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A RELATED WORKS

Calibration Methods Post-hoc calibration methods adjust model outputs after training to improve
calibration. A widely used technique is Temperature Scaling (TS) (Guo et al., 2017), which smooths
softmax probabilities by search a temperature factor on a validation set. Enhanced variants of TS
include Parameterized Temperature Scaling (PTS) (Tomani et al., 2022), which uses a neural net-
work to learn the temperature, and Class-based Temperature Scaling (CTS) (Frenkel et al., 2021),
which applies adjustments on a class-wise basis. Group Calibration (GC) (Yang et al., 2024) and
ProCal (Xiong et al., 2023a) aim for multi-calibration (Hébert-Johnson et al., 2018) by splitting data
samples by proximity and grouping. Another stream of work is train-time calibration such as Brier
Loss (Brier, 1950), Dirichlet Scaling (Kull et al., 2019), Maximum Mean Calibration Error (MMCE)
(Kumar et al., 2018), Label Smoothing (Szegedy et al., 2016), and Focal Loss (Mukhoti et al., 2020)
and Dual Focal Loss (Tao et al., 2023). However, these methods often require substantial higher
computational overhead.

Ensemble-Based Calibration Ensemble-based methods ensemble multiple outputs in different
ways. They use models or samples to approximate Bayesian Inference. Lakshminarayanan et al.
(2017) propose deep ensembles as a scalable alternative to Bayesian Neural Networks (BNNs) for
uncertainty estimation. Similarly, Gal & Ghahramani (2016) treat dropout as approximate Bayesian
inference. Data-centric ensemble techniques using test-time augmentation, as described by Conde
et al. (2023), also help improve calibration. Zhang et al. (2020) resort to the power of Bayesian in-
ference and proposed a Ensemble-based TS (ETS). However, these methods typically require signif-
icant computational resources to train multiple models or perform repeated inferences. In contrast,
our approach relies on consistency rather than probability distribution modeling.

Consistency in LLMs Consistency has emerged as a key approach for black-box uncertainty es-
timation and hallucination detection in large language models (LLMs). These methods evaluate
uncertainty by measuring variability in outputs across slight changes, such as different sampling
techniques or rephrased prompts. Confident models produce stable outputs, while variability indi-
cates uncertainty. For instance, SelfCheckGPT (Manakul et al., 2023) uses sampling and similarity
metrics like BERTScore and NLI to detect hallucinations, while Lin et al. (2023) analyze a similar-
ity matrix to estimate uncertainty. Xiong et al. (2023b) further break down uncertainty estimation
into prompting, sampling, and consistency-based aggregation. These methods, which rely on output
stability, are efficient alternatives to probabilistic approaches.

B PERTURBATION OF DIFFERENT LAYER

This section presents a detailed analysis of the impact of perturbations applied at various levels of
a ResNet50 model, trained on CIFAR-10. The experiments were conducted using 32 samples, and
the effects on ECE, accuracy, and optimal perturbation values were evaluated.

Perturbation Level ECE (%) Accuracy (%) Optimal Perturbation

Image 1.1 95.25 train aug jitter0.1
Logits 0.73 95.04 8.2

Feature (Last Layer) 2.06 95.06 3.0
Feature (Layer 4) 0.53 95.29 13.28
Feature (Layer 3) 53.12 10.03 20.12
Feature (Layer 2) 56.28 10.02 20.21
Feature (Layer 1) 49.53 10.11 20.75

Table 5: Comparison of perturbations at different layers with number of samples set to 32 using
ECE→ and Accuracy↑, evaluated on ResNet50 with CIFAR-10. ECE values are reported with 15
bins. Optimal Perturbations for logits and features are represented in ω value

From Table 5, we observe a clear trend in the performance of perturbations applied at different lay-
ers of the model. Perturbation at the logits level achieves a favorable trade-off between calibration
and efficiency. Although the perturbation applied to the fourth layer’s feature space slightly im-
proves the ECE to 0.53%, the associated computational cost is significantly higher, with the optimal
perturbation value of 13.28.
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On the other hand, perturbations applied at lower feature levels (Layer 1 to Layer 3) result in severe
degradation of both accuracy and calibration. Specifically, the ECE increases drastically to above
50%, and accuracy drops to approximately 10%, with a significant increase in computing time and
memory use. This suggests that perturbing the features at these lower layers disrupts the model’s
ability to recognize patterns and correctly classify the input data. We hypothesize that this is due to
the higher sensitivity of lower layers to the raw data structure, where perturbations may significantly
distort the features necessary for effective recognition.

C COMPARISON OF POST-HOC CALIBRATION METHODS ON OTHER METRICS

As shown in table 6, The proposed CC method consistently achieves the lowest AdaECE values,
outperforming the other methods. This indicates better calibration performance, in line with our
discussion in the main text. For instance, in CIFAR-10, Wide-ResNet has an AdaECE of 0.40 with
CC compared to 3.24 for Vanilla, showing a significant improvement. Similar results are observed
across other models and datasets. The formula for Adaptive-ECE is as follows:

Adaptive-ECE =
B∑

i=1

|Bi|
N

|Ii ↓ Ci| s.t. ↔i, j · |Bi| = |Bj | (11)

Dataset Model Vanilla TS ETS PTS CTS GC CC (ours)

CIFAR-10

ResNet-50 4.33 2.14 2.14 2.14 1.71 1.24 0.64
ResNet-110 4.40 1.89 1.89 1.90 1.31 0.94 0.96

DenseNet-121 4.49 2.12 2.12 2.12 1.71 1.28 1.20
Wide-ResNet 3.24 1.71 1.71 1.71 1.42 1.17 0.40

CIFAR-100 ResNet-50 17.52 5.76 5.72 5.66 5.79 3.43 1.61
Wide-ResNet 15.34 4.48 4.45 4.41 4.69 2.24 1.73

ImageNet

ResNet-50 3.73 2.07 2.07 2.06 3.22 2.56 1.47
DenseNet-121 6.59 1.67 1.68 1.69 1.89 2.49 1.36

Wide-ResNet-50 5.32 2.97 2.97 2.95 4.13 2.18 1.27
ViT-B-16 5.59 4.05 4.06 4.08 5.50 1.86 1.76
ViT-B-32 6.40 3.83 3.85 3.91 5.73 1.33 1.77

Table 6: Comparison of Post-Hoc Calibration Methods Using AdaECE→ Across Various
Datasets and Models. AdaECE values are reported with 15 bins. The best results for each combi-
nation is in bold, and our method (CC) is highlighted. Results are averaged over 5 runs.

As shown in table 7, The CC method also performs the best in terms of class-wise calibration, with
consistently lower CECE values. This confirms that CC provides better calibration across individual
classes, as discussed in the main body. For example, for ResNet-50 on CIFAR-100, CC achieves
a CECE of 0.20, which is the lowest among the methods. CECE is another measure of calibration
performance that addresses the deficiency of ECE in only measuring the calibration performance of
the single predicted class. It can be formulated as:

Classwise-ECE =
1

K

B∑

i=1

K∑

j=1

|Bi,j |
N

|Ii,j ↓ Ci,j | (12)

As shown in table 8, interestingly, the NLL values are generally higher with the CC method com-
pared to some other calibration methods, despite its superior calibration performance in AdaECE
and CECE. This suggests that while CC improves calibration, it may come at the cost of slightly
higher NLL values. For instance, for CIFAR-100 on ResNet-50, CC has a higher NLL than TS, but
it remains competitive overall.

9 indicates that there is little to no change in accuracy across the calibration methods, with all meth-
ods performing similarly in terms of classification accuracy. This patter is consistent with the main
section, showing CC improves calibration without sacrificing accuracy. For example, on CIFAR-10,
Wide-ResNet achieves almost identical accuracy for all methods, with CC slightly outperforming
others in specific cases.
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Dataset Model Vanilla TS ETS PTS CTS GC CC (ours)

CIFAR-10

ResNet-50 0.91 0.45 0.45 0.45 0.41 0.46 0.39
ResNet-110 0.92 0.48 0.48 0.48 0.42 0.52 0.41

DenseNet-121 0.92 0.48 0.48 0.48 0.41 0.54 0.43
Wide-ResNet 0.68 0.37 0.37 0.37 0.37 0.48 0.32

CIFAR-100 ResNet-50 0.38 0.21 0.21 0.21 0.22 0.21 0.20
Wide-ResNet 0.34 0.19 0.19 0.19 0.20 0.20 0.18

ImageNet

ResNet-50 0.03 0.03 0.03 0.03 0.03 0.03 0.03
DenseNet-121 0.03 0.03 0.03 0.03 0.03 0.03 0.03

Wide-ResNet-50 0.03 0.03 0.03 0.03 0.03 0.03 0.02
ViT-B-16 0.03 0.02 0.02 0.02 0.03 0.02 0.02
ViT-B-32 0.03 0.03 0.03 0.03 0.03 0.03 0.03

Table 7: Comparison of Post-Hoc Calibration Methods Using CECE→ Across Various Datasets
and Models. CECE values are reported with 15 bins. The best-performing method for each dataset-
model combination is in bold, and our method (CC) is highlighted. Results are averaged over 5 runs.

Dataset Model Vanilla TS ETS PTS CTS GC CC (ours)

CIFAR-10

ResNet-50 41.21 20.39 20.39 20.38 20.15 19.97 20.39
ResNet-110 47.52 21.52 21.52 21.52 20.84 20.68 23.33

DenseNet-121 42.93 21.78 21.78 21.78 21.01 20.30 22.19
Wide-ResNet 26.75 15.33 15.33 15.33 15.13 15.32 17.10

CIFAR-100 ResNet-50 153.67 106.07 106.07 106.07 106.25 107.80 108.40
Wide-ResNet 140.11 95.71 95.71 95.71 96.38 96.92 99.30

ImageNet

ResNet-50 96.12 94.82 94.82 94.81 99.58 99.07 140.57
DenseNet-121 109.52 103.90 103.90 103.91 106.13 108.14 162.02

Wide-ResNet-50 88.56 86.46 86.46 86.46 91.68 nan 120.59
ViT-B-16 83.71 78.63 78.63 78.63 85.19 82.14 106.89
ViT-B-32 107.76 101.67 101.67 101.66 107.53 105.45 141.71

Table 8: Comparison of Post-Hoc Calibration Methods Using NLL→ Across Various Datasets
and Models. The best-performing method for each dataset-model combination is in bold, and our
method (CC) is highlighted. Results are averaged over 5 runs.

In figure 6, we see that the proposed CC method significantly reduces both AdaECE and CECE
values compared to other calibration methods, indicating better calibration for Wide-ResNet on
CIFAR-10. The accuracy remains mostly unchanged across all methods, while NLL is slightly
higher for CC compared to other methods like TS and ETS. This behavior is consistent with our
findings in the main text.

Figure 6: Calibration performance of ResNet-50 on Cifar-10 using AdaECE→, CECE→, NLL→,
and Accuracy↑. ECE, AdaECE, and CECE are reported with 15 bins. Colors in the legend represent
different methods. Results are averaged over 5 runs.

In Figure 6, for ResNet-50 on CIFAR-10, the CC method demonstrates excellent performance with
the lowest AdaECE and CECE values, further supporting its effectiveness in calibration. NLL is
higher for CC, which is interesting given its superior performance in other metrics. However, accu-
racy remains largely unchanged, consistent with the overall findings discussed in the text.

Figure 8 illustrates the performance of ResNet-50 on CIFAR-100 across different calibration meth-
ods. The proposed CC method again shows the lowest AdaECE and CECE, confirming its superior
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Dataset Model Vanilla TS ETS PTS CTS GC CC (ours)

CIFAR-10

ResNet-50 95.05 95.05 95.05 95.05 94.98 95.05 95.06
ResNet-110 95.11 95.11 95.11 95.11 95.18 95.11 95.16

DenseNet-121 95.02 95.02 95.02 95.02 95.01 95.02 95.04
Wide-ResNet 96.13 96.13 96.13 96.13 96.06 96.13 96.13

CIFAR-100 ResNet-50 76.70 76.70 76.70 76.70 76.72 76.70 76.71
Wide-ResNet 79.29 79.29 79.29 79.29 79.17 79.29 79.31

ImageNet

ResNet-50 76.08 76.08 76.08 76.08 74.62 76.08 76.08
DenseNet-121 74.16 74.16 74.16 74.16 73.08 74.16 74.37

Wide-ResNet-50 78.40 78.40 78.40 78.40 77.07 78.40 78.48
ViT-B-16 81.09 81.09 81.09 81.09 80.01 81.09 81.06
ViT-B-32 75.94 75.94 75.94 75.94 74.90 75.94 75.90

Table 9: Comparison of Post-Hoc Calibration Methods Using Accuracy↑ Across Various
Datasets and Models. Top-1 accuracy values are reported. The best results for each combina-
tion is in bold, and our method (CC) is highlighted. Results are averaged over 5 runs.

Figure 7: Calibration performance of Wide-ResNet on CIFAR-10 using AdaECE→, CECE→,
NLL→, and Accuracy↑. ECE, AdaECE, and CECE are reported with 15 bins. Colors in the legend
represent different methods. Results are averaged over 5 runs.

calibration performance. NLL for CC is slightly higher compared to TS, but accuracy shows min-
imal changes across methods. These results align with our overall conclusions that CC improves
calibration without sacrificing accuracy.

Figure 8: Calibration performance of ResNet-50 on CIFAR-100 using AdaECE→, CECE→,
NLL→, and Accuracy↑. ECE, AdaECE, and CECE are reported with 15 bins. Colors in the legend
represent different methods. Results are averaged over 5 runs.

D COMPARISON OF VARIOUS TRAINING-TIME CALIBRATION METHODS ON
OTHER METRICS

As shown in Table 10, CC consistently outperforms baseline models across all metrics and datasets.
Specifically, on CIFAR-10 and CIFAR-100, CC achieves significantly lower AdaECE scores for
ResNet-50, ResNet-110, DenseNet-121, and Wide-ResNet compared to traditional methods such as
Brier Loss, and MMCE. For instance, on CIFAR-100 with ResNet-110, CC reduces the AdaECE
from 19.05 (baseline) to 5.28, showing superior calibration performance.
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Dataset Model Cross-Entropy Brier Loss MMCE LS-0.05 FLSD-53 FL-3
base ours base ours base ours base ours base ours base ours

CIFAR-10

ResNet-50 4.33 0.64 1.75 0.99 4.55 1.06 3.88 1.74 1.56 0.36 1.95 0.71
ResNet-110 4.40 0.96 2.60 0.30 5.07 1.80 4.48 2.43 2.08 0.73 1.64 0.38

DenseNet-121 4.49 1.20 2.02 0.64 5.10 1.76 4.40 1.94 1.38 0.53 1.23 0.69
Wide-ResNet 3.24 0.40 1.70 0.57 3.29 0.63 4.27 1.54 1.52 0.42 1.84 0.42

CIFAR-100

ResNet-50 17.52 1.61 6.55 1.90 15.32 1.88 7.66 6.17 4.39 1.48 5.09 1.70
ResNet-110 19.05 5.28 7.72 3.54 19.14 5.14 11.14 8.00 8.56 3.50 8.64 3.98

DenseNet-121 20.99 5.85 5.04 2.02 19.10 3.90 12.83 7.06 3.54 1.52 4.14 2.03
Wide-ResNet 15.34 1.73 4.28 1.92 13.16 2.06 5.14 4.75 2.77 1.79 2.07 1.58

Table 10: Comparison of Train-time Calibration Methods Using AdaECE→ Across Various
Datasets and Models. AdaECE values are reported with 15 bins. The best results for each combi-
nation is in bold, and our method (CC) is highlighted. Results are averaged over 5 runs.

In Table 11, the CECE results further reinforce the effectiveness of CC across all metrics. For
CIFAR-10, CC improves CECE for all models compared to baseline methods. For instance, with
ResNet-50, the CECE decreases from 0.91 to 0.39. Similar trends are observed on CIFAR-100,
with Wide-ResNet showing a reduction in CECE from 0.34 (baseline) to 0.18 when using CC,
demonstrating enhanced class-wise calibration.

Dataset Model Cross-Entropy Brier Loss MMCE LS-0.05 FLSD-53 FL-3
base ours base ours base ours base ours base ours base ours

CIFAR-10

ResNet-50 0.91 0.39 0.46 0.35 0.94 0.47 0.71 0.53 0.42 0.35 0.43 0.39
ResNet-110 0.92 0.41 0.59 0.41 1.04 0.50 0.66 0.67 0.48 0.39 0.43 0.37

DenseNet-121 0.92 0.43 0.46 0.37 1.04 0.59 0.60 0.48 0.41 0.35 0.42 0.35
Wide-ResNet 0.68 0.32 0.44 0.32 0.70 0.38 0.79 0.41 0.41 0.28 0.44 0.30

CIFAR-100

ResNet-50 0.38 0.20 0.22 0.19 0.34 0.18 0.23 0.22 0.20 0.19 0.20 0.19
ResNet-110 0.41 0.21 0.24 0.19 0.42 0.20 0.26 0.22 0.24 0.19 0.24 0.20

DenseNet-121 0.45 0.23 0.20 0.20 0.42 0.23 0.29 0.22 0.19 0.19 0.20 0.19
Wide-ResNet 0.34 0.18 0.19 0.18 0.30 0.17 0.21 0.19 0.18 0.17 0.18 0.17

Table 11: Comparison of Train-time Calibration Methods Using CECE→ Across Various
Datasets and Models. CECE values are reported with 15 bins. The best results for each com-
bination is in bold, and our method (CC) is highlighted. Results are averaged over 5 runs.

Table 12 presents the NLL comparison. It is interesting as mentioned in the main section, the CC
method sometimes produces higher NLL values.

Dataset Model Cross-Entropy Brier Loss MMCE LS-0.05 FLSD-53 FL-3
Base Ours Base Ours Base Ours Base Ours Base Ours Base Ours

CIFAR-10

ResNet-50 41.2 20.4 18.7 22.3 44.8 20.9 27.7 29.3 17.6 22.7 18.4 24.2
ResNet-110 47.5 25.5 20.4 22.5 55.7 25.5 29.9 29.4 18.5 21.9 17.8 23.1
DenseNet-121 42.9 24.0 19.1 21.2 52.1 31.2 28.7 28.5 18.4 27.2 18.0 28.3
Wide-ResNet 26.8 17.1 15.9 16.2 28.5 18.2 21.7 24.5 14.6 17.6 15.2 19.9

CIFAR-100

ResNet-50 153.7 113.0 99.6 133.5 125.3 116.7 121.0 133.9 88.0 128.8 87.5 128.1
ResNet-110 179.2 122.3 110.7 146.9 180.6 125.3 133.1 141.4 89.9 126.9 90.9 132.0
DenseNet-121 205.6 163.1 98.3 139.9 166.6 146.8 142.0 185.8 85.5 129.0 87.1 130.8
Wide-ResNet 140.1 102.5 84.6 98.7 119.6 109.3 108.1 136.6 76.9 108.7 74.7 106.8

Table 12: Comparison of Train-time Calibration Methods Using NLL→ Across Various
Datasets and Models. The best-performing method for each dataset-model combination is in bold,
and our method (CC) is highlighted. Results are averaged over 5 runs.

Table 13 presents a comparison of classification accuracies. While achieving superior calibration
performance by CC, the accuracy remains unaffected across all metrics.
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Dataset Model Cross-Entropy Brier Loss MMCE LS-0.05 FLSD-53 FL-3
base ours base ours base ours base ours base ours base ours

CIFAR-10

ResNet-50 95.05 95.06 94.99 95.01 95.01 94.99 94.71 94.68 95.02 94.95 94.75 94.75
ResNet-110 95.11 95.16 94.52 94.48 94.60 94.63 94.48 94.49 94.57 94.63 94.92 94.94

DenseNet-121 95.02 95.01 94.90 94.86 94.59 94.60 94.91 94.91 94.58 94.51 94.66 94.66
Wide-ResNet 96.13 96.12 95.92 95.90 96.09 96.05 95.80 95.83 95.99 96.01 95.87 95.87

CIFAR-100

ResNet-50 76.70 76.71 76.60 76.58 76.80 76.80 76.56 76.65 76.79 76.73 77.24 77.34
ResNet-110 77.27 77.17 74.91 74.79 76.93 76.96 76.57 76.64 77.48 77.49 77.08 77.04

DenseNet-121 75.47 75.49 76.27 76.30 76.03 76.03 75.94 75.96 77.34 77.34 76.76 76.85
Wide-ResNet 79.29 79.25 79.43 79.29 79.27 79.23 78.83 78.88 79.91 79.92 80.30 80.34

Table 13: Comparison of Train-time Calibration Methods Using Accuracy↑ Across Various
Datasets and Models. Top-1 Accuracy values are reported. The best results for each combination
is in bold, and our method (CC) is highlighted. Results are averaged over 5 runs.
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