
A Optimality of the search procedure in Algorithm 1

In Algorithm 1, once we have an optimized program derivation graphG, due to the top-N preservation
strategy, each node retains a small number of partial architectures. Algorithm 1 maintains a queue Q
of program derivation graphs that is initialized to [G]. The algorithm dequeues one graph q from Q
and extracts the top-most and left-most node u of q that contains more than one partial architecture
for search. It enumerates each available partial architecture fuk

(
αu,k1 , . . . , αu,kη(fuk)

)
on u and computes

an s-score for each option of retaining only fuk on u, denoted as q[u/fuk]. We define

s(q[u/fuk]) = g(q[u/fuk]) + h(q[u/fuk])

The g(q[u/fuk]) function measures the structure cost of expanding the initial nonterminal up to u and
h(q[u/fuk]) is an ε-Admissible heuristic estimate of the cost-to-go from node u [7, 18] for A∗ search:

h(q[u/fuk]) =1− F1(Tw∗,θ∗ [u/fuk], Dval)

where w∗, θ∗ = arg min
w,θ

Eik,ok∼D[`
(
Tw,θ[u/fuk]), ok

)
] (4)

where T encodes the program derivation graph q itself via Equation (3) as a differentiable program
whose output is weighted by the output of all complete programs included in q, w and θ are the sets
of architecture weights and unknown program parameters in the subgraph rooted at u in q[u/fuk].
The h function fine-tunes these trainable variables using the training dataset D to provide informed
feedback on the contribution to program quality of the choice of retaining fuk on node u, measured
by F1 score. In practice, to avoid overfitting, we use a separate validation dataset Dval to obtain the
F1 score. After computing the quality score s, we add q[u/fuk] back to the queue Q sorted based on
s-scores. The search algorithm completes when the derivation graph with the least s-score from Q is
a well-typed program, i.e. each graph node contains only one valid architecture choice.

We aim to prove that our search algorithm is optimal given the admissible heuristic function h. When
multiple solutions exist in G (when the top-N parameter is greater than 1), the algorithm finds
an optimal solution. Among all the programs contained in G, the synthesized program optimally
balances program accuracy and structure complexity.

We note that our search algorithm is a variant of A∗ search by by interpreting g(q[u/fuk]) as cost-
so-far and h(q[u/fuk]) as heuristic cost-to-go. A∗ search is optimal given admissible heuristics. We
shows that under heuristics that are ε-admissible, our search algorithm returns solutions that at most
an additive constant ε away from the optimal solution.

Firstly, we prove that that our heuristic function h is ε-admissible. Let a completion of a partial
architecture q[u/fuk] be a (complete) architecture q̃[u/fuk] obtained by retaining only one partial
architecture on any node of q. The cost-to-go at q[u/fuk] is given by:

J(q[u/fuk]) = min
q̃[u/fuk]

c(q̃[u/fuk])− c(q[u/fuk]) + 1− F1(q̃[u/fuk], Dval)

where the structural cost c(q) is the sum of the costs of the grammatical rules used to construct q
excluding any nodes with more than 1 partial architectures (i.e. unexplored nodes in search).

The optimization in Equation (4) may only converge to a local minimum. However, since our
relaxation of the search space for Equation (4) includes any possible program permitted by q, there
must exist architecture weights w∗ and program parameters θ∗ such that

∀q̃[u/fuk]. 1− F1(T [u/fuk], w∗, θ∗, Dval) ≤ 1− F1(q̃[u/fuk], Dval) + ε

Thus we have:

h(q[u/fuk]) ≤ 1− F1(T [u/fuk], w∗, θ∗, Dval)

≤ min
q̃[u/fuk]

1− F1(q̃[u/fuk], Dval) + ε

≤ min
q̃[u/fuk]

c(q̃[u/fuk])− c(q[u/fuk]) + 1− F1(q̃[u/fuk], Dval) + ε

≤ J(q[u/fuk]) + ε (5)

In other words, h(q[u/fuk]) is ε-admissible as for a fixed constant ε > 0, h is an ε-admissible heuristic
function over architectures such that h(q[u/fuk]) ≤ J(q[u/fuk]) + ε for any partial architecture fuk
on u.

14

Table 4: FS,θ(x) for the Crim13 dataset.

Extract Feature Dimension
Position 0, 1, 2, 3
Distance 4
Distance Change 5
Velocity 11, 12, 13, 14
Acceleration 15, 16, 17, 18
Angle 6, 7, 10
Angle Change 8, 9

Table 5: FS,θ(x) for the Fly-vs-fly dataset.

Extract Feature Dimension
Linear 17, 25
Angular 18, 26, 27
Positional 24, 28
Ratio 22, 23
Wing 19, 20, 21

Table 6: FS,θ(x) for the Basketball dataset.

Extract Feature Dimension
Ball 0, 1
Offense 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
Defence 12, 13, 14, 15, 16, 17, 18, 19, 20, 21

ε-Optimality. Based on the ε-admissible of heuristic function h(q[u/fuk]), we prove that the variant
of A∗ search in Algorithm 1 results in a synthesized program that is at most ε away from the optimal
solution contained in the search graph. Suppose that Algorithm 1 returns a program P r that does not
have the optimal cost C∗. Then there must exist a program derivation graph q∗ in the queue Q of
Algorithm 1 that contains the architecture of the optimal program P ∗. Due to Equation 5 and the fact
that Q is sorted, the s-score of P r satisfies:

s(P r) ≤ s(q∗[u∗/f∗])

= g([q∗[u∗/f∗]) + h(q∗[u∗/f∗])

≤ g(q∗[u∗/f∗]) + J(q∗[u∗/f∗]) + ε

≤ C∗ + ε

where u∗ is the top-most and left-most node of q∗ and f∗ is the optimal partial architecture to retain
on node u∗ to get the optimal program P ∗. In other words, we have established an upper bound on
the path cost of the returned synthesized program P r.

B Context-free Grammar Details

We use the context-free grammar in Fig. 1 for synthesizing programmatic classifiers for all the
datasets in our experiment. For each dataset, similar to NEAR [7], we customize parameterized
functions FS,θ(x) that extract a vector consisting of a predefined subset S of the dimensions of an
input data item x and pass the extracted vector through a linear function with trainable parameters θ.
We disclose the details of FS,θ(x) for each dataset below.

Crim13 Dataset. As shown in Table 4, we define 7 feature extraction functions FS,θ(x) for the
Crim13 Dataset. For location information, XY positions of a pair of mice and the distance between
them are recorded. Additionally, distance change measures the distance difference for each two
consecutive frames. To track movement information, velocity and acceleration of a pair of mice are
extracted in X and Y dimensions respectively. Besides, we also include the information on angle and
angle change. The former contains the two relative directions between a pair of mice (one for mouse
1 relative to mouse 2, another for mouse 2 relative to mouse 1) and the difference between the two
relative directions. Angle change represents the change of the two relative directions over time. More
information on the dimensions of this dataset can be found in [20].

Fly-vs-fly Dataset. Table 5 shows the feature functions FS,θ(x) we extract for the Fly-vs-fly dataset.
Although the feature vectors of the dataset have 53 dimensions, we find the 5 feature functions in
the table are sufficient to obtain high accuracy and F1-scores. The linear feature function captures
the values of velocity and distance between two flies. The Angular feature function extracts the
value of angle velocity, relative angle between flies and facing angle of each fly. The feature function
Positional captures the distance over a relative object and fly legs. The feature function ratio extracts
the body ratio of two flies. The feature function wing extracts the angles and lengths of fly wings.

15

Table 7: FS,θ(x) for the SK152 dataset.

Extract Feature Point
Arms 2, 3, 4, 5, 6, 7
Legs 8, 9, 10, 11, 12, 13, 14, 19, 20, 21, 22, 23, 24
Faces 0, 1, 15, 16, 17, 18

Table 8: Dataset details

Dataset feature dim. category num. max seq. len. # train # valid # test
Crim13 19 2 100 12404 3077 2953
Fly-vs-fly 53 7 300 5341 629 1050
Basketball 22 6 25 18000 2801 2693
SK152 75 10 100 8721 2184 892

Basketball Dataset. As shown in table 6, we define three feature extraction functions for the
Basketball dataset, extracting the positions of the basketball, 5 offensive players, and 5 defensive
players. All positions are expressed in X and Y coordinates.

SK152 Dataset. This dataset uses a total of 25 points to capture human skeletons. Each point is
recorded using XYZ coordinates. We define three customized feature functions arms, legs and face,
each of which extracts a subset of the 25 features.

C Experiment Details

We provide more details about our experiment in this section.

C.1 Training Details

Datasets. Table 8 gives the full details of the four datasets used for evaluation. NEAR [7] does not
release the Fly-vs-fly and Basketball datasets used to obtain the results in its paper. We sample these
datasets following the guidance provided in [7]. Therefore, the datasets used in the evaluation of this
paper are not completely equivalent to that of [7].

Structure Cost. To penalize complex program architectures, we implement the structure cost
function g similar to NEAR [7]. Let each grammar rule r have a non-negative real-valued cost c(r).
The structural cost of a (partial) architecture is the sum of the costs of the multi-set of rules used to
create the architecture.

g(q[u/fuk]) = β ·
∑

r∈q[u/fuk]

c(r)

Importantly, the above formula only counts the grammar rules used to expand the initial nonteriminal
up to node u (recall that u is the top-most and left-most node of q that contains more than one partial
architecture i.e. unexplored nodes are excluded). To balance the structure cost and performance of a
programmatic classifier, we set the cost penalty parameter β to be 0.01 for both dPads and NEAR. In
practice, we set c(r) = 1 for any grammar rule r. For a complete program, the g function essentially
counts the number of grammar rules used to derived the program (timed with β).

C.2 Hyperparameters

RNN Baseline. The RNN baseline policies are 1-layer LSTMs. Table 9 introduces the hyperparam-
eters used for training the RNN baselines. In general, the RNN baselines perform better than the
synthesized programmatic classifiers because their richer structures allow for better data fitting at the
cost of less interpretability. In the experiments, we use the cross-entropy loss to optimize classifier
accuracy for both dPads and baselines.

Several other baselines that we considered include (1) Top-down enumeration that synthesizes
and evaluates complete programs in order of increasing complexity measured using the structural
cost, (2) Monte-Carlo sampling that constructs complete programs by sampling rules (edges) with

16

Table 9: Hyperparameters set for the RNN baseline.

Dataset # LSTM units # epochs learning rate batch size
Crim13 100 50 0.001 50
Fly-vs-fly 80 40 0.00025 30
Basketball 64 15 0.01 50
SK152 75 30 0.01 50

Table 10: Hyperparameters set for Differentiable Architecture Search and Selection in dPads.

Dataset Architecture Search Architecture Selection Batch Sizelearning rate graph_epoch prog_epoch learning rate
Crim13 0.001 6 6 0.001 200
Fly-vs-fly 0.0005 6 6 0.0005 200
Basketball 0.001 4 6 0.02 50
SK152 0.01 4 6 0.01 200

probabilities proportional to their structural costs where the next node to expand along a path has the
best average performance of samples that descended from that node, (3) Monte-Carlo tree search
(MCTS) that traverses the search graph of programs using the UCT selection criteria, where the value
of a node is inversely proportional to the cost of its children, and (4) Genetic algorithm that uses
crossover, selection, and mutation operations to evolve a population of programs over a number of
generations. Unlike dPads, these baselines perform program architecture search in the discrete space
of DSL grammar rules. We do not include these baselines in the experiment section because NEAR
significantly outperforms them [7]. Therefore, it suffices to compare dPads solely with NEAR.

dPads. In the evaluation of dPads, we set graph expansion depth ds (a parameter of Algorithm 1) as
2 for all the four datasets. NEAR uses the number of grammar production rules applied to construct a
program to upper-bound the search space for program learning. The largest number of production
rules allowed for a synthesized program is 8 in NEAR. Instead, we set the max depth of the abstract
syntax tree of a dPads’s synthesized program as 4. Compare to the search space of NEAR, some
programs included in the search space of dPads even need more than 10 production rules to expand
from the initial nonterminal.

For top-N preservation in a program derivation graph, the goal is to retain top-N program architec-
tures as children for each partial architecture on the node’s parent, which are defined to be those
assigned with higher weights on the node’s incoming edge in the previous graph unfolding iteration.
We set N = 2 in our experiments. In practice, we find that a heuristic strategy that iteratively prunes
candidate partial architectures on a program derivation graph node and fine-tunes the derivation
graph at then end of each iteration is more efficient than directly retaining top-N architectures. In a
graph unfolding iteration, after optimizing the architecture weights and unknown program parameter
over an entire program derivation graph for several epochs until the increase of the F1 score of the
whole graph is less than 1%, on each node we retain 4 program architectures as children for each
partial architecture on the node’s parent, then we retrain the program derivation graph for several
epochs again until the increase of F1 score is less than 1% and on each node we retain 3 program
architectures for each partial program architectures on the node’s parent, and finally we apply such
a process again to retain only 2 program architectures to get the desired top-2 preservation in the
program derivation graph.

Table 10 presents the hyperparameters used to train dPads programmatic models. The learning
rates for differentiable architecture search on a program derivation graph and architecture selection
from the converged program derivation graph may be different. For architecture selection, the
number of graph_epoch refers to the number of epochs that is used to optimize the heuristic function
h (Equation 4) when a program derivation graph has nodes containing more than one candidate
architectures. Here we need to optimize both architecture weights and program parameters. The
number of prog_epoch refers to the number epochs that is used to fine-tune the accuracy of a program
derivation graph when every node of the graph contains exactly one architecture, i.e., the graph is the
abstract syntax tree of a valid program. For Crim13 and Fly-vs-fly, both graph_epoch and prog_epoch
are set to 6. For Basketball and SK152, graph_epoch is set to 4 and prog_ epoch is set to 6.

17

Nodes Operations Edges Weights Parameters

crim13 sk152 fly-vs-fly Bball crim13 sk152 fly-vs-fly Bball crim13 sk152 fly-vs-fly Bball crim13 sk152 fly-vs-fly Bball crim13 sk152 fly-vs-fly Bball

Ac
co

un
t

Nodes Partial Architecture Weights

crim13 sk152 fly-vs-fly Bball crim13 sk152 fly-vs-fly Bball crim13 sk152 fly-vs-fly Bball

Ac
co

un
t

Partial ArchitecturesNodes Weights

Figure 7: Results of quantifying the number of graph nodes, the total number of partial architectures
(DSL functions) hosted by the nodes, and the total number of architecture weights on graph edges on
program derivation graphs generated by dPads and its variants for each of the datasets.

C.3 Additional Experiment Results

Search Space Reduction. Fig. 7 quantifies the program derivation graph reduction by node sharing
and iterative unfolding. We show for each benchmark the number of nodes, the total number of partial
architectures (DSL functions) hosted by the nodes, and the total number of architecture weights to
train on its program derivation graph. We only show the results of the deepest program derivation
graph generated by dPads on each benchmark. Notice that dPads without iterative graph unfolding
and dPads without node sharing generate program derivation graphs that are significantly larger.

On Fly-vs-fly, without iterative graph unfolding, the program derivation graph has 33 nodes shared
by 485 partial architectures, and a total of 1021 architecture weights to train. Directly applying dPads
to train under this setting encounters an out-of-memory (OOM) exception (Table 2). In contrast, with
iterative graph unfolding, the deepest graph generated by dPads has only 21 nodes shared by 220
partial architectures, and a total of 370 architecture weights to train. dPads converges in less than 360
mins (Table 2).

On Basketball, without node sharing, the deepest program derivation graph generated by dPads has
94 nodes hosting 302 partial architectures, and a total of 301 architecture weights to train. If directly
running dPads under this setting, the search procedure (Sec. 3.3) times-out (Table 2). In contrast,
with node sharing, the program derivation graph reduces to only 29 nodes shared by 152 partial
architectures, and a total of 259 architecture weights. dPads converges in less than 180 mins (Table 2).

Program Sizes. Table 11 reports the number of grammar rules used to construct synthesized programs
for each benchmark. Compared with NEAR, dPads tends to synthesize more complex programs that
are necessary to ensure higher F1 scores.

On Fly-vs-fly, although NEAR runs faster, it only finds programs derived by 2.8 production rules
but dPads finds much deeper programs derived by 6.8 production rules. Consequently, for this
benchmark, dPads achieves much higher accuracy and F1 scores. A similar trend can be observed
for the results on Crim13 and SK152. dPads learns program classifiers for Crim13 constructed
using 10.2 grammar rules averagely. These classifiers achieve an average of 0.46 F1 scores (on
the test dataset). The shallower classifiers learned by NEAR achieve an average of 0.33 F1 scores
constructed by 5.8 grammar rules averagely. While the dPads classifiers are more complex, the
total s-scores of dPads classifiers (1−F1(p,Dval) + β ·

∑
r∈AST (p) c(r) where p is a classifier), i.e.

synthesized programs’ classification error plus architecture cost (the search objective), are still lower
than that of the programs learned by NEAR. In other words, dPads better balances structure costs
and performance. On Basketball, both tools find programs with 8 production rules. In this case, the
architecture spaces searched by the two tools are roughly equivalent, but dPads is 3 times faster.

The experiment results consistently demonstrate that dPads’s gradient-based architecture search is
much more efficient than NEAR’s enumeration-based strategy. Moreover, NEAR uses neural models
to estimate the performance of a partially expanded program. Our experiments find that due to
overfitting or underfitting, such a neural model may be biased on a particular program. For example,
on Fly-vs-fly, due to the biased estimation, NEAR stops searching the architecture space deeper
than that contains programs derived by only 2.8 production rules. In contrast, (1) dPads uses a
sub program derivation graph to estimate the performance of a partially expanded program that can

18

Table 11: The average numbers of grammar rules (#R) used to construct synthesized programs
together with the programs’ F1 scores. All results are reported as the average of runs on five random
seeds. Costs of time are set to minutes.

Crim13-sniff Fly-vs-fly Bball-ballhandler SK152-10 actions
F1 #R Time F1 #R Time F1 #R Time F1 #R Time

A∗-NEAR .286 6.8 164.92 .828 2.8 243.82 .940 8.0 553.01 .312 4.2 210.23
IDS-BB-NEAR .323 5.8 463.36 .822 2.4 465.57 .793 7.0 513.33 .314 4.4 848.44

dPads .458 10.2 147.87 .887 6.8 348.25 .945 8.0 174.68 .337 7.6 162.70

Table 12: Standard deviations of F1 scores, accuracy rates, and the number of grammar rules used to
construct synthesized programs. All results are reported as the average of runs on five random seeds.

Crim13 Fly-vs-fly Basketball SK152
F1 Acc. Rules F1 Acc. Rules F1 Acc. Rules F1 Acc. Rules

A∗-NEAR .107 .007 3.27 .025 .016 1.10 .007 .009 0.0 .017 .018 0.45
IDS-BB-NEAR .086 .008 2.39 .030 .025 0.89 .012 .015 0.0 .012 .010 0.54
dPads .013 .008 5.31 .011 .006 1.10 .004 .004 0.0 .017 .017 0.55

provide more accurate assessment due to the graph’s syntax resemblance to a valid program; (2)
dPads only uses neural models to provide "contrastive" performance estimation for a set of programs
sharing nodes in a program derivation graph when iteratively unfolding the graph. As a result, on
Fly-vs-fly, dPads searches the architecture space much deeper containing programs derived by 6.8
production rules. Even dPads typically searches much deeper, it often runs faster than NEAR.

Standard Deviations. We present the standard deviations of accuracy, F1-scores, and numbers of
production rules used to construct learned programs in Table 12. The results confirms the observation
in [7] that NEAR has a higher variance in F1 scores for CRIM13. dPads is more stable on this dataset.

Further Comparison with NEAR. In the comparison with NEAR, we obtain the NEAR results
following the hyperparameters defined in [7]. The only exception is that for Crim13 and Fly-vs-fly, we
modify the batch size for NEAR program learning to be 200 while keeping the other hyperparameters
unmodified to get the results. This is for ensuring a fair comparison of running times with dPads that
sets batch size to 200. In this section, we report the results of NEAR on Crim13 and Fly-vs-fly using
exactly the same hyperparameters as reported in [7], setting batch size to 50 and 30 respectively, and
show the results in Table 13. In this setting, A∗-NEAR and IDS-BB-NEAR get higher F1 scores
that are, however, still lower than that of dPads. Moreover, NEAR costs significantly longer time in
search. Thus, dPads outperforms NEAR in this setting as well.

Comparison with Enumerative Program Synthesis. Besides comparing with NEAR and RNN (as
in Table 1), we also compared dPads with an enumeration strategy that synthesizes and evaluates
complete programs in order of increasing complexity. This strategy is widely used in program
synthesis tasks. We set the running time of the enumeration strategy twice as long as dPads’s
synthesis time. As shown in Table 14, dPads outperforms enumeration strategy on all benchmarks.
Although enumeration gets higher accuracy on Cim13, it underfits this unbalanced dataset as the F1

score is much lower than dPads. We have also tried a Monte-Carlo tree search strategy but found that
its performance is even worse than the simple enumeration strategy on our benchmarks.

C.4 Additional Ablation Study Results

Other than top-N preservation and iteratively unfolding program derivation graphs, we explored
other pruning approaches, including reserving the top-N programs across the entire search graph.
We also considered another pruning algorithm which we refer to as First Compare First Unfold
(FCFU). Unlike dPads that separates top-N preservation and iterative graph unfolding with the search
algorithm in Sec. 3.3, FCFU mixes the two optimizations with the search procedure. It manages a
priority queue of program derivation graphs that is initialized to the simplest graph with the initial
nonterminal only. After training converges on a program derivation graph from the priority queue,
FCFU decomposes the graph into several sub graphs by separating the co-adapted architectures on
the top-left most compound node on the graph. On each sub graph, that node contains only one

19

Table 13: Experiment results of NEAR following the exact hyperparameter setting specified in [7].
All results are reported as the average of runs on five random seeds. Costs of time are set to minutes.

Crim13-sniff Fly-vs-fly
F1 Acc. Time(mins) F1 Acc. Time(mins)

A∗-NEAR .304 .824 519.60 .873 .827 1208.92
IDS-BB-NEAR .328 .840 1106.28 - - > 1440
dPads .458 .812 147.87 .887 .853 348.25

Table 14: Experiment results on comparing dPads with an enumeration-based synthesis strategy.
The running time of the enumeration strategy is set twice as long as the synthesis time of dPads. All
results are reported as the average of runs on five random seeds. Costs of time are set to minutes.

Crim13 Fly-vs-fly Basketball SK152
F1 Acc. F1 Acc. F1 Acc. F1 Acc.

Enumeration .294 .856 .850 .774 .795 .767 .288 .284
dPads .458 .812 .887 .853 .945 .939 .337 .337

Table 15: Ablation study on various pruning methods. All results are reported as the average of runs
on five random seeds. Costs of time are set to minutes.

Crim13 Fly-vs-fly Basketball SK152
F1 Acc. Time F1 Acc. Time F1 Acc. Time F1 Acc. Time

top-5 programs .299 .516 184.16 .652 .554 153.28 .848 .829 30.59 .283 .277 62.04
FCFU .456 .813 489.53 .889 .853 606.65 - - > 1440 .338 .339 319.60
dPads .458 .812 147.87 .887 .853 348.25 .945 .939 174.68 .337 .337 162.70

available architectures. These partitions are pushed back to the queue after fine-tunning (similar to
dPads). Once a graph with each node containing at most one architecture is obtained from the queue
as the least cost, we immediately unfold the graph into deeper levels and push it back to the queue
unless the maximum depth is reached. FCFU prioritizes to unfold the best partial program observed
so far. We compared dPads with FCFU and top-N programs over 5 random runs. The results are
shown in Table 15.

It can be seen that dPads outperforms top-N programs where N is set to 5, achieving higher accuracy
and F1 scores. This is because top-N programs tends to excessively detach many valid DSL functions
from graph nodes (especially when N is small), leading to suboptimal final programs. FCFU achieves
comparable accuracy and F1 scores with dPads but runs significantly slower than dPads. It even
times-out on the Basketball dataset. This is because FCFU only unfolds one best partial program each
time, causing the search queue to grow exponentially longer with graph decomposition. In contrast,
dPads maintains a set of high-quality programs via top-N preservation on nodes and simultaneously
expands all of these programs via iterative graph unfolding.

C.5 Program Examples

We show more synthesized programs by dPads for the four datasets below.

Crim13. The following is a programmatic classifier learned for Crim13.

Map(
if AccelerationAffineθ1(xt)≥ 0
then if PositionAffineθ2(xt)≥ 0

then PositionAffineθ3(xt)
else VelocityAffineθ4(xt)

else Multiply(DistanceAffineθ5(xt), DistanceAffineθ6(xt))) x

In the program, AccelerationAffine, DistanceAffine, PositionAffine, and VelocityAffine are functions
that first select the parts of the input that represent acceleration, distance, position, and velocity
measurements, respectively, and then apply affine transformations with parameters θ to the resulting

20

vectors. The program contains a nested if-then-else (ITE) operation conditioned on the acceleration
of two mice. Our interpretation of the program is that if the difference between the accelerations of
two mice is small, in the first else branch, they are doing “sniff" if the two mice are close to each
other without obvious movements (i.e. the multiplication of their distance is small); otherwise, in the
first then branch, the program evaluates the likelihood of “sniff” by applying a position bias, then
using the velocity of the mice if the mice are close together and not moving fast, and using distance
between the mice otherwise.

We show another programmatic classifier learned for Crim13 below:

MapPrefixes(
Fold(

if DistanceAffineθ1(xt)≥ 0
then PositionAffineθ2(xt)
else PositionAffineθ3(xt))) x

This program has a simpler architecture compared with the one above but has a higher F1 score
(0.468 vs. 0.456) that is comparable to the RNN baseline (vs. 0.481). It exploits the distance and the
position bias between two mice to evaluate if they are doing “sniff".

Fly-vs-fly. We draw two programmatic classifiers for Fly-vs-fly with similar structures below. Both

Fold(
Add(

Add(PositionalAffineθ1(xt),
WingAffineθ2(xt)),

RatioAffineθ3(xt))) x

Fold(
Add(

Add(AngularAffineθ1(xt),
WingAffineθ2(xt)),

Add(RatioAffineθ3(xt),
RatioAffineθ4(xt)))) x

programs consider the wing and the body ratio features of fruit flies for classification. The left
program further extracts the position information and gets a high F1 score 0.904 while the right
program extracts the fly angle velocity and relative facing angle information that results in a lower F1

score 0.888. The better performance of the left program suggests that the position information of
flies is more crucial than the angle features to classify their actions.

SK152. For SK152, we show a learned programmatic classifier that is more complex compared with
the one depicted in the main paper.

SlideWindowAvg(
Add(

if ArmsXYZAffineθ1(xt)≥ 0
then ArmsXYZAffineθ2(xt) else ArmsXYZAffineθ3(xt),
if LegsXYZAffineθ4(xt)≥ 0
then FaceXYZAffineθ5(xt) else LegsXYZAffineθ6(xt))) x

This program applies a sliding window to a trajectory for classification and sums the results of two
ITE operations inside the window. The first ITE operation focuses on human arm behaviors and the
second ITE operation leverages either face movements or leg movements based on the behavior of
human legs. The program results in an F1 score of 0.336 and an accuracy of 0.337.

Basketball. The program synthesized for Basketball to classify the ballhandler is shown below.

Map(
Multiply(

Add(BallXYAffineθ1(xt), OffenseXYAffineθ2(xt)),
Add(OffenseXYAffineθ3(xt), BallXYAffineθ4(xt)))) x

In the program, OffenseXYAffineand and BallXYAffine are parameterized affine transformations over
the XY-coordinates of the offensive players and the ball. The program structure can be interpreted as
computing the distance between the offensive players and the ball to determine the ballhandler. As
we aim to recognize the offensive player who holds the basketball, it suffices to only consider the ball

21

DSL Grammar

Differentiable
DSL Semantics

Architecture
Search

Architecture
Selection

Differentiable Program Synthesis

Training
Examples

BinaryCrossentropy
CategoricalCrossentropy
…

DSL
Program

DSL Architecture
Cost Model

Figure 8: A high-level framework of dPads.

α0 → And(α1, α1) | Not(α1) | Or(α1, α1) | Xor(α1, α1)

α1 → And(α2, α2) | Not(α2) | Or(α2, α2) | Xor(α2, α2) | LN10

α2 → And(α3, α3) | Not(α3) | Or(α3, α3) | Xor(α3, α3)

α3 → And(α4, α4) | Not(α4) | Or(α4, α4) | Xor(α4, α4) | LN32

α4 → LN30 | LN42

Figure 9: Context-free grammar for cryptographic circuit synthesis in the SyGus project.

positions and the offensive players (excluding the information on defensive players). This program
gets a F1 score of 0.945 and an accuracy of 0.939.

C.6 Generalizability

In the paper, we illustrate dPads by focusing on sequence classification. However, dPads is a general
program synthesis algorithm and is not limited to sequence classification.

Fig. 8 depicts a high-level framework of dPads. Other than training data, dPads takes as input a DSL,
the semantics of the DSL, and a cost model of each production rule in the DSL. Importantly, dPads
requires the DSL’s semantics to be differentiable. This is because dPads performs gradient-based
architecture search. To avoid discontinuities in programming constructs such as ITE, we require these
constructs to be interpreted in terms of a smooth approximation. As such, the synthesis algorithm in
dPads is exactly parameterized by a class of DSLs with differentiable semantics. The context-free
grammar in Fig. 1 is such an example. It is straightforward to apply dPads to another DSL with
differentiable semantics.

As an example, we demonstrate the generalizability of dPads by applying it to the cryptographic
circuit synthesis task in the SyGuS (Syntax-Guided Synthesis) project1. The goal is to synthesize a
side-channel free cryptographic circuit by following given context-free grammar while ensuring that
the synthesized circuit is equivalent to the original circuit (a correctness constraint). The grammar
is designed to avoid side-channel attacks, whereas the original circuit is created only for functional
correctness and thus is vulnerable to such attacks. dPads takes as input a circuit grammar as depicted
in Figure. 9. The grammar includes several Boolean operations And, Not, Or and Xor. It also
specifies multiple variables (e.g. LN10 and LN30) to be used by the synthesizer to generate a
desired program (circuit in this context). In this experiment, we aim to synthesize a program that
must be logically equivalent to ϕspec (a correctness specification):

ϕspec : (((LN30 Xor LN32) Xor LN42) Xor LN10) (6)

Notice that the above program itself cannot be expressed using the above grammar.

In order to apply dPads to such a task, the user of dPads must provide a differentiable DSL semantics.
Recall that we have provided a smooth approximation of ITE in Sec.2. We define a differentiable

1https://sygus.org/

22

JAnd(α1, α2)K(v) = min(Jα1K(v), Jα2K(v))

JOr(α1, α2)K(v) = max(Jα1K(v), Jα2K(v))

JXor(α1, α2)K(v) = Jα1K(v) + Jα2K(v)− 2Jα1K(v) · Jα2K(v)

JNot(α)K(v) = 1− JαK(v)

JLN10K(v) = v[LN10]

JLN30K(v) = v[LN30]

JLN32K(v) = v[LN32]

JLN42K(v) = v[LN42]

Figure 10: Differentiable semantics for Boolean operations.

semantics for And, Not, Or and Xor similarly in Figure 10. Given a program ϕ in the DSL and a
Boolean assignment v as the variables in ϕ, ϕ(v) is deemed to be True if Jϕ(v)K is closer to 1 and
ϕ(v) is deemed to be False if Jϕ(v)K is closer to 0.

dPads constructs a program derivation graph to include each possible program allowed by the
grammar. Given a set of input-output examples, it trains the architecture weights of the program
derivation graph by minimizing the MSE loss between the graph’s outputs (Equation. 3) and the
ground truth outputs. In this example, an input is an assignment to the variables, e.g. v = {LN10 :
0, LN30 : 1, LN32 : 0, LN42 : 1}. The corresponding output is whether the input variable
assignment v should be evaluated to 1 (True) or 0 (False). We collect the input-output examples using
counterexample-guided inductive synthesis (CEGIS) by iteratively querying an SMT solver (such
as Z32) whether a synthesized program ϕ is logically equivalent to ϕspec. Any counterexample that
witnesses the inequivalence of ϕ and ϕspec is added to the input-output example set. Since the DSL
semantics is differentiable, dPads can efficiently learn architecture weights using gradient descent
optimization and hence return the best program it synthesizes. For our example, dPads synthesizes
the following solution that is verified equivalent to ϕspec:

(LN10 Xor ((LN32 Xor (LN42 Or LN30)) Xor ((LN30 Or LN42) And (LN30 And LN42))))

In our experience, dPads is very efficient in solving the circuit synthesis problem and can reduce the
synthesis time from minutes by EUSolver3 (an enumerative SyGuS solver) to seconds.

D Additional Discussions

D.1 Limitations

Performance gap to RNN. dPads’s performance does not match the RNN baseline. This is mainly
due to the limitations in expressivity imposed by the DSL. Firstly, in the DSL, we only allow for
customized feature functions FS,θ(x) that extract a vector consisting of a predefined subset S of
the dimensions of an input sequence x and pass the extracted vector through a linear function with
trainable parameters θ. For example, for Crim13, we predefine feature functions such as the XY
positions, angles, velocity, acceleration, distance of a pair of mice, and distance difference for every
two consecutive frames. We list the details of FS,θ(x) for each dataset in Appendix B. These feature
functions are extremely helpful to ensure that a synthesized program composed of these functions is
interpretable. However, a program limited to these predefined feature functions may be suboptimal
as only a subset of features is used. Instead, an RNN policy can understand the whole context of a
sequence using all features available from the input. Secondly, for the sake of interpretation, our DSL
also predefines a limited set of algebraic operations to process the outputs from the feature functions,
as shown in Fig. 1. However, an RNN can use a more expressive activation function to learn about
long-term dependencies in data. We have reported the performance limitation of dPads in Table 1.

Program Derivation Graph Accuracy. Another important limitation is that performance estimation
of each program included in a program derivation graph ranked by architecture weights can be

2https://github.com/Z3Prover/z3
3https://bitbucket.org/abhishekudupa/eusolver/src/master/

23

inaccurate due to the co-adaption among partial architectures (node sharing). As one super program
derivation graph may not be able to model the entire search space accurately, we have used multiple
sub program derivation graphs generated on the fly via a search procedure to address this problem
(Section 3.3). Each sub derivation graph models one part of the search space. However, as reported
in Table. 3, the search method slows down the whole synthesis procedure and may need additional
optimization.

D.2 Further Comparison with NEAR

Although dPads and NEAR [7] both formalize program synthesis as a graph search problem, the two
techniques are very different. We compare dPads and NEAR in depth as follows.

NEAR. Typically, search-based program synthesizers enumerate the underlying program space in
some order and for each program checks whether or not it satisfies the synthesis constraints. It is
a challenging problem because the architecture search space is combinatorial. The most simple
strategy that starts by searching for programs with 1 DSL production rule and iteratively increases this
bound does not scale to complex programs. NEAR uses neural models to approximate unexpanded
subexpressions to estimate the likelihood of eventually deriving a high-quality program by choosing
a particular production rule. It leverages this kind of information to prioritize promising search
directions and hence can greatly accelerate the search process. However, NEAR’s search strategy is
still discrete and enumeration-based.

dPads’s Contributions. dPads proposes a new, scalable program synthesis technique. It views pro-
gram architecture search as learning a probability distribution over all possible program architectures
induced by a DSL. Unlike NEAR that enumerates and evaluates each program by training unknown
parameters from scratch, dPads reduces the computation cost by training one program, a.k.a. a
program derivation graph, to approximate the performance of every program in the search space. It
learns the architecture weights of each program encoded in a program derivation graph in a way that
ranks the performance estimation of these programs. The search procedure in dPads is more efficient
because it supports gradient-based architecture optimization in a novel continuous relaxation of the
program architecture search space.

dPads’s Impacts. To the best of our knowledge, dPads is the first program synthesis technique that
applies gradient-based architecture search. Experiment results on sequence classification demonstrate
that thanks to this strategy, dPads can efficiently search in a deep program space to learn sophisticated
programs that are necessary to ensure high F1 scores.

D.3 Using Neural Networks to Approximate Missing Expressions

Both dPads and NEAR [7] use neural networks to approximate missing expressions of partial
architectures. However, the key difference is that dPads does not use neural models to estimate
the performance of a partially expanded program. This is because our experiments find that due to
overfitting or underfitting, a neural model may be biased on a particular program. In contrast, dPads
uses a sub program derivation graph to estimate the performance of a partially expanded program.
We find that it can provide more accurate assessment due to the graph’s syntax resemblance to a valid
program. This enables dPads to be able to search deeper than NEAR in the program architecture
space to synthesize more sophisticated programs that are necessary to ensure higher F1 scores. For
example, on Fly-vs-fly, NEAR’s inaccurate admissible neural heuristics prevent it from searching
the architecture space deeper than that contains programs derived by just 2.8 production rules. In
contrast, during architecture selection, dPads uses a sub program derivation graph to estimate the
performance of a partially expanded program. The sub program derivation graph provides a more
accurate assessment. As a result, dPads searches the architecture space much deeper containing
programs derived by 6.8 production rules and gets a much higher F1 score (.887 vs .828).

dPads only uses neural models to provide contrastive performance estimation for a set of programs
sharing nodes in a program derivation graph for iterative graph unfolding (Section 3.2). For example,
on the Basketball dataset, the architecture spaces searched by the two tools are roughly equivalent.
dPads is 3 times faster. This is in part because dPads uses the same set of neural networks to
provide contrastive performance estimation for the set of programs sharing nodes and does require
the performance estimation on a single program to be accurate. In iterative graph unfolding, this
strategy effectively and efficiently prunes away a large set of unlikely search directions.

24

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [Yes] See

Section 6
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] Code is shown
in Algorithm 1, data and instructions are shown in Section 4.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Section 4 and Appendix.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] See section 4.3.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See section 4

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes]
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [Yes] See citations in section 4
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [Yes] See citations in section 4
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

25

