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ABSTRACT

Scattering networks are deep convolutional architectures that use predefined
wavelets for feature extraction and representation. They have proven effective
for classification tasks, especially when training data is scarce, where traditional
deep learning methods struggle. In this work, we introduce and develop a math-
ematically sound framework for applying adaptive kernels to diffusion wavelets
in graph scattering networks. Stability guarantees with respect to input preturba-
tions are provided. A specific construction of adaptive kernels is presented and
applied with continuous diffusion to perform graph classification tasks on bench-
mark datasets. Our model consistently outperforms traditional graph scattering
networks with predefined wavelets, both in scenarios with limited and abundant
training data.

1 INTRODUCTION

Euclidean scattering networks are deep convolutional architectures analogous to Convolutional Neu-
ral Networks (CNNs). Unlike standard CNNs, which employ learnable filters at each layer, these
networks are equipped with mathematically predefined wavelets selected from a multi-resolution
filter bank (Mallat (2012); Bruna & Mallat (2013)). This distinction allows Euclidean scattering net-
works to serve as mathematically well-understood models that capture the principles underlying the
empirical success of CNNs. Specifically, they exhibit proven robustness to small perturbations that
are close to translations in the underlying domain (Bruna & Mallat (2013)). In tasks like classifica-
tion, they are used as feature extractors, requiring only the classifier to be trained. This characteristic
makes them particularly advantageous in scenarios with limited data availability, where they deliver
state-of-the-art performance while maintaining efficiency comparable to learned deep networks on
simpler datasets.

The increasing focus on graph-structured data has spurred interest in adapting CNN architectures
to these domains, leading to the development of effective graph convolutional models and variants
(e.g. Kipf & Welling (2017), Veličković et al. (2018)). Naturally, proposal on extending the the-
oretical and practical benefits of Euclidean scattering networks to geometric data follows. Zou &
Lerman (2018) first introduced graph scattering networks using spectral wavelets (Hammond et al.
(2011), Shuman et al. (2015)) and analyzed its stability with respect to permutations of the nodes and
perturbations on the spectrum of the underlying graph domain. Subsequently, Gama et al. (2019b)
established improved stability bounds for this family of graph scattering transforms, applicable to
more general graphs and independent of their spectral characteristics. Alternatively, Gama et al.
(2019a) introduced graph scattering employing diffusion wavelets (Coifman & Maggioni (2006)),
using the lazy diffusion operator induced from normalized adjacency, and analyzing stability us-
ing diffusion metrics (Nadler et al. (2005), Coifman & Lafon (2006)). Following this, Gao et al.
(2019) proposed an alternative graph scattering transform based on lazy random walk diffusion,
demonstrating expressivity through extensive empirical evaluations. Furthermore, graph scattering
transforms have been extended to spatio-temporal domains (Pan et al. (2021)), pruned to mitigate
exponential increase in required resources with network depth (Ioannidis et al. (2020)), and gener-
alized employing functional calculus filters (Koke & Kutyniok (2022)).

A fundamental characteristic shared by all these scattering architectures is the use of fixed, often
manually selected filters. Since different diffusion kernels can extract distinct properties from a
dataset (Coifman et al. (2005a)), selecting an appropriate kernel is critical to the effectiveness of
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a scattering transform. This selection should not be arbitrary; it must ensure the preservation of
desirable expressivity and stability properties in the resulting transform. Given that scattering net-
works are typically used with a trainable classifier, such as a multilayer perceptron (MLP), and the
wavelet decomposition operators at each layer are constructed from a single mother wavelet, the fact
that only one kernel needs to be learned during classifier training makes this approach particularly
promising, as it would likely add only a small number of additional parameters.

In this work, we introduce a mathematically sound framework for incorporating learnable kernels
into graph scattering networks. Specifically, we establish stability guarantees for scattering trans-
forms and diffusion wavelets constructed from general diffusion kernels, and propose the design of
an adaptive kernel, which is employed in our experiments to demonstrate the enhanced performance
of graph scattering with added adaptivity in graph classification tasks. Notably, our stability proofs
do not rely on the assumption that the resulting diffusion operator is self-adjoint, a significant relax-
ation given the spectral theorem. To the best of our knowledge, this is the first work to establish such
guarantees. By providing bounds for general diffusion operators, our framework lays the foundation
for scattering networks constructed using important operators that are not self-adjoint, as well as for
the adaptive designs including such operators.

The paper is organized as follows. Section 2 provides the necessary background. Section 3 discusses
the framework for defining diffusion wavelets and metrics (Sec. 3.1) and constructing the diffusion-
based graph scattering transform (Sec. 3.2). Section 4 demonstrates the importance of kernel choice
with examples of how different kernels capture distinct dataset properties, proposes an adaptive
kernel design (Sec. 4.1), establishes energy conservation bounds for wavelets from general kernels
(Sec. 4.2), provides a stability analysis of the resulting adaptive diffusion scattering transform (Sec.
4.4), and complexity analysis (Sec. 4.5). Section 5 discusses related work. Section 6 presents
numerical results showing that our adaptive graph scattering transform considerably outperforms its
non-adaptive counterpart in graph classification tasks across both limited and abundant data settings.
It also achieves consistently better performance than other graph learning methods in limited data
scenarios, demonstrating its potential for such tasks.

2 PRELIMINARIES

We start with some background that will be used for the construction of the adaptive diffusion graph
scattering transform (most of which can be found in standard textbooks (e.g. Rudin (1987); Mallat
(2008))):

Metric space: A metric space is a tuple consisting of a set X and a distance function d, which
satisfies the metric properties: ∀x, y, z ∈ X: (i) positivity: d(x, y) > 0, ∀x ̸= y; (ii) reflexitivity:
d(x, x) = 0; (iii) symmetry: d(x, y) = d(y, x), and (iv) triangle inequality: d(x, y) ≤ d(x, z) +
d(z, y). A weighted undirected connected graph (G,E,W ), where W assigns positive weights to
the edges, is an example of a metric space with the distance between two nodes x and y defined by
d(x, y) = infpx,y

∑
e∈px,y

we, where px,y is a path connnecting x and y.

Measure space: A measure space is a tuple of a set X; a σ-algebra Σ; and a measure µ on (X,Σ).
A σ-algebra is a nonempty collection of subsets ofX closed under set-theoretic operations: comple-
ment, countable union, and countable intersection. A metric measure space (X, d, µ) is a measure
space with a metric d where the σ-algebra is induced by the metric, and µ is a Borel measure.

Multiresolution analysis: A multiresolution analysis of L2 of a metric measure space (X, d, µ) is
a sequence of subspaces {Vj}j∈Z, each of which is called an approximation space. In the case of
L2(R), the sequence {Vj}j∈Z satisfies the properties:

(i) limj→−∞ Vj =
⋃+∞

j=−∞ Vj = L2(R)
(ii) limj→+∞ Vj =

⋂+∞
j=−∞ Vj = {0}

(iii) Vj+1 ⊆ Vj , ∀j ∈ Z
(iv) There exists a Riesz basis that spans V0.

The detail spaceWj is defined as the orthogonal complement of Vj in Vj−1; in other words, Vj−1 =
Vj ⊕⊥ Wj , ∀j ∈ Z. The orthogonal projection of a signal x on Vj−1 can thus be decomposed as
PVj−1x = PVjx + PWjx. The projection of a signal x on Wj captures the ”details” of x that are
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present in the finer-scale space Vj−1 but absent in the coarser-scale Vj . Given a mother wavelet ψ,
the translations of ψ after being dilated onto scale 2j , denoted as {ψj,n}n∈Z = { 1√

2j
ψ( t−2jn

2j )}n∈Z,
compose an orthonormal basis of Wj . On said basis, the projection of x on Wj can be obtained by
a partial expansion: PWjx =

∑+∞
n=−∞⟨x, ψj,n⟩ψj,n.

Scattering transform is a mapping which takes an input signal x and returns a representation Φ(x),
calculated based on a deep convolutional architecture, stable to small deformations while preserves
high-frequency information. Φ(x) is computed by applying sequentially three elements: A filter
bank of band-pass wavelets {{ψj,k}K−1

k=0 }Jj=1, a pointwise nonlinearity ρ (modulus or ReLU), and
an average operator U . In the Euclidean setting, the filter bank consists of rotated and dilated
versions ψj,k of a mother wavelet ψ with scaling parameter j and angle parameter k, with the angle
θ ∈ {2πk/K}k=0,...,K−1. The scattering representation of x is defined as:

Φ(x) = [S0(x), S1(x), . . . , Sm−1(x)] , where

Sk (x) =
[
UΠk

i=0 (ρψαi
) (x)

]
α0,α1,...,αk

= [U (ρ (. . . ρ (ρ (x ∗ ψα0) ∗ ψα1) . . . ∗ ψαk
))]α0,α1,...,αk

.

(1)

where αi, i = 0, ..., k represent the scale parameters.

3 GRAPH DIFFUSION SCATTERING TRANSFORM

3.1 GRAPH DIFFUSION WAVELETS AND DIFFUSION METRICS

The works in Coifman et al. (2005b); Coifman & Maggioni (2006) introduce a framework for multi-
scale and multiresolution analysis on the domain of graphs, based on polyadic powers of a diffusion
operator. We consider an undirected, weighted, and connected graph G = (V,E,W ), with |V | = n

nodes, edges set E and adjacency matrix W ∈ R+n×n. The random walk matrix T =WD−1 of G
defines an induced diffusion process on its nodes, where D = diag(d1, ..., dn), and di, i = 1, ..., n
are the degrees of the nodes of G. For stability, the lazy diffusion P = 1

2 (I + T ) can be employed.
Given that P is left-stochastic and guaranteed to have postive entries at indices (u, v) whenever
(u, v) ∈ E, it can also be interpreted as a transition matrix of a random walk process on G.

The operator P is mass-preserving (i.e.
∑

(u,v)∈E P [v, u] = 1 for any fixed u), contractive (||P || ≤
1), and positivity-preserving (x ≥ 0 ⇒ Px ≥ 0). Consider a random walk on G with P as the
transition matrix, the probability distribution starting from an initial p0 (e.g. a Dirac delta δu at any
node u ofG) becomes increasingly “smoothed out” as over time, as observed from the fact that P tp0
converges to a stationary distribution when t→ ∞, and this distribution is independent of p0.

Based on this “smoothening” property, P can be interpreted as a dilation operator, acting on sig-
nals on L2(G). An analog to the multiresolution analysis can thus be constructed, as proposed in
Coifman & Maggioni (2006). In a more general perspective, we consider a diffusion semigroup
{At}t≥0 induced by a general diffusion operatorA acting on L2(X,µ) which satisfies the following
properties:

(i) ||At||p ≤ 1, for every 1 ≤ p ≤ +∞.
(ii) Atx ≥ 0, for every x ≥ 0

Semigroups as such are referred to as Markovian semigroups. We fix a precision level ϵ < 1. Define
AL2(X) = span{x ∈ L2(X) : ||x|| ≤ 1, ||Ax||

||x|| ≥ ϵ}. Let λmin = infx∈L2(X), ||x||≤1
||Ax||
||x|| , and

λmax = supx∈L2(X), ||x||≤1
||Ax||
||x|| . As ||A|| ≤ 1, it follows that dim(AL2(X)) ≤ dim(L2(X)).

The operator A contracts the functional space L2(X) after each application. The inequality may be
strict, as there are signals in some parts of L2(X) have their norm contracted by λmin, which may
already be smaller than ϵ.

At times tj = γj+1, where γ > 1 (commonly set to 2), we discretize {Aj} following classical
wavelet theory, having wavelets are dilated at scales of polyadic powers. We define the approxima-
tion spaces Vj analogous to a multiresolution analysis of L2(X) as AtjL2(X). We also convention-
ally define V−1 = L2(X). A family of multiresolution filters, analogous to the wavelets filter bank
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in the Euclidean setting, can thus be defined as:

ψ0 = I −A , ψi = Ati−2 −Ati−1 = A2i−1

−A2i(i > 0) (2)
These filter can be understood as projecting a signal x onto the complement of Vj in Vj+1, analogous
to the partial expansion of x in the wavelet basis {ψj,n} of Wj (Gama et al. (2019a)), thereby
extracting the details of x at coarser scales as j increases.

A diffusion metric can also be constructed on the operator A (Coifman & Lafon (2006)). If A is
left-stochastic (i.e. it can be considered as a transition matrix of a Markov chain) and positivity-
preserving, then the diffusion distances at time t between two nodes u and v is given by: dt(u, v) =
||Atδu − Atδv||. This distance considers all path of length t between u and v. If there are many
connecting short paths between the two nodes, then dt(u, v) will be small. It is, as a consequence,
robust to noise, unlike the shortest path distance. An additional consequence is that dt(u, v) is small
if u’s and v’s neighborhoods are similar.

A distance between two graphs of equal sizes can also be defined based on this node-level one, as in
Gama et al. (2019a). Given two graphsG = (V,E,W ) andG′ = (V ′, E′,W ′) with |V | = |V ′| = n
and respective diffusion operators AG and AG′ , the normalized diffusion distance between G and
G′ at time t is defined as:

dt(G,G
′) = inf

Π∈Πn

||(At
G)

∗(At
G)−Π−1(At

G′)∗(At
G′)Π|| (3)

where Πn is the space of all n× n permutation matrices, and A∗ is the adjoint of operator A.

This distance is invariant to node permutation, and is robust to noise similarly to the node-level
one. For simplicity, we consider the metric on graphs of equal sizes; however, it can be naturally
extended to graphs of different sizes by replacing permutation matrices with soft-correspondences,
as in Bronstein et al. (2010) (Gama et al. (2019a)).

3.2 GRAPH SCATTERING TRANSFORM

k = 0 k = 1 k = 2
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Figure 1: Illustration of graph scatter-
ing transform withm = 3 layers, scales
J1 = 3 and J2 = 2.

The construction of the multiresolution analysis, and thus
an analog of the wavelets filter bank on the domain of
graphs, paves the way for the extension of graph scattering
transform. Let Ψn : L2(X) → (L2(X))Jn be the wavelet
decomposition operator that maps x to (ψjx)j=0,...,Jn−1,
with ψj defined as in the previous subsection. Follow-
ing the Euclidean setting described in Section 2, the dif-
fusion graph scattering transform ΦG(x) is also defined
from three components: the wavelet decomposition oper-
ator at each layer k: Ψk; a pointwise nonlinearity ρ; and
a low-pass operator U . The representation Φ(x) is calcu-
lated analogously to the scattering transform in Equation 1
(see Figure 1).

In Gama et al. (2019a), ΦG(x) is introduced with the
multiresolution filters being constructed from the intrin-
sic lazy normalized symmetric adjacency P = 1

2 (I +M)

of G = (V,E,W ), where M = D−1/2WD−1/2. Al-
though P is not mass-preserving, there is a spectral the-
ory to this operator. This is desirable in many cases - for
example, when constructing a diffusion embedding such
that the Euclidean distance in the embedding space corre-
sponds to the diffusion distance in the original graph space
(Coifman et al. (2005a)). Moreover, since P is contractive
(due to its self-adjointness and having spectral radius ρ(P ) ≤ 1) and positivity preserving, the mul-
tiresolution analysis construction remains valid. The average operator U is taken to be the infinite-
time diffusion limit limt→∞ P

t
, expressible as Ux = ⟨vT, x⟩, where v = d1/2

||d1/2||2
= ( d

||d||1 )
1/2 is

the eigenvector of P corresponding to the eigenvalue 1, d being the degree vector of G, and x1/2 is
the vector with square root of every entry of x.
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4 ADAPTIVE DIFFUSION KERNELS

In this section, we first discuss examples of how different diffusion kernels can capture different
properties of a dataset, as part of our motivation. We then give a design of a learnable kernel that we
will use in our experiments as an example to show the enhanced performance. In subsequent parts,
we establish stability bounds for general diffusion kernels, which set the ground for other adaptive
design that could include other important diffusion operators, which are not self-adjoint.

4.1 ADAPTIVE DIFFUSION KERNELS

We consider some examples of X approximately lying on some submanifolds M of Rn, character-
ized by a density function p(x), to show how different kernels can captures different properties, e.g.
the intrinsic geometry of the data points, its distribution density, or a combination of both (Coifman
et al. (2005a)). Between two points x, y of X , let k(x, y) be the “affinity function” that is sym-
metric, positivity-preserving, and positive semi-definite. k(x, y) can be interpreted as the analog of

edges weight between graph nodes. Let d(x) =
∫
X
k(x, y)µ(y) be an analog of degrees of nodes,

where µ is a probability measure. The random walk diffusion operator A can thus be defined as
As(x) =

∫
X
a(x, y)s(y)dµ(y), where s is a signal on X , and a(x, y) = k(x,y)

d(y) .

Two examples of diffusion kernels are given in Coifman et al. (2005a), one accounting for the density
of the points in X , and the other captures the geometry irrespective of density. Consider the random
walk diffusion Aϵ constructed from an isotropic kernel kϵ(x, y) = exp(−||x − y||2/ϵ). If p(x) is
uniform, Aϵ approximate the Laplacian-Beltrami operator ∆ on M, as ϵ → 0 (Belkin & Niyogi
(2003)). On the other hand, if p(x) is not, Aϵ tends to a more general operator of the form ∆ +Q,
where Q(x) = ∆p(x)

p(x) acts as a potential term, reflecting the influence of the non-uniform density.

An alternative normalization is introduced that captures the geometry of the data points by taking
into account the non-uniformity of p(x): Let pϵ(x) =

∫
X
kϵ(x, y)p(y)dy, and define the new kernel

k̂ϵ(x, y) = kϵ(x, y)/pϵ(x)pϵ(y). The corresponding random walk diffusion Âϵ then serves as an
approximation of the Laplace-Beltrami operator at time ϵ, regardless of density variations.

These examples show that the embeddings obtained are highly sensitive to the choice of kernel.
Naturally, there are cases where data-driven diffusion is preferable. For each node u of a graph G,
let the descriptor gu be a vector that has the characteristics of u, e.g. its node degree. Between every
two adjacent nodes u and v, let k(u, v) be the kernel that quantifies the affinity between the two. For
reasons detailed in the next section, we temporarily constraint k to be symmetric. We also require k
to be positive on pairs of adjacent nodes for the construction of diffusion filters. Taking inspiration
from attentional diffusion in Chamberlain et al. (2021), we propose the kernel between two distinct,
adjacent nodes to be given by:

k(u, v) = exp

(
⟨W (gu),W (gw)⟩

||W (gu)||.||W (gv)||
k1

)
(4)

where || · || is the vector norm, W is a mapping from the descriptor space G to an embedding space
W (G), and k1 is a hyperparameter to be tuned. This formulation differs from the kernel used in

scale-dot attention (Vaswani et al. (2017)), which is given by ksd(u, v) = exp(
(WKgu)

TWQgv
de

),
in two key aspects: First, k is symmetrized by letting WK = WQ, where both mappings can
be nonlinear transformations (e.g. a simple MLP), thereby preserving generalization capability.
Second, the inner product is normalized to be the cosine-similarity. In our experiments, we found
out that the resulting attention weights without normalization tend to be ”extreme”, i.e. one neighbor
would dominate, causing the attention values to be reduced to either zero or one. As cosine similarity
is at most 1, we introduce a relaxing hyperparameter k1 ∈ [0,∞), to extend the possible magnitude
range of the kernel. One can apply random walk normalization to k to construct the diffusion kernel.
However, as also partially explained in the following section, we reformulate the diffusion kernel
a(u, v) between any two nodes (either adjacent or identical) as follows:

a(u, v) =
(
k(u, v)/Ku

)
∗
(
σ(α(u)) ∗ (1− k2) + k2/2

)
if u ̸= v,

a(u, u) = 1−
(
σ(α(u)) ∗ (1− k2) + k2/2

) (5)
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where Ku =
∑

v∈N (u) k(u, v), σ denotes the sigmoid function, k2 ∈ [0, 1] is an additional hyper-
parameter, and α(u) = ⟨W (gu), α⟩, with α is a learnable vector of dimension dim(W (G)). We
introduce α to allow self-diffusion, which is necessary for the convergence of the diffusion operator,
to be also learnable. k2 here is used to control the possible range of a(u, u), thereby preventing it
becomes too “extreme”. We would like to remark that k1 and k2 can be interpreted as regularization
hyperparameters, as setting k1 = 0 and k2 = 1 recovers the standard random walk diffusion kernel
for the unweighted version of the graph G.

Let A : G → (L2(G))2 be the operator which maps g to a diffusion matrix A of g. By definition, A
is left-stochastic. To enhance stability during the training process, we employ a multi-head attention
mechanism analogous to that introduced in (Vaswani et al. (2017), Veličković et al. (2018)) by taking

the average across the heads: A(g) =
∑h−1

k=0 Ak(g)

h .

When strictly discrete time steps are considered, the diffusion matrix can directly be used as the dif-
fusion operator: A = A(g). However, modeling the diffusion in graph neural networks (GNNs) as a
continuous-time process has been shown to enhance both training stability and performance (Wang
et al. (2021)). The same approach could thus be done for the above formula. One could discretize
update step between two consecutive powers of A by taking fractional temporal difference. Tempo-
ral discretization schemes for continuous process can be used for such purpose. A quick discussion
of these schemes is given in Appendix A.1. Further experiments are discussed in Section 6 and
presented in Appendix A.6.

4.2 ADAPTIVE DIFFUSION WAVELETS

The construction of wavelets, in general, relies on the framework of multiresolution analysis. Recall
the construction of a multiresolution analysis on graph domains mentioned in Section 3.1. We now
prove our formulation of A, as presented, is suitable for constructing such an analysis. Unless
specified otherwise, all norms are l2-norm.

Proposition 4.1 Let G be a connected domain, and A : Gk → [L2(G)]2 be the operator that maps
descriptor g of the points on G to its diffusion operator A(g) as above. Define V−1 = L2(G). Let
A = A(g), and fix a precision ϵ > 0. Given any subspace V ⊆ L2(G), denoteAtV be the subspace
of L2(G) such that ∀x ∈ AtV, ||A

tx||
||x|| ≥ ϵ. The sequence {Vj}j≥−1, where Vj = R(A2jV−1), with

A2j is computed either discretely or continuously, is a multiresolution analysis:

(i) limj→+∞ Vj = span{πA}, where πA is the unique stationary distribution of the Markov
chain induced by A.

(ii) Vj ⊆ Vj−1.
(iii) There exists a Riesz basis of V0.

The proof is presented in Appendix A.2. The condition that A has a limiting distribution, which is
also the unique stationary distribution of A, guarantees the sequence {Vj} forms a multiresolution
analysis and the dimension of limj→+∞ Vj is minimized. This is obtained by ensuring A is both
irreducible (the underlying domain G is connected) and aperiodic (∃u : A(u, u) > 0).

The above multiresolution analysis, constructed using A with the construction of filters in Sec-
tion 3.1, yields a wavelet decomposition operator Ψ for the proposed adaptive scattering network. It
is noteworthy that the formulation of A as defined above encompasses a special family of diffusion
operators which is a subset of a broader class, on which diffusion wavelets are constructible. In par-
ticular, the diffusion operator A can be any left-stochastic matrix such that for every x: ⟨x, πA⟩ = 0,
where πA is any stationary distribution of A, and ||Ax|| < ||x||. On these general operators, the
resulting wavelet decomposition operator Ψ is proven to be a frame analysis operator, i.e. it defines
a frame:

Proposition 4.2 On a connected domain G, let Ψ be the wavelet decomposition operator on L2(G)
based on a non-negative matrix A as above: Assume that for every x ∈ L2(G) satisfying ⟨x, πA⟩ =
0, ||Ax||

||x|| < 1. Let βA = infx(1 − ||AGx||
||x|| ). Then, there exists constants M(βA), N(βA) > 0

6
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depending only on βA such that for any x as above:

M(βA)||x||2 ≤
J−1∑
j=0

||ψjx||2 ≤ N(βA)||x||2. (6)

The proof is presented in Appendix A.3. The existence of the two bounds is a necessary and suf-
ficient condition that there exists a bounded inverse for each decomposition on the image space
Im(Ψ). This means Ψ defines on L2(G) a complete and stable representation.

According to the general Perron-Frobenius theory, any irreducible and aperiodic matrix A with non-
negative elements has a unique eigenvector πA corresponding to its largest eigenvalue, 1, up to a
constant multiple. Furthermore, the remaining eigenvalues of A, considered in the unitary space,
have strictly smaller moduli. However, there is no guarantee that the orthogonal complements MπA

of span(πA) in L2(G) will remain invariant under the action of A. As every signal which is a
multiple of πA lose all of its information under the wavelet decomposition, to ensure stability, we
would want to design A such that AMπA

⊆ MπA
. A straightforward family of matrices satisfying

this property is the class of self-adjoint matrices. Ensuring symmetry in the kernel k, as in our
construction, is a sufficient condition for this.

It is also worth to noting that the condition that G be connected can be relaxed. Specifically, G can
consist of p connected components that are pairwise disconnected, provided p ≪ |V | = n. This
condition is necessary because each component can have its own stationary distribution, making
the subspace of stationary distributions of A on L2(G) of multiple dimensions, with a maximum
dimension of p. Any signal in this subspace will lose all of its information upon applying Ψ, thus
rendering Ψ useless for such signals. For simplicity, we continue to consider the case where G has
only 1 connected component.

4.3 ADAPTIVE GRAPH SCATTERING TRANSFORM

We construct our Adaptive Graph Scattering Transform similarly to the one in Section 3.2 by re-
placing the non-adaptive decomposition operator with the adaptive version defined in Section 4.2.
Additionally, we employ the average mean pooling operator U , which is independent of A:
Ux = ⟨1/n, x⟩. In particular, on a connected graph G with a graph signal x, the transformation at
each layer is given by:

ϕk = U(ρΨ)kx =
[
UΠk

i=0 (ρψji) (x)
]
j0,j1,...,jk

= [Uρψjk . . . ρψj1ρψj0x]j0,j1,...,jk .
(7)

where {ψji}ji are multiresolution filters constructed using the adaptive operator A. Thus, the scat-
tering representation obtained from an m-layer network is:

Φ(x) = [Ux, ϕ1(x), . . . , ϕm−1(x)] =
[
Ux,UρΨx, . . . , U(ρΨ)m−1x

]
(8)

In the following we provide the stability analysis of the adaptive graph scattering transforms using
general diffusion kernel:

4.4 STABILITY ANALYSIS

A robust and meaningful signal representation should exhibit stability to noise, meaning that a small
change in the input signal yields proportionally small variations in the output representation. As
mentioned in Section 3.1, the matrix A, being both positive-preserving and contractive, naturally
induces a graph-level diffusion metric. We begin by establishing the stability of the wavelet decom-
position operator with respect to this graph metric.

Lemma 4.1 On two distinct graphsG andG′, let ΨG and ΨG′ be the wavelet decomposition opera-
tors induced from respectively AG and AG′ . For a signal x both orthogonal to limiting distributions
πAG

of AG and πAG′ of AG′ , let β = min
(
infx

(
1− ||AGx||

||x||

)
, infx

(
1− ||AG′x||

||x||

))
. We have:

inf
Π∈Πn

||ΨG −ΠΨG′ΠT|| ≤ 2
√
2

√
(1− β)2(1− β + β2)

(2β − β2)3
d(G,G′) (9)
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where d(G,G′) is the diffusion metric between two graphs mentioned in Section 3.1.

The complete proof is presented in Appendix A.4. This lemma serves as the primary tool in our
proof of the next result, which establishes stability bounds for an m-layer graph scattering network
under small perturbations to the graph structure:

Theorem 4.1 Let x ∈ Rn and ΦG(x) be the m-layer scattering representation of a sig-
nal x on a graph G, and let ΦG′(x) be the same respectively on graph G′. Let β =

min
(
infx

(
1− ||AGx||

||x||

)
, infx

(
1− ||AG′x||

||x||

))
and N(β) be as in Proposition 4.2. We have:

||ΦG(x)− ΦG′(x)||2 ≤
m−1∑
k=0

[
kN(β)k−1

√
8(1− β)2(1− β + β2)

(2β − β2)3
d(G,G′)

]2

||x||2 (10)

The proof is presented in details in Appendix A.5. Theorem 4.1 gives the stability bound for the scat-
tering representations of the same signal x on two different graphsG andG′. Each graph has its own
multiresolution analysis, and if the distance between the two graph is small, then the discrepancy
between the resulting representations will also be small. Although ||ΦG − ΦG′ || depends exponen-
tially on m, it is important to note that, in most applications, m typically is smaller than 5. The
change in scattering representations given a small topological preturbation can thus be effectively
characterized by a linear dependence on d(G,G′).

4.5 COMPLEXITY

Number of parameters: In this work, we adopt the traditional architecture of the scattering trans-
form, where the same wavelet decomposition operator is used throughout, and all of its wavelets are
generated from a single mother wavelet. Consequently, only one filter needs to be learned across the
entire scattering network. The additional number of parameters compared to traditional scattering
is O(KPH), where K is the size of each descriptor, P is the number of parameters in the mapping
W , and H is the number of heads. This does not depend on the size of the scattering network or the
size of the graph G.

Memory requirement: We consider a scattering network of m layers, and each layer has k
wavelets. Since the model has to store the attributes in each wavelet scale for doing low-pass
averaging and diffusion in subsequent layer, the memory requirement is O(CkmN), where C is
the number of input channels, N = |V | is the number of graph nodes. Since m and k are prede-
fined hyperparameters, with m ≤ 5 in most applications (as scattering energy rapidly diminishes
in deeper layers with increasing m (Bruna & Mallat (2013)), the memory requirement effectively
scales linearly with the number of graph nodes.

5 RELATED WORKS

The incorporation of adaptivity directly into graph scattering networks has been explored in prior
works, but only to a limited extent. Recently, Tong et al. (2024) introduced a scale-adaptive exten-
sion of the lazy random walk diffusion scattering transform, enabling adaptive wavelet scale adjust-
ment. Their approach demonstrated competitive performance compared to popular GNNs and the
original graph scattering network. With a different perspective, Wenkel et al. (2022) proposed a hy-
brid GNN combining the low-pass filter of graph convolutional networks (GCNs) with the band-pass
filter of graph scattering networks at each layer to capture multi-scale information. For Euclidean
scattering, Oyallon et al. (2018) integrated scattering networks with deep residual networks (He et al.
(2016)) to achieve comparable image classification results with fewer layers. Additionally, Zarka
et al. (2021) introduced a scattering model with only 1× 1 convolutional tight frames for scattering
feature projection, delivering similar performance.

6 NUMERICAL EXPERIMENTS

In this section, we empirically demonstrate the discriminative power of the adaptive diffusion scat-
tering transform in classification tasks on two types of datasets: social networks and bioinformatics.

8
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Figure 2: Classification accuracies as a function of percentage of training data used in the bioinfor-
matics dataset (MUTAG) and the social network dataset (IMDB-BINARY)

We perform graph-level classification on well-known social network and bioinformatics datasets as
described in Morris et al. (2020). To maintain consistency with our theoretical framework, we re-
strict our experiments to datasets comprising connected graphs, namely, COLLAB, IMDB-BINARY,
IMDB-MULTI, and MUTAG (Morris et al. (2020)). A detailed description of these datasets is pro-
vided in Appendix A.7. For each node u, the descriptor gu is chosen to be a vector consists of
topological features of u and its neighborhood: degree, eccentricity, clustering coefficient, number
of triangles contains u as a vertex, core number, clique number, and PageRank. The bioinformatics
dataset MUTAG includes 7 node features, which we directly use as input to the diffusion process.
Conversely, the social network datasets lack inherent node features; therefore, we use the descriptors
as a proxy.

For the classification task, we employ a model that integrates our adaptive graph scattering network
as a feature extractor with a simple MLP as the classifier, denoted as AGSN+MLP. Using the MLP
enables backpropagation, thereby facilitating the learning of the kernel weights in our model. For
comparison, we implement the same architecture but with a lazy random walk kernel 1

2 (I+WD−1),
referred to as GSN+MLP.

Performance: We evaluate the performance of AGSN+MLP against traditional graph scattering
methods (GSN+MLP, GS-SVM Gao et al. (2019)), graph transformer (UGformer (Nguyen et al.
(2022))), and graph neural network (GIN-0 (MLP-sum) (Xu et al. (2018a))) on smaller datasets
with varying training data sizes. These models were chosen for their publicly available implementa-
tions. Figure 2 shows the classification accuracy as a function of the percentage of samples used for
training, with the remaining data reserved for validation. Further experimental details are provided
in Appendix A.7. When training data is scarce (≤ 5%), graph deep learning models deteriorate
rapidly, with UGformer showing a particularly steep decline. In contrast, graph scattering meth-
ods show a more stable performance drop and outperform deep learning models under limited data.
AGSN+MLP excels in these scenarios, maintaining a clear advantage over both model types, partic-
ularly where graph deep learning deteriorates, and graph scattering begins to excel. This is due to its
ability to inherit the predefined structure of the graph scattering transform while controllably adapt-
ing the diffusion process to the task. The performance gap is more pronounced on IMDB-BINARY,
compared to MUTAG’s smaller size (188 samples), where extremely limited data (∼3 samples for
2%) reduces differentiation among models. Conversely, with abundant training data (≥ 80%), graph
deep learning models (UGformer, GIN-0) outperform most scattering methods.

Running time: We compare the total end-to-end running time of the five models using
2.5% of IMDB-BINARY as training data on the same NVIDIA A100 40GB GPU, shown
in Figure 3 (logarithmic scale). For this dataset, GIN-0, UGformer, and AGSN+MLP re-
quire adding node features, while GS-SVM and GSN+MLP additionally require extracting the
scattering representation. Neural network models are trained and validated for 200 epochs,
whereas GS-SVM is fitted only once. AGSN+MLP is a little bit slower (roughly 3.5x)
than GSN+MLP and GIN-0 since the gradients are also backpropagated through the scatter-
ing architecture, but AGSN+MLP achieves significantly higher accuracy than the other models.

9
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Figure 3: Total running time ver-
sus classification accuracy on IMDB-
BINARY with 2.5% data for training.

Additional experiments:

As mentioned in Section 4.1, the diffusion process can
be modeled as a continuous one. In Appendix A.6, we
present additional experiments showing the choice of time
step or temporal discretization schemes largely affect the
stability of the training process. Increasing the time step
or employing discretization schemes with higher numer-
ical accuracy improves the numerical precision of each
weight update, resulting in a more stable and refined train-
ing curve, similarly to adjusting the learning rate. How-
ever, due to the highly non-convex nature of the optimiza-
tion problem in our case, this does not necessarily translate
to better performance as observed in Wang et al. (2021)
for linear GCNs. A balance should be achieved between
stability and the ability to escape local minima. Conse-
quently, we treat the time step as a hyperparameter in our
experiments.

To compare AGSN+MLP with other models under abundant training data, we perform 10-fold
cross-validation using 90% of the data for training and evaluate classification accuracies across four
datasets. Results from other models are taken from their original papers and detailed in Appendix
A.6. In these scenarios, AGSN+MLP outperforms most graph kernel methods but shows lower per-
formance compared to graph deep learning models. Compared to other graph scattering methods,
AGSN+MLP performs better than GS-SVM and is comparable to GGSN+EK (Koke & Kutyniok
(2022)) on smaller datasets (MUTAG, IMDB-BINARY). However, its performance shows negligible
differences or is slightly lower on larger datasets (IMDB-MULTI, COLLAB). Due to slight differ-
ences in the cross-validation procedure used in this work and that described in Koke & Kutyniok
(2022), we believe additional experiments are necessary for a fairer comparison. Unfortunately, the
original implementation of GGSN+EK is not publicly available.

Compared to graph deep learning models, we attribute AGSN+MLP’s lower performance in abun-
dant training data scenarios to limitations in utilizing the scattering representation. In image pro-
cessing, Zarka et al. (2020) demonstrated that incorporating sparse l1 dictionary coding into the
scattering architecture to reduce intra-class variability, before inputting it into the classifier, achieves
performance comparable to AlexNet (Krizhevsky et al. (2012)) on the ImageNet dataset (Deng et al.
(2009)). Adapting similar strategies for graph structures is also an interesting direction for future
research.

7 CONCLUSIONS

In this work, we developed a mathematically sound framework for the application of learnable ker-
nels in graph scattering networks, allowing for data-driven feature extraction through adaptive diffu-
sion. We established the stability of this adaptive scattering under both small signal and topological
perturbations in the underlying graph domain. In particular, we show that the distance between
two scattering representations of a graph signal on two different graphs is proportional to the dif-
fusion distance between the graphs, based on general diffusion operators, setting the ground for
adaptive designs containing important operators that are not self-adjoint. Additionally, we empiri-
cally showed on social network and bioinformatics datasets that the application of adaptive kernels
to scattering network improves performance considerably, in both scenarios of limited and abundant
training data.

Our results open up several promising research directions. One potential direction is to explore more
designs of general adaptive kernels that are not restricted to being self-adjoint. Since the diffusion
metric depends onA, it would also be beneficial to refine the stability bounds so that they rely solely
on the topological properties of the graph.
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A APPENDIX

A.1 DISCUSSION ON TEMPORAL DISCRETIZATION SCHEMES

Temporal discretization schemes for continuous diffusion processes are broadly classified into two
categories: explicit and implicit. These schemes can further be categorized into single-step and
multi-step.

The simplest form of temporal discretization of a continuous feature update process is done by
replacing the continuous-time derivative with forward time difference:

x
(k+1)
i − x

(k)
i

τ
=

∑
j:(i,j)∈E

a(gj , gi)x
(k)
j − a(gi, gj)x

(k)
i =

 ∑
j:(i,j)∈E

a(gj , gi)x
(k)
j

− x
(k)
i (11)

where k is the discrete time index, and τ is the time step. Rewriting this in matrix form yields the
explicit Euler scheme:

x(k+1) = τ(A− I)x(k) + x(k) = τĀx(k) + x(k) = (I + τĀ)x(k) (12)

Implicit schemes, instead, employ a backward temporal difference:

x
(k+1)
i − x

(k)
i

τ
=

∑
j:(i,j)∈E

a(gj , gi)x
(k+1)
j −a(gi, gj)x(k+1)

i =

 ∑
j:(i,j)∈E

a(gj , gi)x
(k+1)
j

−x(k+1)
i

(13)
which, in matrix form, becomes:

(I − τĀ)x(k+1) = x(k) (14)

To compute the update x(k+1) from x(k), one have to solve a linear system, hence this approach is
called implicit.

A multi-step scheme, for higher numerical accuracy, uses intermediate fractional time steps for
updating x(k+1). One of the most widely used multi-step methods is the Runge-Kutta family, with
the fourth-order Runge-Kutta (RK4) scheme being the most prominent. The subsequent iterate in
RK4 is calculated as:

x(k+1) = x(k) +
1

6
(k1 + 2k2 + 2k3 + k4), (15)

where:
k1 = τĀx(k)

k2 = τĀ(x(k) + k1/2)

k3 = τĀ(x(k) + k2/2)

k4 = τĀ(x(k) + k3)
(16)

In general, linear k-step methods are of the form:
s∑

j=0

αjx
(k+j) = τ

s∑
j=0

βjĀx
(k+j) (17)

These methods achieve increased accuracy by increasing the number of calculations. In the case of
Runge-Kutta methods, RK4 strikes a balance between the two, offering sufficient precision without
excessive overhead (Butcher (2016)). As with Euler’s method, how these are implicit or explicit
depends on the constants αj and βj .

A.2 PROOF FOR PROPOSITION 4.1

Proof:

We recall here the formula of A:

A(u, v) =
(
softmaxv∈N (v)(k(u, v))

)
∗
(
σ(α) ∗ (1− k2) +

k2
2

)
if u ̸= v, (u, v) ∈ E

A(u, u) = 1−
(
σ(α) ∗ (1− k2) +

k2
2

)
> 0

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

where k(u, v) = exp

(
⟨W (gu),W (gw)⟩

||W (gu)||||W (gv)||k1

)
.

(i) Given that A = A(g) is aperiodic (i.e., ∃ u : A(u, u) > 0) and irreducible (the domain G is
connected), it follows from the theory of time-homogeneous Markov chains that A admits a
unique stationary distribution, denoted as πA. Hence, for any x ∈ L2(G), the following limit
holds:

∀x ∈ L2(G), lim
t→∞

Atx = kπA,

where k is a scalar depending only on the initial condition x. Consequently, we have
limj→+∞ Vj = span{πA}.

(ii) As the underlying kernel k of A is symmetric, A is a self-adjoint operator. Furthermore,
since any temporal discretization of A is represented as a sum of scalar multiplications of
A, the resulting diffusion operator preserves the self-adjointness. Let λ1 = 1, λ2, . . . , λn
denote the eigenvalues of A arranged in non-increasing order, and let x1, x2, . . . , xn be the
corresponding eigenvectors. By the iterative definition Vj = AVj−1, and since 0 < λn < 1,
it follows that Vj ⊆ Vj−1.

(iii) Consider the eigenvectors xi corresponding to eigenvalues λi such that λi > ϵ. Due to the
self-adjointness of A, these eigenvectors are orthogonal, and hence they form a Riesz basis
for the initial subspace V0 = AV−1.

A.3 PROOF FOR PROPOSITION 4.2

Proof: Let S =
∑J−1

j=0 ||ψjx||2.

In the case of the lower bound, we have:

S =

J−1∑
j=0

||ψjx||2 = ||I −A||2 + ||A−A2||2 + ...+ ||A2J−1

−A2J ||2

≥ ||I −A||2 ≥ (1− (1− βA))
2 = β2

A =M(βA)

For the upper bound, we consider the complexification L2(G)+ of our functional space L2(G).
L2(G)+ consists of pairs of vectors (x, y) in (L2(G))2, where addition is defined by (x1, y1) +
(x2, y2) = (x1 + x2, y1 + y2) and scalar multiplication with any complex number is given by
(a + bi)(x, y) = (ax − by, bx + ay), similarly to the case if we consider (x, y) = x + iy. A
linear transformation A on L2(G) is extended to its complexification A+ on L2(G)+ by defining:
A+(x, y) = Ax + iAy. A simple observation is that the real vector space is a special case of its
complexification, where y = 0.

As every linear transformation of dimension n in a unitary vector space has fully n eigenvalues, we
consider S as a function of the eigenvalues ofA+. LetQJ(x) = ||1−λ||2+

∑J−1
j=1 ||λ2j−1 −λ2j ||2,

and αA = 1− βA. The upper bound of S is then the upper bound of QJ(x), where 0 ≤ |λ| ≤ αA.
Let a = ℜ(λ) and b = ℑ(λ). Let Q(x) = ||1− λ||2 +

∑∞
j=1 ||λ2

j−1 − λ2
j ||2. We notice that:

Q(λ2) = Q(λ) + ||1− λ2||2 − ||1− λ||2 − ||λ||2||1− λ||2 = Q(λ) + 2a||1− λ||2

When a ≥ 0, Q(λ2) ≥ Q(λ). Therefore QJ(λ) ≤ sup||λ||≤αA,ℜ(λ)≥0(Q(λ)) = lim||λ||→0Q(λ) =

Q(0) = 1.

On the other hand, when a < 0, Q(λ2) ≤ Q(λ). Let αλ = |λ| ∈ [α2
A, αA]. Then, for any fixed αλ:

Q(λ) = |1− λ|2 + |1− λ|2α2
λ + ...+ (α2j−1

λ )2|1− λ2
j−1

|2 + ...

≤ |1 + αλ|2 + |1 + αλ|2α2
λ + ...(α2j−1

λ )2|1 + α2j−1

λ |2 + ...

= 1 + 2αλ + α2
λ + α2

λ + 2α3
λ + α4

λ + ...+ α2j

λ + 2α2j−1+2j

λ + α2j+1

λ + ...

= 1 + 2(αλ + α2
λ + α3

λ + α4
λ + ...+ α2j

λ + α2j−1+2j

λ + ...)
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As it is straight-forward that this sequence is absolutely convergent for 0 ≤ αλ < 1, we thus have:

QJ(λ) ≤ sup
α2

A≤||λ||≤αA,ℜ(λ)<0

Q(λ) ≤ 1+2(αA+α
2
A+α

3
A+α

4
A+...+α

2j

A +α2j−1+2j

A +...) = N(βA).

Therefore, S ≤ N(βA), where N(βA) is defined as above.

A.4 PROOF FOR LEMMA 4.1

This proof follows partly the strategy used in Gama et al. (2019a).

Proof: We have, for any signal x the orthogonal complement of span{πAG
, πAG′}:

||ΨG −ΨG′ ||2 =

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

ψ0(G)
ψ1(G)

...
ψJ−1(G)

−


ψ0(G

′)
ψ1(G

′)
...

ψJ−1(G
′)


∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
2

=

J−1∑
j=0

||ψj(G)− ψj(G
′)||2

Since ψj(G) = A2j−1

G −A2j

G′ ,

||ΨG −ΨG′ ||2 ≤
J−1∑
j=0

2
(
||A2j−1

G −A2j−1

G′ ||2 + ||A2j

G −A2j

G′ ||2
)

≤
J−1∑
j=0

4||A2j

G −A2j

G′ ||2
(18)

by triangle inequality.

For any n ∈ N and any two matricesM ,N with norm strictly less than 1, let λ = max(||M ||, ||N ||),
Let g(t) = (tM + (1− t)N)n. We have:

||Mn −Nn|| = ||g(0)− g(1)|| =

∣∣∣∣∣
∣∣∣∣∣
∫ 1

0

g′(t)dt

∣∣∣∣∣
∣∣∣∣∣ ≤

∫ 1

0

||g′(t)||dt ≤ sup
t∈(0,1)

||g′(t)||.

Since g′(t) =
∑

i=0 n(tM + (1− t)N)i(M −N)(tM + (1− t)N)n−(i+1), we thus have ||Mn −
Nn|| ≤ ||g(t)|| ≤

∑
i=0 nβ

i||M −N ||βn−(i+1) = nβn−1||M −N ||
Applying this to equation 18:

||ΨG −ΨG′ ||2 ≤ 4

J−1∑
j=0

22j(1− β)2
j+1

||AG −AG′ ||2

≤ 4

2J−1∑
t=0

t2(1− β)2t||AG −AG′ ||2

Let h(x) =
∑∞

t=0 t
2axt and H(x) =

∫ (∫
h(x)dx

)
dx for a constant a. Then h(2) = d

dx2H(2) =
1

(ln(a))2
d

dx2 (
1

1−ax ) =
a2(1+a2)
(1−a2)3 . Thus,

||ΨG −ΨG′ ||2 ≤ 4||AG −AG′ ||2 (1− β)2(1 + (1− β)2)

(1− (1− β)2)3

= 4||AG −AG′ ||2 2(1− β)2(1− β + β2)

(2β − β2)3

Therefore,

||ΨG −ΨG′ || ≤ 2
√
2||AG −AG′ ||

√
(1− β)2(1− β + β2)

(2β − β2)3

As this inequality stays true for any node permutation on G′, lemma 4.1 is thus proved.
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A.5 PROOF FOR THEOREM 4.1

Proof:

Let ϵ =
√

8(1−β)2(1−β+β2)
(2β−β2)3 d(G,G′).

The case k = 0 is straight-forward as U is independent of G and G′. For the case k = 1:
||UρΨG − UρΨG′ || ≤ ||Uρ(ΨG −ΨG′)|| ≤ ϵ

For general k ≥ 2:

||U(ρΨG)
k − U(ρΨG′)k|| = ||U(ρΨG(ρΨG)

k−1 − ρΨG(ρΨG′)k−1 + ρΨG(ρΨG′)k−1

− ρΨG′(ρΨG′)k−1)||
≤ ||U(ρΨG((ρΨG)

k−1 − (ρΨG′)k−1) + (ρΨG − ρΨG′)(ρΨG′)k−1)||
≤ N(β)(k − 1)(N(β))k−2ϵ+ ϵ(N(β))k−1

= k(N(β))k−1ϵ

We thus have, by induction, ||U(ρΨG)
k − U(ρΨG′)k|| ≤ k(N(β))k−1ϵ.

Since,

||ΦG(x)||2 =

m−1∑
k=0

||U(ρΨG)
k(x)||2

thus

||ΦG − ΦG′ ||2 =

m−1∑
k=0

||U(ρΨG)
k − U(ρΨG′)k||2 ≤

m−1∑
k=0

k(N(β))k−1ϵ .

A.6 ADDITIONAL EXPERIMENTS

Effect of time step when using fractional temporal difference in training:

Figure 4: Training accuracies as a function of epoch for different time step and approximation
scheme choices on IMDB-BINARY with otherwise same configuration and initialization.

10-folds cross-validation results on COLLAB, IMDB-BINARY, IMDB-MULTI, and MUTAG:

To facilitate comparison with other types of models, we perform 10-fold cross-validation using
90% of data for training, and compare the classification accuracies to other graph deep learning,
scattering, and kernel methods. These are Weisfeiler-Lehman kernel (WL) (Shervashidze et al.
(2011)), Graphlet kernels (Shervashidze et al. (2009)), DGK (Yanardag & Vishwanathan (2015)),
GS-SVM (Gao et al. (2019)), GGSN+EK (Koke & Kutyniok (2022)), DGCNN (Zhang et al. (2018)),
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Methods Accuracies (%)
COLLAB IMDB-BINARY IMDB-MULTI MUTAG

WL 77.82± 1.45 71.60± 5.16 N/A 84.11± 1.91
Graphlet 73.42± 2.43 65.4± 5.95 N/A 85.2± 0.9
DGK 73.0± 0.2 66.9± 0.5 44.5± 0.5 87.4± 2.7
DGCNN 73.76± 0.49 70.03± 0.86 47.83± 0.85 85.83± 1.66
PSCN 72.6± 2.15 71.00± 2.29 45.23± 2.84 88.95± 4.37
S2S-N2N-PP 81.75± 0.8 73.8± 0.7 51.19± 0.5 89.86± 1.1
GSN-e 85.5± 1.2 77.8± 3.3 54.3± 3.3 90.6± 7.5
GIN-0 (MLP-sum) 80.20± 1.9 75.10± 5.10 52.30± 2.80 89.40± 5.60
GS-SVM 79.94± 1.61 71.20± 3.25 48.73± 2.32 83.57± 6.75
GGSN+EK 80.34± 1.68 73.20± 3.76 49.47± 2.27 N/A
GSN+MLP 75.2± 1.31 71.3± 3.94 45.11± 3.13 83.85± 4.74
AGSN+MLP 77.25± 0.99 73.5± 4.48 48.54± 4.5 89.94± 5.74

Table 1: Classification Accuracies on Social Network and Bioinformatics datasets. The first, second,
and third best performing models are respectively highlighted in green, yellow, and orange.

PSCN (Niepert et al. (2016)), S2S-N2N-PP (Jin & JaJa (2018)), GSN-e (Bouritsas et al. (2022)), and
GIN-0 (MLP-sum) (Xu et al. (2018b)). The results are obtained from the corresponding original
publications. Detailed information regarding the experimental setup is presented in Appendix A.7.
The classification accuracies are summarized in Table 1.

A.7 DATASETS AND EXPERIMENTS SET-UP

We provide here additional information on datasets and training procedures.

Datasets:

Attributes COLLAB IMDB-BINARY IMDB-MULTI MUTAG
Num. of graphs 5000 1000 1500 188
Avg. nodes 74.5 19.8 13.0 17.9
Avg. edges 2457.8 96.5 65.9 19.8
Num. of classes 2 2 3 2

Table 2: Details of Social Network and Bioinformatics datasets.

IMDB-BINARY and IMDB-MULTI are movie collaboration datasets, where each graph corre-
sponds to an ego-network for each actor/actress, nodes corresponds to actors/actresses, and there
is an edge between two nodes if they appear in the same movie. Each graph is obtained form a
predetermined movie genre, and the task is to classify the graph into the genre from which it is
obtained.

COLLAB is a scientific collaboration dataset, obtained from three other collaboration datasets of
three different fields: High Energy Physics, Condensed Matter Physics, and Astro Physics. Each
graph corresponds to an ego-network of different researchers, and the task is to classify each graph
into its corresponding fields.

MUTAG is a dataset of 188 nitroaromatic compounds, where each nodes has 7 discrete labels about
their atom types. The goal is to predict their mutagenicity on Salmonella typhimurium.

The descriptor gu of each node u contains 7 features obtained from the topological properties of u
and its neighborhood. They are briefly described here:

1. Degree: number of edges
2. Eccentricity: On a connected graph, it is the maximum distance between u to all other nodes.
3. Number of triangles: The number of triangles having u as a vertex.
4. Clustering coefficient: On unweighted graphs, it is the ratio between the number of possible

triangles through u versus the number that actually exists.

c(u) =
2T (u)

deg(u)(deg(u)− 1)

18
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5. Core number: A k-core is largest subgraph that only contains nodes of degree at least k. The
core number of u is the maximum k of all the k-core containing u.

6. Clique number: A clique is a subgraph of an undirected graph such that every two distinct vertices
in a clique are adjacent. The clique number of u is the number of cliques containing u.

7. PageRank: This calculate the PageRank of u, which is a ranking of the nodes in the graph based
on the topology of the edges.

Experiments:

We implemented both AGSN+MLP and GSN+MLP using PyTorch (Paszke et al. (2019)) and
PyTorch Geometric (Fey & Lenssen (2019)), and hyperparameters are tuned using W&B sweep
(Biewald (2020)). The experiments are run on an HPC instance with 8 CPU cores, 256GB of RAM,
and an NVIDIA A100 40GB GPU. For our experiments, we chose a scattering architecture ofm = 2
on MUTAG, IMDB-BINARY, and IMDB-MULTI, while on COLLAB we chose m = 4. At each
layer, the number of wavelets are chosen from the range [3, 4, 5]. k1 is chosen from the interval
[1, 5], while k2 is chosen from [0.05, 0.15]. We chose ReLU as the nonlinearity. The architecture
is then applied to each signal channel independently, and afterward concatenated to one final rep-
resentation vector for each graph. As the scattering vector has unequal energy distribution between
its path variables (Figure 1) (Bruna & Mallat (2013)), we grouped variables across channels into
subvectors and normalized these subvectors using the maximum (l2-norm) across all samples in the
batch to enhance robustness:

ϕk[p](xi)

supxi
||ϕk[p]xi||

This representation was then directly used as input to the 3-layer MLP for classification.

For temporal discretization, we use Euler schemes, as we found out that the performance gain from
using the Runge-Kutta method was negligible. The time-step τ in the adaptive model is chosen to
be 0.25, as lower values resulted in diminishing returns while increasing computational overhead.
The number of heads was set to 8, while embedding dimension is chosen from [16, 32, 64, 128].
We trained the model for 500 epochs, selected the learning rate from the interval [0.005, 0.02] and
applied an exponential decay that halved the learning rate every 50 epochs. The batch size was set
to the maximum capacity supported by our hardware. We also applied dropout to MLP layers, with
p of dropout chosen from the interval [0, 0.9].

In the first experiment on MUTAG and IMDB-BINARY, we performed k-fold cross-validation
where k depends on the percentage of data used for training, if the percentage is ≥ 10. When it
is smaller, we use stratified split, with 20 random splits. As the datasets are small, we took the av-
erage validation accuracy for each epoch, and chose the best-performing epoch, following Xu et al.
(2018a).

In our second experiment on all 4 datasets in Appendix A.6, we perform 10-fold cross-validation,
taking average of accuracies across folds similar to above. In both cases, the mean and standard
deviation were computed using the best-performing epoch.
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