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ABSTRACT

When training classification models, it expects that the leaned features are com-
pact within classes, and can well separate different classes. As a dominant loss
function to train classification models, the minimization of CE (Cross-entropy)
loss can maximize the compactness and distinctiveness, i.e., reaching neural col-
lapse. The recently published works show that BCE (Binary CE) loss performs al-
so well in multi-class tasks. In this paper, we compare BCE and CE in the context
of deep feature learning. For the first time, we prove that BCE can also maximize
the intra-class compactness and inter-class distinctiveness when reaching its min-
imum, i.e., leading to neural collapse. We point out that CE measures the relative
values of decision scores in the model training, implicitly enhancing the feature
properties by classifying samples one-by-one. In contrast, BCE measures the ab-
solute values of decision scores and adjust the positive/negative decision scores
across all samples to uniform high/low levels. Meanwhile, the classifier bias in
BCE presents a substantial constraint on the samples’ decision scores. Thereby,
BCE explicitly enhances the feature properties in the training. The experimental
results are aligned with above analysis, and show that BCE consistently and sig-
nificantly improve the classification performance and leads to better compactness
and distinctiveness among sample features.

1 INTRODUCTION

Cross-entropy (CE) loss is the most commonly used loss function for classifications and feature
learning. In a multi-class classification with K categories, for any sample X(k) from category k, a
modelM first extracts its feature h(k) = M(X(k)) ∈ Rd, which is output from the penultimate
hidden layer in deep model. Then a linear classifier with weight W = [w1, · · · ,wK ]T ∈ RK×d
and bias b = [b1, · · · , bK ]T ∈ RK transforms the feature into K logits/decision scores, {wT

j h
(k) −

bj}Kj=1, which are finally converted into predicted probabilities by Softmax, and computed the loss
using cross-entropy,

Lce
(
z(k)

)
= −yTk · log

(
Softmax

(
z(k)

))
= log

(
1 +

K∑
`=1
` 6=k

ew
T
` h(k)−b`

ewT
k h(k)−bk

)
, (1)

where z(k) = Wh(k) − b and yk is the one-hot label, i.e., the vector with one only in the kth entry.

In the multi-class classification, binary CE (BCE) loss is deduced by decomposing the task into K
binary tasks and predicting whether the sample X(k) belongs to the jth category, for ∀j ∈ [K],

Lbce
(
z(k)

)
=− yTk · log

(
Sigmoid

(
z(k)

))
− (1− yk)T · log

(
1− Sigmoid

(
z(k)

))
= log

(
1 + e−w

T
k h(k)+bk

)
+

K∑
j=1
j 6=k

log
(

1 + ew
T
j h(k)−bj

)
, (2)

which has been widely used in the multi-label classification (Kobayashi, 2023) and attracted increas-
ing attentions in the multi-class classification (Beyer et al., 2020; Wightman et al., 2021; Touvron
et al., 2022; Fang et al., 2023; Wen et al., 2022; Zhou et al., 2023).

The pre-trained classification models can be used as feature extractors for downstream tasks that
request well intra-class compactness and inter-class distinctiveness across the sample features, such

1
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as person re-identification (He et al., 2021), object tracking (Cai et al., 2023), image segmentation
(Guo et al., 2022), and facial recognition (Wen et al., 2022), etc. For CE, a remarkable theoretical
result is that when it reaches its minimum, both the compactness and distinctiveness on the training
samples will be maximized, which refers to neural collapse found by Papyan et al. (2020). Neural
collapse gives peace of mind in training classification models by using CE, and it was extended to
the losses satisfying contrastive property by Zhu et al. (2021) and Zhou et al. (2022), including CE,
focal loss, and label smoothing loss. However, though BCE in Eq. (2) is a combination of multiple
CE, it does not satisfy the contrastive property due to its classifier bias, and whether BCE can lead
to neural collapse, or not, is not answered.

Besides that, in the practical training of classification models, the classifier vectors {wk}Kk=1 play
the role of proxy for each category (Wen et al., 2022). Intuitively, when the distances between
the sample features and their class proxy are closer, or the positive decision scores between them
are larger, it usually leads to better intra-class compactness. Similarly, when the distances between
sample features and the proxy of different classes are farther, or the negative decision scores between
them are smaller, it could results in better inter-class distinctiveness. However, according to Eq. (1),
CE measures the relative value between the exponential positive and negative decision scores using
Softmax and logarithmic functions, to pursue that the positive decision score is greater than all its
negative ones for each sample, making it unable to explicitly and directly enhance the intra-class
compactness and inter-class distinctiveness across samples. In contrast, BCE in Eq. (2) respectively
measures the absolute values of the exponential positive decision score and the exponential negative
ones using Sigmoid and logarithmic functions, which makes it could explicitly and directly enhance
the compactness and distinctiveness of features in the training.

In this paper, we compare BCE and CE in deep feature learning. We primarily address two questions:
Q1. Can BCE result in the neural collapse, i.e., maximizing the compactness and distinctiveness in
theoretical? Q2. In practical training of classification models, does BCE perform better than CE in
terms of the feature compactness and distinctiveness? Our contributions are summarized as follows.

(1) We provide the first theoretical proof that BCE can also lead to the neural collapse, i.e.,
maximizing the compactness and distinctiveness, even when the loss does not satisfy the
contrastive property, broadening the range of losses that can lead to neural collapse.

(2) We find that BCE performs better than CE in enhancement of intra-class compactness and
inter-class distinctiveness across sample features, and, BCE can explicitly enhance the fea-
ture properties, while CE only implicitly enhance them.

(3) We point out that when training models with BCE, the classifier bias plays a substantial role
in enhancing the feature properties, while in the training with CE, it almost does not work.

(4) We conduct extensive experiments, and find that, compared to CE, BCE can more quickly
lead to the neural collapse on the training dataset and achieves better feature compactness
and distinctiveness, resulting in higher classification performance on the test dataset.

2 RELATED WORKS

2.1 CE VS. BCE

The CE loss is the most popular loss used in the multi-class classification and feature learning, which
has been evolved into many variants in different scenarios, such as focal loss (Lin et al., 2017), label
smoothing loss (Szegedy et al., 2016), normalized Softmax loss (Wang et al., 2017), and marginal
Softmax loss (Liu et al., 2016), etc. The classification models are often applied to the downstream
tasks, such as image segmentation (Guo et al., 2022), person re-identification (He et al., 2021),
object tracking (Cai et al., 2023), etc., which request well intra-class compactness and inter-class
distinctiveness among the sample features. In the multi-class classification task, the BCE loss can
be deduced by decomposing the task into K binary tasks and adding the K binary cross-entropy
losses, which has been widely applied in the multi-label classification (Kobayashi, 2023).

The CE and BCE losses are expected to train the models to fit the sample distribution in the multi-
class and multi-label classifications. When Wightman et al. (2021) applied BCE to the training of
ResNets for a multi-class task, they considered that this loss is consistent with Mixup (Zhang et al.,
2018) and CutMix (Yun et al., 2019) augmentations, which mix multiple objects from different
samples into one sample. DeiT III (Touvron et al., 2022) adopted this approach and achieved a
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significant improvement in the multi-class task on ImageNet-1K by using the BCE loss. Currently,
though the CE loss dominates the training of multi-class and feature learning models, the BCE loss is
also gaining more attention and is increasingly being applied in these fields (Fang et al., 2023; Wang
et al., 2023; Xu et al., 2023; Mehta & Rastegari, 2023; Chun, 2024; Hao et al., 2024). However,
none of these works reveals the essential advantages of BCE over CE.

2.2 NEURAL COLLAPSE

The neural collapse was first found by Papyan et al. (2020), which refers to four properties about the
sample features {h(k)

i } and the classifier vectors {wk} at the terminal phase of training.

• NC1, within-class variability collapse. Each feature h
(k)
i collapse to its class center h̄(k) =

1
nk

∑nk

i′=1 h
(k)
i′ , indicating the maximal intra-class compactness

• NC2, convergence to simplex equiangular tight frame. The set of class centers {h̄(k)}Kk=1
form a simplex equiangular tight frame (ETF), with equal and maximized cosine distance
between every pair of feature means, i.e., the maximal inter-class distinctiveness.

• NC3, convergence to self-duality. The class center h̄(k) is ideally aligned with the classifier
vector wk,∀k ∈ [K].

• NC4, simplification to nearest class center. The classifier is equivalent to a nearest class center
decision.

The current works about neural collapse (Kothapalli, 2023) are focused on the CE loss (Lu & Steiner-
berger, 2022; Graf et al., 2021; Zhu et al., 2021) and mean squared error (MSE) loss (Han et al.,
2022; Tirer & Bruna, 2022). It has been proved that the models will fall to the neural collapse when
the loss reaches its minimum. A comprehensive analysis (Zhou et al., 2022) for various losses, in-
cluding CE loss, focal loss (Lin et al., 2017), and label smoothing loss (Szegedy et al., 2016), shows
that these losses perform equally as any global minimum point of the loss satisfies the neural col-
lapse. The neural collapse has also been investigated in the imbalanced datasets (Fang et al., 2021;
Yang et al., 2022; Wang et al., 2024), out-of-distribution data (Ammar et al., 2024), and models with
fixed classifiers (Yang et al., 2022; Kim & Kim, 2024). All these studies are conducted using CE or
MSE losses; and whether BCE can lead to neural collapse remains unexplored.

3 MAIN RESULTS

In this section, we first theoretically prove that BCE can maximize the compactness and distinc-
tiveness when reaching its minimums (Q1). Then, through in-depth analyzing the decision scores
in the training with BCE and CE, we explain that BCE can better enhance the compactness and
distinctiveness of sample features in practical training (Q2).

3.1 PRELIMINARY

Let D =
⋃K
k=1

⋃nk

i=1

{
X

(k)
i

}
be a sample set, where X

(k)
i denotes the ith sample of category k,

nk is the number of samples in this category, and h
(k)
i =M(X

(k)
i ). In classification tasks, a linear

classifier with vectors W = [w1, · · · ,wK ]T ∈ RK×d and bias b = [b1, · · · , bK ]T ∈ RK predicts
the category for each sample according to its feature. For the well predication results, the CE or
BCE loss is applied to tune the parameters of the modelM and classifier.

Following the previous works (Fang et al., 2021; Lu & Steinerberger, 2022; Graf et al., 2021; Zhu
et al., 2021; Han et al., 2022; Tirer & Bruna, 2022) for neural collapse, we compare CE and BCE
in training of unconstrained model or layer-peeled model in this paper, i.e, treating the features⋃K
k=1

{
h
(k)
i

}nk

i=1
, classifier vectors {wk}Kk=1, and classifier bias {bk}Kk=1 as free variables, with-

out considering the sophisticated structure or the parameters of the model M. Then, taking the
regularization terms on the variables, the CE or BCE loss in the training is

fµ(W ,H, b) :=
1

nK

K∑
k=1

nk∑
i=1

Lµ
(
Wh

(k)
i − b

)
+
λW

2

∥∥W∥∥2
F

+
λH
2

∥∥H∥∥2
F

+
λb
2

∥∥b∥∥2
2
, (3)
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where Lµ is presented in Eqs. (1-2), µ ∈ {ce, bce},

W =
[
w1,w2, · · · ,wK

]T ∈ RK×d, (4)

H =
[
h
(1)
1 ,h

(1)
2 , · · · ,h(1)

n1
, · · · ,h(K)

1 ,h
(K)
2 , · · · ,h(K)

nK

]
∈ Rd×(

∑K
k=1 nk), (5)

b = [b1, b2, · · · , bK ]T ∈ RK , (6)

and λW , λH > 0, λb ≥ 0 are weight decay parameters for the regularization terms.

3.2 NEURAL COLLAPSE WITH CE AND BCE LOSSES

On the balanced dataset, i.e., n = nk,∀k ∈ [K], Zhu et al. (2021) proved that the CE loss can
result in neural collapse, and in Theorem 1, Zhou et al. (2022) extended the proof to the losses
satisfying the contrastive property (see Definition S-1 in supplementary), such as focal loss and
label smoothing loss. Though BCE loss is a combination of CE loss, it fails to satisfy the contrastive
property, as that the classifier bias parameters present substantial constraint within its components.
Despite that, we find that the BCE loss can also result in the neural collapse, i.e., Theorem 2. The
primary difference between BCE and CE losses lies in the bias parameter b of their classifiers.

Theorem 1 (Zhou et al., 2022) Assume that the feature dimension d is larger than the category
numberK, i.e., d ≥ K−1, and Lµ is satisfying the contrastive property. Then any global minimizer
(W ?,H?, b?) of fµ(W ,H, b) defined using Lµ with Eq. (3) obeys the following properties,

‖w?‖ = ‖w?
1‖ = ‖w?

2‖ = · · · = ‖w?
K‖, (7)

h
(k)?
i =

√
λW
nλH

w?
k, ∀ k ∈ [K], i ∈ [n], (8)

h̃?i :=
1

K

K∑
k=1

h
(k)?
i = 0, ∀ i ∈ [n], (9)

b? = b?1K , (10)

where either b? = 0 or λb = 0. The matrix W ?T forms a K-simplex ETF in the sense that

1

‖w?‖22
W ?TW ? =

K

K − 1

(
IK −

1

K
1K1TK

)
, (11)

where IK ∈ RK×K denotes the identity matrix, and 1K ∈ RK denotes the all ones vector. z

Theorem 2 Assume that the feature dimension d is larger than the category number K, i.e., d ≥
K − 1. Then any global minimizer (W ?,H?, b?) of fbce(W ,H, b) defined using Lbce with Eq. (3)
obeys the properties (7) - (11), where b? is the solution of equation

0 =− K − 1

K

(
1 + exp

(
b+

√
λW

nλH

ρ
K(K−1)

)) +
1

K

(
1 + exp

(√
λW

nλH

ρ
K − b

)) + λbb, (12)

and ρ = ‖W ?‖2F is the squared Frobenius norm of W ?.

Proof The detailed proof is presented in the supplementary, i.e., Theorem S-4, which similar to
that of Zhu et al. (2021); Zhou et al. (2022); Lu & Steinerberger (2022), studies lower bounds for
the BCE loss in Eq. (3) and finds the conditions for achieving the lower bounds. z

Theorem 2 significantly broadens the range of losses that can lead to neural collapse, i.e., the con-
trastive property (Zhou et al., 2022) is not necessarily satisfied.

The decision scores. According to Theorems 1 and 2, when training a classification model with
CE or BCE losses, if the loss reaches its minimum and results in the neural collapse, the sample fea-
ture h

(k)
i will converge to its class center h̄(k) = 1

n

∑n
i=1 h

(k)
i , indicating the maximum intra-class

compactness. Furthermore, the class center h̄(k) becomes a multiple of the corresponding classifier
vector wk, and the K classifier vectors {wk}Kk=1 will form an ETF, indicating the maximum inter-
class distinctiveness. In addition, the positive and negative decision scores without the biases of all
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samples will respectively converge to fixed values, i.e., for ∀j 6= k ∈ [K], i ∈ [n],

s(kk,i)pos = wT
k h

(k)
i →

√
λW
nλH

ρ

K
and s(jk,i)neg = wT

j h
(k)
i → −

√
λW
nλH

ρ

K(K − 1)
. (13)

The classifier bias. Comparing Theorems 1 and 2, one can find that the primary difference be-
tween CE and BCE losses lies in their classifier bias parameter. According to Theorem 1, when
λb > 0, the minimum point of CE loss satisfies b = 0, separating the final positive and negative
scores in Eq. (13); when λb = 0, any point that satisfies properties (7) - (11) and b = b?1 is a mini-
mum point of CE loss, which implies that the minimum points of CE loss form a ridge line in term
of b. In contrast, the classifier bias b at the minimum points of BCE loss satisfy Eq. (12) whenever
λb = 0 or not. According to Lemma 5 in the supplementary, Eq. (12) has only one solution, indicat-
ing that the BCE loss has only one minimum point in term of b. This optimal classifier bias b = b?1
will separate the positive and negative decision scores if it satisfies the Eq. (165) (see Lemma 6 in
supplementary for details). Both of the optimal points of CE and BCE losses are associated with the
unified classifier bias b = b?1, which is aligned with the unified bias integrated loss designed by
Wen et al. (2022) and Zhou et al. (2023) for facial recognition.

3.3 THE DECISION SCORES IN TRAINING WITH BCE AND CE

Though the intra-class compactness and inter-class distinctiveness of sample features can be theo-
retically maximized by both CE and BCE, the two losses perform very different in practical training
of classification models. We here compare the decision scores in the model training by using BCE
and CE, to explain their difference in enhancing the feature properties.

A geometric comparison for CE and BCE. In practical training with CE or BCE, to minimize
the loss, it is desirable for their exponential function variables to be as small as possible, and less
than zero at least. For CE in Eq. (1), it is desirable that, for ∀` 6= k ∈ [K],

w1

w2

w3

h(2)
h(2)

w2
b2'

w1b1' w3
b3'

(a) CE loss

w1

w2

w3

h(2)
h(2)

w2
b2'

w1b1' w3
b3'

(b) BCE loss

Figure 1: The feature distributions of CE and BCE losses in
the distance space. We apply the blue, red, and green shading
to indicate the feature space of three categories, respective-
ly. The pentagrams represent their classifier vectors, and the
solid dot represents a general feature vector h(2) in the sec-
ond category. Since the distance between two vectors is in-
versely proportional to their similarity/inner product, CE loss
requires the distance from the feature to its classifier vector
to be less than the distance to other classifier vectors, while
BCE loss requires the distance to be less than its correspond-
ing bias. Small b′k implies large bk in Eqs. (15-16).

wkh
(k) − bk︸ ︷︷ ︸

positive decision score

> w`h
(k) − b`,︸ ︷︷ ︸

negative decision score

(14)

while, for BCE in Eq. (2), it is desirable
that, for ∀j 6= k ∈ [K],

wkh
(k) − bk > 0, (15)

wjh
(k) − bj < 0. (16)

As Fig. 1 shows, we apply the distance
of vectors to reflect their inner product or
similarity in the metric space. Without
considering the bias b, the CE loss push
feature vector h(k) closer to its classifier
vector wk compared to others {w`}` 6=k,
implying a unbounded feature space for
each category and bad intra-class com-
pactness. In addition, any two unbound-
ed feature spaces introduced by CE could
share the same decision boundary, indicat-
ing bad inter-class distinctiveness. In the
training with CE, the bias bk acts as a com-
pensation to adjust the distance/decision score between the sample features and the classifier vector,
introducing indirect constraint across sample features by Eq. (14). This constraint will vanish if
bk = b` for ∀k, ` ∈ [K], which could be reached at the minimum points of CE according to Theo-
rem 1. Overall, in the training of classification models, CE does not require absolutely large positive
decision scores or absolutely small negative ones, but only requires the positive one to be relatively
greater than the negative ones for each sample, thereby implicitly enhancing the features’ properties
by correctly classifying samples one-by-one.

In contrast, for BCE, Eq. (15) requires the feature h(k) to fall within a closed hypersphere centered
at its classifier vector wk with a “radius” of bk, while Eq. (16) requires that any two hypersphere

5
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do not intersect, indicating well intra-class compactness and inter-class distinctiveness. In other
words, BCE presents explicitly constraint across-samples in the training. While Eq. (15) requires
the positive decision scores of all samples are uniformly larger than threshold t = 0, Eq. (16)
requires the negative ones of all samples are uniformly smaller than the unified threshold, i.e.,

min

K⋃
k=1

n⋃
i=1

{
wT
k h

(k)
i − bk

}
> t ≥ max

K⋃
k=1

n⋃
i=1

{
wT
j h

(k)
i − bj

}K
j=1
j 6=k

, (17)

while the unified threshold t might be not exactly zero in practice. As Eq. (17), BCE expects the
positive decision scores to be uniformly high and the negative ones to be uniformly low, which
could result in better compactness and distinctiveness than that introduced by Eq. (14). For the kth
category, the bias bk would be absorbed into the threshold. In contrary, the bias bk explicitly reflect
the intra-class compactness of its corresponding category and the inter-class distinctiveness between
its category with other different categories. Therefore, BCE can explicitly enhance the compactness
and distinctiveness across sample features by learning well biases.

The decision scores in practical training. In deep learning, gradient descent and back propaga-
tion are the most commonly used techniques for the model training. We here analyze the gradients
in terms of the positive decision score (wkh

(k)
i −bk) and negative one (wjh

(k)
i −bj) for any sample

X
(k)
i from category k with ∀j 6= k

∂fce(W ,H, b)

∂
(
wkh

(k)
i − bk

) =
ewkh

(k)
i −bk∑

` ew`h
(k)
i −b`

− 1,
∂fce(W ,H, b)

∂
(
wjh

(k)
i − bj

) =
ewjh

(k)
i −bj∑

` ew`h
(k)
i −b`

, and (18)

∂fbce(W ,H, b)

∂
(
wkh

(k)
i − bk

) =
1

1 + e−wkh
(k)
i +bk

− 1,
∂fbce(W ,H, b)

∂
(
wjh

(k)
i − bj

) =
1

1 + e−wjh
(k)
i +bj

. (19)

According to Eq. (18), for any two samples X(k)
i ,X

(k)
i′ from the same category k with diverse initial

positive scores, if their predicted probabilities are equal, i.e., ewkh
(k)
i
−bk∑

` ew`h
(k)
i
−b`

=
ewkh

(k)

i′ −bk∑
` e

w`h
(k)

i′
−b`

, which

is somewhat likely to occur during the practical training, then their positive scores will experience
the same update of amplitude during back propagation. Consequently, it will be difficult to update
the positive scores to the uniformly high level, impeding the enhancement of intra-class compactness
within the same category. A similar phenomenon can also occur with the negative decision scores,
resulting in unsatisfactory inter-class distinctiveness in the training with CE loss.

In contrast, according to Eq. (19), during training with BCE loss, the large positive decision scores
(wkh

(k)
i − bk) were updated for the small amplitude 1− 1

1+exp(−wkh
(k)
i +bk)

, while the small ones

were updated for the large update amplitude, facilitating a more rapid adjustment of positive scores
across different samples to a uniform high level, to enhance the intra-class compactness of sample
features. For the negative decision scores, similarly, the large/small score will be updated with
large/samll amplitudes in the training with BCE loss to adjust them to a uniform low level, enhancing
the inter-class distinctiveness.

The classifier bias in practice. During the model training, the classifier bias is also updated
through the gradient descent, and the positive and negative decision scores are constrained by ap-
proaching the stable point of the bias. For CE, the gradient of bias bk is

∂fce

∂bk
=

1

nK

(
n−

K∑
j=1

n∑
i=1

ewkh
(j)
i −bk∑

` ew`h
(j)
i −b`

)
+ λbbk → λbb. (20)

As approaching the stable point of the bias, i.e., the points satisfying ∂fce
∂bk

= 0, Eq. (20) presents
constraint on the relative value of the exponential decision scores. This constraint will vanish as
reaching the minimum of CE, and the bias gradient ∂fce

∂bk
approaches λbb, according to Eq. (13). At

the minimum points, the update amplitude of bias is ηλbb, where η denotes the learning rate. If
λb = 0, the update is zero, and the final bias can locate at any point on the ridge line b = b1, where
b is depended on some other factors, such as the bias initial value, but not the relationship between
the bias and the decision scores. If λb > 0, one can concluded b = 0; however, in practice, this
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theoretical value might be not reached due to that ηλb will be very small at the terminal phase of
practical training. The above analysis implies that the classifier bias, in the training with CE, cannot
provide consistent and explicit constraints on the decision scores, and thus almost does not affect
the final features’ properties.

In contrast, for BCE, the gradient of bias bk is

∂fbce

∂bk
=

1

nK

(
n−

K∑
j=1

n∑
i=1

1

1 + e−wkh
(j)
i +bk

)
+ λbbk → RHS of Eq. (12), (21)

which presents clear constraint on the absolute value of the exponential decision scores for the all
samples. The constraint evolve into Eq. (12) when BCE reaches its minimum points. Therefore,
as approaching the stable point, the classifier bias consistently and explicitly constrain the decision
scores, regardless λb = 0 or not, and it will separate the final positive and negative decision scores
if Eq. (165) holds. In other words, the classifier bias in BCE plays a substantial role in enhancing
the final features’ properties.

4 EXPERIMENTS

To compare CE and BCE in deep feature learning, we train deep classification models, ResNet18
(He et al., 2016), ResNet50 (He et al., 2016), and DenseNet121 (Huang et al., 2017), using the
two losses respectively, on three popular datasets, including MNIST (LeCun et al., 1998), CIFAR10
(Krizhevsky et al., 2009), and CIFAR100 (Krizhevsky et al., 2009). We train the models using SGD
and AdamW for 100 epochs with batch size of 128. The initial learning rate is set to 0.01 and 0.001
for SGD and AdamW, which is respectively decayed in “step” and “cosine” schedulers.

4.1 MAXIMIZING COMPACTNESS AND DISTINCTIVENESS BY BCE AND CE

We first experimentally illustrate that both BCE and CE can maximize the intra-class compactness
and inter-class distinctiveness among sample features, i.e., resulting in neural collapse (NC). Similar
to (Zhu et al., 2021; Zhou et al., 2022), we do not apply any data augmentation in the experiments
of NC, and adopt the metrics, NC1,NC2, and NC3 (see supplementary for their definitions), to
measure the properties of NC1, NC2, and NC3. The lower metrics reflect the better NC properties.
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Figure 2: NC metrics of ResNet18 trained on CIFAR10 with CE and BCE using SGD and AdamW, respec-
tively. The NC metrics of CE and BCE approach zero at the terminal phase of training, while the NC metrics
of BCE decrease faster than that of CE in the first 20 epochs.

In the training, we set λW = λH = λb = 5 × 10−4, and no weight decay is applied on the other
parameters of the model M. Fig. 2 shows the NC results of ResNet18 trained by CE and BCE
with two optimizers on CIFAR10, and the other results are presented in the supplementary. In the
figure, the red curves with dot markers exhibit the evolution of the metricsNC1,NC2,NC3 of BCE,
and the blue curves with diamond markers exhibit that of CE. All the three NC metrics consistently
approach zero in the training with different losses and optimizers, which matches the conclusions of
Theorem 1 and 2. In the initial training stage (the first 20 epochs), the NC metrics of BCE usually
decrease faster than that of CE, implying that BCE is easier to result in NC.

The final classifier bias and decision scores. As reaching NC and maximizing the feature com-
pactness and distinctiveness, the final classifier biases and the positive/negative decision scores will
converge to fixed values. We compute their means and standard deviations for the different mod-
els on the training set. Table 1 shows the results on CIFAR10. Except for that of ResNet50 and
DenseNet121 trained by SGD, the standard deviations of the final decision scores and classifier bi-
ases are very small, and less than 0.3 when the models are trained using AdamW, indicating that the
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Table 1: The means and standard deviations of positive/negative de-
cision scores (spos, sneg, without bias) and the classifier biases (b̂) of
the models trained by CE and BCE on CIFAR10 with λW = λH =
λb = 5 × 10−4. The score values are computed on the training set,
and A denotes the classification accuracy on the training set.

M
CIFAR10

SGD AdamW
CE BCE CE BCE

R
es

N
et

18

spos 5.71± 0.23 6.56± 0.20 5.64± 0.06 7.50± 0.05
sneg −0.64± 0.36−3.46± 0.19−0.63± 0.01−2.36± 0.02

b̂ −0.01± 0.04 2.26± 0.07−0.00± 0.00 3.29± 0.01

α(b̂) — −0.03 — −0.01
A 99.99 100.0 100.0 100.0

R
es

N
et

50

spos 5.74± 8.21 6.56± 4.39 5.64± 0.11 7.44± 0.28
sneg −0.64± 14.1−3.57± 7.01−0.63± 0.02−2.45± 0.22

b̂ 0.00± 0.14 2.40± 0.15−0.00± 0.01 3.21± 0.03

α(b̂) — −0.02 — −0.01
A 99.61 99.65 99.99 100.0

D
en

se
N

et
12

1 spos 5.72± 1.72 6.24± 0.84 5.62± 0.29 7.67± 0.12
sneg −0.63± 0.87−3.62± 1.63−0.62± 0.03−2.17± 0.06

b̂ 0.00± 0.04 2.09± 0.12 0.00± 0.01 3.46± 0.02

α(b̂) — −0.03 — −0.01
A 99.40 99.72 99.87 100.0

diverse classifier biases are almost
equal, so are all the final posi-
tive/negative decision scores. As
λb > 0, the final classifier biases
are near zero (b̂ ≈ 0) in the CE-
trained models, while, in the BCE-
trained models, the biases make
that the function (α(b) in Table 1)
on the RHS of Eq. (12) almost de-
generate to zero, i.e., α(b̂) ≈ 0,
aligning with our analysis.

The failures in NC. According
to the results in Table 1, one can
find that NC might be not caused
by the ResNet50 and DenseNet121
trained by SGD. Though the clas-
sification accuracy (A) of the t-
wo models are higher than 99.00%
(almost 100%), their positive and
negative decision scores have large
standard deviations, implying that
the decision scores have not con-
verged to the fixed values and con-
flict with the results (Eq. (13)) of neural collapse. It still requires a long time training to reach the
neural collapse, after zero classification error. More discussions can be found in the supplementary.
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Figure 3: The distributions of the final classifier bias and positive/negative decision scores for ResNet18
trained on MNIST with fixed weight decay factor λb (top) and varying λb (bottom), while λW = λH =
5 × 10−4. The mean of initialized bias b is respectively set as 0, 1, 2, 3, 4, 5, 6, 8, 10 in the experiments with
fixed λb = 0, and the bias mean is set as 10 in the experiments with varying λb.

The bias decay factor λb. To illustrate the different effects of classifier bias of CE and BCE
on the decision scores, we conduct two groups of experiments by respectively applying fixed and
varying classifier bias decay factor λb in the training of ResNet18 on MNIST: (1) with fixed λb = 0
and default other hyper-parameters, respectively, setting the mean of the initialized classifier bias
to 0, 1, 2, 3, 4, 5, 6, 8, and 10; (2) with varying λb = 0.5, 0.05, 5 × 10−3, 5 × 10−4, 5 × 10−5,
and 5 × 10−6, respectively, setting the mean of initialized classifier bias to 10. Fig. 3 shows the
distributions of final classifier bias and positive/negative decision scores (without bias) using violin
plots for the models in these experiments, while the numerical results are presented in Tables S-8
and S-9 in supplementary. One can find from Fig. 3(top), for the CE-trained models with λb = 0,
the final classifier bias values are almost entirely determined by their initial values, no matter which
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optimizer was applied. For the CE-trained models in Fig. 3(bottom), the means of the final classifier
bias reach to zero from the initial mean of 10 with appropriate lager λb (≥ 5 × 10−3 for SGD
and ≥ 5 × 10−4 for AdamW), and they do not achieve the theoretical value when λb is too small.
As a comparison, for the all CE-trained models, their final positive and negative decision scores
respectively converge to around 5.64 and −0.63 (see supplementary for details). In total, in CE-
trained models, the classifier bias hardly affects the decision scores, and thus almost does not affect
the final feature properties.

In contrast, for the BCE-trained models in Fig. 3, their final positive and negative decision scores are
always separated by the final classifier biases, no matter what the initial mean of classifier bias, λb,
or optimizer are, and clear correlation exists between the bias and positive/negative decision scores.
These results imply that, in the training with BCE, the classifier bias has a substantial impact on the
sample feature distribution, thereby enhancing the compactness and distinctiveness across samples.

4.2 BCE PERFORMING BETTER THAN CE IN ENHANCING FEATURE PROPERTIES

Table 2: The classification on the test set of CIFAR10 and CIFAR100.
The accuracy (A) of most BCE-trained models is higher than that of CE-
trained ones, while BCE-trained models perform consistently and signifi-
cantly better than CE-trained models in terms of uniform accuracy (AUni).

D M Loss
SGD AdamW

DA1 DA1+DA2 DA1 DA1+DA2
A AUni A AUni A AUni A AUni

R18
CE 92.82 85.20 92.71 89.08 93.36 88.97 95.72 94.34

BCE 93.22 91.92 93.64 91.87 93.95 93.37 95.57 95.16
∆ +0.40 +6.72 +0.93 +2.79 +0.59 +4.40 −0.15 +0.82

R50
CE 92.69 85.23 92.74 89.58 94.48 87.86 96.00 94.31

BCE 93.40 92.48 93.20 91.50 94.02 93.55 96.15 95.72
∆ +0.71 +7.25 +0.46 +1.92 −0.46 +5.69 +0.15 +1.41

D121
CE 87.87 78.67 86.65 81.54 90.42 83.62 92.55 90.70

BCE 88.66 87.58 87.78 84.95 90.55 89.91 92.59 91.78

C
IF

A
R

10

∆ +0.79 +8.91 +1.13 +3.41 +0.13 +6.29 +0.04 +1.08

R18
CE 71.16 43.21 71.76 56.66 71.69 49.17 76.53 64.43

BCE 72.16 63.33 72.34 62.89 73.15 66.27 76.70 69.96
∆ +1.00 +20.1 +0.58 +6.23 +1.46 +17.1 +0.17 +5.53

R50
CE 71.60 44.20 70.32 55.17 74.95 48.79 78.58 67.79

BCE 71.75 64.07 71.87 62.82 75.25 68.84 78.47 72.68
∆ +0.15 +19.9 +1.55 +7.65 +0.30 +20.1 −0.11 +4.89

D121
CE 60.79 32.93 57.23 39.82 63.65 38.76 68.99 57.15

BCE 61.10 53.47 58.35 47.68 63.56 57.28 69.40 63.52

C
IF

A
R

10
0

∆ +0.21 +20.5 +1.12 +7.85 −0.09 +18.5 +0.41 +6.37

To further demonstrate that
BCE performs better than CE
in enhancing the intra-class
compactness and inter-class
distinctiveness of sample fea-
tures in the practical training,
we train the three classification
models by applying two dif-
ferent data augmentation tech-
niques, (1) DA1: random crop-
ping and horizontal flipping,
(2) DA2: Mixup and CutMix,
on CIFAR10 and CIFAR100
using SGD and AdamW, re-
spectively. In the experiments,
we take a global weight de-
cay factor λ for the all param-
eters in the models, including
the classifier weight and bias,
and λ = 5 × 10−4 for SGD,
λ = 0.05 for AdamW. The
other hyper-parameters are p-
resented in the supplementary.
To compare the results of BCE
and CE, besides the classifica-
tion accuracy (A), we define and apply three other metrics, uniform accuracy (AUni), compactness
(Ecom), and distinctiveness (Edis), seeing Eqs. (43,47,48) in supplementary for the definitions. While
AUni is evolved from Eq. (17), it is calculated on the decision scores across samples, simultaneously
reflecting the feature compactness and distinctiveness; as their name implies, Ecom and Edis respec-
tively measure the intra-class compactness and inter-class distinctiveness among sample features.

Table 2 shows the classification results of the three models (“R18”,“R50”, and “D121” respectively
stand for ResNet18, ResNet50, and DenseNet121) on the test set of CIFAR10 and CIFAR100. From
the table, one can find that, BCE is better than CE in term of accuracy (A) in most cases, and it
performs consistently and significantly superior to CE in term of uniform accuracy (AUni). Taking
CIFAR10 for example, among the twelve pairs of models trained by CE and BCE, BCE slightly
reduced the accuracy of two pairs of models, while the gain of uniform accuracy introduced by BCE
is 0.82% at least for the all models. For CIFAR100, the gain of BCE in uniform accuracy could be
more than 20%, and the classification accuracy of BCE is still higher than that of CE in most cases.
These results illustrate that BCE can usually achieve better classification results than CE, which is
likely resulted from its enhancement in compactness and distinctiveness among sample features.

Furthermore, similar to BCE, the better data augmentation techniques and optimizer can simulta-
neously improve the classification results of models. For example, Mixup, CutMix, and AdamW
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increase A and AUni from 92.82% and 85.20% to 95.72% and 94.34%, respectively, for ResNet18
trained on CIFAR10. In addition, the higher performance of BCE than CE with only DA1 implies
that the superiority of BCE is not resulted from the alignment with Mixup and CutMix, which is not
consistent with the statements about BCE by Wightman et al. (2021).

Table 3: The feature properties on the test set of CIFAR10 and CIFAR100.
The feature compactness (Ecom) and distinctiveness (Edis) of BCE-trained models
are usually better than that of CE-trained models. See supplementary for the
definitions of Ecom and Edis.

D M Loss
SGD AdamW

DA1 DA1+DA2 DA1 DA1+DA2
Ecom Edis Ecom Edis Ecom Edis Ecom Edis

R18 CE 0.8541 0.2553 0.8148 0.2088 0.8546 0.2694 0.8929 0.3307
BCE 0.9056 0.3049 0.8438 0.2387 0.9140 0.3254 0.9178 0.3669

R50 CE 0.8351 0.1782 0.8564 0.2027 0.8547 0.2332 0.9529 0.3782
BCE 0.8990 0.2322 0.8693 0.2161 0.8912 0.2720 0.9168 0.3569

D121 CE 0.7874 0.3123 0.7672 0.2805 0.7463 0.3070 0.8201 0.3194C
IF

A
R

10

BCE 0.8458 0.3319 0.8089 0.2973 0.8302 0.3371 0.8371 0.3190

R18 CE 0.7234 0.2699 0.7127 0.2575 0.6923 0.2895 0.7140 0.3073
BCE 0.7331 0.2624 0.7289 0.2688 0.7265 0.2930 0.7422 0.2906

R50 CE 0.7084 0.2002 0.7101 0.1866 0.6886 0.2581 0.7229 0.3646
BCE 0.7326 0.2196 0.7400 0.2184 0.7517 0.2783 0.7631 0.3254

D121 CE 0.7120 0.3097 0.7280 0.3171 0.6472 0.2981 0.6998 0.3403C
IF

A
R

10
0

BCE 0.7324 0.2947 0.7363 0.3049 0.7091 0.3008 0.7262 0.3259

As the uniform accura-
cy simultaneously reflec-
t the intra-class compact-
ness and inter-class dis-
tinctiveness, the higher
uniform accuracy AUni
of BCE-trained models
implies their better fea-
ture properties. Table 3
presents the compactness
(Ecom) and distinctiveness
(Edis) of the trained mod-
els. One can clearly ob-
serve that, in most cas-
es, BCE improves the
compactness and distinc-
tiveness of the sample
features extracted by the
models compared to CE,
which is consistent with our expectations and provides a solid and reasonable explanation for the
higher performance of BCE in tasks that require feature comparison, such as facial recognition and
verification (Wen et al., 2022; Zhou et al., 2023).
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Figure 4: Distributions of features extracted by ResNet18 trained
on CIFAR10 using CE (left) and BCE (right) in t-SNE.

Fig. 4 visually shows the fea-
ture distributions on the testing da-
ta of CIFAR10 for ResNet18 trained
by CE (left) and BCE (right) with
“DA1+DA2” and AdamW. One can
find that, for CE-trained model, it-
s feature distributions for categories
3 and 5 (i.e., “cat” and “dog”) over-
lap with each other, and the sample
features of the third category exhibit
clear internal dispersion; in contrast,
the features of BCE-trained ResNet18 for these categories are distributed in more compact areas and
have significant gaps between them, implying better feature compactness and distinctiveness.

5 CONCLUSIONS

This paper compares CE and BCE losses in deep feature learning. Both the losses can maximize
the intra-class compactness and inter-class distinctiveness among sample features, i.e., leading to
neural collapse when reaching their minimums. In the training, CE implicitly enhances the feature
properties by correctly classifying samples one-by-one. In contrast, BCE can adjust the positive
and negative decision scores across samples, and, in this process, its classifier bias plays a sub-
stantial and consistent role, making it explicitly enhance the intra-class compactness and inter-class
distinctiveness of features. Therefore, BCE can usually achieve better classification performance.

Limitations. The decision scores measure the inner product/similarity of sample features to each
classifier vector, which reflect the feature properties. However, it does not directly calculate the
measurements among samples, nor can it be used to directly measure the compactness and distinc-
tiveness of sample features. In the future, we will analyze the CE and BCE losses used for feature
contrastive learning and compare the feature properties brought by them.
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Lucas Beyer, Olivier J Hénaff, Alexander Kolesnikov, Xiaohua Zhai, and Aäron van den Oord. Are
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Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense
object detection. In Proceedings of the IEEE international conference on computer vision, pp.
2980–2988, 2017.

Weiyang Liu, Yandong Wen, Zhiding Yu, and Meng Yang. Large-margin softmax loss for convolu-
tional neural networks. In International Conference on Machine Learning, pp. 507–516. PMLR,
2016.

Jianfeng Lu and Stefan Steinerberger. Neural collapse under cross-entropy loss. Applied and Com-
putational Harmonic Analysis, 59:224–241, 2022.

Sachin Mehta and Mohammad Rastegari. Separable self-attention for mobile vision transformers.
Transactions on Machine Learning Research, 2023.

Vardan Papyan, X. Y. Han, and David L. Donoho. Prevalence of neural collapse during the terminal
phase of deep learning training. Proceedings of the National Academy of Sciences, 117(40):
24652–24663, 2020.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethink-
ing the inception architecture for computer vision. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 2818–2826, 2016.

Tom Tirer and Joan Bruna. Extended unconstrained features model for exploring deep neural col-
lapse. In International Conference on Machine Learning, pp. 21478–21505. PMLR, 2022.
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BCE vs. CE in Deep Feature Learning

Supplementary Material

S-1 NEURAL COLLAPSE AND FEATURE PROPERTY

S-1.1 NEURAL COLLAPSE

The neural collapse was first found by Papyan et al. (2020), which refers to four properties about the
sample features {h(k)

i } and the classifier vectors {wk} at the terminal phase of training (Han et al.,
2022), as list in Sec. 2.2. These four properties can be formulized as follows.

• NC1, within-class variability collapse, Σ†BΣW → 0, where

ΣB =
1

K

K∑
k=1

(
h̄(k) − h̄

)(
h̄(k) − h̄

)T
(22)

ΣW =
1∑
knk

K∑
k=1

nk∑
i=1

(
h
(k)
i − h̄(k)

)(
h
(k)
i − h̄(k)

)T
(23)

h̄(k) =
1

nk

nk∑
i=1

h
(k)
i , (24)

h̄ =
1∑
knk

K∑
k=1

nk∑
i=1

h
(k)
i (25)

and † denotes the Mooer-Penrose pseudo-inverse;
• NC2, convergence to simplex equiangular tight frame,∥∥h̄(k) − h̄

∥∥
2
−
∥∥h̄(k′) − h̄

∥∥
2
→ 0, (26)〈

h̄(k) − h̄, h̄(k′) − h̄
〉∥∥h̄(k) − h̄

∥∥
2

∥∥h̄(k′) − h̄
∥∥
2

→
{

1, k = k′,
− 1
K−1 , k 6= k′; (27)

• NC3, convergence to self-duality,
wk∥∥wk

∥∥
2

− h̄(k) − h̄∥∥h̄(k) − h̄
∥∥
2

→ 0; (28)

• NC4, simplification to nearest class center,

arg max
j

{
wjh− bj

}K
j=1
→ arg min

j

{
‖h− h̄(j)‖2

}K
j=1

. (29)

In Sec. 4, we applied three metrics, NC1,NC2,NC3, to measure the above properties, similar to
that defined in (Zhu et al., 2021; Zhou et al., 2022):

NC1 :=
1

K
trace

(
ΣWΣ†B

)
, (30)

NC2 :=
∥∥∥ W̃W̃ T

‖W̃W̃ T ‖F
− 1√

K − 1

(
IK −

1

K
1K1TK

)∥∥∥
F
, (31)

NC3 :=
∥∥∥ WH̃

‖WH̃‖F
− 1√

K − 1

(
IK −

1

K
1K1TK

)∥∥∥
F
, (32)

where
W̃ = [w1 − w̄,w2 − w̄, · · · ,wK − w̄]T ∈ RK×d, (33)

H̃ = [h̄(1) − h̄, h̄(2) − h̄, · · · , h̄(K) − h̄] ∈ Rd×K , (34)

w̄ =
1

K

K∑
k=1

wk. (35)
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When defining NC2, Zhu et al. (2021) and Zhou et al. (2022) did not subtract the classifier vectors
with their mean, i.e., the originalNC2 is defined as

∥∥ WWT

‖WWT ‖F −
1√
K−1

(
IK − 1

K1K1TK
)∥∥
F

, with
W = [w1,w2, · · · ,wK ]T ∈ RK×d.

As mentioned by Zhu et al. (2021) and Zhou et al. (2022), due to the “ReLU” activation func-
tions before the FC classifiers in the deep models, the feature mean h̃i = 1

K

∑K
k=1 h

(k)
i will be

non-negative, which conflicts with h̃i = 0 required by Theorems 1 and 2. Then, the average fea-
tures/class centers of K categories do not directly form an ETF, while the globally-centered average
features form ETF, i.e., NC2 properties described by Eqs. (26) and (27). As the proof of Theorems
1 and 2, in the neural collapse, the features of each category will be parallel to its classifier vector,

i.e., h(k)
i =

√
λW

nλH
wk in Eqs (126,127). Therefore, the classifier vectors {wk} should also subtract

their global mean before form an ETF. In other words, the third NC property should be

NC3’ :
wk − w̄∥∥wk − w̄

∥∥
2

− h̄(k) − h̄∥∥h̄(k) − h̄
∥∥
2

→ 0. (36)

As our analysis, when a model falling to the neural collapse, its classification accuracy A and uni-
form accuracy AUni must be 100% on the training dataset.

S-1.2 FEATURE PROPERTY

In the experiments, we applied four metrics to compare the performance of CE and BCE, i.e., clas-
sification accuracy A, uniform accuracy AUni, feature compactness Ecom, and distinctiveness Edis.
These metrics on the training data will be maximized when the model, classifier, and loss in the
neural collapse.

In a classification task, suppose a dataset D =
⋃K
k=1Dk =

⋃K
k=1

⋃nk

i=1

{
X

(k)
i

}
from K categories,

where X
(k)
i denotes the ith sample from the category k. For the sample X

(k)
i in D, a model M

converts it into its feature h
(k)
i = M(X

(k)
i ) ∈ Rd, where d is the length of the feature vector. A

linear, full connection (FC) classifier C =
{

(wk, bk)
}K
k=1

transform the feature into K decision

scores
{
wjh

(k)
i − bj

}K
j=1

. Then, the sample can be correctly classified if

wkh
(k)
i − bk = max

{
wjh

(k)
i − bj

}K
j=1

, (37)

which is equivalent to

k = arg max
`
{wT

` h
(k) − b`}. (38)

The the commonly used classification accuracy can be defined as

A(M, C) =
|D(M, C)|
|D| × 100%, (39)

where

D(M, C) =

K⋃
k=1

{
X(k) : k = arg max

`
{wT

` h
(k) − b`},X(k) ∈ Dk,h(k) =M(X(k))

}
, (40)

consisting of the all samples correctly classified byM and C in D.

Eq. (37) implies a dynamic threshold tX separating the positive and negative decision scores. In-
spired by Eq. (17), we define uniform accuracy by using a unified threshold. Firstly, for given
dataset D and modelM, classifier C with a fixed threshold t, we denote a subset of D as

D(M, C; t) =

K⋃
k=1

{
X(k) ∈ Dk : wkh

(k) − bk > t ≥ max
{
wT
j h

(k) − bj
}K

j=1
j 6=k

,h(k) =M(X(k))
}

(41)
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which is the biggest subset of D uniformly classified byM and C with t. Then the ratio

AUni(M, C; t) =
|D(M, C; t)|
|D| × 100%, (42)

is the corresponding uniform accuracy, and the maximum ratio with varying thresholds, i.e.,

AUni(M, C) = max
t∈R
AUni(M, C; t), (43)

is defined as the final uniform accuracy.

In practice, to calculate the uniform accuracy AUni, the sets of positive and negative decision scores
for the all samples

Spos =

K⋃
k=1

{
wkh

(k)
i − bk : i = 1, 2, · · · , nk

}
, (44)

Sneg =

K⋃
k=1

K⋃
j=1
j 6=k

{
wjh

(k)
i − bj : i = 1, 2, · · · , nk

}
(45)

are first computed, and denote

spos-min = min(Spos) and sneg-max = max(Spos). (46)

If spos-min ≥ sneg-max, the classification accuracy A and the uniform one AUni must be 100%, other-
wise,N = 200 thresholds {ti}Ni=1 are evenly taken from the interval [spos-min, sneg-max], andN = 200

uniform accuracy AUni(M, C; ti) are figured out, while the best one max
{
AUni(M, C; ti)

}N
i=1

is
chosen as the final uniform accuracy AUni. In this calculation, the final results will be slightly dif-
ferent when different numbers (N ) of thresholds are taken in the score interval.

By Eqs. (17), a model with higher uniform accuracy, it would lead to more samples from category
k, ∀k ∈ [K], whose inner products (positive similarities/decision scores without bias) with the clas-
sifier vector wk are greater than bk + t, implying higher intra-class compactness in each category,
and requires more samples whose inner products (negative similarities/decision scores without bias)
with the classifier vectors of other categories are less than bj + t, implying higher inter-class distinc-
tiveness among all categories. For the intra-class compactness Ecom and inter-class distinctiveness
Edis among sample features, we define them as

Ecom =
1

2

[
1

K

K∑
k=1

(
1

n2k

nk∑
i=1

nk∑
i′=1

〈
h
(k)
i − h̄,h

(k)
i′ − h̄

〉
‖h(k)

i − h̄‖‖h(k)
i′ − h̄‖

)
+ 1

]
, (47)

Edis =
1

2

[
1− 1

K(K − 1)

K∑
k=1

K∑
k′=1
k′ 6=k

(
1

nk

1

nk′

nk∑
i=1

nk′∑
i′=1

〈
h
(k)
i ,h

(k′)
i′

〉
‖h(k)

i ‖‖h
(k′)
i′ ‖

)]
, (48)

where h̄ = 1
|D|
∑K
k=1

∑nk

i=1 h
(k)
i is the global feature center.

Due to the neural collapse, the compactness Ecom might be higher than 1
2 − 1

2(K−1) , and the distinc-
tiveness Edis might be lower than 1

2 + 1
2(K−1) , for the modelM and classifier C which have been

well trained on the dataset D.
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S-2 EXPERIMENTAL SETTINGS AND RESULTS

S-2.1 EXPERIMENTAL SETTINGS

Table S-4: Experimental settings in our experiments.

Neural collapse Classification
setting-1 setting-2 setting-3 setting-4 setting-5 setting-6

H
yp

er
-p

ar
am

et
er

epochs 100 100 100 100 100 100
optimizer SGD AdamW SGD AdamW SGD AdamW
batch size 128 128 128 128 128 128
learning rate 0.01 0.001 0.01 0.001 0.01 0.001
learning rate decay step cosine step cosine step cosine
weight decay λ 7 7 5× 10−4 0.05 5× 10−4 0.05
weight decay λW 5× 10−4 5× 10−4 7 7 7 7
weight decay λH 5× 10−4 5× 10−4 7 7 7 7
weight decay λb 5× 10−4 5× 10−4 7 7 7 7
warmup epochs 0 0 0 0 0 0

D
at

a
A

ug
. random cropping 7 7 3 3 3 3

horizontal flipping 7 7 0.5 0.5 0.5 0.5
label smoothing 7 7 7 7 0.1 0.1
mixup alpha 7 7 7 7 0.8 0.8
cutmix alpha 7 7 7 7 1.0 1.0
mixup prob. 7 7 7 7 0.8 0.8
normalization mean = [0.4914, 0.4822, 0.4465], std = [0.2023, 0.1994, 0.2010]

In Sec. 4, we train ResNet18, ResNet50, and DenseNet121 on MNIST, CIFAR10, and CIFAR100,
respectively. Table S-4 shows the experimental settings. In default, we train the models using
setting-1 and setting-2 in the experiments of neural collapse, and apply setting-3, setting-4, setting-
5, and setting-6 in the experiments of classification.

Table S-5: The numerical results of the three models trained on MNIST, with λW = λH = λb = 5× 10−4.

MNIST
SGD AdamW

CE BCE CE BCE

R
es

N
et

18

ρ̂ 219.0960 407.1362 212.2180 357.9696
spos 5.6439± 0.1437 6.4008± 0.1236 5.6331± 0.0120 7.7460± 0.0113
sneg −0.6302± 0.2073 −3.4987± 0.1137 −0.6259± 0.0127 −2.1233± 0.0291

b̂ −0.0074± 0.0852 2.2170± 0.0308 0.0001± 0.0328 3.5134± 0.0337

α(b̂) — −0.0268 — −0.0086
A/AUni for training 100.00/100.00 100.00/100.00 100.00/100.00 100.00/100.00
A/AUni for testing 99.43/99.31 99.59/99.52 99.62/99.57 99.65/99.61

R
es

N
et

50

ρ̂ 217.7276 396.7711 212.2304 357.2365
spos 5.6383± 0.6400 6.5393± 1.6509 5.6389± 0.0380 7.7706± 0.0573
sneg −0.6271± 0.5978 −3.2512± 1.9658 −0.6266± 0.0220 −2.1029± 0.0429

b̂ 0.0039± 0.0733 2.4674± 0.0492 0.0001± 0.0328 3.5322± 0.0329

α(b̂) — −0.0217 — −0.0084
A/AUni for training 99.68/99.64 99.79/99.76 100.00/100.00 100.00/100.00
A/AUni for testing 98.98/98.79 99.01/98.88 99.60/99.57 99.53/99.52

D
en

se
N

et
12

1

ρ̂ 224.1426 414.7491 212.2337 355.5479
spos 5.5774± 0.1217 6.1977± 0.0987 5.6318± 0.1132 7.8030± 0.0377
sneg −0.6193± 0.1221 −3.6421± 0.1048 −0.6258± 0.3427 −2.0508± 0.0314

b̂ 0.0010± 0.0570 2.0705± 0.0264 0.0002± 0.0324 3.5767± 0.0344

α(b̂) — −0.0302 — −0.0081
A/AUni for training 100.00/99.99 100.00/100.00 99.63/99.62 100.00/100.00
A/AUni for testing 99.45/99.40 99.54/99.52 99.29/99.22 99.64/99.60

S-2.2 EXPERIMENTAL RESULTS OF NEURAL COLLAPSE

In this section, we show the experimental results of neural collapse. Most of these results are calcu-
lated on the training data of the three datasets.
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Figure S-5: The evolution of the three NC metrics in the training of ResNet18 (top), ResNet50 (middle),
DenseNet121 (bottom) on MNIST with CE and BCE using SGD and AdamW, respectively, with λW = λH =
λb = 5× 10−4.
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Figure S-6: The evolution of the three NC metrics in the training of ResNet18 (top), ResNet50 (middle),
DenseNet121 (bottom) on CIFAR10 with CE and BCE using SGD and AdamW, respectively, with λW =
λH = λb = 5× 10−4.
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Table S-6: The numerical results of the three models trained on CIFAR10, with λW = λH = λb = 5×10−4.

CIFAR10
SGD AdamW

CE BCE CE BCE

R
es

N
et

18

ρ̂ 221.7685 395.3918 212.4173 366.6813
spos 5.7103± 0.2252 6.5627± 0.2042 5.6393± 0.0568 7.5025± 0.0549
sneg −0.6386± 0.3574 −3.4557± 0.1939 −0.6265± 0.0066 −2.3582± 0.0225

b̂ −0.0085± 0.0430 2.2618± 0.0678 −0.0001± 0.0038 3.2905± 0.0080

α(b̂) — −0.0266 — −0.0105
A/AUni for training 99.99/99.98 100.00/100.00 100.00/100.00 100.00/100.00
A/AUni for testing 79.22/75.71 81.19/78.78 86.66/84.72 86.58/85.07

R
es

N
et

50

ρ̂ 220.8594 382.4440 212.3374 369.2447
spos 5.7365± 8.2056 6.5614± 4.3923 5.6386± 0.1062 7.4351± 0.2787
sneg −0.6439± 14.1340 −3.5695± 7.0134 −0.6266± 0.0150 −2.4493± 0.2165

b̂ 0.0045± 0.1430 2.4002± 0.1496 −0.0000± 0.0053 3.2051± 0.0309

α(b̂) — −0.0242 — −0.0114
A/AUni for training 99.61/99.52 99.65/99.32 99.99/99.99 100.00/100.00
A/AUni for testing 76.28/73.08 78.41/76.35 85.73/84.33 85.76/84.98

D
en

se
N

et
12

1

ρ̂ 225.0609 392.8198 212.7966 360.5613
spos 5.7225± 1.7228 6.2376± 0.8437 5.6150± 0.2851 7.6743± 0.1239
sneg −0.6348± 0.8664 −3.6171± 1.6284 −0.6240± 0.0330 −2.1715± 0.0604

b̂ 0.0012± 0.0364 2.0875± 0.1229 0.0003± 0.0061 3.4612± 0.0203

α(b̂) — −0.0318 — −0.0090
A/AUni for training 99.40/99.03 99.72/99.62 99.87/99.86 100.00/100.00
A/AUni for testing 77.30/74.41 79.16/77.95 81.54/80.15 82.34/81.70
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(c) NC1,NC1, andNC1 of DenseNet121 on CIFAR100

Figure S-7: The evolution of the three NC metrics in the training of ResNet18 (top), ResNet50 (middle),
DenseNet121 (bottom) on CIFAR100 with CE and BCE using SGD and AdamW, respectively, with λW =
λH = λb = 5× 10−4.
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Table S-7: The numerical results of the three models trained on CIFAR100, with λW = λH = λb =
5× 10−4.

CIFAR100
SGD AdamW

CE BCE CE BCE

R
es

N
et

18

ρ̂ 954.3918 1732.6035 846.4734 1708.9231
spos 8.3613± 0.4316 3.5152± 0.2392 7.5183± 0.0997 4.0202± 0.0696
sneg −0.0848± 1.3897 −6.5934± 1.2718 −0.0754± 0.2580 −5.6834± 0.0438

b̂ 0.0004± 0.2356 0.8407± 0.0678 0.0005± 0.0097 1.1317± 0.0007

α(b̂) — −0.2672 — −0.2147
A/AUni for training 99.95/99.81 99.98/99.97 99.98/99.96 99.98/99.97
A/AUni for testing 34.61/17.99 42.06/30.61 56.58/47.29 60.48/43.04

R
es

N
et

50

ρ̂ 36.2794 289.5987 838.0098 1710.3754
spos 0.5404± 9.8551 −4.6656± 16.0695 7.3906± 0.3560 3.9356± 1.5798
sneg 0.6182± 11.4828 −6.2663± 29.8421 −0.0745± 0.1935 −5.7441± 1.1971

b̂ 0.0006± 0.0592 0.3210± 0.0241 0.0005± 0.0073 1.1239± 0.0044

α(b̂) — −0.4090 — −0.2160
A/AUni for training 2.52/0.05 7.67/0.44 99.83/99.76 99.77/99.62
A/AUni for testing 2.48/0.06 7.16/0.39 55.51/50.77 53.55/49.18

D
en

se
N

et
12

1

ρ̂ 894.4895 1597.8596 900.5263 1761.0126
spos 8.4473± 0.8321 3.0569± 1.6496 8.1030± 0.4805 4.0875± 0.2246
sneg −0.0842± 1.6340 −6.6552± 2.6035 −0.0800± 0.4365 −5.8613± 0.7152

b̂ −0.0012± 0.2239 0.8313± 0.0983 0.0016± 0.0948 1.1306± 0.0145

α(b̂) — −0.2714 — −0.2141
A/AUni for training 99.15/94.38 99.38/99.23 99.80/99.78 99.98/99.97
A/AUni for testing 37.48/24.20 39.93/35.19 50.31/37.87 52.41/49.81

NC metrics, the final classifier bias, and the final decision scores. Figs. S-5 - S-7 shows the
evolution of the three NC metrics in the training of ResNet18, ResNet50, DenseNet121 on MNIST,
CIFAR10, and CIFAR100 with CE and BCE. In the training on MNIST and CIFAR10, the NC
metrics of both CE and BCE approach zero at the terminal phase of training, and that of BCE
decrease faster than that of CE at the first 20 epochs. In the training on CIFAR100, which is a more
challenging dataset than MNIST and CIFAR10, the NC metrics of models trained by SGD do not
decrease to zero, while that of models trained by AdamW approach zero, and the NC metrics of BCE
decrease faster than that of CE in most cases. Table S-5 - S-7 present the numerical results of the final
models at the 100th epoch. In these tables, ρ̂ = ‖Ŵ ‖2F , where Ŵ = [ŵ1, ŵ2, · · · , ŵK ]T ∈ RK×d
is the final trained classifier weight; “spos” rows list the mean and standard deviations of the final
positive decision scores without biases, i.e.,

Mean(spos) =
1

nK

K∑
k=1

n∑
i=1

ŵkh
(k)
i , (49)

Std(spos) =

√√√√√ K∑
k=1

n∑
i=1

(
ŵkh

(k)
i −Mean(spos)

)2
nK

, (50)

“sneg” rows list that of the final negative decision scores without biases, i.e.,

Mean(sneg) =
1

nK(K − 1)

K∑
k=1

K∑
j=1
j 6=k

n∑
i=1

ŵjh
(k)
i , (51)

Std(sneg) =

√√√√√√ K∑
k=1

K∑
j=1
j 6=k

n∑
i=1

(
ŵjh

(k)
i −Mean(sneg)

)2
nK(K − 1)

, (52)

and “b̂” rows list that of the final classifier bias b̂ = [b̂1, b̂2, · · · , b̂K ]T ∈ RK , i.e.,

Mean(b̂) =
1

K

K∑
k=1

b̂k, (53)
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Std(b̂) =

√√√√∑K
k=1

(
b̂k −Mean(b̂)

)2
K

. (54)

“α(b̂)” rows list the value of function α(b) at point Mean(b̂), where

α(b) = − K − 1

K

(
1 + exp

(
b+

√
λW

nλH

ρ
K(K−1)

)) +
1

K

(
1 + exp

(√
λW

nλH

ρ
K − b

)) + λbb, (55)

is the function at the RHS of Eq. (12).

Besides the classification accuracy A and uniform accuracy AUni of the final models on the training
data, Tables S-5, S-6, and S-7 have also presented that on the testing data.

Table S-8: The numerical results of ResNet18 trained on MNIST with fixed weight decay λb for the classifier
bias.

Loss Opt. b̄ ρ̂ spos sneg b̂ α(b̂)

CE

SG
D

0 218.9428 5.6648± 0.1673 −0.6323± 0.2360 −0.0179± 0.1228 —
1 218.8023 5.6337± 0.1473 −0.6290± 0.2097 0.9821± 0.1149 —
2 218.3450 5.6456± 0.1556 −0.6318± 0.2213 1.9821± 0.1122 —
3 218.3319 5.6399± 0.1521 −0.6295± 0.2132 2.9821± 0.1163 —
4 219.2994 5.6628± 0.1600 −0.6321± 0.2281 3.9820± 0.1307 —
5 219.5797 5.6611± 0.1780 −0.6329± 0.2411 4.9820± 0.1279 —
6 220.0522 5.6458± 0.1598 −0.6301± 0.2245 5.9820± 0.1312 —
8 219.4256 5.6410± 0.1608 −0.6311± 0.2284 7.9821± 0.1194 —

10 219.2911 5.6411± 0.1601 −0.6300± 0.2152 9.9821± 0.1250 —

A
da

m
W

0 212.2146 5.6360± 0.0250 −0.6262± 0.0189 −0.0180± 0.0486 —
1 212.2138 5.6355± 0.0353 −0.6262± 0.0194 0.9828± 0.0493 —
2 212.2151 5.6336± 0.0258 −0.6260± 0.0189 1.9821± 0.0487 —
3 212.2152 5.6336± 0.0264 −0.6260± 0.0189 2.9825± 0.0486 —
4 212.2161 5.6307± 0.0274 −0.6257± 0.0191 3.9823± 0.0491 —
5 212.2143 5.6308± 0.0264 −0.6257± 0.0189 4.9809± 0.0486 —
6 212.2143 5.6323± 0.0264 −0.6258± 0.0189 5.9822± 0.0486 —
8 212.2163 5.6347± 0.0262 −0.6261± 0.0189 7.9812± 0.0486 —

10 212.2151 5.6340± 0.0263 −0.6260± 0.0189 9.9829± 0.0486 —

BCE

SG
D

0 393.2500 7.1748± 0.1277 −2.8219± 0.1379 3.0789± 0.0489 −0.0120
1 374.9337 7.7515± 0.1578 −2.2877± 0.1468 3.6658± 0.0709 −0.0070
2 362.5949 8.1822± 0.1525 −1.9121± 0.1604 4.1078± 0.1053 −0.0045
3 355.2978 8.5608± 0.1634 −1.6192± 0.1568 4.4557± 0.0981 −0.0030
4 354.6479 8.8711± 0.1473 −1.3347± 0.1725 4.7949± 0.1094 −0.0019
5 355.9634 9.2305± 0.1503 −1.0452± 0.1960 5.1493± 0.1192 −0.0009
6 361.1938 9.5688± 0.1355 −0.7519± 0.1688 5.5084± 0.0869 −0.0002
8 385.6802 10.3761± 0.1400 −0.0997± 0.2436 6.3418± 0.0989 0.0007

10 426.3013 11.5173± 0.1430 0.7786± 0.3075 7.4858± 0.1021 0.0010

A
da

m
W

0 350.4272 9.3081± 0.0352 −1.0348± 0.0321 5.2388± 0.0609 −0.0006
1 350.4283 9.3015± 0.0345 −1.0340± 0.0321 5.2389± 0.0609 −0.0006
2 350.4292 9.3029± 0.0357 −1.0342± 0.0321 5.2388± 0.0609 −0.0006
3 350.4275 9.3028± 0.0364 −1.0342± 0.0321 5.2388± 0.0609 −0.0006
4 350.4248 9.3039± 0.0362 −1.0343± 0.0320 5.2388± 0.0609 −0.0006
5 350.4250 9.3100± 0.0358 −1.0350± 0.0320 5.2388± 0.0608 −0.0006
6 350.4302 9.3063± 0.0345 −1.0346± 0.0321 5.2388± 0.0608 −0.0006
8 350.4304 9.3094± 0.0356 −1.0349± 0.0321 5.2389± 0.0609 −0.0006

10 350.4330 9.3109± 0.0369 −1.0351± 0.0321 5.2388± 0.0609 −0.0006

The failures in the experiments of neural collapse. According to the above figures and tables,
one can find the models trained with SGD are easily to fail in the experiments of neural collapse,
including the ResNet50 trained on MNIST, ResNet50 and DenseNet121 trained on CIFAR10, and
the three models trained CIFAR100. The standard deviations of positive/negative decision scores
produced by these models are usually larger than 0.5. These failed models in the neural collapse can
be roughly classified into two types:

• The two ResNet50 trained on CIFAR100 with SGD. They are completely failed models.
The standard deviations of the decision scores are very high, even more than 20, and, for the
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BCE-trained model, the means of the positive and negative decision scores are relatively
close, while for the CE-trained model, the mean of positive scores is even less than that
of negative ones, indicating that most of the samples were not correctly classified. The
classification accuracy A on the training dataset are only 2.52% and 7.67% with CE and
BCE.

• The other failed models trained with SGD, including the ResNet50 trained on MNIST
and CIFAR10, DenseNet121 trained on CIFAR10, ResNet18 and DenseNet121 trained on
CIFAR100. These models have achieved almost 100% classification accuracy and uniform
accuracy on the training dataset. However, according to the standard deviations of decision
scores and the NC metrics, we conclude that they do not reach the state of neural collapse.

These failures in the experiments of neural collapse reveal more relationships among classification
and neural collapse. In the training, zero classification error appears before zero uniform classifica-
tion error, which appears before the neural collapse, or, in contrary, the model reaching the neural
collapse has the uniform accuracy of 100%, and the model with the uniform accuracy of 100% has
also the accuracy 100% on the classification. Both the reverses are not true.

Table S-9: The numerical results of ResNet18 trained on MNIST with varying weight decay λb for the
classifier bias.

Loss Opt. λb ρ̂ spos sneg b̂ α(b̂)

CE

SG
D

5× 10−1 218.6677 5.6511± 0.1144 −0.6304± 0.1854 −0.0000± 0.0002 —
5× 10−2 218.6658 5.6662± 0.1176 −0.6321± 0.2031 −0.0000± 0.0017 —
5× 10−3 218.5622 5.6427± 0.1076 −0.6296± 0.1917 0.0013± 0.0156 —
5× 10−4 219.4882 5.6527± 0.1287 −0.6322± 0.2352 4.0998± 0.0796 —
5× 10−5 219.0555 5.6526± 0.1407 −0.6310± 0.2192 9.1337± 0.1038 —
5× 10−6 219.2227 5.6426± 0.1507 −0.6307± 0.2209 9.8940± 0.1111 —

A
da

m
W

5× 10−1 212.2359 5.6329± 0.0340 −0.6259± 0.0037 −0.0000± 0.0001 —
5× 10−2 212.2369 5.6372± 0.0335 −0.6264± 0.0037 0.0000± 0.0010 —
5× 10−3 212.2328 5.6382± 0.0186 −0.6265± 0.0038 0.0000± 0.0083 —
5× 10−4 212.2152 5.6339± 0.0257 −0.6260± 0.0128 0.0010± 0.0324 —
5× 10−5 212.2158 5.6316± 0.0221 −0.6257± 0.0174 3.4803± 0.0448 —
5× 10−6 212.2147 5.6330± 0.0256 −0.6259± 0.0186 8.9169± 0.0480 —

BCE

SG
D

5× 10−1 472.0906 4.2473± 0.1306 −5.6495± 0.1260 0.0036± 0.0000 −0.1683
5× 10−2 471.6918 4.2916± 0.1134 −5.5975± 0.1029 0.0362± 0.0003 −0.1640
5× 10−3 452.0422 4.6706± 0.1199 −5.1987± 0.0936 0.4031± 0.0037 −0.1269
5× 10−4 358.9137 9.0244± 0.1190 −0.7897± 0.1281 4.8403± 0.0604 −0.0018
5× 10−5 414.4364 11.0715± 0.1306 0.5388± 0.2787 7.0401± 0.0959 0.0008
5× 10−6 424.8451 11.4847± 0.1327 0.7536± 0.3067 7.4372± 0.0973 0.0010

A
da

m
W

5× 10−1 483.3321 4.2399± 0.0308 −5.6315± 0.0215 0.0036± 0.0000 −0.1636
5× 10−2 482.1844 4.2698± 0.0306 −5.5977± 0.0213 0.0358± 0.0003 −0.1598
5× 10−3 470.6640 4.5928± 0.0281 −5.2753± 0.0201 0.3577± 0.0033 −0.1256
5× 10−4 356.5036 7.7870± 0.0130 −2.0822± 0.0285 3.5514± 0.0330 −0.0083
5× 10−5 347.1199 9.0726± 0.0303 −1.1593± 0.0304 4.9903± 0.0537 −0.0012
5× 10−6 350.0225 9.2915± 0.0372 −1.0489± 0.0319 5.2119± 0.0599 −0.0006

The bias decay parameter λb. In Sec. 4, we conducted experiments with fixed λb = 0 and
varying λb = 0.5, 0.05, 5 × 10−3, 5 × 10−4, 5 × 10−5, 5 × 10−6 to further compare CE and BCE
in neural collapse. Fig. 3 have visually shown the results, and we here present the numerical results
in Tables S-8 and S-9. In our experiments, the classifier weight W and bias b are initialized using
“kaiming uniform”, i.e., He initialization (He et al., 2015). The initialized classifier bias is with
zero-mean, i.e., 1

K

∑K
k=1 bk ≈ 0, and we add them with 0, 1, 2, 3, 4, 5, 6, 8, 10, respectively, to

adjust their average value in the experiments with fixed λb.

The batch size. In the proof of Theorem 1 and 2, it applied the feature matrix H including the
features of all samples, to explore the the lower bounds for the CE and BCE losses, i.e.,

H =
[
h
(1)
1 , h

(1)
2 , · · · , h(1)n , h

(2)
1 , h

(2)
2 , · · · , h(2)n , · · · , h(K)

1 , h
(K)
2 , · · · , h(K)

n

]
. (56)

However, batch algorithm was applied in the practical training of deep models, and the batch size
would affect the experimental numerical results. To verify this conclusion, a group of experiments
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were conducted with varying batch size. We trained ResNet18 on MNIST using SGD and AdamW
using setting-1 and setting-2, while the initial learning rates were adjusted according to the batch
size, 0.01 × batch size

128 for SGD and 0.001 × batch size
128 for AdamW. Fig. S-8 visually shows the dis-

tributions of the final classifier bias and the positive/negative decision scores, and Table S-10 lists
the final numerical results. From these results, one can find that the bias results still conform to
our analysis when batch size ≤ 1024, i.e., the classifier bias converges to zero in the training with
CE loss and λb > 0, and the clssifier bias separates the positive and negative decision scores in the
training with BCE loss.

Table S-10: The numerical results of ResNet18 trained on MNIST with varying batch size and λW = λH =
λb = 5× 10−4.

Loss Opt. batch size ρ̂ spos sneg b̂ α(b̂)

CE

SG
D

16 100.9731 6.7176± 0.3270 −0.7538± 0.1950 −0.0074± 0.0523 —
32 130.1404 6.3375± 0.2425 −0.7110± 0.1709 −0.0074± 0.0478 —
64 168.6290 6.0159± 0.1562 −0.6737± 0.2052 −0.0074± 0.0547 —
128 219.0960 5.6439± 0.1437 −0.6302± 0.2073 −0.0074± 0.0852 —
256 285.6314 5.3200± 0.1586 −0.5936± 0.2070 −0.0074± 0.1259 —
512 379.3403 4.9776± 0.2735 −0.5535± 0.2921 −0.0073± 0.2526 —
1024 522.5523 4.6562± 1.3926 −0.5173± 0.8343 −0.0073± 1.0641 —
2048 473.7898 3.5759± 2.6771 −0.3972± 2.0373 −0.0072± 1.8399 —

A
da

m
W

16 87.6451 6.5511± 0.0110 −0.7279± 0.0089 0.0003± 0.0211 —
32 118.0328 6.2558± 0.0101 −0.6951± 0.0104 0.0003± 0.0253 —
64 158.4980 5.9506± 0.0106 −0.6612± 0.0117 0.0002± 0.0293 —
128 212.2180 5.6331± 0.0120 −0.6259± 0.0127 0.0001± 0.0328 —
256 282.9370 5.3168± 0.0148 −0.5908± 0.0133 0.0000± 0.0357 —
512 375.4274 4.9968± 0.0209 −0.5552± 0.0140 −0.0001± 0.0380 —
1024 496.6912 4.6627± 0.0631 −0.5199± 0.0238 −0.0190± 0.0472 —
2048 668.3063 4.3236± 0.3703 −0.4906± 0.2909 −0.0153± 0.2964 —

BCE

SG
D

16 199.6890 6.1841± 0.3002 −5.9379± 0.2665 0.7828± 0.0223 −0.0660
32 255.9898 6.1508± 0.2184 −5.2761± 0.1932 1.1506± 0.0214 −0.0546
64 324.7408 6.2846± 0.1600 −4.4319± 0.1295 1.6456± 0.0254 −0.0399
128 407.1362 6.4008± 0.1236 −3.4987± 0.1137 2.2170± 0.0308 −0.0268
256 501.1286 6.6422± 0.1347 −2.5493± 0.1501 2.8605± 0.0740 −0.0167
512 631.7796 6.6413± 0.2725 −1.9155± 0.2544 3.2338± 0.1859 −0.0127
1024 816.6544 6.3274± 0.4653 −1.5393± 0.4515 3.3466± 0.3554 −0.0119
2048 351.9647 1.7449± 2.4487 −0.5243± 1.6982 2.6332± 1.5391 0.0077

A
da

m
W

16 189.2794 6.5169± 0.0240 −5.3841± 0.0215 1.2651± 0.0119 −0.0457
32 242.1592 6.7110± 0.0169 −4.5302± 0.0202 1.7885± 0.0167 −0.0322
64 300.8807 7.1079± 0.0118 −3.4518± 0.0229 2.5261± 0.0234 −0.0188
128 357.9696 7.7460± 0.0113 −2.1233± 0.0291 3.5134± 0.0337 −0.0086
256 455.2137 7.6247± 0.0112 −1.6013± 0.0256 3.8010± 0.0325 −0.0068
512 590.9918 7.2831± 0.0271 −1.3210± 0.0270 3.8500± 0.0375 −0.0064
1024 790.8874 6.6204± 0.1011 −1.3148± 0.1126 3.5830± 0.0899 −0.0089
2048 1019.6438 5.9625± 0.2969 −1.2607± 0.2750 3.3303± 0.2111 −0.0122
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Figure S-8: The distributions of the final classifier bias and positive/negative decision scores for ResNet18
trained on MNIST with different batch sizes, while λW = λH = λb = 5× 10−4.

The decision score results are very different from that in the experiments with fixed batch size. For
examples, in the training with CE loss and fixed batch size = 128, the positive and negative decision
scores converge to about 5.64 and −0.63, respectively, and the value of ρ̂ = ‖Ŵ ‖2F converge to
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about 219 and 212 in the training by SGD and AdamW, respectively, as shown in Tables S-8 and
S-9. In contrast, these values varies as the batch size in the experiments with varying batch sizes.

In addition, the positive/negative decision scores did not converge to the theoretical values in Eq.
(13) in our experiments; we believe it is resulted from the difference between the batch algorithm
and the proof of Theorems. We roughly replaced n with batch size

K in computing α(b̂).

S-2.3 EXPERIMENTAL RESULTS OF CLASSIFICATION

In the experiments of classification in Sec. 4.2, we train the models for 100 epochs. In each training,
the model with best classification accuracy A is chosen as the final model, which was used to com-
pute the uniform accuracyAUni presented in Table 2. In Table S-11 and S-12, we list their numerical
results on the training and test dataset of CIFAR10 and CIFAR100. In these experiments, though
the classification accuracy A of some models on the training datasets have reached 100%, neural
collapse has not caused during the training. An obvious evidence is that both positive and negative
decision scores have not converged, with large standard deviations, whether on the training set or
testing set. The small standard deviations of the final classification bias might be more resulted from
their initialization.

From Tables S-11 and S-12, one can find that, the gaps between the means of positive and negative
decision scores of BCE-trained models are usually larger than that of CE-trained models, while in
some cases, the standard deviations of the positive/negative decision scores of BCE-trained models
are higher than that of CE-trained models. However, without any modification, the standard devi-
ations and the gap between the positive and negative means cannot be precisely used to evaluate
the intra-class compactness and inter-class distinctiveness. The decision score is calculated by the
norm of the classifier vector and the feature vector, with the angle between them. The diverse ρ̂ of
CE-trained and BCE-trained models indicates different norms of the classifier vectors.

In Fig. 4, the all features are first projected into 2-dimension space from d-dimension space, and
d = 1024 for ResNet50, which are then translated and scaled into the region of [0, 1] × [0, 1]. We
finally plot these feature points on the 2D plane.

Table S-11: The numerical results of ResNet18, ResNet50, DenseNet121 trained on CIFAR10 for classifica-
tion.

MOp. DA Loss classifier on training data on testing data
ρ̂ b̂ spos sneg A AUni spos sneg

R
es

N
et

18 SG
D 1 CE 34.86 −0.01± 0.03 14.9± 3.54 −1.68± 2.64 99.98 97.55 13.9± 4.73 −1.56± 2.89

BCE 52.33 2.89± 0.03 12.9± 2.75 −9.70± 2.67 100.00 99.99 11.3± 4.93 −9.25± 3.30

1&2 CE 12.59 −0.01± 0.02 3.23± 0.38 −0.37± 0.62 98.02 95.99 3.09± 0.61 −0.35± 0.70
BCE 19.66 2.84± 0.02 3.86± 0.45 −0.86± 0.66 98.71 98.01 3.66± 0.80 −0.84± 0.77

A
da

m
W 1 CE 85.52 −0.00± 0.01 12.3± 3.60 −12.4± 4.12 99.99 99.57 10.9± 5.52 −12.1± 4.58

BCE 113.9 2.16± 0.02 16.3± 2.95 −20.0± 4.50 100.00100.00 14.2± 6.37 −19.0± 5.75

1&2 CE 36.26 −0.01± 0.01 2.54± 0.18 −1.13± 0.38 99.96 99.88 2.41± 0.52 −1.12± 0.50
BCE 44.16 2.14± 0.01 3.57± 0.20 −1.74± 0.38 99.96 99.94 3.34± 0.81 −1.72± 0.56

R
es

N
et

50 SG
D 1 CE 18.74 0.00± 0.03 17.4± 3.16 −2.00± 3.30 99.99 98.09 16.1± 4.56 −1.86± 3.73

BCE 29.07 2.83± 0.04 13.7± 2.33 −12.4± 3.07 99.99 99.98 11.9± 5.08 −11.8± 3.83

1&2 CE 8.18 0.00± 0.04 3.28± 0.35 −0.39± 0.56 98.25 96.65 3.14± 0.63 −0.37± 0.66
BCE 13.86 2.65± 0.03 3.68± 0.45 −1.08± 0.61 98.79 98.24 3.47± 0.85 −1.06± 0.75

A
da

m
W 1 CE 143.9 0.01± 0.02 16.7± 5.64 −18.6± 6.76 100.00 98.95 14.9± 7.87 −18.2± 7.23

BCE 153.4 2.20± 0.01 21.9± 6.82 −28.5± 9.09 99.97 99.96 19.4± 10.1 −27.2± 10.4

1&2 CE 79.80 0.00± 0.01 2.44± 0.25 −1.16± 0.33 99.96 99.89 2.28± 0.57 −1.16± 0.44
BCE 102.6 2.14± 0.00 3.35± 0.24 −1.58± 0.44 99.95 99.94 3.16± 0.72 −1.55± 0.56

D
en

se
N

et
12

1

SG
D 1 CE 48.02 0.00± 0.02 10.5± 2.37 −1.16± 2.18 99.30 93.29 9.57± 3.41 −1.06± 2.41

BCE 64.94 2.93± 0.03 9.06± 1.76 −6.05± 1.74 99.45 99.24 7.75± 3.63 −5.71± 2.32

1&2 CE 14.99 0.00± 0.02 2.89± 0.67 −0.32± 0.67 91.20 86.80 2.77± 0.80 −0.30± 0.71
BCE 19.60 2.86± 0.02 3.69± 0.88 −0.65± 0.73 92.38 90.28 3.52± 1.08 −0.62± 0.80

A
da

m
W 1 CE 139.4 0.00± 0.01 10.2± 3.06 −10.6± 4.44 99.97 98.48 8.70± 5.00 −10.4± 4.86

BCE 156.6 2.17± 0.01 13.1± 2.78 −15.1± 4.22 99.97 99.97 10.9± 5.93 −14.4± 5.13

1&2 CE 39.93 0.00± 0.01 2.31± 0.28 −1.28± 0.48 98.83 98.10 2.14± 0.64 −1.26± 0.58
BCE 40.53 2.18± 0.01 3.40± 0.42 −1.65± 0.52 98.81 98.51 3.13± 0.94 −1.60± 0.67
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Table S-12: The numerical results of ResNet18, ResNet50, DenseNet121 trained on CIFAR100 for classifica-
tion.

MOpt. DA Loss classifier on training data on testing data
ρ̂ b̂ spos sneg A AUni spos sneg

R
es

N
et

18 SG
D 1 CE 317.6 0.00± 0.02 15.8± 3.15 −0.18± 3.04 99.79 76.32 13.0± 5.06 −0.15± 3.06

BCE 408.8 2.89± 0.02 9.39± 2.87 −10.0± 2.94 99.94 99.69 5.28± 5.95 −9.64± 3.06

1&2 CE 138.8 0.00± 0.02 5.82± 1.33 −0.07± 0.98 88.26 73.67 5.09± 1.67 −0.06± 1.00
BCE 163.7 2.89± 0.01 3.42± 1.44 −3.22± 0.99 88.56 80.23 2.64± 1.90 −3.19± 1.02

A
da

m
W 1 CE 1007. 0.00± 0.02 12.5± 4.18 −13.4± 5.16 99.98 92.02 7.47± 7.81 −13.1± 5.19

BCE 1372. 2.14± 0.02 15.3± 4.85 −21.2± 6.34 99.98 99.97 7.05± 10.2 −19.7± 6.47

1&2 CE 476.9 0.00± 0.02 4.49± 0.82 −2.04± 0.99 99.25 95.86 3.15± 1.77 −2.14± 1.09
BCE 576.1 2.18± 0.02 3.67± 0.80 −4.13± 0.84 99.18 98.25 2.22± 1.84 −4.01± 0.96

R
es

N
et

50 SG
D 1 CE 258.8 0.00± 0.01 17.7± 3.12 −0.19± 3.56 99.90 79.70 14.5± 5.17 −0.16± 3.58

BCE 328.3 2.87± 0.01 10.0± 2.82 −11.6± 3.40 99.86 99.62 5.37± 6.20 −10.9± 3.46

1&2 CE 102.7 0.00± 0.01 5.97± 1.41 −0.07± 1.07 87.46 72.45 5.29± 1.71 −0.06± 1.05
BCE 118.4 2.86± 0.01 3.59± 1.48 −3.33± 0.98 89.17 81.80 2.75± 1.96 −3.29± 1.02

A
da

m
W 1 CE 2157. 0.00± 0.01 13.9± 5.49 −19.4± 7.18 99.98 87.42 8.29± 9.45 −19.2± 7.20

BCE 2863. 2.15± 0.02 17.6± 4.92 −25.7± 7.34 99.98 99.97 8.49± 11.2 −23.5± 7.67

1&2 CE 1334. 0.00± 0.02 4.42± 0.67 −1.96± 0.87 99.69 97.86 3.06± 1.90 −2.25± 1.07
BCE 1440. 2.18± 0.02 3.81± 0.82 −4.27± 0.80 99.67 99.22 2.28± 1.96 −4.21± 0.93

D
en

se
N

et
12

1

SG
D 1 CE 337.9 −0.00± 0.02 12.9± 3.33 −0.12± 2.83 92.46 56.75 10.5± 4.75 −0.10± 2.82

BCE 383.8 2.95± 0.02 6.03± 2.64 −7.83± 2.81 92.85 87.12 3.36± 4.28 −7.34± 2.91

1&2 CE 143.2 −0.00± 0.02 4.62± 1.67 −0.04± 1.01 67.23 47.68 4.26± 1.84 −0.04± 1.01
BCE 161.5 2.90± 0.01 2.14± 1.68 −2.95± 1.04 68.15 56.43 1.74± 1.85 −2.93± 1.05

A
da

m
W 1 CE 1090. −0.00± 0.01 9.39± 3.69 −12.3± 4.98 99.89 83.67 4.74± 6.83 −12.1± 4.99

BCE 1146. 2.17± 0.01 9.78± 2.72 −16.0± 4.77 99.86 99.55 3.66± 7.20 −14.6± 5.03

1&2 CE 430.2 −0.00± 0.01 3.82± 1.13 −2.00± 1.00 91.18 80.57 2.85± 1.83 −2.07± 1.06
BCE 474.5 2.20± 0.01 2.70± 1.16 −3.85± 0.89 90.66 85.83 1.79± 1.83 −3.82± 0.97
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S-3 PROOF OF THEOREM 2

Zhou et al. (2022) have proved that the loss satisfying contrastive property can cause neural collapse.
CE loss, focal loss, and label smoothing loss satisfy this property, while BCE does not, and we proof
that BCE can also result in the neural collapse in this paper.

Definition S-1 (Contrastive property (Zhou et al., 2022)). A loss function L(z) satisfies the con-
trastive property if there exists a function φ such that L(z) can be lower bounded by

L(z) ≥ φ
( K∑

j=1
j 6=k

(
zj − zk

))
(57)

where the equality holds only when zj = z` for ∀j, ` 6= k, and the function φ(x) satisfies

x? = arg min
x
φ(x) + c|x| (58)

is unique for ∀c > 0, and x? ≤ 0. z

Theorem S-3 (Zhou et al., 2022) Assume that the feature dimension d is larger than the category
number K, i.e., d ≥ K − 1, and L is satisfying the contrastive property. Then any global minimizer
(W ?,H?, b?) of f(W ,H, b) defined using L with Eq. (3) obeys the following properties,

‖w?‖ = ‖w?
1‖ = ‖w?

2‖ = · · · = ‖w?
K‖, (59)

h
(k)?
i =

√
λW
nλH

w?
k, ∀ k ∈ [K], i ∈ [n], (60)

h̃?i :=
1

K

K∑
j=1

h
(k)?
i = 0,∀ i ∈ [n], (61)

b? = b?1K , (62)

where either b? = 0 or λb = 0. The matrix W ?T forms a K-simplex ETF in the sense that

1

‖w?‖22
W ?TW ? =

K

K − 1

(
IK −

1

K
1K1TK

)
, (63)

where IK ∈ RK×K denotes the identity matrix, 1K ∈ RK denotes the all ones vector. z

Theorem S-4 Assume that the feature dimension d is larger than the number of classes K, i.e.,
d ≥ K − 1. Then any global minimizer (W ?,H?, b?) of

min
W ,H,b

fbce(W ,H, b) := gbce(WH − b1T ) +
λW

2
‖W ‖2F +

λH
2
‖H‖2F +

λb
2
‖b‖22 (64)

with

gbce(WH − b1T ) :=
1

N

K∑
k=1

n∑
i=1

Lbce(Wh
(k)
i − b,yk), (65)

obeys the following

‖w?‖ = ‖w?
1‖ = ‖w?

2‖ = · · · = ‖w?
K‖, and b? = b?1, (66)

h
(k)?
i =

√
λW
nλH

w?
k, ∀ k ∈ [K], i ∈ [n], and h̃?i :=

1

K

K∑
j=1

h
(k)?
i = 0,∀ i ∈ [n], (67)

and the matrix 1
‖w?‖2W

?T forms a K-simplex ETF in the sense that

1

‖w?‖22
W ?TW ? =

K

K − 1

(
IK −

1

K
1K1TK

)
, (68)
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where b? is the solution of equation

λbb =
K − 1

K

(
1 + exp

(
b+

√
λW

nλH

ρ
K(K−1)

)) − 1

K

(
1 + exp

(√
λW

nλH

ρ
K − b

)) . (69)

Proof According to Lemma 1, any critical point (W ,H, b) of f(W ,H, b) satisfies

W TW =
λH
λW

HTH. (70)

Let ρ = ‖W ‖2F for any critical point (W ,H, b). Then, according to Lemma 3, for any c1, c2 ≥ 0,

fbce(W ,H, b)

≥
[
λW −

(
2K − 1

N(1 + c2)
− 1

N(1 + c1)

)√
nλW
λH

]
ρ− 1

2Kλb

(
K − 1

1 + c2
− 1

1 + c1

)2

+ C (71)

where

C =
c1

1 + c1
log

(
1 + c1
c1

)
+

log(1 + c1)

1 + c1
+
K − 1

1 + c2

[
c2 log

(
1 + c2
c2

)
+ log(1 + c2)

]
. (72)

According to Lemma 4, the inequality (71) achieves its equality when

‖w1‖ = ‖w2‖ = · · · = ‖wK‖, and b = b?1, (73)

h
(k)
i =

√
λW
nλH

wk, ∀ k ∈ [K], i ∈ [n], and h̃i =
1

K

K∑
k=1

h
(k)
i = 0,∀ i ∈ [n], (74)

WW T =
ρ

K − 1

(
IK −

1

K
1K1TK

)
, (75)

c1 = exp

(√
λW
nλH

ρ

K
− b?

)
, and c2 = exp

(
b? +

√
λW
nλH

ρ

K(K − 1)

)
, (76)

where b? is the solution of equation

λbb =
K − 1

K

(
1 + exp

(
b+

√
λW

nλH

ρ
K(K−1)

)) − 1

K

(
1 + exp

(√
λW

nλH

ρ
K − b

)) . (77)

According to Lemma 5, the equation (77) in terms of b has only one solution b?.

Given λW , λH , λb > 0, fbce(W ,H, b) is convex function, which achieves its minimum with finite
W ,H, b. Therefore, the right side of inequality (71) is a consistent when λW , λH , λb are fixed and
Eqs. (73, 74, 75, 76) hold, which finishes the proof. z

Lemma 1 Any critical point (W ,H, b) of Eq. (64) obeys

W TW =
λH
λW

HHT , and ‖W ‖2F =
λH
λW
‖H‖2F . (78)

Proof See Lemma D.2 in reference (Zhu et al., 2021). z

Lemma 2 For any h
(k)
i with c1, c2 > 0, the BCE loss is lower bounded by

Lbce(Wh
(k)
i ,yk) ≥ 1

1 + c1

(
−wT

k h
(k)
i + bk

)
+

1

1 + c2

K∑
j=1
j 6=k

(
wT
j h

(k)
i − bj

)
+ C, (79)

where

C =
c1

1 + c1
log

(
1 + c1
c1

)
+

log
(
1 + c1

)
1 + c1

+
K − 1

1 + c2

[
c2 log

(
1 + c2
c2

)
+ log

(
1 + c2

)]
. (80)
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The inequality becomes an equality when

wT
j h

(k)
i − bj = wT

` h
(k)
i − b`, ∀ j, ` 6= k, (81)

and

c1 = exp
(
wT
k h

(k)
i − bk

)
, (82)

c2 = exp
(
bj −wT

j h
(k)
i

)
, j 6= k. (83)

Proof By the concavity of the log(1 + ex), we have,
K∑
k=1

log
(
1 + exp(xk)

)
≥ K log

(
1 + exp

(∑K
k=1 xk
K

))
, ∀xk ∈ R. (84)

Then,

Lbce(Wh
(k)
i + b,yk) (85)

= log
(
1 + exp(−wT

k h
(k)
i + bk)

)
+

K∑
j=1
j 6=k

log
(
1 + exp(wT

j h
(k)
i − bj)

)
(86)

≥ log
(
1 + exp(−wT

k h
(k)
i + bk)

)
+
(
K − 1

)
log

[
1 + exp

(∑K
j=1
j 6=k

(
wT
j h

(k)
i − bj

)
K − 1

)]
(87)

= log

(
c1

1 + c1

1 + c1
c1

+
1 + c1
1 + c1

exp
(
−wT

k h
(k)
i + bk

))

+
(
K − 1

)
log

[
c2

1 + c2

1 + c2
c2

+
1 + c2
1 + c2

exp

(∑K
j=1
j 6=k

(
wT
j h

(k)
i − bj

)
K − 1

)]
(88)

≥ c1
1 + c1

log

(
1 + c1
c1

)
+

1

1 + c1
log

((
1 + c1

)
exp

(
−wT

k h
(k)
i + bk

))

+
(
K − 1

){ c2
1 + c2

log

(
1 + c2
c2

)
+

1

1 + c2
log

[(
1 + c2

)
exp

(∑K
j=1
j 6=k

(
wT
j h

(k)
i − bj

)
K − 1

)]}
(89)

=
1

1 + c1

(
−wT

k h
(k)
i + bk

)
+

1

1 + c2

K∑
j=1
j 6=k

(
wT
j h

(k)
i − bj

)

+
c1

1 + c1
log

(
1 + c1
c1

)
+

log
(
1 + c1

)
1 + c1

+
K − 1

1 + c2

[
c2 log

(
1 + c2
c2

)
+ log

(
1 + c2

)]
︸ ︷︷ ︸

C

. (90)

The first inequality is derived from the concavity of log(1 + ex), i.e., Eq. (84), which achieves the
equality if and only if

wT
j h

(k)
i − bj = wT

` h
(k)
i − b`, ∀ j, ` 6= k ∈ [K]. (91)

The second inequality is derived from the concavity of log(x),

log
(
tx1 + (1− t)x2

)
≥ t log(x1) + (1− t) log(x2), ∀x1, x2 ∈ R and t ∈ [0, 1], (92)

which achieves its equality if and only if x1 = x2, or t = 0, or t = 1. Then, the second inequality
holds for any c1, c2 ≥ 0, and it becomes an equality if and only if

1 + c1
c1

= (1 + c1) exp
(
−wT

k h
(k)
i + bk

)
or c1 = 0 or c1 = +∞, and (93)

1 + c2
c2

= (1 + c2) exp

(∑K
j=1
j 6=k

(
wT
j h

(k)
i − bj

)
K − 1

)
or c1 = 0 or c1 = +∞. (94)
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It is trivial when c1 = 0 or c1 = +∞ or c2 = 0 or c2 = +∞. Then, we get

c1 = exp
(
wT
k h

(k)
i − bk

)
, (95)

c2 = exp

(∑K
j=1
j 6=k

(
bj −wT

j h
(k)
i

)
K − 1

)
(91)
= exp

(
bj −wT

j h
(k)
i

)
, j 6= k, (96)

which are desired. z

Lemma 3 Let

W =
[
w1,w2, · · · ,wK

]T ∈ RK×d, (97)

H =
[
h
(1)
1 , · · · , h(1)n , · · · , h(K)

1 , · · · , h(K)
n

]
∈ Rd×N (98)

with N = nK. Then, for any critical point (W ,H, b) of Eq. (64) and any c1, c2 ≥ 0, we have

fbce(W ,H, b)

≥
[
λW −

(
1

N(1 + c2)
+

1

N(1 + c1)

)√
nλW
λH

]
ρ− 1

2Kλb

(
K − 1

1 + c2
− 1

1 + c1

)2

+ C (99)

with C = c1
1+c1

log
(
1+c1
c1

)
+ log(1+c1)

1+c1
+ K−1

1+c2

[
c2 log

(
1+c2
c2

)
+ log(1 + c2)

]
.

Proof According to Lemma 1, Eq. (79) holds for any c1, c2 > 0 and any h
(k)
i with k ∈ [K], i ∈

[n]. We take the same c1 and c2 for all h(k)
i , then

(1 + c1)(1 + c2)
[
gbce(WH + b1T )− C

]
(100)

= (1 + c1)(1 + c2)

[
1

N

K∑
k=1

n∑
i=1

Lbce(Wh
(k)
i + b,yk)− C

]
(101)

≥ 1

N

K∑
k=1

n∑
i=1

[(
1 + c2

)(
−wT

k h
(k)
i + bk

)
+
(
1 + c1

) K∑
j=1
j 6=k

(
wT
j h

(k)
i − bj

)]
(102)

=
1 + c1
N

K∑
k=1

n∑
i=1

K∑
j=1
j 6=k

(
wT
j h

(k)
i − bj

)
− 1 + c2

N

K∑
k=1

n∑
i=1

(
wT
k h

(k)
i − bk

)
(103)

=
1 + c1
N

K∑
k=1

n∑
i=1

( K∑
j=1

(
wT
j h

(k)
i − bj

)
−wT

k h
(k)
i + bk

)
− 1 + c2

N

K∑
k=1

n∑
i=1

(
wT
k h

(k)
i − bk

)
(104)

=
1 + c1
N

K∑
k=1

n∑
i=1

K∑
j=1

(
wT
j h

(k)
i − bj −wT

k h
(k)
i + bk

)
+

1 + c1
N

K∑
k=1

n∑
i=1

K∑
j=1
j 6=k

(
wT
k h

(k)
i − bk

)

− 1 + c2
N

K∑
k=1

n∑
i=1

(
wT
k h

(k)
i − bk

)
(105)

=
1 + c1
N

[ K∑
k=1

n∑
i=1

K∑
j=1

(
wT
j h

(k)
i − bj

)
−

K∑
k=1

n∑
i=1

K∑
j=1

(
wT
k h

(k)
i − bk

)]

+

(
1 + c1
N

(
K − 1

)
− 1 + c2

N

) K∑
k=1

n∑
i=1

wT
k h

(k)
i −

(
1 + c1
N

(
K − 1

)
− 1 + c2

N

) K∑
k=1

n∑
i=1

bk

(106)

=
1 + c1
N

n∑
i=1

[ K∑
k=1

( K∑
j=1

wT
k h

(j)
i −KwT

k h
(k)
i

)
−

K∑
k=1

K∑
j=1

bj +

K∑
k=1

K∑
j=1

bk︸ ︷︷ ︸
0

]
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+

(
1 + c1
N

(
K − 1

)
− 1 + c2

N

) K∑
k=1

n∑
i=1

wT
k h

(k)
i −

(
1 + c1
K

(
K − 1

)
− 1 + c2

K

) K∑
k=1

bk

(107)

=
1 + c1
n

n∑
i=1

K∑
k=1

wT
k

(
h̃i − h

(k)
i

)
+

(
1 + c1
N

(
K − 1

)
− 1 + c2

N

) K∑
k=1

n∑
i=1

wT
k h

(k)
i

−
(

1 + c1
K

(
K − 1

)
− 1 + c2

K

) K∑
k=1

bk (108)

where h̃i = 1
K

∑K
k=1 h

(k)
i .

According to the AM-GM inequality, we have

uTv ≥ − c
2
‖u‖22 −

1

2c
‖v‖22, ∀ u, v ∈ Rd, ∀ c ≥ 0. (109)

Then,

(1 + c1)(1 + c2)
[
gbce(WH + b1T )− C

]
≥ − 1 + c1

n

(
c3
2

n∑
i=1

K∑
k=1

‖wk‖22 +
1

2c3

n∑
i=1

K∑
k=1

∥∥∥h̃i − h
(k)
i

∥∥∥2
2

)

−
(

1 + c1
N

(
K − 1

)
− 1 + c2

N

)(
c4
2

K∑
k=1

n∑
i=1

‖wk‖22 +
1

2c4

K∑
k=1

n∑
i=1

∥∥h(k)
i

∥∥2
2

)

−
(

1 + c1
K

(
K − 1

)
− 1 + c2

K

) K∑
k=1

bk (110)

= − 1 + c1
n

[
c3
2

n∑
i=1

K∑
k=1

‖wk‖22 +
1

2c3

n∑
i=1

( K∑
k=1

∥∥∥h(k)
i

∥∥∥2
2
−K

∥∥h̃i∥∥22)]

−
(

1 + c1
N

(
K − 1

)
− 1 + c2

N

)(
c4
2

K∑
k=1

n∑
i=1

‖wk‖22 +
1

2c4

K∑
k=1

n∑
i=1

∥∥h(k)
i

∥∥2
2

)

−
(

1 + c1
K

(
K − 1

)
− 1 + c2

K

) K∑
k=1

bk (111)

= − 1 + c1
n

(
c3
2

n∑
i=1

K∑
k=1

‖wk‖22 +
1

2c3

n∑
i=1

K∑
k=1

∥∥∥h(k)
i

∥∥∥2
2

)

−
(

1 + c1
N

(
K − 1

)
− 1 + c2

N

)(
c4
2

K∑
k=1

n∑
i=1

‖wk‖22 +
1

2c4

K∑
k=1

n∑
i=1

∥∥h(k)
i

∥∥2
2

)

−
(

1 + c1
K

(
K − 1

)
− 1 + c2

K

) K∑
k=1

bk +
1 + c1
2nc3

n∑
i=1

K‖h̃i‖22 (112)

= − 1 + c1
n

(
nc3
2
‖W ‖2F +

1

2c3

∥∥H∥∥2
F

)
−
(

1 + c1
N

(
K − 1

)
− 1 + c2

N

)(
nc4
2
‖W ‖2F +

1

2c4

∥∥H∥∥2
F

)
−
(

1 + c1
K

(
K − 1

)
− 1 + c2

K

) K∑
k=1

bk +
1 + c1
2nc3

n∑
i=1

K
∥∥h̃i∥∥22 (113)
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and the inequality becomes an equality if and only if

c3wk = h
(k)
i − h̃i, ∀ k ∈ [K], i ∈ [n], and (114)

c4wk = −h(k)
i , ∀ k ∈ [K], i ∈ [n], (115)

which can be achieved only when h̃i = 0.

Let ρ = ‖W ‖2F . Then, by using Lemma 1, we have ‖H‖2F = λW

λH
ρ, and

fbce(W ,H, b)

= gbce(WH + b1T ) +
λW

2
‖W ‖2F +

λH
2
‖H‖2F +

λb
2
‖b‖22 (116)

≥ − 1

n(1 + c2)

(
nc3
2
‖W ‖2F +

1

2c3

∥∥H∥∥2
F

)
−
(

K − 1

N(1 + c2)
− 1

N(1 + c1)

)(
nc4
2
‖W ‖2F +

1

2c4

∥∥H∥∥2
F

)
−
(

K − 1

K(1 + c2)
− 1

K(1 + c1)

) K∑
k=1

bk +
1

2nc3(1 + c2)

n∑
i=1

K
∥∥h̃i∥∥22 + C

+
λW

2
ρ+

λH
2

λW
λH

ρ+
λb
2
‖b‖22 (117)

= − 1

n(1 + c2)

(
nc3
2
ρ+

1

2c3

λW
λH

ρ

)
−
(

K − 1

N(1 + c2)
− 1

N(1 + c1)

)(
nc4
2
ρ+

1

2c4

λW
λH

ρ

)
−
(

K − 1

K(1 + c2)
− 1

K(1 + c1)

) K∑
k=1

bk +
1

2nc3(1 + c2)

n∑
i=1

K
∥∥h̃i∥∥22 + C + λW ρ+

λb
2
‖b‖22

(118)

=

[
λW −

1

n(1 + c2)

(
nc3
2

+
1

2c3

λW
λH

)
−
(

K − 1

N(1 + c2)
− 1

N(1 + c1)

)(
nc4
2

+
1

2c4

λW
λH

)]
ρ

+
λb
2
‖b‖22 −

(
K − 1

K(1 + c2)
− 1

K(1 + c1)

) K∑
k=1

bk +
1

2nc3(1 + c2)

n∑
i=1

K
∥∥h̃i∥∥22 + C (119)

=

[
λW −

1

n(1 + c2)

(
nc3
2

+
1

2c3

λW
λH

)
−
(

K − 1

N(1 + c2)
− 1

N(1 + c1)

)(
nc4
2

+
1

2c4

λW
λH

)]
ρ

+
λb
2

K∑
k=1

[
bk −

1

λb

(
K − 1

K(1 + c2)
− 1

K(1 + c1)

)]2
− 1

2λb

K∑
k=1

(
K − 1

K(1 + c2)
− 1

K(1 + c1)

)2

+
1

2nc3(1 + c2)

n∑
i=1

K
∥∥h̃i∥∥22 + C (120)

≥
[
λW −

1

n(1 + c2)

(
nc3
2

+
1

2c3

λW
λH

)
−
(

K − 1

N(1 + c2)
− 1

N(1 + c1)

)(
nc4
2

+
1

2c4

λW
λH

)]
ρ

+
λb
2

K∑
k=1

[
bk −

1

λb

(
K − 1

K(1 + c2)
− 1

K(1 + c1)

)]2
− 1

2Kλb

(
K − 1

1 + c2
− 1

1 + c1

)2

+ C

(121)

≥
[
λW −

1

n(1 + c2)

(
nc3
2

+
1

2c3

λW
λH

)
−
(

K − 1

N(1 + c2)
− 1

N(1 + c1)

)(
nc4
2

+
1

2c4

λW
λH

)]
ρ

− 1

2Kλb

(
K − 1

1 + c2
− 1

1 + c1

)2

+ C, (122)

where the inequality (121) achieves its equality if and only if

h̃i = 0, ∀i ∈ [n], (123)
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and the inequality (122) becomes an equality whenever either

λb = 0 or bk =
1

λb

(
K − 1

K(1 + c2)
− 1

K(1 + c1)

)
, ∀k ∈ [K]. (124)

Due to λb > 0 and c1, c2 are same for any k ∈ [K], therefore

bk = bj , ∀k, j ∈ [K]. (125)

Based on Eqs. (114) and (123), we have

c3wk = h
(k)
i ⇒ c23 =

∑n
i=1

∑K
k=1 ‖h

(k)
i ‖22∑n

i=1

∑K
k=1 ‖wk‖22

=
‖H‖2F
n‖W ‖2F

=
λW
nλH

⇒ c3 =

√
λW
nλH

; (126)

similarly, from Eq. (115), we get

c4wk = −h(k)
i ⇒ c24 =

∑n
i=1

∑K
k=1 ‖h

(k)
i ‖22∑n

i=1

∑K
k=1 ‖wk‖22

=
‖H‖2F
n‖W ‖2F

=
λW
nλH

⇒ c4 = −
√

λW
nλH

. (127)

Plugging them into Eq. (119), we get

fbce(W ,H, b)

≥
[
λW −

1

n(1 + c2)

(
nc3
2

+
1

2c3

λW
λH

)
−
(

K − 1

N(1 + c2)
− 1

N(1 + c1)

)(
nc4
2

+
1

2c4

λW
λH

)]
ρ

− 1

2Kλb

(
K − 1

1 + c2
− 1

1 + c1

)2

+ C (128)

=

[
λW −

(
1

n(1 + c2)
− K − 1

N(1 + c2)
+

1

N(1 + c1)

)(
n

2

√
λW
nλH

+
1

2

√
nλH
λW

λW
λH

)]
ρ

− 1

2Kλb

(
K − 1

1 + c2
− 1

1 + c1

)2

+ C (129)

=

[
λW −

(
1

n(1 + c2)
− K − 1

N(1 + c2)
+

1

N(1 + c1)

)√
nλW
λH

]
ρ

− 1

2Kλb

(
K − 1

1 + c2
− 1

1 + c1

)2

+ C (130)

=

[
λW −

(
1

N(1 + c2)
+

1

N(1 + c1)

)√
nλW
λH

]
ρ− 1

2Kλb

(
K − 1

1 + c2
− 1

1 + c1

)2

+ C (131)

which is desired. z

Lemma 4 Under the same assumptions of Lemma 3, the lower bound in Eq. (99) is achieved for
any critical point (W ,H, b) of Eq. (64) if and only if the following hold

‖w1‖ = ‖w2‖ = · · · = ‖wK‖, and b = b?1, (132)

h
(k)
i =

√
λW
nλH

wk, ∀ k ∈ [K], i ∈ [n], and h̃i =
1

K

K∑
k=1

h
(k)
i = 0,∀ i ∈ [n], (133)

WW T =
ρ

K − 1

(
IK −

1

K
1K1TK

)
, (134)

c1 = exp

(√
λW
nλH

ρ

K
− b?

)
, and c2 = exp

(
b? +

√
λW
nλH

ρ

K(K − 1)

)
, (135)

where b? is the solution of equation

λbb =

[
K − 1

K

(
1 + exp

(
b+

√
λW

nλH

ρ
K(K−1)

)) − 1

K

(
1 + exp

(√
λW

nλH

ρ
K − b

))
]
. (136)
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Proof With the proof of Lemma 3, to achieve the lower bound, it needs at least Eqs. (114), (115),
and (123) to hold, i.e.,

h̃i =
1

K

K∑
k=1

h
(k)
i = 0, ∀ i ∈ [n], and

√
λW
nλH

wk = h
(k)
i , ∀ k ∈ [K], i ∈ [n], (137)

and further implies
K∑
k=1

wk =

√
nλH
λW

K∑
k=1

h
(k)
i = 0. (138)

Then,

c1 = exp
(
wT
k h

(k)
i − bk

)
= exp

(√ λW
nλH

∥∥wk

∥∥2
2
− bk

)
, ∀k ∈ [K], (139)

c2 = exp
(
bj −wT

j h
(k)
i

)
= exp

(
bj −

√
λW
nλH

wT
kwj

)
, ∀j 6= k ∈ [K], (140)

Since that c1, c2 are chosen to be the same for any j 6= k ∈ [K], therefore,√
λW
nλH

∥∥wk

∥∥2
2
− bk =

√
λW
nλH

∥∥wj

∥∥2
2
− bj , ∀k, j ∈ [K], (141)√

λW
nλH

wT
kwj − bj =

√
λW
nλH

wT
kw` − b`, ∀j 6= ` ∈ [K],∀k ∈ [K], (142)

With the proof of Lemma 2, to achieve the lower bound, it needs at least Eqs. (91) to hold, then,√
λW
nλH

∥∥wk

∥∥2
2
− bk

(138)
= −

√
λW
nλH

∑
j=1
j 6=k

wT
j wk − bk (143)

(142)
= −

√
λW
nλH

K∑
`=1
` 6=k

wT
kw` − bk +

∑
j=1
j 6=k

(b` − bj) (144)

= −(K − 1)

√
λW
nλH

wT
kw`︸ ︷︷ ︸
` 6=k

−2bk + (K − 1)b` −Kb̄ (145)

(141,142)
=⇒ −2bk + (K − 1)b` −Kb̄ = −2b` + (K − 1)bj −Kb̄ (146)
⇐⇒ bk = b`, ∀` 6= k ∈ [K], (147)

which is conforming to Eq. (125) when λb > 0. Then, combining with Eqs. (141) and (138),∥∥wk

∥∥2
2

=
∥∥wj

∥∥2
2

=
‖W ‖2F
K

=
ρ

K
, ∀k, j ∈ [K], (148)

∥∥wk

∥∥2
2

= −(K − 1)

K∑
j=1
j 6=k

wT
kwj ⇒ wT

kwj = − 1

K − 1

ρ

K
, ∀j 6= k ∈ [K]. (149)

Therefore,

WW T =
ρ

K − 1

(
IK −

1

K
1K1TK

)
. (150)

Plugging (148) and (149) into (139) and (140)

c1 = exp
(√ λW

nλH

ρ

K
− b
)
, (151)

c2 = exp
(
b+

√
λW
nλH

ρ

K(K − 1)

)
, (152)
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where b = bk = bj . When λb > 0, substitute Eqs. (151) and (152) into (124), we have

b =
1

λb

(
K − 1

K(1 + c2)
− 1

K(1 + c1)

)
(153)

=
1

λb

[
K − 1

K

(
1 + exp

(
b+

√
λW

nλH

ρ
K(K−1)

)) − 1

K

(
1 + exp

(√
λW

nλH

ρ
K − b

))
]
. (154)

When λb = 0, substitute Eq. (137) into

∂fbce

∂bk
=

1

nK

(
n−

K∑
j=1

n∑
i=1

1

1 + e−wkh
(j)
i +bk

)
= 0, ∀k ∈ [K], (155)

we have

0 =
K − 1

K

(
1 + exp

(
b+

√
λW

nλH

ρ
K(K−1)

)) − 1

K

(
1 + exp

(√
λW

nλH

ρ
K − b

)) , (156)

by combining with Eqs. (148) and (149). z

Lemma 5 The equation

λb b =
K − 1

K

(
1 + exp

(
b+

√
λW

nλH

ρ
K(K−1)

)) − 1

K

(
1 + exp

(√
λW

nλH

ρ
K − b

)) (157)

has only one solution.

Proof A number b? is a solution of equation (157) if and only if it is a solution of

β1(b)︷ ︸︸ ︷
λbKb+

1

1 + exp
(√

λW

nλH

ρ
K − b

) =

β2(b)︷ ︸︸ ︷
K − 1

1 + exp
(
b+

√
λW

nλH

ρ
K(K−1)

) . (158)

When λb > 0,

β1(b)→ −∞, β2(b)→ K − 1 as b→ −∞ (159)
β1(b)→ +∞, β2(b)→ 0 as b→ +∞, (160)

and if λb = 0,

β1(b) = 0, β2(b)→ K − 1 as b→ −∞ (161)
β1(b)→ +∞, β2(b)→ 0 as b→ +∞. (162)

Therefore, the curves of β1(b) and β2(b) must intersect at least once in the plane, i.e., the equations
(157) and (158) have solutions.

In addition,

dβ1(b)

db
= λbK +

exp
(√

λW

nλH

ρ
K − b

)
(

1 + exp
(√

λW

nλH

ρ
K − b

))2 > 0, (163)

dβ2(b)

db
= −

(K − 1) exp
(
b+

√
λW

nλH

ρ
K(K−1)

)
(

1 + exp
(
b+

√
λW

nλH

ρ
K(K−1)

))2 < 0, (164)

i.e., β1(b) is strictly increasing, while β2(b) is strictly decreasing. Therefore, they can intersect at
only one point. z
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Lemma 6 When the class number K > 2 and

λb

√
λW
nλH

ρ

K − 1
+

1

2(K − 1)
>

1

1 + exp
(√

λW

nλH

ρ
K−1

) , (165)

the final critical bias b? could uniformly separate the all positive decision scores{
w?T
k h

(k)?
i : k ∈ [K], i ∈ [n]

}
(166)

and the all negative decision scores{
w?T
j h

(k)?
i : k, j ∈ [K], i ∈ [n], k 6= j

}
, (167)

where

W ? =
[
w?

1 ,w
?
2 , · · · ,w?

K

]T
(168)

H? =
[
h
(1)?
1 , · · · ,h(1)?

n , · · · ,h(K)?
1 , · · · ,h(K)?

n

]
(169)

b? = (b?, b?, · · · , b?)T = b?1K (170)

form the critical point of function f(W ,H, b) in Eq. (64).

Proof According to Lemma 4, for the critical point (W ?,H?, b?), we have

w?T
k h

(k)?
i =

√
λW
nλH

ρ

K
, ∀k ∈ [K], i ∈ [n] (171)

w?T
j h

(k)?
i = −

√
λW
nλH

ρ

K(K − 1)
, ∀k, j ∈ [K], i ∈ [n], k 6= j. (172)

Let bneg = −
√

λW

nλH

ρ
K(K−1) , bpos =

√
λW

nλH

ρ
K . Then, the critical b? separating the all positive and

negative score if and only if

bneg = −
√

λW
nλH

ρ

K(K − 1)
< b? <

√
λW
nλH

ρ

K
= bpos (173)

which, according to the proof of Lemma 5, is equivalent to

β1(bneg) < β2(bneg) and β1(bpos) > β2(bpos). (174)

Due to

β1(bneg) < β2(bneg)⇔ −λb
√

λW
nλH

ρ

K − 1
+

1

1 + exp
(√

λW

nλH

ρ
K−1

) < K − 1

2

⇐ 1

1 + e0
<
K − 1

2
⇐ 2 < K (175)

β1(bpos) > β2(bpos)⇔ λb

√
λW
nλH

ρ+
1

2
>

K − 1

1 + exp
(√

λW

nλH

ρ
K−1

) (176)

⇔ λb

√
λW
nλH

ρ

K − 1
+

1

2(K − 1)
>

1

1 + exp
(√

λW

nλH

ρ
K−1

) , (177)

it completes the proof. z
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S-4 MORE DISCUSSION ABOUT DECISION SCORES IN THE TRAINING

In the training, the decision scores are updated along the negative direction of their gradients during
the back propagation stage, i.e.,

wkh
(k) ← wkh

(k) − η ∂fµ(W ,H, b)

∂
(
wkh(k)

) , ∀k ∈ [K], (178)

wjh
(k) ← wjh

(k) − η ∂fµ(W ,H, b)

∂
(
wjh(k)

) , ∀j 6= k ∈ [K], (179)

where η is the learning rate, and µ ∈ {ce, bce}.
In the training with CE, the updating formulas are

wkh
(k) ← wkh

(k) + η

(
1− ewkh

(k)−bk∑
` ew`h(k)−b`

)
, (180)

wjh
(k) ← wjh

(k) − η ewjh
(k)−bj∑

` ew`h(k)−b`
. (181)

Then, for the samples with diverse initial decision scores, it is difficult to update their decision scores
to the similar level, if they own the similar predicted probabilities belong to each categories.

In the training with BCE, the updating formulas are

wkh
(k) ← wkh

(k) + η

(
1− 1

1 + e−wkh(k)+bk

)
, (182)

wjh
(k) ← wjh

(k) − η 1

1 + e−wjh(k)+bj
. (183)

Then, for the sample with small positive decision score wkh
(k), its predicted probability

1

1+e−wkh(k)+bk
to its category will be also small, and the score updating amplitude η

(
1 −

1

1+e−wkh(k)+bk

)
will be large; in contrary, for the sample with large positive score wkh

(k), the

probability 1

1+e−wkh(k)+bk
will be also large, and the updating amplitude η

(
1 − 1

1+e−wkh(k)+bk

)
will be small. This property helps to update the all positive decision scores to be in uniform high
level.

Similarly, for the sample with large negative decision score wjh
(k), its predicted probabil-

ity 1

1+e−wjh
(k)+bj

to other category will be also large, so is the score updating amplitude

η 1

1+e−wjh
(k)+bj

; in contrary, for the sample with small negative score wjh
(k), the probability

1

1+e−wjh
(k)+bk

will be small, so is the updating amplitude η
(

1 − 1

1+e−wjh
(k)+bk

)
. This property

helps to update the all negative decision scores to be in uniform low level.
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