
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A APPENDIX ORGANIZATION

Our anonymized code is provided with our paper submission. Due to space limitations (our complete
results are over 4GB), we have provided two of the batches of the zero-shot prompting results and
FOLIO and LogiEval datasets.

The appendix is organized as follows. Appendix B provides the algorithm used for dataset generation.
Appendix C discusses prompt tuning and validating our prompts on 3SAT. Appendix D provides
the parameters we used when generating the five datasets discussed in the paper. Appendix E
provides additional information on our experimental setup, including the computational resources
used. Appendix F discusses the prompts and provides examples. Appendix G is our detailed analysis
of the empirical results from the main paper. Appendix H discusses an experiment we ran to evaluate
the standard deviation error. Appendix I includes additional results from our zero-shot prompting
experiments using other metrics for categorization. Appendix J evaluates an experiment we performed
comparing few-shot prompting compared to zero-shot. Finally, Appendix K provides the experimental
setup of the benchmarks we evaluated, data values and sources of scores collected, the ∀uto∃∨∧L
scores used for comparison, and additional correlation results.

B DATASET GENERATION

In this section, we provide the algorithm for generating formal syntax (FS) expressions and show that
it can generate all possible expressions from the grammar and vocabulary.

Our approach, ∀uto∃∨∧L, generates datasets by constructing a context-free grammar (CFG) tree
using the grammars discussed in Section 4. Since it is intractable to generate the full tree, we control
the branching factor and randomly expand the branches of this tree to generate formulae.

Algorithm 1 Dataset Generation
1: Inputs: CFG G, vocabulary V , branching factor n, tree depth depth, sample count sample_count,

and categorization metric m.
2: Outputs: set of FS expressions φ
3: N ← {0 : [None]},Nt ← ⟨⟩
4: for d = 1, 2, . . . , depth do
5: N ′ ← sampleN(N [d− 1], n)
6: for ν ∈ N ′ do
7: Nν , Tν ← generateNChildren(ν,G, n)
8: N [d] += Nν
9: Nt ← Nt ∪ Tν

10: end for
11: end for
12: M ← categorizeExpressionsIntoDict(Nt,m)
13: φ← ⟨⟩
14: for k ∈ keys(M) do
15: Mk ← sampleCFGExpressions(M [k], sample_count)
16: φk ← buildFSExpressions(Mk,V)
17: φ← φ ∪ φk
18: end for
19: Return: φ

The dataset generation algorithm is shown in Algorithm 1. This algorithm constructs a CFG tree
by maintaining non-terminal nodes at each tree level (N) and all the leaf nodes (Nt), where each
terminal node represents a completed CFG expression (line 3). For generating nodes at a certain level
in the tree, n nodes from the previous level are sampled (line 5). Each node is branched n times
using the CFG to produce nodes at the current tree level, and all the leaf nodes are collected (lines 7
through 9). As a result, by iteratively performing this process for each tree level, we obtain a set of
leaf nodes (CFG expressions).

The leaf nodes are then categorized based on the specified metric (e.g., tree depth, number of operators,
etc.) (line 12). For each metric value, a fixed number of CFG expressions corresponding to that

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

value are sampled (line 15). Using the vocabulary, an FS expression is constructed from each CFG
expression (line 16). Consequently, the final dataset of FS expressions contains an equal number for
each metric value (line 17). This set of FS expressions is the final result produced by the algorithm
(line 19).

The vocabulary is fixed in length, with a hyperparameter controlling the number of unique propositions
for propositional logic. Similarly, for first-order logic, the number of unique variables, constants, and
predicates are also hyperparameters. Also, regular expressions have a hyperparameter controlling
the alphabet size. When these expression components are needed for building the FS expression,
the exact one is selected using uniform random selection. In the special case of first-order logic
predicates, the grounded predicate is generated by randomly selecting a predicate and then selecting
constants depending on the predicate’s arity. In the case of the arbitrary vocabulary, the arity for a
predicate is randomly assigned. To add variables, each constant has a certain probability of being
replaced by a variable.

Guaranteed Expression Coverage The dataset generator (Algorithm 1) is guaranteed to generate all
possible formal syntax expressions that can be produced for a grammar and vocabulary. Let φ be
an FS expression that can be constructed using the rules from CFG G and the vocabulary V . Note
that φ corresponds to a CFG expression φCFG, derived by substituting the vocabulary with the CFG
symbols. Due to uniform selection, the probability of φ being generated from φCFG is greater than
zero. Furthermore, the CFG expression represents a leaf node in the CFG tree that can be reached by
applying the CFG rules in a specific sequence. Due to the random sampling of rules at each node,
there is a non-zero probability of generating this particular path in the tree. Thus, φ can be generated
using the dataset generator algorithm.

C 3-SAT PROMPT CALIBRATION

In this section, we discuss the KSAT results used to calibration the prompts.

We tested several prompts for 3-SAT to verify that our prompts are sufficient to prompt the LLM
to correctly perform informalization and autoformalization. Additionally, we verified that the
equivalence verification prompt prompted the LLMs to give an accurate yes-or-no answer. The
performance of all six LLMs on 3-SAT for §A2, §A3, and §A4 are shown in Figure 7.

0.00

0.25

0.50

0.75

1.00

§A
2:

S
yn

ta
ct

ic
C

om
pl

ia
nc

e

3–SAT(12)

0.00

0.25

0.50

0.75

1.00

§A
3:

A
cc

ur
ac

y

0 10 20 30 40 50 60

0.00

0.25

0.50

0.75

1.00

§A
4:
F

1
S

co
re

of Operators: ∧,∨,¬ (¬ is counted as an operator iff not succeeded by a terminal)

ChatGPT GPT-4o GPT-4o-mini Phi Mistral LLama3

Figure 7: Zero-shot Pass@1 results (avg. over 10 batches, higher values better) for 3-SAT from using
∀uto∃∨∧L to assess LLMs w.r.t. §A2, §A3, §A4 (Sec. 4) on the packaged datasets. The x-axis is the
of operators.

The best-performing models we tested (GPT-4o and GPT-4o-mini) achieved nearly perfect syntactic
compliance, accuracy, and equivalence verification even as the number of operators increased. This

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

proves that the prompts we used in our experiments are sufficient for prompting the model for
performing the tasks for §A2, §A3, and §A4.

For the other LLMs tested, syntactic compliance and accuracy diminished as the number of operators
increased. However, when evaluating the equivalence of GPT-4o results, all LLMs achieved near-
perfect accuracy regardless of operator number. Due to most of GPT-4o results being positive cases,
the results support that LLMs can verify two equivalent 3-SAT formulae as equivalent.

D DATASET GENERATION HYPERPARAMETERS

In Table 1, we provide the hyperparameters used to generate the five datasets.

Table 1: Hyperparameters used for producing the five datasets.
Parameter Type Hyperparameter Value Description

General
depth 40 Maximum depth of the CFG tree.
n 200 Branching factor of produced CFG

tree.
sample_count 50 Number of CFGS for each metric

value to select.

First-Order Logic

free_variable_prob 0.25 Probability of a constant being re-
placed by a variable.

max_free_variables ∞ Maximum number of unique variables.
max_predicate_arity 2 Maximum predicate arity.
min_predicate_arity 1 Minimum predicate arity.
num_objects 12 Number of unique constants.
num_predicates 8 Number of unique predicates.

Propositional Logic num_propositions 12 Number of unique propositions.

Regular Expression alphabet_size 2 Alphabet size.

E EXPERIMENTAL SETUP

In this section, we will provide the details of our experimental setup for generating the datasets and
running ∀uto∃∨∧L for evaluating each LLM’s performance.

We ran our experiments using Python 3.10.13 with package versions shown in Table 2. We also
repackaged Prover9 (McCune, 2010) to improve performance where this repackaged version can be
found in our code base.

Table 2: Python package versions
used for empirical evaluation.

Python Package Version
openai 1.45.0
nltk 3.8.1
tqdm 4.66.4
anthropic 0.26.1
backoff 2.2.1
tiktoken 0.6.0
transformers 4.41.1
Faker 25.2.0
networkx 3.3

Dataset Generation: We generated five datasets using the
dataset generation algorithm with the hyperparameters shown in
Table 1 using the number of operators as the categorization metric
for all but regular expression, where we used CFG tree depth. We
generated 10 batches for each dataset, resulting in approximately
20k samples for each dataset with an equal distribution for each
operator number.

Evaluating and Verification: The closed-source models (GPT-
3.5-turbo, GPT-4o, and GPT-4o-mini) were accessed using their
API using a temperature of 0.1. The open-source models LLama-
3-8B-Instruct and Mistral-v0.2-7B-Instruct were locally hosted
on a server with a 13th Gen Intel(R) Core(TM) i9-13900K and
Nvidia RTX 4090 GPU using the model’s default parameters
with a temperature of 1. Similarly, Phi-3-medium-4k-instruct was
locally hosted on a server using a Nvidia A100-XM4-80GB GPU.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Prompt 2: Few-Shot First-Order Logic Informalization Prompt

[TASK]
Your task is to convert a first-order logic formula, appearing after [FORMULA], to a natural
description that represents the formula. Only natural language terms are allowed to be used
and do not copy the formula in your description. Your description should allow one to
reconstruct the formula without having access to it, so make sure to use the correct names in
your description. Explicitly describe the predicates. You may use terms verbatim as specified
in the vocabulary below.

[EXAMPLE 1]
(¬p2 ∨ p1 ∨ ¬p2)
Disjunctive predicate logic expression consisting of three components: the negation of a
proposition labeled p2, the proposition p1, and again the negation of p2.

[EXAMPLE 2]
(¬¬p2 ∧ ¬(p3 ∨ p1))
The expression asserts that p2 is not false while both p3 and p1 are not true.

[VOCABULARY]
∨ represents disjunction
∧ represents conjunction
¬ represents negation
(and) represent parentheses
propositions can be used verbatim
predicates can be used verbatim
∀ < x1 >< x2 > ... < xn > . represents universal quantification with x1... representing
free variables
∃ < x1 >< x2 > ... < xn > . represents existential quantification with x1... representing
free variables
The objects are: p5, x1
The parameterized predicates are: pred3(?p0, ?p1)
The free variables are: x1

[FORMULA]
∀x1 pred3(p5, x1)

Verification was performed on an AMD EPYC machine with 128
cores.

F PROMPTING

In this section, we provide the zero-shot and few-shot used in the main paper experiments.

The prompt for each dataset type provides the LLM with information on the problem type and the
vocabulary. For informalization, we prompt the model to produce just a natural language description.
We also provide the list of objects, predicates, propositions, and free variables in the formal syntax
expression. For autoformalization, the LLM is prompted to provide just the formal syntax expression
using the natural language description. Additionally, for first-order logic with a non-synthetic
grammar, we provide the predicate names and arity in the autoformalization prompt. Two examples
are provided for few-shot prompting.

For §A4, the prompt used for using an LLM to verify the equivalence of two formulae tells the
LLM about the type of datasets (e.g., propositional logic, first-order logic, and regular expression).
Using Chain-of-Thought prompting, the model is prompted to provide an explanation before giving a
yes-or-no answer in a parsable format. Below are examples of the exact prompts used.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Prompt 3: Few-Shot First-Order Logic Autoformalization Prompt

[VOCABULARY]
Use ∨ to represent disjunction
Use ∧ to represent conjunction
Use ¬ to represent negation
Use (and) to represent parentheses
Use ∀ <free_variable_list> to represent universal quantification
Use ∃ <free_variable_list> to represent existential quantification
The <free_variable_list> consists of a sequence of space separate free variables with the last
variable immediately followed by a period. Examples: (1) all x1 x2. (2) exists x4.
Use <predicate>(<parameter_list>) to represent predicates (Names and parameters are
provided in the description)

[TASK]
Your task is to interpret the natural language (NL) description of a first-order logic formula
and represent it as formal syntax using the vocabulary specified in the [VOCABULARY]
block above. Only output the formula and no other text. The NL description appears
immediately following the [NL DESCRIPTION] tag.

[EXAMPLE 1]
Disjunctive predicate logic expression consisting of three components: the negation of a
proposition labeled p2, the proposition p1, and again the negation of p2.
(¬p2 ∨ p1 ∨ ¬p2)

[EXAMPLE 2]
The expression asserts that p2 is not false while both p3 and p1 are not true.
(¬¬p2 ∧ ¬(p3 ∨ p1))

[NL DESCRIPTION]
For all objects labeled x1, the predicate pred3 holds true with parameters p5 and x1.

G ANALYSIS OF MAIN PAPER RESULTS

In this section, we analyze the main empirical results of the paper. Our results clearly show that
current SOTA LLMs are not performant in the truth maintenance task, which is why ∀uto∃∨∧L is
needed. As the expression complexity increases, the syntactic compliance, accuracy, and ability
to verify equivalence diminishes. We describe some of the errors that cause the low accuracy for
propositional logic, first-order logic, and regular expressions.

G.1 PROPOSITIONAL LOGIC RESULTS

Informalization Errors: A common error was the LLM failed to describe the proposition names.
Another was the LLM failing to provide a complete description of the formula. For example, GPT-
3.5-turbo often described portions of the expression based on what propositions and operators it
contained. A common issue with GPT-4o, one of the best models, is that it often uses different
propositional symbols (see example 5 in Table 3). Finally, we also observed hallucinations were
the LLM attempted and failed to simplify the original formula (see example 4 in Table 3). These
interpretation errors resulted in the original meaning of the expression being lost.

Autoformalization Errors: We observed there were often syntactic issues where the description was
not fully translated into a formula or the parentheses did not match. An interesting result is that the
LLMs struggled to place the negation operator in the correct location. For example, GPT-4o often
describes ¬p ∧ ¬p as predicate p "negated twice and combined" but failed to regenerate the original
formula properly with this description.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Prompt 4: Few-Shot Regex Informalization Prompt

[TASK]
Your task is to convert the regular expression appear after [REGEX], to a natural description
that represents the regular expression. Only natural language terms are allowed to be used
and do not copy the regular expression in your description. Your description should allow
one to reconstruct the regular expression without having access to it, so make sure to use the
correctly account for scoping. You may use terms verbatim as specified in the vocabulary
below.

[VOCABULARY]
you may use symbols from the vocabulary
you can use *

[EXAMPLE 1]
(1*)0*
The regex matches strings that starts with any number (including none) of the digit ’1’,
followed by any number (including none) of the digit ’0’.

[EXAMPLE 2]
(01*)
The regex matches strings that begin with a ’0’ followed directly by any number (including
none) of ’1’s.

[FORMULA]
0

Prompt 5:

Few-Shot Regex Autoformalization Formal [VOCABULARY]
Use * to represent zero or more duplications of the same expression
Use (and) to represent parentheses

[TASK]
Your task is to interpret the natural language (NL) description of a regular expression and
represent it as formal syntax using the vocabulary specified in the [VOCABULARY] block
above. Only output the regular expression and no other text. The NL description appears
immediately following the [NL DESCRIPTION] tag.

[EXAMPLE 1]
The regex matches strings that starts with any number (including none) of the digit ’1’,
followed by any number (including none) of the digit ’0’.
(1*)0*

[EXAMPLE 2]
The regex matches strings that begin with a ’0’ followed directly by any number (including
none) of ’1’s.
(01*)

[NL DESCRIPTION]
The regex matches strings that start with the digit ’0’.

G.2 FIRST-ORDER LOGIC RESULTS

Informalization Errors: Similar to propositional logic, we observed the LLM often failed providing
enough details resulting in incorrect formulas being generated. A significant source of errors we

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Prompt 6: Zero-Shot Propositional Logic Informalization Prompt

[TASK]
Your task is to convert a propositional logic formula, appearing after [FORMULA], to a
natural description that represents the formula. Only natural language terms are allowed to be
used and do not copy the formula in your description. Your description should allow one to
reconstruct the formula without having access to it, so make sure to use the correct names in
your description. Explicitly describe the predicates. You may use terms verbatim as specified
in the vocabulary below.

[VOCABULARY]
∨ represents disjunction
∧ represents conjunction
¬ represents negation
(and) represent parentheses
propositions can be used verbatim
The propositions are: p5, p12, p4

[FORMULA]
(p5 ∨ ¬p12 ∨ ¬p4)

Prompt 7: Zero-Shot Propositional Logic Autoformalization Prompt

[TASK]
Your task is to interpret the natural language (NL) description of a propositional logic formula
and represent it as formal syntax using the vocabulary specified in the [VOCABULARY]
block above. Only output the formula and no other text. The NL description appears
immediately following the [NL DESCRIPTION] tag.

[VOCABULARY]
Use ∨ to represent disjunction
Use ∧ to represent conjunction
Use ¬ to represent negation
Use (and) to represent parentheses

[NL DESCRIPTION]
A disjunctive statement involving three propositions: p5, the negation of p12, and the
negation of p4.

observed when not providing the predicate names and arity was the LLM rephrasing its explanation
causing confusion when regenerating.

Autoformalization Errors: Beyond the errors observed in propositional logic, the most common
mistake made during autoformalization was the LLM confusing constants with variables (see example
2 in Table 4). Additionally, the LLMs often messed up the predicate arity. Mistral often used = and
̸= operators with the variables, which was not needed for any formluae in ∀uto∃∨∧L. Similarly, the
LLMs would often use their own grammar instead of the one provided in the prompt.

G.3 REGULAR EXPRESSION RESULTS

Informalization Errors: Most of the errors observed were the LLMs giving the wrong explanation,
even for simple regular expressions. For example, GPT-4o often described c∗ as "one or more
occurrences of ’c’", where c is a character from the alphabet (see example 1 in Table 5). For the
other LLMs, it was quite common for the explanation to not give the actual character (see example
4 in Table 5). Overall, we observed a higher likelihood of SOTA LLMs hallucinating on regular
expressions compared to the other datasets.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Prompt 8: First-Order Logic Verification Prompt

Your task is to say whether two First-Order Logic formulae are equivalent. The first formula
will appear right after [FORMULA 1] and the second after [FORMULA 2].
Give an explanation followed by a yes or no answer. The answer must show up at the end
with the format "[Answer]" followed by either a yes or no.

[Formula 1]
∃x1.¬pred5(p7)

[Formula 2]
∃p7.¬pred5(p7)

Table 3: Examples of errors the evaluated LLMs made while evaluating ∀uto∃∨∧L for the proposi-
tional logic dataset.
φ I(φ) (A ◦ I)(φ)

(¬p11 ∧ ¬p8)
The natural description of the formula is:
"It is not the case that both proposition p11
and proposition p8 are true."

(¬(p11 ∧ p8))

(¬p10 ∧ (¬p9 ∨ p7))
The natural description of the formula is:
"It is not the case that proposition p10 is true
and either proposition p9 is false or
proposition p7 is true."

¬(p10 ∧ (¬p9 ∨ p7))

(¬p3 ∧ ¬p7)
Here is the natural description of the given
formula: "The statement says that p3 is not
true and p7 is also not true."

(¬p3 ∨ ¬p7)

(¬¬p2 ∨ p3)
The formula states that either the proposition
p2 is true or the proposition p3 is true.
Additionally, it specifies that the proposition
p2 is not false.

(p2 ∨ p3) ∧ ¬¬p2

(¬p2 ∧ p5 ∧ ¬p6)
The formula describes a situation where the
first proposition is false, the second
proposition is true, and the third proposition
is false.

(¬p ∧ q ∧ ¬r)

Autoformalization Errors: The most common mistake when constructing a regular expression from
natural language was misplacing ∗ or adding it when it was not needed (see example 3 in Table 5).
Finally, even though we explicitly prompted the LLMs to use just ∗, sometimes the LLM would use
+.

H STANDARD DEVIATION EVALUATION

In this section, we perform an empirical analysis of the standard deviation of the syntactic compliance
and accuracy of the ∀uto∃∨∧L results. Due to the 10 batches having different data, the standard
deviation cannot be computed reliably based on the performance of the individual batches. We
evaluated the standard deviation by running ∀uto∃∨∧L 10 times on the first batch of each dataset
composed of 1974 propositional logic, 1900 first-order logic, and 1842 regular expressions examples.
Additionally, we evaluated GPT-3.5-turbo (ChatGPT) with a temperature of 1, LLama-3-8B-Instruct,
Mistral-v0.2-7B-Instruct, and Phi-3-medium-4k-instruct. We calculated the mean and standard
deviation of each independent run of ∀uto∃∨∧L and plotted the results in Figure 8.

For propositional and first-order logic, the standard deviation of the evaluated LLMs is low. While
noisier, the standard deviation of the regular expression results were still less than 20% with the
better performing models having a lower standard deviation. Overall, this experiment shows that the

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Table 4: Examples of errors the evaluated LLMs made while evaluating ∀uto∃∨∧L for the first-order
logic dataset.
φ I(φ) (A ◦ I)(φ)

(¬pred8(p10) ∧ pred8(p5)
∧pred6(p8))

The formula states that it is not the case
that the predicate pred8 holds for the
object p10, and the predicate pred8
holds for the object p5, and the
predicate pred6 holds for the object p8,
all conjoined together.

¬(pred8(p10)
∧pred8(p5)
∧pred6(p8))

∃x1.¬pred2(p4)
Here is the natural description of the
given formula: "There exists an x1 such
that p4 is not an instance of pred2.

∃x1.¬pred2(x1)

∀x1.¬¬pred3(p5) For all x1, it is not the case that
pred3(p5) is false.

∀x1.¬(pred3(p5)
∨¬pred3(p5))

pred2(p3, p5)
There exists a relationship between the
objects p3 and p5 such that the predicate
pred2 holds true for these objects.

∃p3 p5.pred2(p3, p5)

Table 5: Examples of errors the evaluated LLMs made while evaluating with ∀uto∃∨∧L for the
regular expression dataset.

φ I(φ) (A ◦ I)(φ)

1∗0
The pattern consists of one or more occurrences of the digit
"1" followed by exactly one occurrence of the digit "0". (1∗)10

(1∗)∗0

The regular expression describes a sequence that consists of
zero or more repetitions of the digit ’1’, followed by exactly
one ’0’. This entire pattern can repeat any number of times,
including zero times.

((1∗)0)∗

1∗11∗
The pattern consists of zero or more occurrences of the
digit ’1’, followed by exactly one occurrence of the digit ’1’,
followed by zero or more occurrences of the digit ’1’.

1∗1∗1∗

(1)∗0
Zero or more occurrences of the character or group of
characters before the asterisk. (.∗)

noise of non-deterministic text generation does not significantly impact ∀uto∃∨∧L or our results and
evaluations.

I ADDITIONAL ZERO-SHOT PROMPTING RESULTS

In this section, we evaluate other categorization metrics from the zero-shot prompting experiments
from the main paper. For the propositional and first-order logic datasets, the other categorization
metrics are the CFG parse tree depth needed to produce each FS expression and the individual number
of each operator (∧,∨,¬). For regular expressions, we have discussed in the main paper that each
regular expression represents a minimal DFA that is unique up to isomorphism. Therefore, the other
categorization metrics for regular expressions are the number of nodes V , the number of edges E,
and the density of this minimal DFA. The density is calculated using Equation 1 where we discretize
the value by rounding to every tenth.

Density =
|E|

|V |(|V | − 1)
(1)

Imbalanced Dataset Labels Due to the datasets being created by sampling an equal number of
expressions for each number of operators, taking this dataset and evaluating it in terms of the other

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

0.00

0.25

0.50

0.75

1.00
§A

2:
S

yn
ta

ct
ic

C
om

pl
ia

nc
e

3–SAT(12)

0 10 20 30 40 50 60

0.00

0.25

0.50

0.75

1.00

§A
3:

A
cc

ur
ac

y

Propositional Logic(12)

0 10 20 30 40

FOL(8, 12)−S

0 10 20 30 40

FOL(8, 12)−E

0 10 20 30 40

Regular Expression(2)

0 10 20 30 40

of Operators: ∧,∨,¬ (¬ is counted as an operator iff not succeeded by a terminal) CFG Parse Tree Depth

ChatGPT Phi Mistral LLama3

Figure 8: Average and standard deviation error of Zero-shot Pass@1 results from using ∀uto∃∨∧L
to assess LLMs w.r.t. §A2 and §A3 (Sec. 4) on the first batch of the packaged datasets. The x-axis
represents an increasing order of descriptional complexity.

metrics results in an imbalanced dataset. To examine this effect, we have created Figures 9 and 10 to
perform an analysis of dataset imbalance on these other metrics.

For propositional and first-order logic, the dataset is actually quite balanced due to CFG tree depth
and the number of each individual operator having a high correlation to the total number of operators.
As such, other than metric values close to the extrema, the noise from the imbalanced data will be
marginal.

The regular expression dataset is less balanced due to a weaker correlation with the CFG tree depth.
The middle of the density graphs will be the most noisy since there is significantly less data for
densities of 0.1 and 0.2. The number of examples drops as the number of edges and nodes increases
with less than 10% of the data having more than 7 edges and/or nodes.

R
eg

ul
ar

E
xp

re
ss

io
n(

2)

0

0.1

0.2
0.3

0.5

Density
1

2

3
4

5

6

7+

of Edges
1

2

3 4

5

6

7+

of Nodes

Figure 9: Count of the number of examples for each metric value for the regular expression datasets.
The pie charts increase in values counter-clockwise while going from lighter to darker.

Categorization Metrics Performance In Figures 11, 12,13, 14, and 15 the performance of each
LLM over these other categorization metrics are shown. Across the board, we observe a diminishing
performance regardless of the source of increasing complexity. Ignoring the noise from the low
number of examples closer to the extrema, the depth of the tree showed a similar behavior as the
operator number. Propositional logic performance was concave w.r.t the number of ∧ and ∨ operators
since it becomes easier to describe expressions composed of exclusively ∧ and ∨ operators. A similar,
but weaker pattern is observed in the first-order logic results for the same reason. The negation
operator was not concave, showing how LLMs struggle to handle multiple negation operators.

For regular expressions, increasing the number of nodes and edges reduces accuracy and the ability
to evaluate equality. Density does not seem to be a factor, as the dip at 0.1 can be associated with
noise due to the lower number of examples. Overall, these three metrics are much weaker factors in
how well the LLM performs compared to the CFG tree depth.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

P
ro

p
os

it
io

na
l

L
og

ic
(1

2)

1-2

3-4

5-6

7-8
9-1011-12

13-14

15-16

17-18

19-20

21-22

23-24

25-26

27-28
29-30 31-3233-34

35-36

37-38

39-40

CFG Parse
Tree Depth

0

1

2

3
45

6

7

8

9

10

11 12 13
14

15
16

17+

of
∧ operator

0

1

2

3
45

6

7

8

9

10

11

12
13 14 15

16

17

18

19+

of
∨ operator

0
1

2

3

4
567

8
9

10

11

12

13

14

15
16

17 18
19

20
21

22

23+

of
¬ operator

F
ir

st
-O

rd
er

L
og

ic
(8

,1
2)

(S
yn

th
et

ic
)

3-4

5-6

7-8

9-10
11-1213-14

15-16

17-18

19-20

21-22

23-24

25-26

27-28

29-30
31-32 33-34

35-36

37-38

39-40

0

1

2
34

5

6

7

8

9

10

11
12 13

14
15

16

17+

0

1

2
34

5

6

7

8

9

10

11
12 13 14

15

16

17

18+

0

1

2

3
4

56
7

8

9

10

11

12

13

14
15 16 17

18
19

20
21

22+

F
ir

st
-O

rd
er

L
og

ic
(8

,1
2)

(E
ng

lis
h)

3-4

5-6

7-8

9-10
11-1213-14

15-16

17-18

19-20

21-22

23-24

25-26

27-28

29-30
31-32 33-34

35-36

37-38

39-40

0

1

2
34

5

6

7

8

9

10

11
12 13

14

15
16

17+

0

1

2
345

6

7

8

9

10

11
12 13

14
15

16

17

18+

0

1

2

3
4

56
7

8

9

10

11

12

13

14
15

16 17 18
19

20
21

22+

Figure 10: Count of the number of examples for each metric value for each of the datasets. Each row
is a dataset and each column is a different metric that can be used to categorize the dataset. The pie
charts increase in value counter-clockwise while going from lighter to darker.

0.00

0.25

0.50

0.75

1.00

§A
2:

S
yn

ta
ct

ic
C

om
pl

ia
nc

e

Propositional Logic(12)

0.00

0.25

0.50

0.75

1.00

§A
3:

A
cc

ur
ac

y

0 10 20 30 40

0.00

0.25

0.50

0.75

1.00

§A
4:
F

1
S

co
re

FOL(8, 12)−S

0 10 20 30 40

FOL(8, 12)−E

0 10 20 30 40

Regular Expression(2)

0 10 20 30 40

CFG Parse Tree Depth

ChatGPT GPT-4o GPT-4o-mini Phi Mistral LLama3

Figure 11: Zero-shot Pass@1 results (avg. over 10 batches, higher values better) from using ∀uto∃∨∧L
to assess LLMs w.r.t. §A2, §A3, §A4 (Sec. 4) on the packaged datasets. The x-axis is the depth of the
CFG tree to produce the formula.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

0.00

0.25

0.50

0.75

1.00

§A
2:

S
yn

ta
ct

ic
C

om
pl

ia
nc

e

Propositional Logic(12)

0.00

0.25

0.50

0.75

1.00

§A
3:

A
cc

ur
ac

y

0 10 20 25

0.00

0.25

0.50

0.75

1.00

§A
4:
F

1
S

co
re

FOL(8, 12)−S

0 10 20 25

FOL(8, 12)−E

0 10 20 25

of Operators: ∧

ChatGPT GPT-4o GPT-4o-mini Phi Mistral LLama3

Figure 12: Zero-shot Pass@1 results (avg. over 10 batches, higher values better) from using ∀uto∃∨∧L
to assess LLMs w.r.t. §A2, §A3, §A4 (Sec. 4) on the packaged datasets. The x-axis is the number of
and operators (∧) in the expression.

0.00

0.25

0.50

0.75

1.00

§A
2:

S
yn

ta
ct

ic
C

om
pl

ia
nc

e

Propositional Logic(12)

0.00

0.25

0.50

0.75

1.00

§A
3:

A
cc

ur
ac

y

0 10 20 25

0.00

0.25

0.50

0.75

1.00

§A
4:
F

1
S

co
re

FOL(8, 12)−S

0 10 20 25

FOL(8, 12)−E

0 10 20 25

of Operators: ∨

ChatGPT GPT-4o GPT-4o-mini Phi Mistral LLama3

Figure 13: Zero-shot Pass@1 results (avg. over 10 batches, higher values better) from using ∀uto∃∨∧L
to assess LLMs w.r.t. §A2, §A3, §A4 (Sec. 4) on the packaged datasets. The x-axis is the number of
or operators (∨) in the expression.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

0.00

0.25

0.50

0.75

1.00

§A
2:

S
yn

ta
ct

ic
C

om
pl

ia
nc

e

Propositional Logic(12)

0.00

0.25

0.50

0.75

1.00

§A
3:

A
cc

ur
ac

y

0 3 6 9 12

0.00

0.25

0.50

0.75

1.00

§A
4:
F

1
S

co
re

FOL(8, 12)−S

0 3 6 9 12

FOL(8, 12)−E

0 3 6 9 12

of Operators: ¬ (counted as an operator iff not succeeded by a terminal)

ChatGPT GPT-4o GPT-4o-mini Phi Mistral LLama3

Figure 14: Zero-shot Pass@1 results (avg. over 10 batches, higher values better) from using ∀uto∃∨∧L
to assess LLMs w.r.t. §A2, §A3, §A4 (Sec. 4) on the packaged datasets. The x-axis is the number of
negation operators (¬) in the expression.

0.00

0.25

0.50

0.75

1.00

§A
2:

S
yn

ta
ct

ic
C

om
pl

ia
nc

e

Regular Expression(2)

0.00

0.25

0.50

0.75

1.00

§A
3:

A
cc

ur
ac

y

0 4 8 12 16

0.00

0.25

0.50

0.75

1.00

§A
4:
F

1
S

co
re

Regular Expression(2)

0 4 8 12 16

Regular Expression(2)

0.0 0.1 0.2 0.3 0.4 0.5

of Nodes # of Edges Density

ChatGPT GPT-4o GPT-4o-mini Phi Mistral LLama3

Figure 15: Zero-shot Pass@1 results (avg. over 10 batches, higher values better) from using ∀uto∃∨∧L
to assess LLMs w.r.t. §A2, §A3, §A4 (Sec. 4) on the packaged datasets. The x-axis is the metric on
the CFG tree to produce the regular expression formula.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

−0.25

0.00

0.25

0.50

0.75

1.00
§A

2:
S

yn
ta

ct
ic

C
om

pl
ia

nc
e

Propositional Logic(12)

0 10 20 30 40
−0.25

0.00

0.25

0.50

0.75

1.00

§A
3:

A
cc

ur
ac

y

FOL(8, 12)−S

0 10 20 30 40

FOL(8, 12)−E

0 10 20 30 40

Regular Expression(2)

0 10 20 30 40

of Operators: ∧,∨,¬ (¬ is counted as an operator iff not succeeded by a terminal) CFG Parse Tree Depth

ChatGPT GPT-4o GPT-4o-mini Phi Mistral LLama3

Figure 16: Syntactic compliance and accuracy difference of few-shot Pass@1 compared to zero-shot
Pass@1 results (avg. over 10 batches, higher values better) from using ∀uto∃∨∧L to assess LLMs
w.r.t. §A2, §A3, §A4 (Sec. 4) on the packaged datasets. The x-axis represents the increasing order of
descriptional complexity.

J FEW-SHOT PROMPTING RESULTS

In this section, we discuss our few-shot prompting experiment and analyze the performance difference
between zero-shot and few-shot prompting on §A1 and §A2.

We evaluated on the same five datasets from the main paper’s experiments but inserted two exam-
ples into the prompts. First-order and predicate logic used the same two examples, while regular
expressions used their own two examples. In Figure 16, the performance difference of each LLM
when using few-shot prompting instead of zero-shot is shown. Using few-shot prompting increases
syntactic compliance as the model has access to the desired format for encoding and decoding.
For expressions with lower complexity, this translates to a better performance on §A2. However,
as complexity increases, the performance difference between zero-shot and few-shot prompting is
negligible due to having the correct format for parsing but failing maintaining the same formula.

K OTHER BENCHMARK CORRELATION AND ∀UTO∃∨∧L PREDICTIVE POWER
EVALUATION

For evaluating the correlation between a LLM’s performance on ∀uto∃∨∧L and existing benchmarks
and measuring the predictive power of ∀uto∃∨∧L, in Section 5, we evaluated on FOLIO (Han et al.,
2022), Multi-LogicEval (Patel et al., 2024), and HumanEval (Chen et al., 2021). In this section we
discuss these experiments and cite the sources of the HumanEval results along with evaluate the
predictive power of ∀uto∃∨∧L.

In this section, we discuss the experimental setup for the benchmark, the sources used for LLM
performance on other benchmarks, and the ∀uto∃∨∧L we used for evaluation. We also evaluate the
FOLIO premise benchmark further based on the operator numbers in each premise.

K.1 FOLIO EXPERIMENTAL SETUPS

The FOLIO dataset is composed of premises and a conclusion for each sample where the task is
to conclude whether the conclusion is true, false, or unknown given the premises. Additionally,
the dataset provides an encoding into first-order logic for all the premises and conclusions. There-
fore, we evaluated each LLM on their abilities to (1) informalize a first-order logic premise, (2)
autoformalize a natural language premise, (3) correctly classifying the conclusion using the first-
order logic representations, and (4) correctly classifying the conclusion using the natural language
representations.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Prompt 9: FOLIO Premise Informalization Prompt

[TASK]
Your task is to convert a first-order logic formula, appearing after [FORMULA], to a natural
description that represents the formula. Only natural language terms are allowed to be used
and do not copy the formula in your description. Your description should allow one to
reconstruct the formula without having access to it, so make sure to use the correct names in
your description. Explicitly describe the predicates. You may use terms verbatim as specified
in the vocabulary below.

[EXAMPLE 1]
∀x(DrinkRegularly(x, coffee) ∨ (¬WantToBeAddictedTo(x, caffeine)))
People regularly drink coffee, or they don’t want to be addicted to caffeine, or both.
[VOCABULARY]
∨ represents disjunction
∧ represents conjunction
¬ represents negation
→ represents implication
(and) represent parentheses
propositions can be used verbatim
predicates can be used verbatim
∀ < x1 >< x2 > ... < xn > . represents universal quantification with x1... representing
free variables
∃ < x1 >< x2 > ... < xn > . represents existential quantification with x1... representing
free variables
The objects are: caffeine
The parameterized predicates are: awarethatdrug(?p0, ?p1),
wanttobeaddictedto(?p0, ?p1)
The free variables are: x

[FORMULA]
∀x. (¬wanttobeaddictedto(x, caffeine)→ ¬awarethatdrug(x, caffeine))

For the FOLIO premise informalization and autoformalization experiments, the LLM was prompted
using the same few-shot first-order logic prompt used by ∀uto∃∨∧L where the example from the
prompt is another premise from the same FOLIO example to make sure both the example and the
evaluated premises have the same context. Premises were screened to make sure that we were able to
parse them into Prover9. Below is an example premises come from the FOLIO dataset.

For evaluating the performance of each LLM on classifying whether the premises entailed the conclu-
sion, the same prompt was used for both the natural language and first-order logic representations of
the premises and conclusions. The prompts are inspired by the prompts used in Multi-LogiEval and
use Chain-of-Thought prompting and prompt the model to provide the answer in a parsable format.
An example for both premises using an example from the FOLIO dataset are shown below.

We evaluated the informalization results against the ground truth natural language representation
using BLEU (Callison-Burch et al., 2006), ROUGE (Lin, 2004), METEOR (Banerjee & Lavie, 2005),
and BERT Score (Zhang* et al., 2020). The model deberta-xlarge-mnli (He et al., 2021) was used for
the BERT score calculation. For the autoformalization results, we used the same verification process
as the main paper. For the FOLIO conclusion classification, the LLM’s answered was parsed out of
its response with the examples that could not be parsed being classified as "Unknown" and marked as
wrong. These examples were checked to verify the parser.

K.2 MULTI-LOGIEVAL EXPERIMENT SETUP

The task in Multi-LogicEval (Patel et al., 2024) is to answer a yes-or-no question using the provided
context, where the question was created using a certain depth of rules of logical reasoning. We used a
prompt similar to the one they used where we use Chain-of-Thought prompting and prompt the LLM

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Prompt 10: FOLIO Premise Autoformalization Prompt

[VOCABULARY]
Use ∨ to represent disjunction
Use ∧ to represent conjunction
Use ¬ to represent negation
Use (and) to represent parentheses
The objects are: caffeine
The parameterized predicates are: awarethatdrug(?p0, ?p1),
wanttobeaddictedto(?p0, ?p1)
The free variables are: x

[TASK]
Your task is to interpret the natural language (NL) description of a first-order logic formula
and represent it as formal syntax using the vocabulary specified in the [VOCABULARY]
block above. Only output the formula and no other text. The NL description appears
immediately following the [NL DESCRIPTION] tag.

[EXAMPLE 1]
People regularly drink coffee, or they don’t want to be addicted to caffeine, or both.
∀x(DrinkRegularly(x, coffee) ∨ (¬WantToBeAddictedTo(x, caffeine)))

[NL DESCRIPTION]
No one who doesn’t want to be addicted to caffeine is unaware that caffeine is a drug.

Prompt 11: FOLIO Natural Language Representation Prompt

For the following [PREMISES] containing rules of logical reasoning, perform step-by-step
reasoning to answer whether the [CONCLUSION] is True/False/Uncertain based on the
[PREMISES]. Use the following answer format:
Reasoning Steps:
Answer: True/False/Uncertain
[PREMISES]:
All people who regularly drink coffee are dependent on caffeine
People regularly drink coffee, or they don’t want to be addicted to caffeine, or both.
No one who doesn’t want to be addicted to caffeine is unaware that caffeine is a drug.
Rina is either a student who is unaware that caffeine is a drug, or she is not a student and is
she aware that caffeine is a drug.
Rina is either a student who depend on caffeine, or she is not a student and not dependent on
caffeine.
[CONCLUSION]:
Rina doesn’t want to be addicted to caffeine or is unaware that caffeine is a drug.

to provide the answer in a specific location to parse. Examples of these prompts are provided below
using examples from the Multi-LogiEval dataset.

K.3 HUMANEVAL AND BIG BENCH HARD SCORE SOURCES

To evaluate the correlation and predictive power of ∀uto∃∨∧L against commonly used LLM bench-
marks HumanEval (Chen et al., 2021) and Big Bench Hard (BBH) (Suzgun et al., 2023), we collected
the performance scores of the LLMs we evaulated on both benchmarks and report our findings and
sources in Table 6. We were unable to find any sources that evaluated GPT-4o-mini on BBH.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

Prompt 12: FOLIO First-Order Logic Representation Prompt

For the following [PREMISES] containing rules of logical reasoning, perform step-by-step
reasoning to answer whether the [CONCLUSION] is True/False/Uncertain based on the
[PREMISES]. Use the following answer format:
Reasoning Steps:
Answer: True/False/Uncertain
[PREMISES]:
∀x(DrinkRegularly(x, coffee)→ IsDependentOn(x, caffeine))
∀x(DrinkRegularly(x, coffee) ∨ (¬WantToBeAddictedTo(x, caffeine)))
∀x(¬WantToBeAddictedTo(x, caffeine)→ ¬AwareThatDrug(x, caffeine))
¬(Student(rina)⊕ ¬AwareThatDrug(rina, caffeine))
¬(IsDependentOn(rina, caffeine)⊕ Student(rina))
[CONCLUSION]:
¬WantToBeAddictedTo(rina, caffeine) ∨ (¬AwareThatDrug(rina, caffeine))

Prompt 13: Multi-LogicEval Prompt

"Given the context that contains rules of logical reasoning in natural language and question,
perform step-by-step reasoning to answer the question. Based on context and reasoning steps,
answer the question ONLY in ’yes’ or ’no.’ Please use the below format:
Context: At a university, students who study hard earn high grades. Those who participate in
extracurriculars develop leadership skills. However, students have restricted time outside of
classes. They can either study hard or they do not develop leadership skills from extracurricu-
lars.
Question: Can we conclude that Priya, a university student with limited free time, either earns
high grades or does not participate in extracurricular activities?
Reasoning steps: [generate step-by-step reasoning]
Answer: Yes/No"

K.4 COMPUTED ∀UTO∃∨∧L CONDITIONAL PERFORMANCE

To compare against the performance on different benchmarks in Section 5, we needed to calculate the
conditional performance of each LLM’s on ∀uto∃∨∧L for the relevant portions of the datasets. For
example, there are few premises in the FOLIO dataset with more than 6 operators meaning that the
most accurate comparison would be to evaluate our first-order logic dataset up to the same number of
operators. Therefore we calculated the accuracy on the first-order logic formulae with less than seven
operators when calculation the correlation and predictive power. On MultiLogiEval, the number of
operators are dictated by the depth of the rules so we took the average of all first-order logic examples
up to 30 in our dataset. On HumanEval, to the best of our knowledge using the average of regex with
CFG tree depth up to 7 is the best comparison.

K.5 FOLIO ADDITIONAL CORRELATION FIGURES

In Section 5, we evaluated the correlation of other benchmarks compared to ∀uto∃∨∧L. For the
FOLIO dataset, we were able to calculate the exact number of operators in each problem allowing
us to plot points comparing the autoformalization and informalization accuracy for each operator
number class to directly compared to the accuracy of the same number operators in the first-order
logic dataset we generated.

We plot these results in Figure 17 with the Pearson co-relation coefficient. Each figure shows a moder-
ate to strong correlation with a statistically significant p-value of less than 0.05. As the computational
complexity increases, performance on ∀uto∃∨∧L, autoformalization, and informalization decreases.
The autoformalization coorelation is significantly stronger due to the informalization evaluation
metrics being much weaker at evaluating truth maintenance.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

Table 6: Reported performance of SOTA LLMs on HumanEval and Big Bench Hard benchmarks.
Model HumanEval Score Big Bench Hard (BBH) Score
GPT-3.5-turbo 68 (OpenAI, 2024) 48.1 (OpenAI, 2023b)
GPT-4o 90.2 (OpenAI, 2024) 83.1 (Dunham & Syahputra, 2024)
GPT-4o-mini 87.2 (OpenAI, 2024) -
Llama3-8B-Instruct 61.6 (Liu et al., 2023b) 24.5 (Fourrier et al., 2024)
Mistral-7b-Instruct-v0.1 42.1 (Liu et al., 2023b) 23.95 (Fourrier et al., 2024)
Phi-3-medium-4k-instruct 62.2 (Microsoft, 2024) 49.38 (Fourrier et al., 2024)

0 .25 .5 .75 1

0

.25

.5

.75

1

B
en

ch
m

ar
k

S
co

re

ρ = 0.79
p = 0.00

FOLIO (A)

0 .25 .5 .75 1

ρ = 0.70
p = 0.00

FOLIO (I; BLEU)

0 .25 .5 .75 1

ρ = 0.64
p = 0.00

FOLIO (I; ROUGE)

0 .25 .5 .75 1

ρ = 0.67
p = 0.00

FOLIO (I; METEOR)

0 .25 .5 .75 1

ρ = 0.61
p = 0.00

FOLIO (I; BERT)

∀uto∃∨∧L Score

ChatGPT GPT-4 LLama3 Mistral Phi GPT-4o-mini

Figure 17: Correlation between scores on ∀uto∃∨∧L and both autoformalization A and informalization I
for FOLIO premises. Each point represents a specific number of operators with arrows showing increasing
complexity (number of operators). The trendline accross all the points is annotated with ×, the Pearson
co-relation coefficient (ρ), and the p-value are annotated in the top left.

32

	Appendix Organization
	Dataset Generation
	3-SAT Prompt Calibration
	Dataset Generation Hyperparameters
	Experimental Setup
	Prompting
	Analysis of Main Paper Results
	Propositional Logic Results
	First-Order Logic Results
	Regular Expression Results

	Standard Deviation Evaluation
	Additional Zero-Shot Prompting Results
	Few-Shot Prompting Results
	Other Benchmark Correlation and AutoEval Predictive Power Evaluation
	FOLIO Experimental Setups
	Multi-LogiEval Experiment Setup
	HumanEval and Big Bench Hard Score Sources
	Computed AutoEval Conditional Performance
	FOLIO Additional Correlation Figures

