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Abstract

Off-policy methods are the basis of a large number of effective Policy Optimization
(PO) algorithms. In this setting, Importance Sampling (IS) is typically employed as
a what-if analysis tool, with the goal of estimating the performance of a target policy,
given samples collected with a different behavioral policy. However, in Monte
Carlo simulation, IS represents a variance minimization approach. In this field, a
suitable behavioral distribution is employed for sampling, allowing diminishing
the variance of the estimator below the one achievable when sampling from the
target distribution. In this paper, we analyze IS in these two guises, showing the
connections between the two objectives. We illustrate that variance minimization
can be used as a performance improvement tool, with the advantage, compared with
direct off-policy learning, of implicitly enforcing a trust region. We make use of
these theoretical findings to build a PO algorithm, Policy Optimization via Optimal
Policy Evaluation (PO2PE), that employs variance minimization as an inner loop.
Finally, we present empirical evaluations on continuous RL benchmarks, with a
particular focus on the robustness to small batch sizes.

1 Introduction

Policy Optimization methods [PO, 7] have been widely exploited in Reinforcement Learning [RL,
39] with successful results in addressing, to name a few, continuous-control [e.g., 33, 24], robot
manipulation [e.g., 12, 3], and locomotion [e.g., 22, 9]. Most of these algorithms employ the notion
of trust region [5], introduced ante litteram in the RL literature by the safe RL approaches [21, 34],
giving rise to a surge of effective algorithms, having TRPO [38] as the progenitor. The core of any RL
algorithm, being value-based or policy-based, lies in the ability to employ the samples collected with
the current (or behavioral) policy to evaluate the performance of a candidate (or target) policy [39].
The skeleton rationale behind the usage of a trust region is to control the set of candidate policies
whose performance can be accurately evaluated. Intuition suggests that if the candidate policy is
“sufficiently close” to the current one, this off-policy evaluation problem [35] will provide a good
estimate for the performance of the candidate policy. Formally, this idea has been studied in the
field of Importance Sampling [IS, 30] and the phenomenon is particularly evident looking at the IS
estimator variance, which grows exponentially with the Rényi divergence [37] between the behavioral
and the target policy [27, 28]. In this off-policy learning (Off-PL) setting, IS is employed as a what-if
analysis tool [30] and its role is passive, as samples have been already collected with the current
behavioral policy. In this sense, the trust region is an a-posteriori remedy for the limitations of
off-policy evaluation, having the goal of controlling the uncertainty injected by the IS procedure.

However, IS originated in the Monte Carlo simulation community [17, 13] as an active tool for
variance minimization (Off-VM). While in Off-PL, the behavioral policy is fixed and we look for the
best target policy, whose performance we aim to estimate, here the roles are reversed. Indeed, in Off-
VM, the target policy is fixed and we search for the behavioral policy (from which to collect samples)
that yields an IS estimate with the minimum possible variance [13, 19]. It might seem surprising, at
first, that sampling from a policy, other than the target one, can lead to an estimator with less variance

˚Dipartimento di Elettronica, Informazione e Bioingegneria - Politecnico di Milano - Milan - Italy. Corre-
sponding author: Alberto Maria Metelli, email: albertomaria.metelli@polimi.it

Deep Reinforcement Learning Workshop 2021 @ NeurIPS 2021.

mailto:albertomaria.metelli@polimi.it


(even zero in some cases) w.r.t. the on-policy estimate. In this role, IS has been previously employed
in RL, mainly to address rare events [10, 4] which naturally lead to high-variance estimates, when
tackled on-policy. The idea of explicitly using IS as a variance reduction technique, with the goal of
finding an optimal behavioral policy, was proposed by [15] for evaluation and subsequently combined
with policy gradient learning [14, 16]. However, in these works, the variance minimization (Off-VM)
process and the off-policy learning (Off-PL) problem are treated separately.

The goal of this paper is to investigate the relation between variance minimization (Off-VM) and
off-policy learning (Off-PL). The core question we address can be summarized as: “Can Off-VM be
employed as a tool for Off-PL, overcoming the need for an explicit trust region?” Intuitively, given a
target policy, when the reward function is positive, one way to reduce the variance of the IS estimator
is to assign larger probability to the trajectories that have a large impact on the mean, i.e., those
with high returns. This provides a first hint about the connection between the minimum-variance
sampling policy and the performance improvement, i.e., between Off-VM and Off-PL. Furthermore,
it suggests that we could repeatedly apply the process of identifying the minimum-variance policy as
a tool for policy improvement. The interesting aspect of such an approach is that, by minimizing the
variance, it implicitly controls the divergence between two consecutive policies. In other words, it
allows enforcing a trust region, without an explicit need for divergence constraints or penalizations.

Outline of the Contributions In this paper, we provide theoretical, algorithmic, and experimental
contributions. After having introduced the necessary background (Section 2), we present the problem
of finding the minimum-variance behavioral distribution (Section 3). Then, we study the properties
of the Off-VM problem in two settings: unconstrained (Section 4) and constrained (Section 5). First,
we assume that there are no restrictions in the choice of the behavioral distribution. We show that
the minimum-variance behavioral distribution, besides leading to the well-known zero-variance
estimator [19], is guaranteed to yield a performance improvement, requiring the non-negativity of the
reward only. Furthermore, we prove that this approach allows controlling the divergence between two
consecutive distributions, thus enforcing an implicit trust region. Although this provides a valuable
starting point, the minimum-variance distribution might be unrealizable given the environment
transition model, i.e., there might be no policy inducing it. For this reason, we move to the scenario
in which the available distributions are constrained in a suitable space. In this setting, the zero-
variance estimator could not be achievable. Nevertheless, we prove that such a procedure can
lead to a performance improvement and preserves the ability to enforce a trust region. Based on
these theoretical results, we propose Policy Optimization via Optimal Policy Evaluation (PO2PE),
a novel PO algorithm, that we particularize for parametric policy spaces (Section 6). Finally, we
provide numerical simulations on continuous-control benchmarks, in comparison with POIS [27] and
TRPO [38], with a particular focus on the robustness of PO2PE to small batch sizes (Section 7). The
proof of the results presented in the main paper are reported in Appendix A.

2 Preliminaries

In this section, we report the necessary background that will be employed in the paper.

Mathematical Notation Let X be a set, and let FX be a σ-algebra over X . We denote with PpX q
the space of probability measures over pX ,FX q. Let P PPpX q, whenever needed, we assume
that P admits a density function p. For a subset YĎR, we denote with BpX ,Yq the space of
measurable functions f :XÑY . Let P,QPPpX q be two probability measures such that P !Q, i.e.,
P is absolutely continuous w.r.t. Q, for every αPr0,8s, we define the α-Rényi divergence as [37]:
DαpP }Qq“

1
α´1 log

ş

X ppxq
αqpxq1´αdx. In the limit of αÑ1, the Rényi divergence reduces to the

KL-divergence DKLpP }Qq, while for αÑ8, it reduces to esssupx„Q tppxq{qpxqu.

Importance Sampling Let P,QPPpX qwith P !Q and let f PBpX ,Rq. Importance Sampling [IS,
30] allows estimating the expectation of f under a target distribution P , i.e., Ex„P rfpxqs having
samples txiuiPrns collected with a behavioral distribution Q, leading to the estimator:

pµP {Q“
1

n

ÿ

iPrns

ppxiq

qpxiq
fpxiq.

The IS estimator is well-known to be unbiased [30], i.e., Exi„QrpµP {Qs“Ex„P rfpxqs, but it might
suffer from large variance, due to the heavy-tailed behavior [27]. The properties of pµP {Q and several
of its transformations have been extensively studied in the literature [e.g., 18, 40, 32, 23, 28, 26, 29].
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Policy Optimization A Markov Decision Process [MDP, 36] is a 6-tuple M“pS,A,P,R,γ,D0q,
where S is the state space, A is the action space, P :SˆAÑPpSq is the transition model, R :
SˆAÑr0,Rmaxs is the reward function, γ Pr0,1s is the discount factor, andD0 PPpSq is the initial
state distribution. The agent’s behavior is modeled by a parametric policy πθ :SÑPpAq belonging
to a parametric policy space ΠΘ“tπθ :θPΘĎRdu. The interaction between an agent and the MDP
generates a trajectory τ“ps0,a0,s1,a1, . . . ,sH´1,aH´1,sHq where H PN is the trajectory length
and s0„D0, at„πθp¨|stq, st`1„Pp¨|st,atq for all tPt0, . . . ,H´1u. Given a trajectory τ , the re-
turn is the discounted sum of the rewards Rpτq“

řH´1
t“0 γtRpst,atq. For a policy πθ PΠΘ, we denote

with pp¨|θq the induced trajectory distribution: ppτ |θq“D0ps0q
śH´1
t“0 πθpat|stqPpst`1|st,atq. An

agent aims at finding a parametrization maximizing the expected return Jpθq [7]:
θ˚ Pargmax

θPΘ
tJpθqu where Jpθq“ E

τ„pp¨|θq
rRpτqs .

In the remainder of the paper, we will keep the presentation as general as possible, introducing the
results for arbitrary distributions. Then, we will particularize for the parametric PO setting.

3 Minimum–Variance Behavioral Distribution

In this section, we revise Off-VM, i.e., the problem of finding a behavioral distribution QPPpX q
that induces an IS estimate pµP {Q with minimum variance, knowing the (fixed) target distribution
P PPpX q and function f PBpX , r0,8qq.2 Furthermore, we do not enforce any restrictions on
the possible forms of the behavioral distribution QPPpX q. The problem and the corresponding
well-known minimum-variance behavioral distribution Q˚ are stated in the following [20, 19]:

min
QPPpX q

"

Var
x„Q

„

ppxq

qpxq
fpxq

*

ùñ q˚pxq“
ppxqfpxq

Ex„P rfpxqs
, @xPX . (1)

We observe that the IS estimator pµP {Q˚ is non-stochastic, equal to the quantity we aim to estimate,
i.e., pµP {Q˚“Ex„P rfpxqs. This suggests that the construction of Q˚ is infeasible as it requires
knowledge of Ex„P rfpxqs. Since Q˚ generates a non-stochastic estimator, it not only leads to
zero-variance but, clearly, simultaneously minimizes the absolute central moments of any order. A
second, and most remarkable property, is that Q˚ is a performance improvement w.r.t. P , i.e., the
expectation of f under Q˚ is larger than the expectation of f under the target distribution P [30]:

E
x„Q˚

rfpxqs´ E
x„P

rfpxqs“
Varx„P rfpxqs

Ex„P rfpxqs
ě0. (2)

It is worth noting that the magnitude of the improvement is directly related to the reduction in variance
Varx„P rfpxqs. Equation (2) suggests an appealing connection between the problem of finding the
minimum-variance behavioral distribution (Off-VM) and the problem of finding a target distribution
that maximizes the expectation Ex„P rfpxqs (Off-PL). In other words, we could employ Off-VM as a
performance improvement tool, by repeatedly solving the problem in Equation (1).

In the following two sections, we will delve into the properties of the repeated construction of
the minimum-variance distribution as a performance improvement tool under two assumptions: (i)
there are no restrictions in the choice of the behavioral distribution QPPpX q (Section 4); (ii) the
behavioral distribution must be chosen within a subset QPQĎPpX q (Section 5). In both cases, we
will address the following three questions:

(Q1) Does this procedure always generate a distribution that is a performance improvement?
(Q2) Does this procedure converge to a (global or local) maximum of f?
(Q3) Can we quantify the divergence between two consecutive distributions, i.e., does this procedure

enforce a trust region?

4 Unconstrained Probability Distribution Space

In Section 3, we have seen that Q˚ is a performance improvement w.r.t. P . We now generalize of this
construction, by composing function f with a non-negative monotonic strictly-increasing function

2We restrict our attention to non-negative functions. From the RL perspective, this choice is w.l.o.g. since we
can always define an equivalent non-negative reward function, by means of a translation of the original one.
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h : r0,8qÑr0,8q. The rationale behind this choice is that if h is strictly-increasing, then h˝f has
the same maxima as f .3 We start defining the operator Ih˝f :PpX qÑPpX q:

pIh˝f rP sqpxq“
ppxqhpfpxqq

Ex„P rhpfpxqqs
, @xPX . (3)

Thus, Ih˝f takes as input a target distribution P PPpX q, a function h˝f PBpX , r0,8qq, and
outputs the minimum-variance behavioral distribution for the IS estimation of Ex„P rhpfpxqqs, i.e.,
Q˚“Ih˝f rP s. Intuitively, looking at Equation (3), by iterating the application of Ih˝f , we will
obtain distributions tending to assign larger probability mass to points xPX with high values of fpxq.
Concerning (Q1), the following result, due to [11], generalizes Equation (2) showing that whenever
h is increasing, we can prove that Ih˝f rP s is a performance improvement w.r.t. P .
Proposition 4.1 (Proposition 9 of [11]). Let P PPpX q, f PBpX , r0,8qq, and h : r0,8qÑr0,8q
monotonic increasing. Then, Ih˝f rP s is a performance improvement w.r.t. P :

E
x„Ih˝f rP s

rfpxqs´ E
x„P

rfpxqs“
Covx„P rhpfpxqq,fpxqs

Ex„P rhpfpxqqs
ě0.

It is worth noting that, since h is a monotonic increasing function, we have that
Covx„P rhpfpxqq,fpxqsě0 [6]. The following sections tackle questions (Q2) and (Q3).

4.1 Convergence Properties

We now address question (Q2), analyzing the effect of repeatedly applying operator Ih˝f . More
formally, let us consider an initial distribution P PPpX q, and suppose to iterate the application of the
operator Ih˝f , generating the sequence of distributions pQkqkPN , whereQ0“P and for every kPNě0

we have Qk“Ih˝f rQk´1s“pIh˝f qk rP s. The following result shows that, under certain conditions,
the operator Ih˝f admits fixed points and the sequence pQkqkPN converges to a distribution Q8 that
assigns probability to the global maxima of f , restricted to the support of P .
Theorem 4.2. Let P PPpX q, f PBpX , r0,8qq, and h : r0,8qÑr0,8q monotonic strictly-
increasing. Then, the following statements hold:

(i) P is a fixed point of Ih˝f , i.e., Ih˝f rP s“P a.s., if and only if Varx„P rfpxqs“0;
(ii) let X ˚“argmaxxPsupppP qtfpxqu be the set of maxima of f restricted to the support of P .

If X ˚ is non-empty and measurable then, the repeated application of Ih˝f converges to a
distribution Q8“ limkÑ8 pIh˝f qk rP s with support X ˚. In particular:

E
x„Q8

rfpxqs“ max
xPsupppP q

tfpxqu.

Some remarks are in order. First, all three properties are independent of the function h as long as it is
non-negative and monotonically increasing. This is expected since, under this condition, h˝f admits
the same set of global optima of f . Second, as a corollary to point (i), any deterministic P is a fixed
point of Ih˝f . Finally, from point (ii), we deduce that if we select P that assigns non-zero probability
to all points in X , i.e., supppP q“X , the iterated application of Ih˝f converges to the distribution
Q8 such that Ex„Q8rfpxqs“maxxPX tfpxqu, i.e., we are performing a global optimization of f .

4.2 Implicit Trust Region

The reader might wonder what are the advantages of casting the optimization of function f as such
an iterative procedure. The reason lies in question (Q3). We now prove that we are able to naturally
control the divergence between two consecutive distributions Qk and Qk`1“Ih˝f rQks, with the
effect of enforcing an implicit trust region. The following result shows how it is possible to obtain a
bound on the α-Rényi divergence between two consecutive distributions.
Theorem 4.3. Let P PPpX q, f PBpX , r0,8qq, and h : r0,8qÑr0,8q monotonic strictly-
increasing. Then, for every αPr0,8s, it holds that:

Dα pIh˝f rP s}P q“
1

α´1
log

Ex„P rhpfpxqqαs
Ex„P rhpfpxqqsα

.

3As we shall see in the following sections, the different choices of h will be useful to control the trust region
of the optimization process.

4



−5 0 5

5

10

15

x

f
(x
)

0 20 40
8

10

12

14

k

E x
∼
Q

k
[f
(x
)]

0 20 40

10−5

10−2

101

k

D
K
L
(Q

k
‖Q

k
−
1
)

β = 0.01 β = 0.1 β = 0.2 β = 1 β = 2 β = 10 β = 100

Figure 1: The Ackley function (left), the expectation of the distribution Qk“pIh˝f qkrP s (center),
and the KL-divergence (right) between two consecutive distributions Qk´1 and Qk, with h“p¨qβ .

In particular, for α“1 it holds that:

DKLpIh˝f rP s}P q“
Covx„P rhpfpxqq, loghpfpxqqs

Ex„P rhpfpxqqs
.

For α“2, we obtain D2pIh˝f rP s}P q“ log Ex„P rhpfpxqq2s
Ex„P rhpfpxqqs2 ď

Varx„P rhpfpxqqs
Ex„P rhpfpxqqs2 . Thus, the divergence is

large when the variance of hpfpxqq is. The result is particularly remarkable as we are able to control
the Rényi divergences of any order αPr0,8s. This is a relevant achievement since the trust regions
commonly used, like KL-divergence [38], are unable to control higher-order divergences that can still
be infinite. We can also appreciate the role of the increasing function h that works as a regularizer
with the effect of controlling the width of the trust region. The following example shows that the
faster h increases, the larger the induced trust region becomes.

Example 4.1. We consider (a slight variation of) the one-dimensional Ackley function [1]: fpxq“
´5`20expp´0.1414|x|q`expp0.5pcosp2πxq`1qq`e, shown in Figure 1 (left) and the class of
increasing functions ph˝fqpxq“fpxqβ where βě0. We consider an initial uniform distribution
P “Unipr´5,5sq. In Figure 1, we plot the expectation of distribution Qk“pIh˝f qkrP s (center) and
the KL-divergence between two consecutive distributions (right), as a function of the number of
applications k, for the different β values. We observe that convergence to the global optimum (x˚“0
and fpx˚q“15) is faster for higher powers which, at the same time, lead to larger trust regions.

5 Constrained Probability Distribution Space

The approach we have presented in Section 4 can be effectively applied when there are no restrictions
on the class of distributions that can be played, i.e., we can select Q in the whole space PpX q.
This is for instance the case of multi-armed bandit problems where any distribution over the arms
can be played, but not the case of MDPs in which trajectory distributions are governed by the
transition model and are, naturally, constrained. More formally, when consider a class of distributions
QĎPpX q, even if P PQ, the distribution Ih˝f rP s might not belong to Q. Furthermore, while
Ih˝f rP s minimizes all absolute central α-moments of the IS estimator, as it leads to a non-stochastic
estimator (Section 3), there may exist different distributions in Q minimizing the different absolute
central α-moments:

min
QPQ

"

E
x„Q

„
ˇ

ˇ

ˇ

ˇ

ppxq

qpxq
hpfpxqq´ E

x„P
rhpfpxqqs

ˇ

ˇ

ˇ

ˇ

α*

. (4)

Apart from α“2, where the problem in Equation (4) reduces to Equation (1), for general value
of αPr0,8s, the optimization is not straightforward (e.g., Equation (4) is not differentiable for
αPp0,2q). The following result shows that performing a moment projection through the α-Rényi
divergence is a reasonable surrogate for minimizing the absolute central α-moments of Equation (4).

Proposition 5.1. Let P PPpX q, f PBpX , r0,8qq, and h : r0,8qÑr0,8q monotonic strictly-
increasing. Then, for any αPp1,8q, it holds that:

E
x„Q

„
ˇ

ˇ

ˇ

ˇ

ppxq

qpxq
hpfpxqq´ E

x„P
rhpfpxqqs

ˇ

ˇ

ˇ

ˇ

α

loooooooooooooooooooooooomoooooooooooooooooooooooon

absolute central α-moment

ď E
x„Q

„ˆ

ppxq

qpxq
hpfpxqq

˙α

loooooooooooooomoooooooooooooon

(non-central) α-moment

“epα´1qDαpIh˝f rP s}Qq E
x„P

rhpfpxqqsα.
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Thus, having considered the subset of distributions QĎPpX q, whenever Ih˝f rP sRQ, we replace it
with the corresponding moment projection performed through the α-Rényi divergence:

Q: Pargmin
QPQ

tDαpIh˝f rP s}Qqu . (5)

In the following sections, we shall address the questions (Q1), (Q2), and (Q3).

5.1 Performance Improvement

In Proposition 4.1, we have seen that, whenever h is strictly-increasing, Ih˝f rP s is a performance
improvement w.r.t. P , evaluated under function f (and also under the composition between f and
any strictly-increasing function). In this section, we address question (Q1), showing that, when
considering a subset of distributions QĎPpX q, the performance improvement cannot be in general
guaranteed for f , but just for a specific monotonic transformation of f , depending on h and α.
Theorem 5.2. Let P PPpX q, f PBpX , r0,8qq, and h : r0,8qÑr0,8q monotonic strictly-
increasing. Let QĎPpX q, QPQ, and αPr0,8s, then, it holds that:

E
x„Q

rhpfpxqqαs´ E
x„P

rhpfpxqqαsě
Ex„P rhpfpxqqsα

α´1

´

epα´1qDαpIh˝f rP s}P q´epα´1qDαpIh˝f rP s}Qq
¯

.

In particular, for α“1, it holds that [11, Proposition 6]:

E
x„Q

rhpfpxqqs´ E
x„P

rhpfpxqqsě E
x„P

rhpfpxqqspDKLpIh˝f rP s}P q´DKLpIh˝f rP s}Qqq .

The result shows that by minimizing the α-moment of the transformed function h˝f , we are able to
guarantee a performance improvement on the function p¨qα ˝h˝f . The result holds provided that
Dα pIh˝f rP s}QqďDα pIh˝f rP s}P q, which is always guaranteed when P PQ and Q“Q:, being
Q: defined in Equation (5) as the minimizer of the second divergence term. In particular, if we select
h“p¨q1{α, the guarantee holds for the function f directly. For all other choices, the performance
improvement can be guaranteed for a monotonic transformation of f only.4

5.2 Convergence Properties

We now turn to (Q2). By using Equation (5) as an iterate Qk`1 PargminQPQ tDαpIh˝f rQks}Qqu to
generate a sequence of distributions pQkqkPN , we are not guaranteed to converge to any fixed-point
distribution Q8, differently form the unconstrained setting (Theorem 4.2). This is because the
minimization might yield multiple solutions. Nevertheless, we are able to provide guarantees on the
final divergence value and on the performance of the distributions Qk.
Theorem 5.3. Let P PPpX q, f PBpX , r0,8qq, and h : r0,8qÑr0,8q monotonic strictly-
increasing. Let QĎPpX q and suppose that h˝f is bounded from above, then, the iterate
Qk`1 PargminQPQ tDαpIh˝f rQks}Qqu (where possible ties are broken arbitrarily) satisfies:

(i) the sequence of divergences DαpIh˝f rQks}Qkq is convergent;
(ii) the sequence of expectations Ex„Qk rhpfpxqqαs is non-decreasing in kPN and converges to a

stationary point of Ex„Q rhpfpxqqαs w.r.t. QPQ.

The convergence of the sequences DαpIh˝f rQks}Qkq and Ex„Qk rhpfpxqqαs is derived by the per-
formance improvement result of Theorem 5.2. The important point of Theorem 4.2 is that we achieve
convergence to a stationary point of Ex„Q rhpfpxqqαs. If Q is a parametric space QΘ“tQθ P

PpX q :θPΘĎRdu, then we are guaranteed to stop when Ex„Qθ
r∇θ logqθpxqhpfpxqq

αs“0, like
for a general policy gradient [31] method maximizing hpfpxqqα. Compared to the result for the
unconstrained distribution space (Theorem 4.2), we loose the convergence to a fixed point. This prop-
erty can be recovered under the assumption that the iterate in Equation (5) admits a unique solution
for every P . In such a case, we will converge to a distribution Q8“argminQPQ tDαpIh˝f rQs}Qqu.

5.3 Implicit Trust Region

In Theorem 4.3, we have proved that the α-Rényi divergence between Ih˝f rP s and P is bounded.
In this section, we answer (Q3), wondering whether similar properties hold when we consider a

4In Appendix B, we discuss the effects of optimizing a power of f instead of f itself, i.e., when h“p¨qβ .
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limited set of distributions QĎPpX q. The following result shows that, under a particular form of
convexity [42] of Q, we are able to control the trust region as well.
Theorem 5.4. Let f PBpX , r0,8qq, and h : r0,8qÑr0,8q monotonic strictly-increasing. Let QĎ
PpX q be a p1´αq-convex set [42, Definition 4], P PQ, Q: PargminQPQ tDαpIh˝f rP s}Qqu, and
αPr0,8s, then it holds that:

Dα

`

Q:
›

›P
˘

ďDα pIh˝f rP s}P q´Dα

`

Ih˝f rP s
›

›Q:
˘

.

Therefore, we are always guaranteed that the trust region induced by Q: is tighter compared to the
one induced by Q˚“Ih˝f rP s computed in Theorem 4.3, i.e., Dα

`

Q:
›

›P
˘

ďDα pIh˝f rP s}P q.

6 Policy Optimization via Optimal Policy Evaluation

In the previous sections, we have discussed the properties of the distributions that minimize the
absolute central α-moments of the IS estimator, when the sampling distributions is chosen without
restrictions (Section 4) or within a set of distributions (Section 5). In this section, we employ
these results to build a sample-based Off-PL algorithm, which uses Off-VM as an inner loop. The
pseudocode of the algorithm, named Policy Optimization via Optimal Policy Evaluation (PO2PE), is
reported in Algorithm 1. For generality of presentation, we consider a parametric distribution space
QΘ“tQθ PPpX q :θPΘĎRdu, that is a common setting encountered in PO.

Algorithm 1: PO2PE.
input :α divergence order, h function, f function, QΘ

distribution space, θ1 PΘ initial parameter, n batch size
output :final parameter θI`1 PΘ

1 for i“1, . . . , I do Optimization
2 θi,1“θi

3 for j“1, . . . ,J do Evaluation
4 Collect n samples Di,j“tpxl,fpxlqqulPrns with Qθi,j

5 Find θi,j`1 by minimizing Dα pIh˝f rQθi s}Qθq using
pDi,kqkPrjs

6 end
7 θi`1“θi,J`1

8 end

The basic structure of PO2PE con-
sists of two nested loops. Given
a target distribution qθi , the in-
ner loop aims at performing the
Evaluation of the performance
of qθi . At each inner iteration
j PrJs, it collects samples Di,j
with the current behavioral distri-
bution qθi,j and employs them, to-
gether with all the samples col-
lected so far pDi,kqkPrjs, to com-
pute the next behavioral distribu-
tion qθi,j`1

, with the goal of min-
imizing the absolute central α-
moment. This process is governed
by two hyperparameters: h the
transformation function and α the moment order. The outer loop, instead, aims to perform the
Optimization of the target distribution qθi . At the end of each outer iteration iPrIs, the target
distribution qθi`1

is updated with the last behavioral distribution produced by the inner loop qθi,J`1
.

To get a usable algorithm, we need to further characterize how the samples are collected (Line 4),
particularizing for the PO setting, and how to perform the optimization from samples (Line 5).

Sample-based Optimization The problem of finding the next behavioral distribution parameter
θi,j`1 using the samples collected so far pDi,kqkPrjs is in all regards an off-policy learning problem.
Let us define Φi,j“

1
j

ř

kPrjs qθi,k as the mixture of the j behavioral distributions experienced so far
in the inner loop. Instead of directly estimating Dα pIh˝f rQθis}Qθqq, we refer to the (non-central)
α-moment, which is connected to the original objective through Proposition 5.1. Since we have
samples coming from different behavioral distributions, we can use a multiple IS estimator [43]:

pdα pIh˝f rQθis}Qθ;Φi,jq“
1

nj

ÿ

kPrjs

ÿ

lPrns

qθpxk,lq

Φi,jpxk,lq
loooomoooon

(aq

qθipxk,lq
α

qθpxk,lqα
hpfpxqqα

looooooooooomooooooooooon

(b)

. (6)

The (a) factor takes into account that we are using samples collected with the mixture Φi,j to
estimate an expectation under qθ, whereas the factor (b) is the actual variable we want to compute
the expectation of, i.e., the α-moment. It is simple to prove that the expectation of pdα is indeed the
α-moment [32]. To perform the minimization of Equation (6), we employ a variance correction to
mitigate the effect of finite samples [27], theoretically grounded in the following result.
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Figure 2: Average return as a function of the number of episodes for different environments and
algorithms with batch size n“100, α“2, h“ Id, and J“1 (20 runs ˘ 95% bootstrapped c.i.).

Theorem 6.1. Let QΘĎPpX q be a set of parametric distributions and let θ,θi PΘ. If }h˝f}8ďm,
then, if all samples are independent, for every δPr0,1s, with probability at least 1´δ it holds that:

E
x„θ

„ˆ

qθipxq

qθpxq
hpfpxqq

˙α

ď pdα pIh˝f rQθis}Qθ;Φi,jq`m
α

d

2log 1
δ

nj

ż

X

qθipxq
2α

Φi,jpxqqθpxq2pα´1q
dx.

Some remarks are in order. First, the integral within the square root is an upper bound to the variance
of the α-moment estimator pdα pIh˝f rQθis}Qθ;Φi,jq. In particular, when θ“θi, we obtain the
exponentiated Rényi divergence, as illustrated in [28]. When all involved distributions are Guassians,
it is possible to provide a closed-form tight bound on this quantity (Appendix C). Second, unlike
the results available in the literature about concentration of IS estimator, without correction or
transformation, we are able to provide an exponential concentration inequality (dependence on delta
of the form logp1{δq ), instead of a polynomial concentration (dependence of the form 1{δ). This is
due to the fact that we are dealing with random variables that are bounded to zero from below and
they allow applying stronger unilateral Bernstein’s concentration inequalities [2].

The reader might object that to optimize the proposed objective function, designed to enforce an
implicit trust region, we are actually introducing an additional correction term. This is necessary for
theoretical purposes, but, as we shall see in the Section 7, the need for a penalization or constraint is
significantly less relevant than in existing approaches, like TRPO [38], or POIS [27].

Sample Collection The sample collection (Line 4) depend on the kind of problem we are dealing
with. Specifically, for the PO setting, qθ“pp¨|θq is the trajectory distribution induced by policy
πθ, and function f corresponds to the trajectory return Rpτq. At each inner iteration j PrJs, we
sample n trajectories tτlulPrns independently with the policy πθi,j and we build the dataset Di,j“
tpτl,RpτlqqulPrns. The correction term in Theorem 6.1 has to be estimated from samples as well, as
done for the Rényi divergence in [27], since it involves integrals between trajectory distributions.

7 Experimental Evaluation

In this section, we provide the experimental evaluation of PO2PE on continuous control tasks. We
first compare the learning performance of PO2PE with POIS [27] and TRPO [38] on four benchmarks.
Then, we dive into two relevant aspects of PO2PE: its robustness to small batch sizes and the effect
of the transformation function h. All experiments are conducted with Gaussian policies, linear in the
state variables, with fixed variance. The experimental details are reported in Appendix D.

Comparison with POIS and TRPO In Figure 2, we show the average return as a function of the
number of collected episodes, with a batch size n“100, using α“2, h“ Id, and one inner iteration
(J“1). In the Cartpole environment, we observe that the performance of PO2PE is slightly above
that of POIS. Instead, TRPO converges to a suboptimal policy that fails keeping the pole in the
vertical position. In the Inverted Double Pendulum experiment, the gap between PO2PE and the
baselines is more evident, whereas in the Mountain Car domain, while POIS and TRPO display a
similar convergence speed, PO2PE reaches the optimal performance faster. Finally, in the Mujoco

8



0 1 2 3 4 5
×104

0

1000

2000

3000

4000

5000

Episodes

A
v
e
ra

g
e
re
tu

rn

n = 50

0 1 2 3 4 5
×104

0

1000

2000

3000

4000

5000

Episodes

n = 11

PO2PE (J = 1) PO2PE (J = 2)

PO2PE (J = 10) POIS TRPO

Figure 3: Average return as a function of the number
of episodes in the Cartpole environment for different
algorithms, batch-size n and inner iterations J (10 runs
˘ 95% bootstrapped c.i.).
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Figure 4: Average return as a function
of the number of episodes in the Inverted
Double Pendulum for different choices of
h“p¨qβ (5 runs ˘ 95% bootstrapped c.i.).

Swimmer domain [41], PO2PE and TRPO clearly outperform POIS. In all three experiments, we
appreciate the small variance of PO2PE across the different runs.

Robustness to Small Batch Sizes Based on the previous results, we further investigate the properties
of PO2PE in terms of variance control. In the Cartpole domain, we test the robustness to the reduction
of the batch size. In Figure 3, we show the average return as a function of the number of collected
episodes for batch sizes nPt11,50u and different number of inner iterations J . Also considering the
n“100 case (Figure 2), we notice, as expected, that the variance of each setting increases overall as
n decreases. Nevertheless, PO2PE proves to be robust, always succeeding in reaching the optimal
performance.Differently, POIS suffers the reduced batch size, while TRPO always converging to
the same suboptimal policy. The desirable behavior of PO2PE is indeed an effect of the kind of
objective function we employ that explicitly accounts for the variance of the estimator, trying to
minimize it, and, as we have shown in the previous sections, it allows enforcing an implicit trust
region. Concerning the number of inner iterations J , although all considered cases approach the
optimal performance, a small number of inner iterations seem to be beneficial for the stability.

Effect of the Function h While previous experiments we consider h to be the identity function, we
now investigate the effects of using h“p¨qβ , i.e., a power function. In Figure 4, we show the learning
curves of the Inverted Double Pendulum for different values of β. We notice that for β close to 1
(0.5, 1, 2) the curves are not very dissimilar, while for too extreme powers (0.1 and 4) the learning
performance degrades. This example shows an interesting phenomenon, i.e., even if we optimize a
power of return, within certain limits, we are still able to converge to a (near-)optimal policy.

8 Discussion and Conclusions

In this paper, we have deepened the study of importance sampling beyond its usage as a passive tool
for off-policy evaluation and learning. We imported the role of IS as a variance reduction active tool,
typical of the Monte Carlo simulation field, to the off-policy learning setting. We have illustrated
that by minimizing the absolute central α-moment of the IS estimator we are able to guarantee the
performance improvement for a monotonic transformation of the original objective function and
eventually converge, at least, to a stationary point. Interestingly, this approach is able to naturally
induce a trust region, mitigating the need for an explicit penalization or constraint. The experimental
evaluation confirmed our theoretical findings. PO2PE is able to outperform POIS and TRPO on
several continuous control tasks. Remarkably, our algorithm has proved to be robust to the reduction
of the batch size and this represents a beneficial effect of the implicit trust region enforcement. We
believe that this work contributes to shed light on an appealing facet of off-policy learning with
possible new research opportunities. Future works include an extension of the convergence analysis
to the case in which samples are involved and an experimentation of PO2PE coupled with more
complex policy architectures.

9



References
[1] David Ackley. A connectionist machine for genetic hillclimbing, volume 28. Springer Science

& Business Media, 2012.

[2] Stéphane Boucheron, Gábor Lugosi, Pascal Massart, et al. On concentration of self-bounding
functions. Electronic Journal of Probability, 14:1884–1899, 2009.

[3] Konstantinos I. Chatzilygeroudis, Vassilis Vassiliades, Freek Stulp, Sylvain Calinon, and Jean-
Baptiste Mouret. A survey on policy search algorithms for learning robot controllers in a
handful of trials. IEEE Trans. Robotics, 36(2):328–347, 2020.

[4] Kamil Andrzej Ciosek and Shimon Whiteson. OFFER: off-environment reinforcement learning.
In Satinder P. Singh and Shaul Markovitch, editors, Proceedings of the Thirty-First AAAI
Conference on Artificial Intelligence, February 4-9, 2017, San Francisco, California, USA,
pages 1819–1825. AAAI Press, 2017.

[5] Andrew R Conn, Nicholas IM Gould, and Philippe L Toint. Trust region methods. SIAM, 2000.

[6] Carles M Cuadras. On the covariance between functions. Journal of Multivariate Analysis,
81(1):19–27, 2002.

[7] Marc Peter Deisenroth, Gerhard Neumann, and Jan Peters. A survey on policy search for
robotics. Found. Trends Robotics, 2(1-2):1–142, 2013.

[8] Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol, Matthias Plappert, Alec
Radford, John Schulman, Szymon Sidor, Yuhuai Wu, and Peter Zhokhov. Openai baselines.
https://github.com/openai/baselines, 2017.

[9] Yan Duan, Xi Chen, Rein Houthooft, John Schulman, and Pieter Abbeel. Benchmarking
deep reinforcement learning for continuous control. In Maria-Florina Balcan and Kilian Q.
Weinberger, editors, Proceedings of the 33nd International Conference on Machine Learning,
ICML 2016, New York City, NY, USA, June 19-24, 2016, volume 48 of JMLR Workshop and
Conference Proceedings, pages 1329–1338. JMLR.org, 2016.

[10] Jordan Frank, Shie Mannor, and Doina Precup. Reinforcement learning in the presence of
rare events. In William W. Cohen, Andrew McCallum, and Sam T. Roweis, editors, Machine
Learning, Proceedings of the Twenty-Fifth International Conference (ICML 2008), Helsinki,
Finland, June 5-9, 2008, volume 307 of ACM International Conference Proceeding Series,
pages 336–343. ACM, 2008.

[11] Dibya Ghosh, Marlos C. Machado, and Nicolas Le Roux. An operator view of policy gradient
methods. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan,
and Hsuan-Tien Lin, editors, Advances in Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual, 2020.

[12] Shixiang Gu, Ethan Holly, Timothy P. Lillicrap, and Sergey Levine. Deep reinforcement learning
for robotic manipulation with asynchronous off-policy updates. In 2017 IEEE International
Conference on Robotics and Automation, ICRA 2017, Singapore, Singapore, May 29 - June 3,
2017, pages 3389–3396. IEEE, 2017.

[13] John Hammersley. Monte carlo methods. Springer Science & Business Media, 2013.

[14] Josiah P. Hanna and Peter Stone. Towards a data efficient off-policy policy gradient. In 2018
AAAI Spring Symposia, Stanford University, Palo Alto, California, USA, March 26-28, 2018.
AAAI Press, 2018.

[15] Josiah P. Hanna, Philip S. Thomas, Peter Stone, and Scott Niekum. Data-efficient policy
evaluation through behavior policy search. In Doina Precup and Yee Whye Teh, editors,
Proceedings of the 34th International Conference on Machine Learning, ICML 2017, Sydney,
NSW, Australia, 6-11 August 2017, volume 70 of Proceedings of Machine Learning Research,
pages 1394–1403. PMLR, 2017.

10

https://github.com/openai/baselines


[16] Josiah Paul Hanna et al. Data efficient reinforcement learning with off-policy and simulated
data. PhD thesis, 2019.

[17] Timothy Classen Hesterberg. Advances in importance sampling. PhD thesis, Citeseer, 1988.

[18] Edward L Ionides. Truncated importance sampling. Journal of Computational and Graphical
Statistics, 17(2):295–311, 2008.

[19] H. Kahn and A. W. Marshall. Methods of reducing sample size in monte carlo computations.
Oper. Res., 1(5):263–278, 1953.

[20] Herman Kahn. Random sampling (monte carlo) techniques in neutron attenuation problems. i.
Nucleonics (US) Ceased publication, 6(See also NSA 3-990), 1950.

[21] Sham M. Kakade and John Langford. Approximately optimal approximate reinforcement
learning. In Claude Sammut and Achim G. Hoffmann, editors, Machine Learning, Proceedings
of the Nineteenth International Conference (ICML 2002), University of New South Wales,
Sydney, Australia, July 8-12, 2002, pages 267–274. Morgan Kaufmann, 2002.

[22] Nate Kohl and Peter Stone. Policy gradient reinforcement learning for fast quadrupedal
locomotion. In Proceedings of the 2004 IEEE International Conference on Robotics and
Automation, ICRA 2004, April 26 - May 1, 2004, New Orleans, LA, USA, pages 2619–2624.
IEEE, 2004.

[23] Ilja Kuzborskij, Claire Vernade, András György, and Csaba Szepesvári. Confident off-policy
evaluation and selection through self-normalized importance weighting. 130:640–648, 2021.

[24] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval
Tassa, David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning.
In Yoshua Bengio and Yann LeCun, editors, 4th International Conference on Learning Repre-
sentations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings,
2016.

[25] Andreas Maurer et al. A bound on the deviation probability for sums of non-negative random
variables. J. Inequalities in Pure and Applied Mathematics, 4(1):15, 2003.

[26] Alberto Maria Metelli, Matteo Papini, Pierluca D’Oro, and Marcello Restelli. Policy optimiza-
tion as online learning with mediator feedback. In Thirty-Fifth AAAI Conference on Artificial
Intelligence, AAAI 2021, Thirty-Third Conference on Innovative Applications of Artificial Intel-
ligence, IAAI 2021, The Eleventh Symposium on Educational Advances in Artificial Intelligence,
EAAI 2021, Virtual Event, February 2-9, 2021, pages 8958–8966. AAAI Press, 2021.

[27] Alberto Maria Metelli, Matteo Papini, Francesco Faccio, and Marcello Restelli. Policy optimiza-
tion via importance sampling. In Samy Bengio, Hanna M. Wallach, Hugo Larochelle, Kristen
Grauman, Nicolò Cesa-Bianchi, and Roman Garnett, editors, Advances in Neural Information
Processing Systems 31: Annual Conference on Neural Information Processing Systems 2018,
NeurIPS 2018, December 3-8, 2018, Montréal, Canada, pages 5447–5459, 2018.

[28] Alberto Maria Metelli, Matteo Papini, Nico Montali, and Marcello Restelli. Importance
sampling techniques for policy optimization. J. Mach. Learn. Res., 21:141:1–141:75, 2020.

[29] Alberto Maria Metelli, Alessio Russo, and Marcello Restelli. Subgaussian importance sampling
for off-policy evaluation and learning. ICML-21 Workshop on Reinforcement Learning Theory,
2021.

[30] Art B Owen. Monte carlo theory, methods and examples, 2013.

[31] Matteo Papini, Damiano Binaghi, Giuseppe Canonaco, Matteo Pirotta, and Marcello Restelli.
Stochastic variance-reduced policy gradient. In Jennifer G. Dy and Andreas Krause, editors,
Proceedings of the 35th International Conference on Machine Learning, ICML 2018, Stock-
holmsmässan, Stockholm, Sweden, July 10-15, 2018, volume 80 of Proceedings of Machine
Learning Research, pages 4023–4032. PMLR, 2018.

11



[32] Matteo Papini, Alberto Maria Metelli, Lorenzo Lupo, and Marcello Restelli. Optimistic
policy optimization via multiple importance sampling. In Kamalika Chaudhuri and Ruslan
Salakhutdinov, editors, Proceedings of the 36th International Conference on Machine Learning,
ICML 2019, 9-15 June 2019, Long Beach, California, USA, volume 97 of Proceedings of
Machine Learning Research, pages 4989–4999. PMLR, 2019.

[33] Jan Peters and Stefan Schaal. Reinforcement learning of motor skills with policy gradients.
Neural Networks, 21(4):682–697, 2008.

[34] Matteo Pirotta, Marcello Restelli, Alessio Pecorino, and Daniele Calandriello. Safe policy
iteration. In Proceedings of the 30th International Conference on Machine Learning, ICML
2013, Atlanta, GA, USA, 16-21 June 2013, volume 28 of JMLR Workshop and Conference
Proceedings, pages 307–315. JMLR.org, 2013.

[35] Doina Precup, Richard S. Sutton, and Satinder P. Singh. Eligibility traces for off-policy policy
evaluation. In Pat Langley, editor, Proceedings of the Seventeenth International Conference
on Machine Learning (ICML 2000), Stanford University, Stanford, CA, USA, June 29 - July 2,
2000, pages 759–766. Morgan Kaufmann, 2000.

[36] Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming.
Wiley Series in Probability and Statistics. Wiley, 1994.

[37] Alfréd Rényi. On measures of entropy and information. Technical report, Hungarian Academy
of Sciences Budapest Hungary, 1961.

[38] John Schulman, Sergey Levine, Pieter Abbeel, Michael I. Jordan, and Philipp Moritz. Trust
region policy optimization. In Francis R. Bach and David M. Blei, editors, Proceedings of the
32nd International Conference on Machine Learning, ICML 2015, Lille, France, 6-11 July 2015,
volume 37 of JMLR Workshop and Conference Proceedings, pages 1889–1897. JMLR.org,
2015.

[39] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press,
2018.

[40] Philip S. Thomas, Georgios Theocharous, and Mohammad Ghavamzadeh. High-confidence
off-policy evaluation. In Blai Bonet and Sven Koenig, editors, Proceedings of the Twenty-Ninth
AAAI Conference on Artificial Intelligence, January 25-30, 2015, Austin, Texas, USA, pages
3000–3006. AAAI Press, 2015.

[41] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based
control. In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS
2012, Vilamoura, Algarve, Portugal, October 7-12, 2012, pages 5026–5033. IEEE, 2012.

[42] Tim van Erven and Peter Harremoës. Rényi divergence and kullback-leibler divergence. IEEE
Trans. Inf. Theory, 60(7):3797–3820, 2014.

[43] Eric Veach and Leonidas J. Guibas. Optimally combining sampling techniques for monte
carlo rendering. In Susan G. Mair and Robert Cook, editors, Proceedings of the 22nd Annual
Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 1995, Los Angeles,
CA, USA, August 6-11, 1995, pages 419–428. ACM, 1995.

12



A Proofs and Derivations

In this appendix, we report the proofs and derivations, we have omitted in the main paper.

A.1 Proofs of Section 4

Proposition 4.1 (Proposition 9 of [11]). Let P PPpX q, f PBpX , r0,8qq, and h : r0,8qÑr0,8q
monotonic increasing. Then, Ih˝f rP s is a performance improvement w.r.t. P :

E
x„Ih˝f rP s

rfpxqs´ E
x„P

rfpxqs“
Covx„P rhpfpxqq,fpxqs

Ex„P rhpfpxqqs
ě0.

Proof. Let us consider the following derivation:

E
x„Ih˝f rP s

rfpxqs´ E
x„P

rfpxqs“

ż

X

ppxqhpfpxqq

Ex„P rhpfpxqqs
fpxqdx´ E

x„P
rfpxqs

“
Ex„P rhpfpxqqfpxqs´Ex„P rfpxqsEx„P rhpfpxqqs

Ex„P rhpfpxqqs

“
Covx„P rhpfpxqq,fpxqs

Ex„P rhpfpxqqs
,

where we have exploited the definition of Ih˝f and the definition of covariance. The result is obtained
by recalling that h is increasing and the covariance between two increasing functions of the same
random variable (i.e., h and the identity function) is non-negative [6].

Theorem 4.2. Let P PPpX q, f PBpX , r0,8qq, and h : r0,8qÑr0,8q monotonic strictly-
increasing. Then, the following statements hold:

(i) P is a fixed point of Ih˝f , i.e., Ih˝f rP s“P a.s., if and only if Varx„P rfpxqs“0;
(ii) let X ˚“argmaxxPsupppP qtfpxqu be the set of maxima of f restricted to the support of P .

If X ˚ is non-empty and measurable then, the repeated application of Ih˝f converges to a
distribution Q8“ limkÑ8 pIh˝f qk rP s with support X ˚. In particular:

E
x„Q8

rfpxqs“ max
xPsupppP q

tfpxqu.

Proof. We start with (i). First of all, we observe that since h is monotonically strictly-increasing it
holds that Varx„P rfpxqs“0 if and only if Varx„P rhpfpxqqs“0. P is a fixed point of Ih˝f , i.e.,
P “Ih˝f rP s a.s. if and only if for all xPX it holds a.s.:

ppxq“
ppxqhpfpxqq

Ex„P rhpfpxqqs
,

that occurs if and only if either ppxq“0 (xRsupppP q) or hpfpxqq“Ex„P rhpfpxqqs. (ñ) Whenever
ppxq is not zero, function hpfpxqq is a constant in supppP q and, consequently, its variance under P
is zero. (ð) Suppose that Varx„P rhpfpxqqs“0, then hpfpxqq“Ex„P rhpfpxqqs almost surely and,
consequently ppxqhpfpxqq

Ex„P rhpfpxqqs“ppxq almost surely. Let us now consider (ii). First of all, we can easily
observe that for every kPN:

pIh˝f qk rP spxq“
ppxqfpxqk

Ex„P rfpxqks
.

Let f˚“maxxPsupppP qtfpxqu, consider the function gkpxq“ppxq
´

fpxq
f˚

¯k

and the limit:

lim
kÑ8

gkpxq“ lim
kÑ8

ppxq

ˆ

fpxq

f˚

˙k

“

"

ppxq if xPX ˚
0 otherwise

.
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Thus, we have:

Q8“ lim
kÑ8

pIh˝f qk rP spxq“ lim
kÑ8

ppxqfpxqk
ş

X ppxqfpxq
kdx

“ lim
kÑ8

gkpxq
ş

X gkpxqdx
“

#

ppxq
ş

X˚ ppxqdx
if xPX ˚

0 otherwise
.

Thus, the support of Q8 is given by X ˚. Consequently, the expectation of f under Q8 is given by:

E
x„Q8

rfpxqs“

ż

X
q8pxqfpxqdx“f

˚.

Theorem 4.3. Let P PPpX q, f PBpX , r0,8qq, and h : r0,8qÑr0,8q monotonic strictly-
increasing. Then, for every αPr0,8s, it holds that:

Dα pIh˝f rP s}P q“
1

α´1
log

Ex„P rhpfpxqqαs
Ex„P rhpfpxqqsα

.

In particular, for α“1 it holds that:

DKLpIh˝f rP s}P q“
Covx„P rhpfpxqq, loghpfpxqqs

Ex„P rhpfpxqqs
.

Proof. Let us consider the following derivation:

J :“

ż

X
ppIh˝f rP sqpxqq

α
ppxq1´αdx“

ż

X

ˆ

ppxqhpfpxqq

Ex„P rhpfpxqqs

˙α

ppxq1´αdx

“
Ex„P rhpfpxqqαs
Ex„P rhpfpxqqsα

.

By observing that Dα pIh˝f rP s}P q“
1

α´1 logJ , we obtain the result. For α“1, we provide an
independent derivation:

DKLpIh˝f rP s}P q“

ż

X

ppxqhpfpxqq

Ex„P rhpfpxqqs
log

ppxqhpfpxqq

Ex„P rhpfpxqqsppxq
dx

“
Ex„P rhpfpxqq loghpfpxqqs´Ex„P rhpfpxqqsEx„P rloghpfpxqqs

Ex„P rhpfpxqqs

“
Covx„P rhpfpxqq, loghpfpxqqs

Ex„P rhpfpxqqs
,

where we exploited the definition of covariance in the last line.

A.2 Proofs of Section 5

Proposition 5.1. Let P PPpX q, f PBpX , r0,8qq, and h : r0,8qÑr0,8q monotonic strictly-
increasing. Then, for any αPp1,8q, it holds that:

E
x„Q

„
ˇ

ˇ

ˇ

ˇ

ppxq

qpxq
hpfpxqq´ E

x„P
rhpfpxqqs

ˇ

ˇ

ˇ

ˇ

α

loooooooooooooooooooooooomoooooooooooooooooooooooon

absolute central α-moment

ď E
x„Q

„ˆ

ppxq

qpxq
hpfpxqq

˙α

loooooooooooooomoooooooooooooon

(non-central) α-moment

“epα´1qDαpIh˝f rP s}Qq E
x„P

rhpfpxqqsα.

Proof. First of all, we observe that since Ex„Q
”

ppxq
qpxqhpfpxqq

ı

“Ex„P rhpfpxqqs, for αě1, the
absolute central α-moment is smaller or equal than the (non-central) α-moment. Thus, for αě1, we

14



have:

E
x„Q

„
ˇ

ˇ

ˇ

ˇ

ppxq

qpxq
hpfpxqq´ E

x„P
rhpfpxqqs

ˇ

ˇ

ˇ

ˇ

α

ď E
x„Q

„ˆ

ppxq

qpxq
hpfpxqq

˙α

“

ż

X

ˆ

ppxqhpfpxqq

Ex„P rhpfpxqqs

˙α

qpxq1´αdx E
x„P

rhpfpxqqsα

“

ż

X
ppIh˝f rP sqpxqqα qpxq1´αdx E

x„P
rhpfpxqqsα

“exp

"

pα´1q
1

α´1
log

ż

X
ppIh˝f rP sqpxqqα qpxq1´αdx

*

E
x„P

rhpfpxqqsα.

By applying the definition of Rényi divergences, we get the result.

Theorem 5.2. Let P PPpX q, f PBpX , r0,8qq, and h : r0,8qÑr0,8q monotonic strictly-
increasing. Let QĎPpX q, QPQ, and αPr0,8s, then, it holds that:

E
x„Q

rhpfpxqqαs´ E
x„P

rhpfpxqqαsě
Ex„P rhpfpxqqsα

α´1

´

epα´1qDαpIh˝f rP s}P q´epα´1qDαpIh˝f rP s}Qq
¯

.

In particular, for α“1, it holds that [11, Proposition 6]:

E
x„Q

rhpfpxqqs´ E
x„P

rhpfpxqqsě E
x„P

rhpfpxqqspDKLpIh˝f rP s}P q´DKLpIh˝f rP s}Qqq .

Proof. Let us consider the following derivation:

E
x„Q

rhpfpxqqαs“

ż

X
qpxqhpfpxqqαdx

“

ż

X
ppxq

qpxq

ppxq
hpfpxqqαdx

“

ż

X
ppxqhpfpxqqαdx`

ż

X
ppxq

ˆ

qpxq

ppxq
´1

˙

hpfpxqqαdx

ě

ż

X
ppxqhpfpxqqαdx`

1

α´1

ż

X
ppxq

˜

1´

ˆ

ppxq

qpxq

˙α´1
¸

hpfpxqqαdx (7)

“ E
x„P

rhpfpxqqαs`
1

α´1

ż

X
ppxqhpfpxqqαdx

´
1

α´1

ż

X
ppxq

ˆ

ppxq

qpxq

˙α´1

hpfpxqqαdx

“ E
x„P

rhpfpxqqαs` E
x„P

rhpfpxqqsα
1

α´1

ż

X

ˆ

ppxqhpfpxqq

Ex„P rhpfpxqqs

˙α

ppxq1´αdx

´ E
x„P

rhpfpxqqsα
1

α´1

ż

X

ˆ

ppxqhpfpxqq

Ex„P rhpfpxqqs

˙α

qpxq1´αdx

“ E
x„P

rhpfpxqqαs

` E
x„P

rhpfpxqqsα
1

α´1
exp

"

pα´1q
1

α´1
log

ż

X

ˆ

ppxqhpfpxqq

Ex„P rhpfpxqqs

˙α

ppxq1´αdx

*

´ E
x„P

rhpfpxqqsα
1

α´1
exp

"

pα´1q
1

α´1
log

ż

X

ˆ

ppxqhpfpxqq

Ex„P rhpfpxqqs

˙α

qpxq1´αdx

*

“ E
x„P

rhpfpxqqαs`
Ex„P rhpfpxqqsα

α´1

´

epα´1qDαpIh˝f }P q´epα´1qDαpIh˝f }Qq
¯

,

where line (7) derived from Lemma A.1. The second inequality was provided in Proposition 6
of [11].

Theorem 5.3. Let P PPpX q, f PBpX , r0,8qq, and h : r0,8qÑr0,8q monotonic strictly-
increasing. Let QĎPpX q and suppose that h˝f is bounded from above, then, the iterate
Qk`1 PargminQPQ tDαpIh˝f rQks}Qqu (where possible ties are broken arbitrarily) satisfies:
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(i) the sequence of divergences DαpIh˝f rQks}Qkq is convergent;
(ii) the sequence of expectations Ex„Qk rhpfpxqqαs is non-decreasing in kPN and converges to a

stationary point of Ex„Q rhpfpxqqαs w.r.t. QPQ.

Proof. Let us consider the sequence of distributions pQkqkPN , generated by the iterate in Equation (5),
where possible ties are broken with an arbitrary (possibly with a tie-breaking rule Tk different for
every k). From Theorem 5.2, we have for every kPN:

E
x„Qk`1

rhpfpxqqαs´ E
x„Qk

rhpfpxqqαs

ě
Ex„Qk rhpfpxqqsα

α´1

´

epα´1qDαpIh˝f rQks}Qkq´epα´1qDαpIh˝f rQks}Qk`1q
¯

ě0,

where we simply exploited that Qk PargminQPQ tDαpIh˝f rQks}Qqu. Thus, Ex„Qk rhpfpxqqαs is
a non-decreasing function of k. Since h˝f is bounded, it must be that limkÑ8Ex„Qk rhpfpxqqαs“
µ8ă8, that proves convergence.5

Furthermore, being convergent, for kÑ8 it must be that Ex„Qk rhpfpxqqαs“Ex„Qk`1
rhpfpxqqαs

and consequently DαpIh˝f rQks}Qkq“DαpIh˝f rQks}Qk`1q. Therefore, even if the tie-braking
rule prescribes to select Qk`1‰Qk we could select Qk instead, since it lead to the same divergence
value. Consequently, being Qk a solution, we can assert that it is a stationary point of the function
DαpIh˝f rQks}¨q (as well as Qk`1):

0“∇qp¨qDαpIh˝f rQks}Qq|Q“Qk

“
1

pα´1qepα´1qDαpIh˝f rQks}QqEx„Qk rhpfpxqqs
∇qp¨q

ż

X
hpfpxqqαqkpxq

αqpxq1´αdx|Q“Qk

“´
1

epα´1qDαpIh˝f rQks}QqEx„Qk rhpfpxqqs

ż

X
hpfpxqqαqkpxq

αqpxq´αdx|Q“Qk

“´
1

epα´1qDαpIh˝f rQks}QqEx„Qk rhpfpxqqs

ż

X
hpfpxqqαdx.

We observe that the latter expression is zero if and only if the gradient of Ex„Qrhpfpxqqαs w.r.t. Q is
zero. Indeed:

∇qp¨q E
x„Q

rhpfpxqqαs“

ż

X
hpfpxqqαdx.

Thus, the process converges to a stationary point of Ex„Qk rhpfpxqqαs.

Theorem 5.4. Let f PBpX , r0,8qq, and h : r0,8qÑr0,8q monotonic strictly-increasing. Let QĎ
PpX q be a p1´αq-convex set [42, Definition 4], P PQ, Q: PargminQPQ tDαpIh˝f rP s}Qqu, and
αPr0,8s, then it holds that:

Dα

`

Q:
›

›P
˘

ďDα pIh˝f rP s}P q´Dα

`

Ih˝f rP s
›

›Q:
˘

.

Proof. The proof is a simple application of Lemma A.2, by taking QÐP , Q˚ÐQ:, and PÐ
Ih˝f rP s.

A.3 Proofs of Section 6

Theorem 6.1. Let QΘĎPpX q be a set of parametric distributions and let θ,θi PΘ. If }h˝f}8ďm,
then, if all samples are independent, for every δPr0,1s, with probability at least 1´δ it holds that:

E
x„θ

„ˆ

qθipxq

qθpxq
hpfpxqq

˙α

ď pdα pIh˝f rQθis}Qθ;Φi,jq`m
α

d

2log 1
δ

nj

ż

X

qθipxq
2α

Φi,jpxqqθpxq2pα´1q
dx.

Proof. We start observing that each addendum of pdα pIh˝f rQθis}Qθ;Φi,jq is non negative. Since
all terms are i.i.d., we can apply unilateral Bernstein’s inequality [25] that allows achieving an

5Notice that the improvement holds also for αă1. Indeed, while it is true that
Ex„Qk rhpfpxqqs

α

α´1
ă0, but in

such a case function epα´1qp¨q is decreasing in its argument.
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exponential concentration. Thus, for every δPr0,1s, with probability at least 1´δ it holds that:

E
x„θ

„ˆ

qθipxq

qθpxq
hpfpxqq

˙α

ď pdα pIh˝f rQθis}Qθ;Φi,jq`

d

2 Var
xi„Φi,j

”

pdα pIh˝f rQθis}Qθ;Φi,jq
ı

log
1

δ
.

Thus, it remains to provide a bound on the variance term. We exploit the fact that hpfpxqqďm and
that each addendum represents an i.i.d. random variable:

Var
xi„Φi,j

”

pdα pIh˝f rQθis}Qθ;Φi,jq
ı

ď
1

pnjq2

ÿ

kPrjs

ÿ

lPrns

E
xk,l„Φi,j

«

ˆ

qθipxk,lq
α

Φi,jpxk,lqqθpxk,lqα´1
hpfpxqqα

˙2
ff

ď
m2α

pnjq2

ÿ

kPrjs

ÿ

lPrns

E
xk,l„Φi,j

«

ˆ

qθipxk,lq
α

Φi,jpxk,lqqθpxk,lqα´1

˙2
ff

“
m2α

nj
E

x„Φi,j

«

ˆ

qθipxq
α

Φi,jpxqqθpxqα´1

˙2
ff

.

A.4 Technical Lemmas

Lemma A.1. For every xě0 and αPp0,1qYp1,8q, it holds that:

x´1ě
1

α´1

ˆ

1´
1

xα´1

˙

.

Furthermore, for α“1, it holds that:

x´1ě logx.

Proof. Consider the auxiliary function gαpxq“x´1´ 1
α´1

`

1´ 1
xα´1

˘

. We are going to prove that
the minimum of gαpxq is zero. Suppose αą1, then gαp0q“8 and gap8q“8. Thus, the minimum
must lie in between and since function gα is differentiable, we have:

B

Bx
gαpxq“1´x´α“0 ùñ x“1.

Thus, we have gαp1q“0. Suppose now that αă1, we have gαp0q“ α
1´αą0 and gαp8q“8. Thus,

again, the minimum must lie in between and with the same calculations as before, we conclude
gαp1q“0. The case α“1 is trivial.

Lemma A.2. Let P PPpX q and let αPp0,8q. Let QĎPpX q be an pα´1q-convex [42, Definition
4] subset of distributions. Let Q˚ PQ be the α-moment projection:

Q˚“argmin
QPQ

tDαpP }Qqu .

If Q˚ exists, then for every QPQ if holds that:

DαpP }QqěDαpP }Q
˚q`DαpQ

˚}Qq.

Proof. The proof of the result is inspired to [42, Theorem 14]. Let λPr0,1s and let us define Qλ as
the p1´α,p1´λ,λqq-mixture of Q˚ and Q:

qλpxq“Z
´1
λ

`

p1´λqq˚pxq1´α`λqpxq1´α
˘

1
1´α ,

Zλ“

ż

X

`

p1´λqq˚pxq1´α`λqpxq1´α
˘

1
1´α dx.

Let us first observe that for λ“0, we have Q0“Q
˚ and Z0“

ş

X q
˚pxqdx“1. Since Q is p1´αq-

convex andQ˚ is the minimizer over Q, it holds that B
BλDαpP }Qλq|λ“0ě0. First of all, we compute:

ż

X
ppxqαqλpxq

1´αdx“Zα´1
λ

ż

X

“

p1´λqppxqαq˚pxq1´α`λppxqαqpxq1´α
‰

dx

17



B

Bλ
Zλ“

1

1´α

ż

X

`

p1´λqq˚pxq1´α`λqpxq1´α
˘

α
1´α

`

qpxq1´α´q˚pxq1´α
˘

dx.

The latter, for λ“0, becomes: B
BλZλ

∣∣∣
λ“0

“ 1
1´α

“ş

X q
˚pxqαqpxq1´α´1

‰

. For calculation easiness,

instead of directly operating on DαpP }Qλq, we consider:
B

Bλ

ż

X
ppxqαqλpxq

1´αdx“Zα´1
λ

ż

X

“

´ppxqαq˚pxq1´α`ppxqαqpxq1´α
‰

dx,

`pα´1qZα´2
λ

B

Bλ
Zλ

ż

X

“

p1´λqppxqαq˚pxq1´α`λppxqαqpxq1´α
‰

dx.

We now evaluate it at λ“0:
B

Bλ

ż

X
ppxqαqλpxq

1´αdx
∣∣∣
λ“0

“´

ż

X
ppxqαq˚pxq1´αdx`

ż

X
ppxqαqpxq1´αdx

´

ż

X
ppxqαq˚pxq1´αdx

„
ż

X
q˚pxqαqpxq1´αdx´1



.

For αě1, we require B
Bλ

ş

X ppxq
αqλpxq

1´αdx
∣∣∣
λ“0

ě0, to obtain:
ż

X
ppxqαqpxq1´αdxě

ż

X
ppxqαq˚pxq1´αdx

ż

X
q˚pxqαqpxq1´αdx.

By applying both sides the log function and dividing by 1
α´1ą0 we get the result. Symmetrically, for

αă1, we require the converse B
Bλ

ş

X ppxq
αqλpxq

1´αdx
∣∣∣
λ“0

ď0. Recalling that 1
α´1ă0, we obtain

the desired result.

B Optimizing Moments of f

In this appendix, we analyze the effect of optimizing a power of f instead of f .

Lemma B.1. Let P PPpX q and f PBpX , rm,ms. If αPp1,8q, it holds that:

0ď E
x„P

rfpxqαs´
´

E
x„P

rfpxqs
¯α

ď
mαpm´Ex„P rfpxqsq`mαpEx„P rfpxqs´mq´Ex„P rfpxqsα pm´mq

m´m
.

In particular for α“2, we have:

0ď E
x„P

“

fpxq2
‰

´

´

E
x„P

rfpxqs
¯2

ď

´

m´ E
x„P

rfpxqs
¯´

E
x„P

rfpxqs´m
¯

,

that is the Bhatia-Davis inequality for the variance.

Proof. We explicitly consider the optimization problem, for αě1 and having denoted µ“
Ex„P rfpxqs:

max
f :XÑR

ż

X
ppxqfpxqαdx

s.t.
ż

X
ppxqfpxq“µ

mďfpxqďm.

Since αě1, the optimization problem corresponds to the maximization of a concave function subject
to linear and box constraints. It is simple to prove that the optimal solution must assign extreme
values to function f . Let pPr0,1s, the linear and box constraints enforce:

pm`p1´pqm“µ ùñ p“
m´µ

m´m
.
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From which, by substitution in the objective function, we have:
ż

X
ppxqfpxqαdx“pmα`p1´pqmα“

mαpm´µq`mαpµ´mq

m´m
.

Thus, in general, optimizing moments of the function f , leads to different optimal policies compared
to optimizing function f directly. However, from the above results, we see that this discrepancy
reduces when the expectation Ex„P rfpxqs approaches the extreme value m (and also m, but this
is less interesting since we are maximizing). The value m can be indeed achieved if we have no
restrictions on the distribution space (Section 4).

C Closed Form of the Integral for Gaussians

In this appendix, we derive a closed form for the integral involved in the computation of the bound of
Theorem 6.1 in the case that all involved distributions are Gaussians and for α“2. Let us introduce
the notation:

µ“N pµµ,Σµq, φ“N pµφ,Σφq, ν“N pµν ,Σνq. (8)
We have to compute the following integral:

ż

X

µ4pxq

φpxqνpxq2
dx.

Let us start elaborating on the integrand function, denoting for properly sized vector x and matrix S,
}m}S“xTSx and |S| the determinant of S:

µ4pxq

φpxqνpxq2
“

p2πq´2k|Σµ|
´2 exp

´

´2}x´µµ}
2
Σµ

´1

¯

p2πq´k{2|Σφ|
´1{2 exp

´

´1{2}x´µφ}
2
Σφ

´1

¯

p2πq´k|Σν |
´1 exp

´

´}x´µν}
2
Σν

´1

¯

“
p2πq´k{2|Σµ|

´2

|Σφ|
´1{2|Σν |

´1
exp

´

´2}x´µµ}
2
Σµ

´1`1{2}x´µφ}
2
Σφ

´1`}x´µν}
2
Σν

´1

¯

Now, we have to deal with the argument of the exponential:
´2}x´µµ}

2
Σµ

´1`1{2}x´µφ}
2
Σφ

´1`}x´µν}
2
Σν

´1

“´
1

2
xT

`

4Σµ
´1
´Σφ

´1
´2Σν

´1
˘

loooooooooooooooomoooooooooooooooon

M

x`
`

4Σµ
´1µµ´Σφ

´1µφ´2Σν
´1µν

˘T

loooooooooooooooooooooooomoooooooooooooooooooooooon

bT

x

´
1

2

`

4µµ
TΣµ

´1µµ´µφ
TΣφ

´1µφ´2µν
TΣν

´1µν

˘

loooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooon

c

.

We now proceed completing the square:

xTMx´2bTx“px´M´1bqTMpx´M´1bq´bTM´1b.

Thus, we have:

´
1

2

´

xTMx´2bTx`c
¯

“´
1

2
px´M´1bqTMpx´M´1bq`

1

2
bTM´1b´

1

2
c.

Moreover, we observe that the following expression is the density of a k-variate normal distribution
with mean M´1b and covariance matrix M´1:

p2πq´k{2|M´1
|´1{2 exp

ˆ

´
1

2
px´M´1xqTMpx´M´1bq

˙

Thus, its integral is 1. Therefore, coming to the initial expression:
ż

X

µ4pxq

φpxqνpxq2
dx“

p2πq´k{2|Σµ|
´2

|Σφ|
´1{2|Σν |

´1

´

p2πq´k{2|M´1
|´1{2

¯´1

exp

ˆ

1

2
bTM´1b´

1

2
c

˙

“
|Σφ|

1{2|Σν |

|Σµ|
2|M|1{2

exp

ˆ

1

2

´

bTM´1b´c
¯

˙
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D Experimental Details

In this appendix, we report the experimental details and additional experimental results.

Infrastructure The experiments have been run on two machines:

• 2 x CPUs Intel(R) Xeon(R) CPU E7-8880 v4 @ 2.20GHz (22 cores, 44 thread, 55 MB
cache) and 128 GB RAM;

• 4 x Intel(R) Xeon(R) CPU E5-4610 v2 @ 2.30GHz (8 cores, 16 thread, 16 MB cache) and
256 GB RAM.

Environments The environments are the rllab implementations [9], MIT license, https://
github.com/rll/rllab. The Swimmer environment belongs to the Mujoco suite [41], MuJoCo
Personal License, http://www.mujoco.org/.

Algorithms The TRPO implementation is taken from baselines [8], MIT licence, https://
github.com/openai/baselines. For POIS we use the original implementation [27], MIT li-
cense, https://github.com/T3p/baselines.

Hyperparameters In order to properly compare the algorithms, a set of 20 seeds has been chosen.
A subset of 5 seeds, underlined, was used to test the performances during the tuning phase. Once the
optimal hyperparameters were found, the experiments were extended to the other 15 seeds. In the
following, we report the hyperparameter values for PO2PE.

The shift return refers to the need for making the return non-negative in order to perform the
optimization of the α-moment in PO2PE. This procedure is carried out independently at each
algorithm iteration by subtracting the minimum return among the ones observed. The variance init
hyperparameter refers to the logarithm of the standard deviation. All experiments have been carried
out with Gaussian policies linear with mean linear in the state variables and constant variance uniform
over the state space.

Cartpole

• seeds: 0, 3, 11, 16, 19, 42, 66, 72, 84, 87, 90, 123, 222, 343, 404, 452, 542, 875, 943, 999
• max iters: 500
• policy: linear
• policy init: zeros
• capacity: 1
• inner: 1
• variance init: -1
• step size: 1 / gradient norm
• penalization: True
• delta: 0.75
• max offline iters: 10

Mountain Car

• seeds: 0, 3, 11, 16, 19, 42, 66, 72, 84, 87, 90, 123, 222, 343, 404, 452, 542, 875, 943, 999
• max iters: 500
• policy: linear
• policy init: zeros
• capacity: 1
• inner: 1
• variance init: -1
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• step size: 2 / gradient norm
• penalization: True
• delta: 0.9
• max offline iters: 10
• shift return: True

Inverted Double Pendulum

• seeds: 0, 3, 11, 16, 19, 42, 66, 72, 84, 87, 90, 123, 222, 343, 404, 452, 542, 875, 943, 999
• max iters: 500
• policy: linear
• policy init: zeros
• capacity: 1
• inner: 1
• variance init: -1
• step size: 2 / gradient norm
• penalization: True
• delta: 0.99
• max offline iters: 10

Swimmer

• seeds: 0, 3, 11, 16, 19, 42, 66, 72, 84, 87, 90, 123, 222, 343, 404, 452, 542, 875, 943, 999
• max iters: 500
• policy: linear
• policy init: zeros
• capacity: 1
• inner: 1
• log-std init: -0.6
• step size: 1 / gradient norm
• penalization: True
• delta: 0.99
• max offline iters: 10
• shift return: True

For POIS and TRPO, the same hyperparameter value have been used, except for the algorithm-specific
ones that have been tuned with the same protocol discussed above. In particular, for POIS, we employ
the line search procedure presented in the original paper for setting the step-size. The following
table summarizes the algorithm-specific hyperparameter values for the different algorithms and
environments.

Environment / Algorithm PO2PE (delta) POIS (delta) TRPO (max kl)

Cartpole 0.75 0.4 0.01
Mountain Car 0.9 0.9 0.01
Inverted Double Pendulum 0.99 0.1 0.001
Swimmer 0.99 0.8 0.01
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