← θ

(a)
k + η (ρk −αk − ρk ⊙ (1− ρk)⊙ bk)⊙∇ak ** (Eq. 8 solved for θ(a)k)

θ
(b)
k ← θ

(b)
k − η (ρk ⊙ (1− ρk)⊙ bk)⊙∇bk ** (Eq. 8 solved for θ(b)k)

end for
end for

Table S4: Pseudo code of the BLL training algorithm. The for loops marked with *, ** can be run in
parallel.

20

	Introduction
	Related work
	A probabilistic formulation of distributed learning
	Using latent representations to construct probabilistic block-local losses
	Auxiliary latent representations
	Illustrative example: forward-backward networks as an autoencoder
	Modularized learning using local variational losses

	Experimental results
	Block-local learning of vision benchmark tasks
	Block-local transformer architecture for sequence-to-sequence learning

	Discussion

	A probabilistic formulation of distributed learning
	Markov chain model
	Using latent representations to construct probabilistic block-local losses
	General exponential family distribution
	Example: Bernoulli random variables
	Example: Gaussian random variables with constant variance
	Example: Poisson random variables
	Estimating the log-likelihood loss through posterior mixing

	EM interpretation of the model

	Experimental procedure
	Forward-backward networks as autoencoder
	Block-local learning with vision benchmark tasks
	MNIST and FashionMNIST vision tasks
	CIFAR10 vision task
	Feedback alignment

	Hardware and software details

