Under review as a conference paper at ICLR 2025

A APPENDIX ORGANIZATION

Our anonymized code is provided with our paper submission. Due to space limitations (our complete
results are over 4GB), we have provided two of the batches of the zero-shot prompting results and
FOLIO and LogiEval datasets.

The appendix is organized as follows. Appendix [B|provides the algorithm used for dataset generation.
Appendix [C] discusses prompt tuning and validating our prompts on 3SAT. Appendix [D] provides
the parameters we used when generating the five datasets discussed in the paper. Appendix [E]
provides additional information on our experimental setup, including the computational resources
used. Appendix [F]discusses the prompts and provides examples. Appendix [G]is our detailed analysis
of the empirical results from the main paper. Appendix [H|discusses an experiment we ran to evaluate
the standard deviation error. Appendix [[|includes additional results from our zero-shot prompting
experiments using other metrics for categorization. Appendix [J|evaluates an experiment we performed
comparing few-shot prompting compared to zero-shot. Finally, Appendix [K]provides the experimental
setup of the benchmarks we evaluated, data values and sources of scores collected, the Yuto3VAL
scores used for comparison, and additional correlation results.

B DATASET GENERATION

In this section, we provide the algorithm for generating formal syntax (FS) expressions and show that
it can generate all possible expressions from the grammar and vocabulary.

Our approach, YutodVAL, generates datasets by constructing a context-free grammar (CFG) tree
using the grammars discussed in Section[d} Since it is intractable to generate the full tree, we control
the branching factor and randomly expand the branches of this tree to generate formulae.

Algorithm 1 Dataset Generation

1: Inputs: CFG G, vocabulary V, branching factor n, tree depth depth, sample count sample_count,
and categorization metric m.
. Outputs: set of FS expressions
¢ N« {0: [None]}, Ny < ()
ford=1,2,...,depth do
N’ + sampleN(N'[d — 1],n)
for v € N do
N, T, < generateNChildren(v,G,n)
Nd] += N,
9: Ny — N, UT,
10: end for
11: end for
12: M <« categorizeExpressionsintoDict(Ny, m)
13: @<+ ()
14: for k € keys(M) do
15: My, < sampleCFGExpressions(M [k, sample_count)
16: @y, < buildFSExpressions(Mj,, V)
17 P+ pUp,
18: end for
19: Return:

A A

The dataset generation algorithm is shown in Algorithm[I] This algorithm constructs a CFG tree
by maintaining non-terminal nodes at each tree level (V) and all the leaf nodes (N;), where each
terminal node represents a completed CFG expression (line 3). For generating nodes at a certain level
in the tree, n nodes from the previous level are sampled (line 5). Each node is branched n times
using the CFG to produce nodes at the current tree level, and all the leaf nodes are collected (lines 7
through 9). As a result, by iteratively performing this process for each tree level, we obtain a set of
leaf nodes (CFG expressions).

The leaf nodes are then categorized based on the specified metric (e.g., tree depth, number of operators,
etc.) (line 12). For each metric value, a fixed number of CFG expressions corresponding to that

15

Under review as a conference paper at ICLR 2025

value are sampled (line 15). Using the vocabulary, an FS expression is constructed from each CFG
expression (line 16). Consequently, the final dataset of FS expressions contains an equal number for
each metric value (line 17). This set of FS expressions is the final result produced by the algorithm
(line 19).

The vocabulary is fixed in length, with a hyperparameter controlling the number of unique propositions
for propositional logic. Similarly, for first-order logic, the number of unique variables, constants, and
predicates are also hyperparameters. Also, regular expressions have a hyperparameter controlling
the alphabet size. When these expression components are needed for building the FS expression,
the exact one is selected using uniform random selection. In the special case of first-order logic
predicates, the grounded predicate is generated by randomly selecting a predicate and then selecting
constants depending on the predicate’s arity. In the case of the arbitrary vocabulary, the arity for a
predicate is randomly assigned. To add variables, each constant has a certain probability of being
replaced by a variable.

Guaranteed Expression Coverage The dataset generator (Algorithm[I) is guaranteed to generate all
possible formal syntax expressions that can be produced for a grammar and vocabulary. Let ¢ be
an FS expression that can be constructed using the rules from CFG G and the vocabulary). Note
that ¢ corresponds to a CFG expression ¢crg, derived by substituting the vocabulary with the CFG
symbols. Due to uniform selection, the probability of ¢ being generated from ¢ is greater than
zero. Furthermore, the CFG expression represents a leaf node in the CFG tree that can be reached by
applying the CFG rules in a specific sequence. Due to the random sampling of rules at each node,
there is a non-zero probability of generating this particular path in the tree. Thus, ¢ can be generated
using the dataset generator algorithm.

C 3-SAT PROMPT CALIBRATION

In this section, we discuss the KSAT results used to calibration the prompts.

We tested several prompts for 3-SAT to verify that our prompts are sufficient to prompt the LLM
to correctly perform informalization and autoformalization. Additionally, we verified that the
equivalence verification prompt prompted the LLMs to give an accurate yes-or-no answer. The
performance of all six LLMs on 3-SAT for §A2, §A3, and §A4 are shown in Figure

***** ChatGPT —— GPT-40 === GPT-40-mini Phi Mistral LLama3
3-SAT(12)

§A2: Syntactic
Compliance

2 1,00 e ———————— —
K075
& 0.50
4 0.2
Z0.00

0 10 20 30 40 50 60

of Operators: A, V,— (< is counted as an operator iff not succeeded by a terminal)

Figure 7: Zero-shot Pass@1 results (avg. over 10 batches, higher values better) for 3-SAT from using
VutodVAL to assess LLMs w.r.t. §A2, §A3, §A4 (Sec. on the packaged datasets. The x-axis is the
of operators.

The best-performing models we tested (GPT-40 and GPT-40-mini) achieved nearly perfect syntactic
compliance, accuracy, and equivalence verification even as the number of operators increased. This

16

Under review as a conference paper at ICLR 2025

proves that the prompts we used in our experiments are sufficient for prompting the model for
performing the tasks for §A2, §A3, and §A4.

For the other LLMs tested, syntactic compliance and accuracy diminished as the number of operators
increased. However, when evaluating the equivalence of GPT-40 results, all LLMs achieved near-
perfect accuracy regardless of operator number. Due to most of GPT-4o results being positive cases,
the results support that LLLMs can verify two equivalent 3-SAT formulae as equivalent.

D DATASET GENERATION HYPERPARAMETERS

In Table[T} we provide the hyperparameters used to generate the five datasets.

Table 1: Hyperparameters used for producing the five datasets.

Parameter Type Hyperparameter Value Description
depth 40 Maximum depth of the CFG tree.
General n 200 Branching factor of produced CFG
tree.
sample_count 50 Number of CFGS for each metric

value to select.

free_variable_prob 0.25 Probability of a constant being re-

placed by a variable.
. . max_free_variables oo Maximum number of unique variables.
First-Order Logic X . : - .
max_predicate_arity 2 Maximum predicate arity.
min_predicate_arit 1 Minimum predicate arity.
num_objects 12 Number of unique constants.
num_predicates 8 Number of unique predicates.
Propositional Logic num_propositions 12 Number of unique propositions.
Regular Expression alphabet_size 2 Alphabet size.

E EXPERIMENTAL SETUP

In this section, we will provide the details of our experimental setup for generating the datasets and
running Yuto3VAL for evaluating each LLM’s performance.

We ran our experiments using Python 3.10.13 with package versions shown in Table[2] We also
repackaged Prover9 (McCune, 2010) to improve performance where this repackaged version can be
found in our code base.

Dataset Generation: We generated five datasets using the
dataset generation algorithm with the hyperparameters shown in Table 2: Python package versions
Table[T]using the number of operators as the categorization metric used for empirical evaluation.

for all but regular expression, where we used CFG tree depth. We
generated 10 batches for each dataset, resulting in approximately

Python Package Version

20k samples for each dataset with an equal distribution for each ~ openai 1.45.0
operator number. nltk 3.8.1
tgdm 4.66.4
Evaluating and Verification: The closed-source models (GPT- _, ropic 0.26.1
3.5-turbo, GPT-40, and GPT-40-mini) were accessed using their ko fF 221
API using a temperature of 0.1. The open-source models LLama- i %t gken 0.6.0
3-8B-Instruct and Mistral-v0.2-7B-Instruct were locally hosted - onsformers 4.41.1
on a server with a 13th Gen Intel(R) Core(TM) i19-13900K and TElkEE 2520
Nvidia RTX 4090 GPU using the model’s default parameters networkx 33

with a temperature of 1. Similarly, Phi-3-medium-4k-instruct was
locally hosted on a server using a Nvidia A100-XM4-80GB GPU.

17

Under review as a conference paper at ICLR 2025

Prompt 2: Few-Shot First-Order Logic Informalization Prompt

[TASK]

Your task is to convert a first-order logic formula, appearing after [FORMULA], to a natural
description that represents the formula. Only natural language terms are allowed to be used
and do not copy the formula in your description. Your description should allow one to
reconstruct the formula without having access to it, so make sure to use the correct names in
your description. Explicitly describe the predicates. You may use terms verbatim as specified
in the vocabulary below.

[EXAMPLE 1]

(=p2 V pl VvV —p2)

Disjunctive predicate logic expression consisting of three components: the negation of a
proposition labeled p2, the proposition pl, and again the negation of p2.

[EXAMPLE 2]

(m=p2 A —(p3 V pl))
The expression asserts that p2 is not false while both p3 and p1 are not true.

[VOCABULARY]

V represents disjunction

A represents conjunction

- represents negation

(‘and) represent parentheses

propositions can be used verbatim

predicates can be used verbatim

V <zl >< 22 > ... < xn > .represents universal quantification with x1... representing
free variables

d<zl >< 22 > ... < xn > .represents existential quantification with x1... representing
free variables

The objects are: p5, xl

The parameterized predicates are: pred3(?p0, 7pl)

The free variables are: x1

[FORMULA]
Val pred3(p5, z1)

Verification was performed on an AMD EPYC machine with 128
cores.

F PROMPTING

In this section, we provide the zero-shot and few-shot used in the main paper experiments.

The prompt for each dataset type provides the LLM with information on the problem type and the
vocabulary. For informalization, we prompt the model to produce just a natural language description.
We also provide the list of objects, predicates, propositions, and free variables in the formal syntax
expression. For autoformalization, the LLM is prompted to provide just the formal syntax expression
using the natural language description. Additionally, for first-order logic with a non-synthetic
grammar, we provide the predicate names and arity in the autoformalization prompt. Two examples
are provided for few-shot prompting.

For §A4, the prompt used for using an LLM to verify the equivalence of two formulae tells the
LLM about the type of datasets (e.g., propositional logic, first-order logic, and regular expression).
Using Chain-of-Thought prompting, the model is prompted to provide an explanation before giving a
yes-or-no answer in a parsable format. Below are examples of the exact prompts used.

18

Under review as a conference paper at ICLR 2025

Prompt 3: Few-Shot First-Order Logic Autoformalization Prompt

[VOCABULARY]

Use V to represent disjunction

Use A to represent conjunction

Use — to represent negation

Use (and) to represent parentheses

Use V <free_variable_list> to represent universal quantification

Use d <free_variable_list> to represent existential quantification

The <free_variable_list> consists of a sequence of space separate free variables with the last
variable immediately followed by a period. Examples: (1) all x1 x2. (2) exists x4.

Use <predicate>(<parameter_list>) to represent predicates (Names and parameters are
provided in the description)

[TASK]

Your task is to interpret the natural language (NL) description of a first-order logic formula
and represent it as formal syntax using the vocabulary specified in the [VOCABULARY]
block above. Only output the formula and no other text. The NL description appears
immediately following the [NL DESCRIPTION] tag.

[EXAMPLE 1]
Disjunctive predicate logic expression consisting of three components: the negation of a
proposition labeled p2, the proposition pl, and again the negation of p2.

(=p2 V pl Vv —p2)

[EXAMPLE 2]
The expression asserts that p2 is not false while both p3 and p1 are not true.

(==p2 A =(p3 V pl))

[NL DESCRIPTION]
For all objects labeled x1, the predicate pred3 holds true with parameters p5 and x1.

G ANALYSIS OF MAIN PAPER RESULTS

In this section, we analyze the main empirical results of the paper. Our results clearly show that
current SOTA LLMs are not performant in the truth maintenance task, which is why Vuto3VAL is
needed. As the expression complexity increases, the syntactic compliance, accuracy, and ability
to verify equivalence diminishes. We describe some of the errors that cause the low accuracy for
propositional logic, first-order logic, and regular expressions.

G.1 PROPOSITIONAL LOGIC RESULTS

Informalization Errors: A common error was the LLM failed to describe the proposition names.
Another was the LLM failing to provide a complete description of the formula. For example, GPT-
3.5-turbo often described portions of the expression based on what propositions and operators it
contained. A common issue with GPT-40, one of the best models, is that it often uses different
propositional symbols (see example 5 in Table[3). Finally, we also observed hallucinations were
the LLM attempted and failed to simplify the original formula (see example 4 in Table[3). These
interpretation errors resulted in the original meaning of the expression being lost.

Autoformalization Errors: We observed there were often syntactic issues where the description was
not fully translated into a formula or the parentheses did not match. An interesting result is that the
LLMs struggled to place the negation operator in the correct location. For example, GPT-40 often
describes —p A —p as predicate p "negated twice and combined" but failed to regenerate the original
formula properly with this description.

19

Under review as a conference paper at ICLR 2025

Prompt 4: Few-Shot Regex Informalization Prompt

[TASK]

Your task is to convert the regular expression appear after [REGEX], to a natural description
that represents the regular expression. Only natural language terms are allowed to be used
and do not copy the regular expression in your description. Your description should allow
one to reconstruct the regular expression without having access to it, so make sure to use the
correctly account for scoping. You may use terms verbatim as specified in the vocabulary
below.

[VOCABULARY]
you may use symbols from the vocabulary
you can use *

[EXAMPLE 1]

(1%)0*

The regex matches strings that starts with any number (including none) of the digit *1°,
followed by any number (including none) of the digit *0’.

[EXAMPLE 2]

(01%)

The regex matches strings that begin with a ’0’ followed directly by any number (including
none) of 1’s.

[FORMULA]
0

Few-Shot Regex Autoformalization Formal [VOCABULARY]
Use * to represent zero or more duplications of the same expression
Use (and) to represent parentheses

[TASK]

Your task is to interpret the natural language (NL) description of a regular expression and
represent it as formal syntax using the vocabulary specified in the [VOCABULARY] block
above. Only output the regular expression and no other text. The NL description appears
immediately following the [NL DESCRIPTION] tag.

[EXAMPLE 1]

The regex matches strings that starts with any number (including none) of the digit ’1°,
followed by any number (including none) of the digit *0’.

(1%)0*

[EXAMPLE 2]

The regex matches strings that begin with a ’0’ followed directly by any number (including
none) of '1’s.

01%)

[NL DESCRIPTION]
The regex matches strings that start with the digit *0’.

G.2 FIRST-ORDER LOGIC RESULTS

Informalization Errors: Similar to propositional logic, we observed the LLM often failed providing
enough details resulting in incorrect formulas being generated. A significant source of errors we

20

Under review as a conference paper at ICLR 2025

Prompt 6: Zero-Shot Propositional Logic Informalization Prompt

[TASK]

Your task is to convert a propositional logic formula, appearing after [FORMULA], to a
natural description that represents the formula. Only natural language terms are allowed to be
used and do not copy the formula in your description. Your description should allow one to
reconstruct the formula without having access to it, so make sure to use the correct names in
your description. Explicitly describe the predicates. You may use terms verbatim as specified
in the vocabulary below.

[VOCABULARY]

V represents disjunction

A represents conjunction

- represents negation

(‘and) represent parentheses
propositions can be used verbatim
The propositions are: pS, pl2, p4

[FORMULA]
(p5 VvV —pl2 V —pd)

Prompt 7: Zero-Shot Propositional Logic Autoformalization Prompt

[TASK]

Your task is to interpret the natural language (NL) description of a propositional logic formula
and represent it as formal syntax using the vocabulary specified in the [VOCABULARY]
block above. Only output the formula and no other text. The NL description appears
immediately following the [NL DESCRIPTION] tag.

[VOCABULARY]

Use V to represent disjunction

Use A to represent conjunction

Use — to represent negation

Use (and) to represent parentheses

[NL DESCRIPTION]
A disjunctive statement involving three propositions: p5, the negation of pl12, and the
negation of p4.

observed when not providing the predicate names and arity was the LLM rephrasing its explanation
causing confusion when regenerating.

Autoformalization Errors: Beyond the errors observed in propositional logic, the most common
mistake made during autoformalization was the LLM confusing constants with variables (see example
2 in Tablef)). Additionally, the LLMs often messed up the predicate arity. Mistral often used = and
= operators with the variables, which was not needed for any formluae in Vuto3dVAL. Similarly, the
LLMs would often use their own grammar instead of the one provided in the prompt.

G.3 REGULAR EXPRESSION RESULTS

Informalization Errors: Most of the errors observed were the LLMs giving the wrong explanation,
even for simple regular expressions. For example, GPT-40 often described c* as "one or more
occurrences of 'c’", where c is a character from the alphabet (see example 1 in TableE[). For the
other LLMs, it was quite common for the explanation to not give the actual character (see example
4 in Table[5). Overall, we observed a higher likelihood of SOTA LLMs hallucinating on regular
expressions compared to the other datasets.

21

Under review as a conference paper at ICLR 2025

Prompt 8: First-Order Logic Verification Prompt

Your task is to say whether two First-Order Logic formulae are equivalent. The first formula
will appear right after [FORMULA 1] and the second after [FORMULA 2].

Give an explanation followed by a yes or no answer. The answer must show up at the end
with the format "[Answer]" followed by either a yes or no.

[Formula 1]
Jz1.—pred5(pT)

[Formula 2]
Ip7.—pred5(p7)

Table 3: Examples of errors the evaluated LLMs made while evaluating Yuto3VAL for the proposi-
tional logic dataset.

@ Z(yp) (AoT)(¢)
The natural description of the formula is:
(—pll A —p8) "It is not the case that both proposition p11 (=(p11 A p8))

and proposition p8 are true."

The natural description of the formula is:

"It is not the case that proposition p10 is true
and either proposition p9 is false or
proposition p7 is true."

Here is the natural description of the given
(=p3 A —p7) formula: "The statement says that p3 is not (=p3 V —pT)
true and p7 is also not true."

The formula states that either the proposition
p2 is true or the proposition p3 is true.
Additionally, it specifies that the proposition
p2 is not false.

The formula describes a situation where the
first proposition is false, the second
proposition is true, and the third proposition
is false.

(=p10 A (=p9 V pT7)) =(p10 A (=p9 V p7))

(=—p2 Vv p3) (P2 V p3) A =—p2

(—p2 A p5 A —pb) (~pAgA-r)

Autoformalization Errors: The most common mistake when constructing a regular expression from
natural language was misplacing * or adding it when it was not needed (see example 3 in Table[3).
Finally, even though we explicitly prompted the LLMs to use just *, sometimes the LLM would use
+.

H STANDARD DEVIATION EVALUATION

In this section, we perform an empirical analysis of the standard deviation of the syntactic compliance
and accuracy of the Vuto3VAL results. Due to the 10 batches having different data, the standard
deviation cannot be computed reliably based on the performance of the individual batches. We
evaluated the standard deviation by running Yuto3VAL 10 times on the first batch of each dataset
composed of 1974 propositional logic, 1900 first-order logic, and 1842 regular expressions examples.
Additionally, we evaluated GPT-3.5-turbo (ChatGPT) with a temperature of 1, LLama-3-8B-Instruct,
Mistral-v0.2-7B-Instruct, and Phi-3-medium-4k-instruct. We calculated the mean and standard
deviation of each independent run of Vuto3VAL and plotted the results in Figure[8]

For propositional and first-order logic, the standard deviation of the evaluated LL.Ms is low. While
noisier, the standard deviation of the regular expression results were still less than 20% with the
better performing models having a lower standard deviation. Overall, this experiment shows that the

22

Under review as a conference paper at ICLR 2025

Table 4: Examples of errors the evaluated LLMs made while evaluating Vuto3VAL for the first-order
logic dataset.

@ Z(») (AoT)(y)

The formula states that it is not the case
that the predicate pred8 holds for the

(—pred8(pl0) A pred8(p5) object p10, and the predicate pred8 X(p Tigi(%o)
Apred6(p8)) holds for the object p5, and the pre a6 P 3
predicate pred6 holds for the object p8, Apradsipt)]
all conjoined together.
Here is the natural description of the
Jzl.—pred2(p4) given formula: "There exists an x1 such ~ Jzl.—pred2(z1)
that p4 is not an instance of pred?2.
For all x1, it is not the case that Val.=(pred3(pb
Yol sapreds(po) pred3(p5) is false. \/ﬁpre(d?)(pf))() :
There exists a relationship between the
pred2(p3, pb) objects p3 and p5 such that the predicate Ip3 p5.pred2(p3, p5)

pred2 holds true for these objects.

Table 5: Examples of errors the evaluated LLMs made while evaluating with Yuto3VAL for the
regular expression dataset.

% Z(») (AoT)(p)
The pattern consists of one or more occurrences of the digit

0 "1" followed by exactly one occurrence of the digit "0". (1%)10
The regular expression describes a sequence that consists of
(1%)%0 zero or more repetitions of the digit *1°, followed by exactly ((1%)0)*

one ’0’. This entire pattern can repeat any number of times,

including zero times.

The pattern consists of zero or more occurrences of the

1*11* digit ’1’, followed by exactly one occurrence of the digit *1°, 1*1*1*
followed by zero or more occurrences of the digit °1°.

Zero or more occurrences of the character or group of "
characters before the asterisk. (")

noise of non-deterministic text generation does not significantly impact Yuto3VAL or our results and
evaluations.

I ADDITIONAL ZERO-SHOT PROMPTING RESULTS

In this section, we evaluate other categorization metrics from the zero-shot prompting experiments
from the main paper. For the propositional and first-order logic datasets, the other categorization
metrics are the CFG parse tree depth needed to produce each FS expression and the individual number
of each operator (A, V, —). For regular expressions, we have discussed in the main paper that each
regular expression represents a minimal DFA that is unique up to isomorphism. Therefore, the other
categorization metrics for regular expressions are the number of nodes V', the number of edges E,
and the density of this minimal DFA. The density is calculated using Equation[T| where we discretize
the value by rounding to every tenth.

|E|

D ity = ———m—
Y= VIV - 1)

ey

Imbalanced Dataset Labels Due to the datasets being created by sampling an equal number of
expressions for each number of operators, taking this dataset and evaluating it in terms of the other

23

Under review as a conference paper at ICLR 2025

***** ChatGPT Phi Mistral LLama3
3-SAT(12) Propositional Logic(12) FOL(8,12)—S FOL(8,12)—E Regular Expression(2)

g
=3
S

T A SR A AN

{
i
I
I
i
I

[
S o
v
1
\

§A2: Syntactic
Compliance
R

S =2 2
[=J)
S

,_
-2
o3

e e

§A3: Accuracy
o &
o o
i
!
¢
i

o
=
S

0 10 20 30 40 50 600 10 20 30 400 10 20 30 400 10 20 30 400 10 20 30 40

of Operators: A,V, - (= is counted as an operator iff not succeeded by a terminal) CFG Parse Tree Depth

Figure 8: Average and standard deviation error of Zero-shot Pass@1 results from using Yuto3VAL
to assess LLMs w.r.t. §A2 and §A3 (Sec.fd) on the first batch of the packaged datasets. The x-axis
represents an increasing order of descriptional complexity.

metrics results in an imbalanced dataset. To examine this effect, we have created Figures|§| and@ to
perform an analysis of dataset imbalance on these other metrics.

For propositional and first-order logic, the dataset is actually quite balanced due to CFG tree depth
and the number of each individual operator having a high correlation to the total number of operators.
As such, other than metric values close to the extrema, the noise from the imbalanced data will be
marginal.

The regular expression dataset is less balanced due to a weaker correlation with the CFG tree depth.
The middle of the density graphs will be the most noisy since there is significantly less data for
densities of 0.1 and 0.2. The number of examples drops as the number of edges and nodes increases
with less than 10% of the data having more than 7 edges and/or nodes.

Density # of Edges # of Nodes

0 1 1

Regular Expression(2)

02 3 4 3 4

Figure 9: Count of the number of examples for each metric value for the regular expression datasets.
The pie charts increase in values counter-clockwise while going from lighter to darker.

Categorization Metrics Performance In Figures[IT] [T2T3] [T4] and [T3]the performance of each
LLM over these other categorization metrics are shown. Across the board, we observe a diminishing
performance regardless of the source of increasing complexity. Ignoring the noise from the low
number of examples closer to the extrema, the depth of the tree showed a similar behavior as the
operator number. Propositional logic performance was concave w.r.t the number of A and V operators
since it becomes easier to describe expressions composed of exclusively A and V operators. A similar,
but weaker pattern is observed in the first-order logic results for the same reason. The negation
operator was not concave, showing how LLMs struggle to handle multiple negation operators.

For regular expressions, increasing the number of nodes and edges reduces accuracy and the ability
to evaluate equality. Density does not seem to be a factor, as the dip at 0.1 can be associated with
noise due to the lower number of examples. Overall, these three metrics are much weaker factors in
how well the LLM performs compared to the CFG tree depth.

24

Under review as a conference paper at ICLR 2025

CFG Parse # of # of # of

Tree Depth A operator V operator — operator
1-12 10 4 4 6
13141 9104 5 3 5 3 s I 5
15-16

© 18
o PR | 1
O Y1920 8
=N 12 0
5O 8 9
8 .O»
a 0 39-40 17+ 4
o9 »nu
= — 16
o 2526 37-38 n
~ 314 1L
— 15167 910
) 17-18
N —~
2 751920
o0 -5
9)
©
4 o
o
O So30a
So32
Ton
O ~— 2526
5
wn
=
[

14
1516

Eng

First-Order Logic(8,12)
(English

Figure 10: Count of the number of examples for each metric value for each of the datasets. Each row
is a dataset and each column is a different metric that can be used to categorize the dataset. The pie
charts increase in value counter-clockwise while going from lighter to darker.

----- ChatGPT — GPT-40 ——= GPT-40-mini -~ Phi — = Mistral LLama3
Propositional Logic(12) FOL(8,12)—S FOL(8,12)—E Regular Expression(2)

~ T

§A2: Syntactic
Compliance
o O O =

CFG Parse Tree Depth

Figure 11: Zero-shot Pass@1 results (avg. over 10 batches, higher values better) from using Yuto3VAL
to assess LLMs w.r.t. §A2, §A3, §A4 (Sec.[) on the packaged datasets. The x-axis is the depth of the
CFG tree to produce the formula.

25

Under review as a conference paper at ICLR 2025

***** ChatGPT —— GPT-40 === GPT-40-mini Phi ~ = Mistral LLama3
Propositional Logic(12) FOL(8,12)—S FOL(8,12)—E

§A2: Syntactic
Compliance

of Operators: A

Figure 12: Zero-shot Pass @1 results (avg. over 10 batches, higher values better) from using Yuto3VAL
to assess LLMs w.r.t. §A2, §A3, §A4 (Sec.@) on the packaged datasets. The x-axis is the number of
and operators (A) in the expression.

***** ChatGPT —— GPT-40 — == GPT-40-mini Phi ~ = Mistral LLama3
Propositional Logic(12) FOL(8,12)—S FOL(8,12)—E

S a3

§A2: Syntactic
Compliance

S

o o wu o
S

I e vl
S

=
<t

of Operators: V

Figure 13: Zero-shot Pass @1 results (avg. over 10 batches, higher values better) from using Vuto3VAL
to assess LLMs w.r.t. §A2, §A3, §A4 (SecE[) on the packaged datasets. The x-axis is the number of
or operators (V) in the expression.

26

Under review as a conference paper at ICLR 2025

***** ChatGPT —— GPT-40 — == GPT-40-mini Phi Mistral LLama3
Propositional Logic(12) FOL(8,12)—S FOL(8,12)—E

Ic

1.00
0.75
0.50
0.25
0.00
Z1.00
©
Z0.75
Q
Sos0
o 0.25
Z,0.00
©1.00
[s}
K075 Ny
£ 0.50 s P
< 0.25)
0.00

lance

§A2: Syntact
Compl

0 3 6 9 20 3 6 9 2 0 3 6 9 12

of Operators: — (counted as an operator iff not succeeded by a terminal)

Figure 14: Zero-shot Pass @1 results (avg. over 10 batches, higher values better) from using Yuto3VAL
to assess LLMs w.r.t. §A2, §A3, §A4 (Sec.E[) on the packaged datasets. The x-axis is the number of
negation operators (—) in the expression.

***** ChatGPT —— GPT-40 ——= GPT-40-mini Phi Mistral LLama3
Regular Expression(2) Regular Expression(2) Regular Expression(2)

S S e o o T R e G e TR

[R
ot

S oo =
<)

§A2: Syntactic
Compliance
B

§A4: F Score §A3: Accuracy
8 g &

- 2
o S

.50

of Nodes # of Edges Density

Figure 15: Zero-shot Pass@1 results (avg. over 10 batches, higher values better) from using Vuto3VAL
to assess LLMs w.r.t. §A2, §A3, §A4 (Sec.E[) on the packaged datasets. The x-axis is the metric on
the CFG tree to produce the regular expression formula.

27

Under review as a conference paper at ICLR 2025

***** ChatGPT —— GPT-40 — == GPT-40-mini Phi Mistral LLama3
Propositional Logic(12) FOL(8,12)—S FOL(8,12)—E Regular Expression(2)

1.00
0.75
0.50 Y
025 - L.

§A2: Syntactic
Compliance

—0.25+
1.00

>
8 0.75
5
S 0.50
< -
. 025
™ A
& 0.00{ 45 et 3
>
—0.25
0 10 20 30 40 0 10 20 30 40 0 10 20 30 40 0 10 20 30 40
of Operators: A, V,— (- is counted as an operator iff not succeeded by a terminal) CFG Parse Tree Depth

Figure 16: Syntactic compliance and accuracy difference of few-shot Pass@1 compared to zero-shot
Pass@1 results (avg. over 10 batches, higher values better) from using Vuto3VAL to assess LLMs
w.r.t. §A2, §A3, §A4 (Sec.[) on the packaged datasets. The x-axis represents the increasing order of
descriptional complexity.

J FEW-SHOT PROMPTING RESULTS

In this section, we discuss our few-shot prompting experiment and analyze the performance difference
between zero-shot and few-shot prompting on §A1 and §A2.

We evaluated on the same five datasets from the main paper’s experiments but inserted two exam-
ples into the prompts. First-order and predicate logic used the same two examples, while regular
expressions used their own two examples. In Figure[I6] the performance difference of each LLM
when using few-shot prompting instead of zero-shot is shown. Using few-shot prompting increases
syntactic compliance as the model has access to the desired format for encoding and decoding.
For expressions with lower complexity, this translates to a better performance on §A2. However,
as complexity increases, the performance difference between zero-shot and few-shot prompting is
negligible due to having the correct format for parsing but failing maintaining the same formula.

K OTHER BENCHMARK CORRELATION AND YUTO3JVAL PREDICTIVE POWER
EVALUATION

For evaluating the correlation between a LLM’s performance on Vuto3VAL and existing benchmarks
and measuring the predictive power of Vuto3VAL, in Section[5] we evaluated on FOLIO (Han et al.|
2022), Multi-LogicEval (Patel et al., 2024), and HumanEval (Chen et al.,|2021). In this section we
discuss these experiments and cite the sources of the HumanEval results along with evaluate the
predictive power of Yuto3VAL.

In this section, we discuss the experimental setup for the benchmark, the sources used for LLM
performance on other benchmarks, and the Yuto3VAL we used for evaluation. We also evaluate the
FOLIO premise benchmark further based on the operator numbers in each premise.

K.1 FOLIO EXPERIMENTAL SETUPS

The FOLIO dataset is composed of premises and a conclusion for each sample where the task is
to conclude whether the conclusion is true, false, or unknown given the premises. Additionally,
the dataset provides an encoding into first-order logic for all the premises and conclusions. There-
fore, we evaluated each LLM on their abilities to (1) informalize a first-order logic premise, (2)
autoformalize a natural language premise, (3) correctly classifying the conclusion using the first-
order logic representations, and (4) correctly classifying the conclusion using the natural language
representations.

28

Under review as a conference paper at ICLR 2025

Prompt 9: FOLIO Premise Informalization Prompt

[TASK]

Your task is to convert a first-order logic formula, appearing after [FORMULA], to a natural
description that represents the formula. Only natural language terms are allowed to be used
and do not copy the formula in your description. Your description should allow one to
reconstruct the formula without having access to it, so make sure to use the correct names in
your description. Explicitly describe the predicates. You may use terms verbatim as specified
in the vocabulary below.

[EXAMPLE 1]

Va(DrinkRegularly(x, cof fee) V (=WantToBeAddictedTo(z, caf feine)))

People regularly drink coffee, or they don’t want to be addicted to caffeine, or both.
[VOCABULARY]

V represents disjunction

A represents conjunction

- represents negation

— represents implication

(and) represent parentheses

propositions can be used verbatim

predicates can be used verbatim

V <zl >< x2 > ... < xn > . represents universal quantification with x1... representing
free variables

J< 2l >< 22 > ... < zn > . represents existential quantification with x1... representing
free variables

The objects are: caffeine

The parameterized predicates are: awarethatdrug(?p0, 7pl),
wanttobeaddictedto(?p0, 7pl)

The free variables are:

[FORMULA]
V. (~wanttobeaddictedto(x, caf feine) — —awarethatdrug(z, caf feine))

For the FOLIO premise informalization and autoformalization experiments, the LLM was prompted
using the same few-shot first-order logic prompt used by Vuto3VAL where the example from the
prompt is another premise from the same FOLIO example to make sure both the example and the
evaluated premises have the same context. Premises were screened to make sure that we were able to
parse them into Prover9. Below is an example premises come from the FOLIO dataset.

For evaluating the performance of each LLM on classifying whether the premises entailed the conclu-
sion, the same prompt was used for both the natural language and first-order logic representations of
the premises and conclusions. The prompts are inspired by the prompts used in Multi-LogiEval and
use Chain-of-Thought prompting and prompt the model to provide the answer in a parsable format.
An example for both premises using an example from the FOLIO dataset are shown below.

We evaluated the informalization results against the ground truth natural language representation
using BLEU (Callison-Burch et al, 2006), ROUGE 2004), METEOR (Banerjee & Lavie} [2003),
and BERT Score (Zhang* et al.,[2020). The model deberta-xlarge-mnli (He et al., 2021) was used for
the BERT score calculation. For the autoformalization results, we used the same verification process
as the main paper. For the FOLIO conclusion classification, the LLM’s answered was parsed out of
its response with the examples that could not be parsed being classified as "Unknown" and marked as
wrong. These examples were checked to verify the parser.

K.2 MULTI-LOGIEVAL EXPERIMENT SETUP

The task in Multi-LogicEval (Patel et al.| [2024) is to answer a yes-or-no question using the provided
context, where the question was created using a certain depth of rules of logical reasoning. We used a
prompt similar to the one they used where we use Chain-of-Thought prompting and prompt the LLM

29

Under review as a conference paper at ICLR 2025

Prompt 10: FOLIO Premise Autoformalization Prompt

[VOCABULARY]

Use V to represent disjunction

Use A to represent conjunction

Use — to represent negation

Use (and) to represent parentheses

The objects are: caffeine

The parameterized predicates are: awarethatdrug(?p0, ?pl),
wanttobeaddictedto(?p0, 7pl)

The free variables are:

[TASK]

Your task is to interpret the natural language (NL) description of a first-order logic formula
and represent it as formal syntax using the vocabulary specified in the [VOCABULARY]
block above. Only output the formula and no other text. The NL description appears
immediately following the [NL DESCRIPTION] tag.

[EXAMPLE 1]
People regularly drink coffee, or they don’t want to be addicted to caffeine, or both.
Va(DrinkRegularly(x, cof fee) V (=WantToBeAddictedTo(x, caf feine)))

[NL DESCRIPTION]
No one who doesn’t want to be addicted to caffeine is unaware that caffeine is a drug.

Prompt 11: FOLIO Natural Language Representation Prompt

For the following [PREMISES] containing rules of logical reasoning, perform step-by-step
reasoning to answer whether the [CONCLUSION] is True/False/Uncertain based on the
[PREMISES]. Use the following answer format:

Reasoning Steps:

Answer: True/False/Uncertain

[PREMISES]:

All people who regularly drink coffee are dependent on caffeine

People regularly drink coffee, or they don’t want to be addicted to caffeine, or both.

No one who doesn’t want to be addicted to caffeine is unaware that caffeine is a drug.

Rina is either a student who is unaware that caffeine is a drug, or she is not a student and is
she aware that caffeine is a drug.

Rina is either a student who depend on caffeine, or she is not a student and not dependent on
caffeine.

[CONCLUSIONJ:

Rina doesn’t want to be addicted to caffeine or is unaware that caffeine is a drug.

to provide the answer in a specific location to parse. Examples of these prompts are provided below
using examples from the Multi-LogiEval dataset.

K.3 HUMANEVAL AND B1G BENCH HARD SCORE SOURCES

To evaluate the correlation and predictive power of YutodVAL against commonly used LLM bench-

marks HumanEval 2021)) and Big Bench Hard (BBH) (Suzgun et al.},[2023)), we collected

the performance scores of the LLMs we evaulated on both benchmarks and report our findings and
sources in Table [f] We were unable to find any sources that evaluated GPT-40-mini on BBH.

30

Under review as a conference paper at ICLR 2025

Prompt 12: FOLIO First-Order Logic Representation Prompt

For the following [PREMISES] containing rules of logical reasoning, perform step-by-step
reasoning to answer whether the [CONCLUSION] is True/False/Uncertain based on the
[PREMISES]. Use the following answer format:

Reasoning Steps:

Answer: True/False/Uncertain

[PREMISES]:

Va(DrinkRegularly(x, cof fee) — IsDependentOn(z, caf feine))
Va(DrinkRegularly(x, cof fee) V (=WantToBeAddictedTo(z, caf feine)))
Va(=WantToBeAddictedTo(x, caf feine) — —AwareThatDrug(z, caf feine))
—(Student(rina) ® —AwareThat Drug(rina, caf feine))

—(IsDependentOn(rina, caf feine) ® Student(rina))

[CONCLUSION]:

—WantToBeAddictedT o(rina, caf feine) V (mAwareT hat Drug(rina, caf feine))

Prompt 13: Multi-LogicEval Prompt

"Given the context that contains rules of logical reasoning in natural language and question,
perform step-by-step reasoning to answer the question. Based on context and reasoning steps,
answer the question ONLY in ’yes’ or 'no.” Please use the below format:

Context: At a university, students who study hard earn high grades. Those who participate in
extracurriculars develop leadership skills. However, students have restricted time outside of
classes. They can either study hard or they do not develop leadership skills from extracurricu-
lars.

Question: Can we conclude that Priya, a university student with limited free time, either earns
high grades or does not participate in extracurricular activities?

Reasoning steps: [generate step-by-step reasoning]

Answer: Yes/No"

K.4 COMPUTED YUTOIVAL CONDITIONAL PERFORMANCE

To compare against the performance on different benchmarks in Section[5} we needed to calculate the
conditional performance of each LLM’s on Yuto3VAL for the relevant portions of the datasets. For
example, there are few premises in the FOLIO dataset with more than 6 operators meaning that the
most accurate comparison would be to evaluate our first-order logic dataset up to the same number of
operators. Therefore we calculated the accuracy on the first-order logic formulae with less than seven
operators when calculation the correlation and predictive power. On MultiLogiEval, the number of
operators are dictated by the depth of the rules so we took the average of all first-order logic examples
up to 30 in our dataset. On HumanEval, to the best of our knowledge using the average of regex with
CFG tree depth up to 7 is the best comparison.

K.5 FOLIO ADDITIONAL CORRELATION FIGURES

In Section 5] we evaluated the correlation of other benchmarks compared to Vuto3VAL. For the
FOLIO dataset, we were able to calculate the exact number of operators in each problem allowing
us to plot points comparing the autoformalization and informalization accuracy for each operator
number class to directly compared to the accuracy of the same number operators in the first-order
logic dataset we generated.

We plot these results in Figure[I7]with the Pearson co-relation coefficient. Each figure shows a moder-
ate to strong correlation with a statistically significant p-value of less than 0.05. As the computational
complexity increases, performance on Vuto3VAL, autoformalization, and informalization decreases.
The autoformalization coorelation is significantly stronger due to the informalization evaluation
metrics being much weaker at evaluating truth maintenance.

31

Under review as a conference paper at ICLR 2025

Table 6: Reported performance of SOTA LLMs on HumanEval and Big Bench Hard benchmarks.

Model HumanEval Score Big Bench Hard (BBH) Score
GPT-3.5-turbo 68 (OpenAl, 2024) 48.1 (OpenAl 2023b

GPT-40 90.2 (OpenAIL 2024 83.1 (Dunham & Syahputra, [2024)
GPT-40-mini 87.2 (OpenAl, 2024 -

Llama3-8B-Instruct 61.6 (Liu et al.,2023b) 24.5 (Fourrier et al., 2024)
Mistral-7b-Instruct-v0.1 42.1 (Liu et al.,|2023b) 23.95 (Fourrier et al., 2024
Phi-3-medium-4k-instruct 62.2 (Microsoft |2024[) 49.38 (Fourrier et al., 2024

--a-— ChatGPT —— GPT-4 ¢ LLama3 — 4 Mistral Phi —=— GPT-40-mini

FOLIO (A) FOLIO (Z; BLEU) FOLIO (Z; ROUGE) FOLIO (Z; METEOR) FOLIO (Z; BERT)
1 p=079 1 p=0.70 p =064 p=0.67 p=0.61
g p=0.00 p=0.00 p=0.00 p=0.00 p=10.00 R B
o - - s IS
2'” N ’*’W)
3 5 v Ji' . » o S " {....‘0
_g A 4 g
2250 7Y
LY FaeLe
0 25 5 7 1 0 25 5 75 1 0 25 5 75 1 0o 25 5 7 1 0 25 5 7 1

Vuto3VAL Score

Figure 17: Correlation between scores on VutodVAL and both autoformalization A and informalization Z
for FOLIO premises. Each point represents a specific number of operators with arrows showing increasing
complexity (number of operators). The trendline accross all the points is annotated with X, the Pearson
co-relation coefficient (p), and the p-value are annotated in the top left.

32

	Appendix Organization
	Dataset Generation
	3-SAT Prompt Calibration
	Dataset Generation Hyperparameters
	Experimental Setup
	Prompting
	Analysis of Main Paper Results
	Propositional Logic Results
	First-Order Logic Results
	Regular Expression Results

	Standard Deviation Evaluation
	Additional Zero-Shot Prompting Results
	Few-Shot Prompting Results
	Other Benchmark Correlation and AutoEval Predictive Power Evaluation
	FOLIO Experimental Setups
	Multi-LogiEval Experiment Setup
	HumanEval and Big Bench Hard Score Sources
	Computed AutoEval Conditional Performance
	FOLIO Additional Correlation Figures

