A. Video examples

Sample results are present on the project’s webpage:
http://dimadamen.github.io/OSNOM. The video
shows predicted object locations, over time, in 4 sampled
clips from the evaluation EPIC-KITCHENS videos. We
show the mesh of the environment, along with coloured
neon dots representing the active objects that we lift and
track in 3D. The videos also show the estimated camera po-
sition and direction throughout the video along with the cor-
responding egocentric footage.

In each case, the clip shows object locations predicted
when they are in-sight, when they are out-of-view as well
as when they are moving in-hand. Selected examples also
show objects picked up / returned to fridge or cupboard
highlighting the complexity of spatial cognition from ego-
centric videos.

B. Estimating error in the 3D projection

In Section 4.1, we estimate the error in 3D locations,
through comparing projections of static objects from multi-
ple viewpoint. Figure 3 in the paper presented the findings
— showcasing that the mean error is 3.5cm with 96% of all
errors within 10cm. We here describe the data used to report
this figure.

We randomly selected 207,277 pairs of frames from our
dataset, covering correspondences between 10 static ob-
jects across 5 different kitchens/environments. These were
manually selected to find multiple frames with masks of
the same object, at distinct times, and from different view-
points. We avoid masks that are partially occluded by an-
other object or by the camera’s field-of-view (i.e. not fully
in view) as these projections are likely to differ due to the
occlusion of part of the mask. As the chosen pairs of masks
showcase the same static object, their 3D locations should
perfectly match. Any differences in their 3D location can
be used to measure the error in the 3D projection, which we
use as ground truth locations.

As the figure showcases, the error in our projections is
within 10cm and well-within the threshold we use of 30cm.
Recall that our threshold is chosen to reflect the cupboard
width in standard kitchens. Estimating an object’s location
within 30cm implies we can position the object correctly
within a cupboard.

C. Additional Ablations

Moved vs. Stationary objects. Section 3.3 also provides
a definition of objects which have either moved signifi-
cantly within the environment or remained relatively within
a small section of the environment. We use a movement
threshold of ¢ = 30cm to separate large from small mo-
tions. Figure 12 shows PCL results showing the objects that
remain relatively stationary can be tracked on average 35%
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Figure 12. LMK Results for Moved vs Stationary objects with
respect to the environment. We used a movement threshold of
€ = 30cm
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Figure 13. Visual feature choice of a DINO-v2, CLIP or Ima-
geNet (ViT).
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Figure 14. Object radius. LMK when approximating objects as
spheres in 3D and using object radius for PCL threshold R.

better than that of objects which have moved significantly
within the space. Objects are more visually different after a
move (e.g. different orientation or lighting).

Visual features. = Our default feature extractor @ is a
ViT [10], pre-trained under the self-supervised DINO-v2
recipe [31]. We also compare to ViTs pre-trained on CLIP
[34] and ImageNet [9] in Figure 13. DINO-v2 outperforms
other approaches across all timescales, likely due to the pre-
training tasks of CLIP (vision and language alignment) and
ImageNet (image classification) being less suited to our re-
quirement of reliable frame-to-frame visual similarity.
Object size. In our experiments, we use a fixed R = 30cm.
As objects differ in size, one might argue that matching R
to the object size is more reasonable. In Figure 14 we use an
adapted R that matches the object dimension per example.
Results are very similar to the default R = 30cm, showcas-
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averaged to calculate track representation.

Figure 15. Hyperparameter ablations for LMK on the validation set. We choose the best average over 1, 5 and 10 minute sequence

lengths.

ing that fixed versus dynamic R do not change the tracking
capabilities.

Weighting visual appearance and location. LMK uses
the hyperparameters 5y (Eq 4) and Sy (Eq 5) for relative
weighting of visual and location similarities when assigning
new observations to tracks. We select these based on best
validation set performance averaged over timescales. Fig-
ure 15a shows validation set performance when fixing the
chosen fBy = 2 and varying . Figure 15b fixes 81, = 13
and varies Jy,. Both hyperparameters are relatively stable,
most likely due to the scaling by appropriate distributions
(Cauchy and Exponential).

Track visual representation. Figure 15c ablates v over the
validation set — the number of recent features averaged for
visual representation of a track. Best results are obtained
with v = 100, with worse results for small / large values of
v, with performance relatively stable even down to only one
observation.

D. Failure cases

We identify two key reasons for failure cases for LMK. For
clarity, we showcase each case separately — in Figure 16 and
Figure 17. For each figure, we focus on a single object and
show its predicted trajectory in green. Failure predictions
are shown in red, where we plot the correct ground truth
trajectory.

In Figure 16 we show cases where the track is lost for
a limited time but is then correctly recovered. In the first
row, the tin is correctly tracked for most of its trajectory,
including when it is discarded in the bin. However, for a
short duration, the predictions are incorrect (red dots). Sim-
ilarly, in the second row, the knife is incorrectly predicted
while occluded by the hand or occluded in hand. The last
example shows failures in predicting the correct trajectory
of the pot as it is filled with milk which changes its appear-
ance. Coincidentally, it is moved out of the field of view.
The matching then fails for both the appearance and the lo-
cation. As the pot is emptied, its appearance matching is
recovered towards the end of the track.

In Figure 17, we show failure cases of tracking that are
not recovered. In the first example, the wooden spoon is
assigned a new trajectory and the tracking continues using
the new identity. This is similarly the case for the cutting
board when it is moved to the cluttered sink.

Failures predominantly occur in cluttered scenarios, such
as when slicing peppers with a knife in Figure 16, or mixing
with a spoon in Figure 17. In these situations, the locations
of multiple objects overlap, making the individual object’s
location less informative for matching.

E. Future Directions

We report the majority of our results using ground-truth
masks out of the VISOR annotations. This allows us to
evaluate the tracking from partial observations without ac-
cumulating detection errors. We find this decision to be rea-
sonable as we focus on introducing and evaluating the task
of Out of Sight, Not Out of Mind (OSNOM). In Fig 7, we
ablate this by using an off-the-shelf semantic-free detector.
The figure shows an expected drop in performance as noisy
and incomplete detections are introduced. Improving per-
formance using detection predictions is one of the future
directions.

Another future direction is the expansion of OSNOM
task to multiple videos, over time. In follow-up videos, the
initial assumption of where objects are from previous ses-
sions can be used as priors for OSNOM. Extending beyond
a single video targets our ultimate goal of an assistive so-
lution that is aware of where objects are, over hours and
potentially days.



Figure 16. Trajectory prediction - temporarily lost but recovered track. Predicted trajectory of three objects in motion. Green neon
dots show correctly predicted 3D positions over four frames with their corresponding camera views, and red neon dots show ground-
truth trajectory where the prediction fails. The tracking momentarily fails, but subsequently, the object is accurately matched to a future
observation.

wooden spoon

Figure 17. Trajectory prediction - lost track. Predicted trajectory of two objects in motion. Green neon dots show correctly predicted
3D positions over four frames with their corresponding camera views, and red neon dots show ground-truth trajectory where the prediction
fails. The tracking fails and all subsequent predictions are assigned to a new track.



