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1 Implementation Details14

1.1 Dynamic 3D Gaussian Tracking15

Multi-Objective Balance. To account for the distinct physical properties of different objects,16

which are crucial for tracking optimization, we assign specific weights to each object category.17

We set λrigid = 200 for rope and toy dolls, and λrigid = 400 for cloth. Additionally, we consider 2018

Gaussian neighbors for the KNN of rope and toy dolls, and 10 for the KNN of cloth to accurately19

reflect their unique characteristics. For the isometry objective, we set λiso = 1000 for rope and toy20

dolls, and λiso = 2000 for cloth. The weights for other objectives remain consistent across different21

objects and instances.22

Background Objective. To efficiently isolate and optimize dynamic components, we employ23

GroundingDINO [1] and Segment Anything [2] models to obtain masks for the objects the robot24

interacts with. This enhances optimization precision and efficiency. For the original Dyn3DGS, a25

foreground/background mask is rendered to increase scene contrast. They apply a background seg-26

mentation loss against a pseudo-ground-truth background mask, obtained by differencing an image27

without foreground objects. Additionally, a loss is applied to keep background points static, while28

rigidity, rotation, and isometry losses are restricted to foreground points. This improves efficiency29

and prevents enforcement between foreground objects and the static floor.30
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In their implementation, a “floor loss” prevents Gaussians from going below the floor, given the31

known ground plane of the scenes. In our configuration, we focus on optimizing the Gaussians of32

the objects and ignore the floor loss, as it does not contribute to tracking performance. However, we33

retain the background loss to ensure Gaussian points on the objects do not float into the background.34

The background loss consists of two main components. The first measures the L1 loss between35

the current positions of the background points and their initial positions, penalizing significant de-36

viations and ensuring they remain relatively stationary. The second measures the L1 loss between37

the current rotations of the background points and their initial rotations, ensuring their orientations38

do not change drastically and maintaining spatial consistency. Together, these components ensure39

that background points and their rotations remain close to their initial states, preserving the integrity40

of the background and preventing unnecessary adjustments that could interfere with the accurate41

modeling of dynamic foreground objects.42

Opacity Filtering in Adaptive Densification. 3D Gaussian Splatting employs an adaptive den-43

sification scheme, involving the cloning and splitting of Gaussians, to regulate their quantity and44

density per unit volume. This process transitions from a sparse to a densely populated Gaussian set,45

enhancing scene representation accuracy. Low-opacity Gaussians contribute minimally to object ap-46

pearance modeling, making it inefficient to optimize their transformations for high-quality tracking.47

Therefore, we retain only high-opacity Gaussians for dense correspondence.48

Specifically, during the densification scheme, the density of points in a scene is adjusted based on49

various conditions and thresholds to optimize scene representation over time for the initialization of50

Gaussians. For up to 5000 iterations, gradients are accumulated to identify points needing adjust-51

ment. Every 100 iterations starting from the 500th, points are cloned based on their gradient values52

and sizes. Some points are split into two, adjusted using normally distributed samples, and relevant53

variables are reset. Points to be removed are identified based on their opacity values and sizes, with54

additional removals after iteration 3000 to maintain balance.55

Initially, the opacity of each point is evaluated using a sigmoid function. Points with opacity below56

a specified threshold are marked for removal. If the iteration count is 3000 or more, ”big points” are57

identified based on their scale values, specifically comparing the maximum scale value of each point58

to 10% of the scene’s radius. Points exceeding this size threshold are marked for removal. Finally,59

the list of points to be removed is updated, combining points identified by opacity and size criteria,60

ensuring an optimized and balanced scene representation.61

1.2 Action-Conditioned Video Prediction62

Details of Baselines. Previous works, including PhysGaussian [3] and PhysDreamer [4], used63

MPM operated on 3D Gaussians to simulate and render motions, but they do not consider robot-64

object interactions. Our baseline MPM uses the same simulation setting as these works but also65

adds support for two types of robot end-effectors: cylindrical pusher and gripper.66

We represent the cylindrical pusher as a moving rigid body that collides with objects. The rigid67

shape is coupled with the soft body using frictional contact. We represent the gripper as a “sticky”68

sphere that fixes the particle’s velocity to be the same as the gripper’s speed whenever a particle is69

within the sphere.70

We use the CMA-ES algorithm, a derivative-free optimization algorithm, to optimize physical pa-71

rameters for both MPM and FleX baselines. The cost function is the mean 3D Chamfer Distance72

over future timesteps. For each object instance, we run optimization for 25 iterations.73

1.3 Model-Based Planning with MPPI74

The model-based control pipeline operates as follows: Given the state space S and the action space75

A, we define a cost function that maps from S × A to R. Starting from an initial state S0 ∈ S , we76

iteratively sample actions {ai}T−1
i=0 within the action space. The learned dynamics model predicts77
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Figure 1: Real-World Experiment Setup. Left: our robot workspace with an xArm 6 robot and 4 fix-mounted
RealSense D455 cameras. Right: the objects used in our experiments.

the outcomes of these actions, and the MPPI trajectory optimization algorithm identifies the action78

sequence {ai} that minimizes the cost function. In our experiments, the cost function comprises a79

task-related term measuring the distance to the target state, along with penalty terms for infeasible80

actions and collision avoidance.81

We apply the MPPI trajectory optimization algorithm for model-based planning. Given the dynamics82

model St+1 = f(S0:t, at), the cost function we minimize is:83

J (a0:T−1) = ϕ(ST ) + l(S0, ST ), (1)

where the task term ϕ(ST ) measures the distance from the current state to the target, and the penalty84

term l(S0, ST ) produces high costs for infeasible actions.85

Task Term. For all tasks, the cost term is defined as the Chamfer Distance between the current86

state ST and the target state S∗:87

ϕ(ST ) = CD(ST , S
∗). (2)

Penalty Term. For all tasks, the penalty cost is defined as:88

l(S0, ST ) = max
s∈PT

1{s /∈ W}+ max
seef,sobj∈P0

1{∥seef − sobj∥ < dmin}, (3)

where W is the robot workspace; Pt is the particle set in state St; seef and sobj represent end-effector89

and object particles, respectively. Thus, the penalty term penalizes actions that cause the object90

particles to move out of the workspace and actions that result in the end-effector contacting the91

object in S0. We set dmin = 2cm to avoid accidental collisions.92

1.4 Real-World Experiments93

Workspace Setup. In our real-world experiments, we utilize a UFACTORY xArm 6 robot with 694

DoF and a parallel gripper. For tasks such as toy doll relocating and rope straightening, we replace95

the original grippers with a 3D-printed cylindrical stick. For cloth relocating, we use the parallel96

gripper. Four calibrated RealSense D455 RGBD cameras are strategically positioned around the97

workspace, capturing RGBD images at 15Hz with a resolution of 1280 × 720. The robot manip-98

ulates objects within a 60 cm×45 cm planar workspace, ensuring comprehensive data capture and99

precise manipulation. In Fig. 1, we show an overview of our workspace and the objects used in our100

experiments.101

3



<latexit sha1_base64="QhaWXmnGoOlgmZu6DZZxvnONEzE=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KolI9Vj04rEF+wFtKJvtpl272YTdiVBCf4EXD4p49Sd589+4bXPQ1gcDj/dmmJkXJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR23TJxqxpsslrHuBNRwKRRvokDJO4nmNAokbwfju5nffuLaiFg94CThfkSHSoSCUbRSA/ulsltx5yCrxMtJGXLU+6Wv3iBmacQVMkmN6Xpugn5GNQom+bTYSw1PKBvTIe9aqmjEjZ/ND52Sc6sMSBhrWwrJXP09kdHImEkU2M6I4sgsezPxP6+bYnjjZ0IlKXLFFovCVBKMyexrMhCaM5QTSyjTwt5K2IhqytBmU7QheMsvr5LWZcWrVqqNq3LtNo+jAKdwBhfgwTXU4B7q0AQGHJ7hFd6cR+fFeXc+Fq1rTj5zAn/gfP4A47uNAw==</latexit>

t
(b) Cloth(a) Rope

View 1 View 2 View 3 View 1 View 2 View 3

Figure 2: Qualitative Results of 3D Gaussian Tracking Trajectories. We demonstrate point-level cor-
respondence on objects across various timesteps, highlighting precise dense tracking even under significant
deformations and occlusions. The results also demonstrate consistent tracking performance across different
views.

Real-World Data Collection. we teleoperate the xArm6 to interact with various objects using102

keyboard controls while maintaining a constant robot speed. For rope and toy dolls, we attach103

a 3D-printed cylindrical stick to the end-effector and push the objects at different contact points.104

Specifically, we perform pushes of varying lengths, parallel to the workspace, covering a 2D action105

space from 3 cm to 15 cm. For cloth, we operate within a 3D action space, teleoperating the robot106

to grasp a corner of the cloth and move it from a start point to an end point using the gripper.107

To ensure comprehensive data collection, we use four calibrated RealSense D455 RGBD cameras108

to capture RGBD images at 15Hz, synchronized with the robot actions. This setup allows us to109

collect multiview videos of the interactions, which are used to optimize tracking from 3D Gaussian110

Splatting and effectively train our dynamics models. We record 40-second episodes for rope and toy111

dolls, and 30-second episodes for cloth to avoid severe deformations that are inefficient to model.112

This approach ensures high-quality data for model training.113

2 Additional Results114

We provide additional results showcasing our complete framework, including qualitative results115

in 3D tracking, action-conditioned video prediction, and model-based planning. Furthermore, we116

provide extended quantitative results of model-based planning on new objects. These comprehensive117

results and analysis demonstrate the effectiveness of our approach across various scenarios and118

object types.119

2.1 Tracking with Dynamic 3D Gaussian120

In Fig. 2, we present qualitative results from an additional view of rope and cloth, visualizing the121

tracking trajectories over 30 timesteps. The results demonstrate consistent tracking across different122

views and precise tracking of various object parts. For example, when pushing the middle of the123

rope, the middle section moves with the cylindrical pusher, while the ends shrink inward or expand124

outward. Similarly, when the gripper grasps only the top of the cloth and moves, the bottom re-125

mains on the table with minimal movement, while the upper portion moves with the gripper. This126

showcases our method’s ability to accurately capture and track object dynamics.127

In Fig. 3, we present additional 3D tracking results for various toy dolls, each with different physical128

stiffness properties. Specifically, the sloth (Fig.3 (a)) is the least stiff, the dog (Fig.3 (b)) is less stiff,129

and the giraffe (Fig. 3 (c)) is the stiffest. Our 3D tracking method demonstrates superior performance130

across all object instances, effectively handling diverse scenarios, interactions, and various robot131

actions and contact points. This showcases the capability of our approach to accommodate different132
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Figure 3: Qualitative results of 3D Gaussian tracking trajectories on various toy dolls. 3D tracking results
for toy dolls with varying stiffness: (a) sloth (least stiff), (b) dog (moderately stiff), and (c) giraffe (most stiff).
These results highlight our method’s ability to maintain robust tracking performance despite differences in
physical properties, effectively managing diverse scenarios and interactions.

physical properties and interaction dynamics by using various physical principles as optimization133

objectives for tracking.134

2.2 Action-Conditioned Video Prediction135

In Fig. 4, we present additional qualitative results of action-conditioned video prediction for 4 more136

instance episodes: 2 toy dolls (deer and sloth) plaid cloth, and rope. Our method demonstrates137

high-quality alignment with the ground truth contours compared to the MPM baseline, indicating138

a more accurate modeling of object dynamics. This accuracy enables more realistic and physically139

accurate video prediction. For example, over time, the MPM baseline increasingly deviates from the140

ground truth when manipulating the rope, and the behavior of the cloth fails to align with real-world141

physics. Our method maintains fidelity to the actual dynamics, ensuring more precise and reliable142

predictions.143

2.3 Model-Based Planning144

In Fig. 5, we present additional results of model-based planning on cloth. Our approach maintains145

low errors within a limited number of planning steps and achieves a high success rate under a strin-146

gent error margin. This demonstrates the effectiveness and precision of our method in handling cloth147

manipulation tasks.148

In Fig. 6, the qualitative results of model-based planning on various objects illustrate that our frame-149

work accurately learns object dynamics, enabling efficient manipulation to target configurations150

within a few planning steps.151

3 Ablation Study152

3.1 Objectives for Dynamic 3D Gaussian Tracking153

We evaluate the impact of removing each objective from our Dyn3DGS-based tracking method by154

systematically removing each objective one by one to observe its effect on the results. Addition-155

ally, we assess the impact of not maintaining uniform Gaussian attributes—constant number, color,156

opacity, and size—while allowing position and orientation changes. This analysis provides valuable157

insights into the significance of each objective and the importance of maintaining uniform Gaussian158

attributes for achieving optimal tracking performance. Specifically, we conduct this experiment on159

the rope category to provide evidence for analysis.160
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Figure 4: Qualitative Results of Action-Conditioned 3D Video Prediction. Our videos are generated by
rendering predicted Gaussians on virtual backgrounds. Robot trajectories are visualized as curved lines, with
yellow indicating current end-effector positions and purple representing historical positions. Compared to the
MPM baseline, our video prediction results align more closely with the ground truth frames (GT), demonstrat-
ing superior accuracy. Our method achieves high-quality alignment with ground truth contours, significantly
outperforming the MPM baseline in modeling object dynamics. This results in more realistic and physically
accurate video predictions.

Configurations Objectives Metrics

Lrigid Lrot Liso Lbg Consistent 3D MTE↓ 3D δavg ↑ 2D MTE↓ 2D δavg ↑
Ours ✓ ✓ ✓ ✓ ✓ 6.90 89.26 4.92 93.27

No LRigid × ✓ ✓ ✓ ✓ 18.32 59.19 15.48 64.30
No LRot ✓ × ✓ ✓ ✓ 8.36 84.41 7.92 86.26
No LIso ✓ ✓ × ✓ ✓ 10.89 79.96 9.14 82.30
No LBg ✓ ✓ ✓ × ✓ 32.94 47.82 36.27 53.18

No Consistent Prop ✓ ✓ ✓ ✓ × 40.21 42.34 38.28 47.35

Table 1: Quantitative evaluation by systematically removing each objective one by one to observe its impact on
the results. This analysis helps in understanding the contribution of each objective to the overall performance
and effectiveness of the tracking method.

The quantitative results are shown in Tab. 1. These results demonstrate that physics-inspired reg-161

ularization guides optimization effectively, ensuring physical plausibility and accurate long-term162

dense correspondence. By mirroring natural scene dynamics through non-rigid physical modeling163

principles, we enhance fidelity and stabilize tracking over time.164

Among all the physical objectives, the local rigidity objective is critical, as its removal leads to165

a significant drop in tracking performance. Conversely, the rotation similarity objective has the166

least impact on tracking results. This objective is more related to the rendering quality of Gaussian167

Splatting, particularly affecting the scales of the Gaussian ellipsoids and the rotation effect on im-168
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Figure 5: Additional results of model-based planning. For the cloth relocating task, we maintain the same
basic configurations for planning perform each experiment 5 times and present the results as follows: (i) the
median error curve relative to planning steps, with the area between 25 and 75 percentiles shaded, and (ii) the
success rate curve relative to error thresholds.
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Figure 6: Additional real-world results of model-based planning. We perform model-based planning tasks
in the real world on various objects and tasks. By presenting the initial and target states, along with several
in-progress steps, we demonstrate the efficiency of our learned dynamics in enabling effective model-based
planning in robotics.

age quality. This is evident when we do not optimize the spherical harmonic (SH) coefficients in169

Gaussian Splatting [5], thereby reducing the parameters we need to optimize.170

In our configuration, we use the background loss to ensure Gaussian points on the objects do not171

drift into the background. We focus solely on optimizing the Gaussians of the objects. Without172

the background loss, there is no explicit mechanism to force Gaussian points that have drifted into173

the background to return to the objects, significantly impacting tracking quality. This objective is174

crucial for maintaining accurate and reliable tracking.175

Optimizing Gaussian attributes simultaneously with tracking can lead to confusion during the opti-176

mization process, particularly when occlusions occur, such as those caused by the robot. This results177

in a drop in tracking performance. By assuming consistent Gaussian properties, we make the track-178
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ing process more reliable, especially under occlusion scenarios, ensuring more accurate and stable179

tracking.180

3.2 Deploying Graph-Based Dynamics Model on Gaussians181

To bridge the gap between graph-based dynamics models which operates on sparse control points,182

we deploy Linear Blend Skinning (LBS) [6] for dynamics model inference. One important design183

choice in this process is to resample control points during test-time forward prediction, which en-184

sures the uniformity of graph particles and reduces error accumulation. We thus evaluate the impact185

of resampling LBS control points on dynamics model prediction performance using three represen-186

tative objects: plaid cloth (Cloth), deer (Toy) and rope (Rope).187

We show our results in Tab. 2. We can observe that with resampling, the dynamics inference accu-188

racy and video prediction accuracy are improved, highlighting the effectiveness of LBS in maintain-189

ing graph uniformity and enhancing Gaussian rendering quality. For ropes, the performance with190

and without resampling are comparable. One explanation is that resampling control points will not191

cause significant graph structure changes due to its linear shape. Overall, the perceptual similar-192

ity of predicted videos, measured by LPIPS, are consistently higher with resampled graph vertices,193

demonstrating that the technique is beneficial for more stable dense Gaussian motion interpolation194

with LBS.195

Metrics Cloth w/ RS Cloth w/o RS Toy w/ RS Toy w/o RS Rope w/ RS Rope w/o RS

3D Chamfer ↓ 0.051 0.057 0.027 0.033 0.053 0.050
3D EMD ↓ 0.050 0.057 0.034 0.037 0.048 0.049
J score ↑ 0.548 0.524 0.669 0.651 0.419 0.432
F score ↑ 0.479 0.451 0.692 0.680 0.667 0.695

J&F score ↑ 0.514 0.488 0.680 0.665 0.543 0.564
LPIPS ↓ 0.024 0.033 0.019 0.031 0.025 0.031

Table 2: Ablation results of resampling control points as graph vertices (abbreviation: RS). We
present the dynamics model inference and video prediction results on three object instances.
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