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A RELATED WORKS

Calibration Methods Post-hoc calibration methods adjust model outputs after training to improve
calibration. A widely used technique is Temperature Scaling (TS) (Guo et al., 2017), which smooths
softmax probabilities by search a temperature factor on a validation set. Enhanced variants of TS
include Parameterized Temperature Scaling (PTS) (Tomani et al., |2022), which uses a neural net-
work to learn the temperature, and Class-based Temperature Scaling (CTS) (Frenkel et al., |[2021),
which applies adjustments on a class-wise basis. Group Calibration (GC) (Yang et al., [2024) and
ProCal (Xiong et al.,[2023a) aim for multi-calibration (Hébert-Johnson et al.,|2018)) by splitting data
samples by proximity and grouping. Another stream of work is train-time calibration such as Brier
Loss (Brier,|1950), Dirichlet Scaling (Kull et al., 2019), Maximum Mean Calibration Error (MMCE)
(Kumar et al., |2018])), Label Smoothing (Szegedy et al.,|2016)), and Focal Loss (Mukhoti et al., 2020)
and Dual Focal Loss (Tao et al.| 2023). However, these methods often require substantial higher
computational overhead.

Ensemble-Based Calibration Ensemble-based methods ensemble multiple outputs in different
ways. They use models or samples to approximate Bayesian Inference. [Lakshminarayanan et al.
(2017) propose deep ensembles as a scalable alternative to Bayesian Neural Networks (BNNs) for
uncertainty estimation. Similarly,|Gal & Ghahramani (2016) treat dropout as approximate Bayesian
inference. Data-centric ensemble techniques using test-time augmentation, as described by |[Conde
et al.|(2023), also help improve calibration. Zhang et al.|(2020) resort to the power of Bayesian in-
ference and proposed a Ensemble-based TS (ETS). However, these methods typically require signif-
icant computational resources to train multiple models or perform repeated inferences. In contrast,
our approach relies on consistency rather than probability distribution modeling.

Consistency in LLMs Consistency has emerged as a key approach for black-box uncertainty es-
timation and hallucination detection in large language models (LLMs). These methods evaluate
uncertainty by measuring variability in outputs across slight changes, such as different sampling
techniques or rephrased prompts. Confident models produce stable outputs, while variability indi-
cates uncertainty. For instance, SelfCheckGPT (Manakul et al., [2023)) uses sampling and similarity
metrics like BERTScore and NLI to detect hallucinations, while |Lin et al.| (2023) analyze a similar-
ity matrix to estimate uncertainty. |Xiong et al.| (2023b)) further break down uncertainty estimation
into prompting, sampling, and consistency-based aggregation. These methods, which rely on output
stability, are efficient alternatives to probabilistic approaches.

B PERTURBATION OF DIFFERENT LAYER

This section presents a detailed analysis of the impact of perturbations applied at various levels of
a ResNet50 model, trained on CIFAR-10. The experiments were conducted using 32 samples, and
the effects on ECE, accuracy, and optimal perturbation values were evaluated.

Perturbation Level ECE (%) Accuracy (%) Optimal Perturbation

Image 1.1 95.25 train aug jitter0. 1
Logits 0.73 95.04 8.2
Feature (Last Layer) 2.06 95.06 3.0
Feature (Layer 4) 0.53 95.29 13.28
Feature (Layer 3) 53.12 10.03 20.12
Feature (Layer 2) 56.28 10.02 20.21
Feature (Layer 1) 49.53 10.11 20.75

Table 5: Comparison of perturbations at different layers with number of samples set to 32 using
ECE| and Accuracy?, evaluated on ResNet50 with CIFAR-10. ECE values are reported with 15
bins. Optimal Perturbations for logits and features are represented in € value

From Table |5 we observe a clear trend in the performance of perturbations applied at different lay-
ers of the model. Perturbation at the logits level achieves a favorable trade-off between calibration
and efficiency. Although the perturbation applied to the fourth layer’s feature space slightly im-
proves the ECE to 0.53%, the associated computational cost is significantly higher, with the optimal
perturbation value of 13.28.
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On the other hand, perturbations applied at lower feature levels (Layer 1 to Layer 3) result in severe
degradation of both accuracy and calibration. Specifically, the ECE increases drastically to above
50%, and accuracy drops to approximately 10%, with a significant increase in computing time and
memory use. This suggests that perturbing the features at these lower layers disrupts the model’s
ability to recognize patterns and correctly classify the input data. We hypothesize that this is due to
the higher sensitivity of lower layers to the raw data structure, where perturbations may significantly
distort the features necessary for effective recognition.

C COMPARISON OF POST-HOC CALIBRATION METHODS ON OTHER METRICS

As shown in table [6] The proposed CC method consistently achieves the lowest AdaECE values,
outperforming the other methods. This indicates better calibration performance, in line with our
discussion in the main text. For instance, in CIFAR-10, Wide-ResNet has an AdaECE of 0.40 with
CC compared to 3.24 for Vanilla, showing a significant improvement. Similar results are observed
across other models and datasets. The formula for Adaptive-ECE is as follows:

. °.|Bil .
Adaptive-ECE = E N |I; — C;| s.t. Yi,7 - |B;| = | By 11
i=1
Dataset Model Vanilla TS ETS PTS CTS GC CC (ours)

ResNet-50 433 2.14 2.14 2.14 171 124 0.64

ResNet-110 440 1.89 1.89 1.90 131 0.94 0.96

CIFAR-10 DenseNet-121 4.49 212 212 212 171 128 120
Wide-ResNet 3.24 171 171 171 142 117 0.40

ResNet-50 17.52 5.76 572 5.66 5.79 343 1.61

CIFAR-100 Wide-ResNet 15.34 4.48 445 441 4.6 2.24 173
ResNet-50 373 207 207 2.06 32 2.56 147

DenseNet-121 6.50 1.67 168 1.69 1.89 2.49 1.36

ImageNet Wide-ResNet-50 5.3 2.97 2.97 2.95 413 2.18 127
ViT-B-16 5.59 405 406 4.08 5.50 1.86 176

VIT-B-32 6.40 383 385 391 573 1.33 177

Table 6: Comparison of Post-Hoc Calibration Methods Using AdaECE| Across Various
Datasets and Models. AdaECE values are reported with 15 bins. The best results for each combi-
nation is in bold, and our method (CC) is highlighted. Results are averaged over 5 runs.

As shown in table [7] The CC method also performs the best in terms of class-wise calibration, with
consistently lower CECE values. This confirms that CC provides better calibration across individual
classes, as discussed in the main body. For example, for ResNet-50 on CIFAR-100, CC achieves
a CECE of 0.20, which is the lowest among the methods. CECE is another measure of calibration
performance that addresses the deficiency of ECE in only measuring the calibration performance of
the single predicted class. It can be formulated as:

| BLKX 1B, |
Classwise-ECE = e ;; ]i[’j |I; j — Ci (12)

As shown in table 8| interestingly, the NLL values are generally higher with the CC method com-
pared to some other calibration methods, despite its superior calibration performance in AdaECE
and CECE. This suggests that while CC improves calibration, it may come at the cost of slightly
higher NLL values. For instance, for CIFAR-100 on ResNet-50, CC has a higher NLL than TS, but
it remains competitive overall.

[)indicates that there is little to no change in accuracy across the calibration methods, with all meth-
ods performing similarly in terms of classification accuracy. This patter is consistent with the main
section, showing CC improves calibration without sacrificing accuracy. For example, on CIFAR-10,
Wide-ResNet achieves almost identical accuracy for all methods, with CC slightly outperforming
others in specific cases.
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Dataset Model Vanilla TS ETS PTS CTS GC CC (ours)
ResNet-50 0.91 0.45 0.45 0.45 0.41 0.46 0.39
CIFAR-10 ResNet-110 0.92 0.48 0.48 0.48 0.42 0.52 0.41
: DenseNet-121 0.92 0.48 0.48 0.48 0.41 0.54 0.43
Wide-ResNet 0.68 0.37 0.37 0.37 0.37 0.48 0.32
ResNet-50 0.38 0.21 0.21 0.21 0.22 0.21 0.20
CIFAR-100 Wide-ResNet 0.34 0.19 0.19 0.19 0.20 0.20 0.18
ResNet-50 0.03 0.03 0.03 0.03 0.03 0.03 0.03
DenseNet-121 0.03 0.03 0.03 0.03 0.03 0.03 0.03
ImageNet Wide-ResNet-50 0.03 0.03 0.03 0.03 0.03 0.03 0.02
ViT-B-16 0.03 0.02 0.02 0.02 0.03 0.02 0.02
ViT-B-32 0.03 0.03 0.03 0.03 0.03 0.03 0.03

Table 7: Comparison of Post-Hoc Calibration Methods Using CECE| Across Various Datasets
and Models. CECE values are reported with 15 bins. The best-performing method for each dataset-
model combination is in bold, and our method (CC) is highlighted. Results are averaged over 5 runs.

Dataset Model Vanilla TS ETS PTS CTS GC CC (ours)
ResNet-50 41.21 20.39 20.39 20.38 20.15 19.97 20.39
CIFAR-10 ResNet-110 47.52 21.52 21.52 21.52 20.84 20.68 23.33
: DenseNet-121 42.93 21.78 21.78 21.78 21.01 20.30 22.19
Wide-ResNet 26.75 15.33 15.33 15.33 15.13 15.32 17.10
CIFAR-100 ResNet-50 153.67 106.07 106.07 106.07 106.25 107.80 108.40
B Wide-ResNet 140.11 95.71 95.71 95.71 96.38 96.92 99.30
ResNet-50 96.12 94.82 94.82 94.81 99.58 99.07 140.57
DenseNet-121 109.52 103.90 103.90 103.91 106.13 108.14 162.02
ImageNet Wide-ResNet-50 88.56 86.46 86.46 86.46 91.68 nan 120.59
ViT-B-16 83.71 78.63 78.63 78.63 85.19 82.14 106.89
ViT-B-32 107.76 101.67 101.67 101.66 107.53 105.45 141.71

Table 8: Comparison of Post-Hoc Calibration Methods Using NLL| Across Various Datasets
and Models. The best-performing method for each dataset-model combination is in bold, and our
method (CC) is highlighted. Results are averaged over 5 runs.

In figure [6] we see that the proposed CC method significantly reduces both AdaECE and CECE
values compared to other calibration methods, indicating better calibration for Wide-ResNet on
CIFAR-10. The accuracy remains mostly unchanged across all methods, while NLL is slightly
higher for CC compared to other methods like TS and ETS. This behavior is consistent with our
findings in the main text.
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Figure 6: Calibration performance of ResNet-50 on Cifar-10 using AdaECE|, CECE|, NLL|,
and Accuracyf. ECE, AdaECE, and CECE are reported with 15 bins. Colors in the legend represent
different methods. Results are averaged over 5 runs.

In Figure[6] for ResNet-50 on CIFAR-10, the CC method demonstrates excellent performance with
the lowest AdaECE and CECE values, further supporting its effectiveness in calibration. NLL is
higher for CC, which is interesting given its superior performance in other metrics. However, accu-
racy remains largely unchanged, consistent with the overall findings discussed in the text.

Figure [8]illustrates the performance of ResNet-50 on CIFAR-100 across different calibration meth-
ods. The proposed CC method again shows the lowest AdaECE and CECE, confirming its superior
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Dataset Model Vanilla TS ETS PTS CTS GC CC (ours)
ResNet-50 95.05 95.05 95.05 95.05 94.98 95.05 95.06
CIFAR-10 ResNet-110 95.11 95.11 95.11 95.11 95.18 95.11 95.16
: DenseNet-121 95.02 95.02 95.02 95.02 95.01 95.02 95.04
Wide-ResNet 96.13 96.13 96.13 96.13 96.06 96.13 96.13
CIFAR-100 ResNet-50 76.70 76.70 76.70 76.70 76.72 76.70 76.71
B Wide-ResNet 79.29 79.29 79.29 79.29 79.17 79.29 79.31
ResNet-50 76.08 76.08 76.08 76.08 74.62 76.08 76.08
DenseNet-121 74.16 74.16 74.16 74.16 73.08 74.16 74.37
ImageNet Wide-ResNet-50 78.40 78.40 78.40 78.40 77.07 78.40 78.48
ViT-B-16 81.09 81.09 81.09 81.09 80.01 81.09 81.06
ViT-B-32 75.94 75.94 75.94 75.94 74.90 75.94 75.90

Table 9: Comparison of Post-Hoc Calibration Methods Using Accuracy? Across Various
Datasets and Models. Top-1 accuracy values are reported. The best results for each combina-
tion is in bold, and our method (CC) is highlighted. Results are averaged over 5 runs.
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Figure 7: Calibration performance of Wide-ResNet on CIFAR-10 using AdaECE|, CECE/,
NLL|, and Accuracy?. ECE, AdaECE, and CECE are reported with 15 bins. Colors in the legend
represent different methods. Results are averaged over 5 runs.

calibration performance. NLL for CC is slightly higher compared to TS, but accuracy shows min-
imal changes across methods. These results align with our overall conclusions that CC improves
calibration without sacrificing accuracy.
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Figure 8: Calibration performance of ResNet-50 on CIFAR-100 using AdaECE|, CECE/,
NLL/, and Accuracyt. ECE, AdaECE, and CECE are reported with 15 bins. Colors in the legend
represent different methods. Results are averaged over 5 runs.

D COMPARISON OF VARIOUS TRAINING-TIME CALIBRATION METHODS ON
OTHER METRICS

As shown in Table[I0] CC consistently outperforms baseline models across all metrics and datasets.
Specifically, on CIFAR-10 and CIFAR-100, CC achieves significantly lower AdaECE scores for
ResNet-50, ResNet-110, DenseNet-121, and Wide-ResNet compared to traditional methods such as
Brier Loss, and MMCE. For instance, on CIFAR-100 with ResNet-110, CC reduces the AdaECE
from 19.05 (baseline) to 5.28, showing superior calibration performance.

16



Under review as a conference paper at ICLR 2025

Dataset Model Cross-Entropy Brier Loss MMCE LS-0.05 FLSD-53 FL-3
base ours base ours base ours base ours base ours base ours
ResNet-50 433 0.64 1.75  0.99 4.55 1.06 3.88 1.74 1.56  0.36 195 0.71
CIFAR-10 ResNet-110 4.40 0.96 2.60  0.30 5.07 1.80 4.48 243 208 0.73 1.64  0.38
DenseNet-121 4.49 1.20 202  0.64 5.10 1.76 4.40 1.94 1.38  0.53 123 0.69
Wide-ResNet 3.24 0.40 1.70  0.57 3.29 0.63 4.27 1.54 .52 042 1.84  0.42
ResNet-50 17.52 1.61 6.55 1.90 1532  1.88 7.66 6.17 439 148 509 170
CIFAR-100 ResNet-110 19.05 5.28 772 3.54 19.14  5.14 11.14 800 856 350 864 3.98
DenseNet-121 20.99 5.85 5.04  2.02 19.10  3.90 1283 7.06 354 152 4.14 2.03
Wide-ResNet 15.34 1.73 428 192 13.16  2.06 5.14 475 277 1.79 207 158

Table 10: Comparison of Train-time Calibration Methods Using AdaECE| Across Various
Datasets and Models. AdaECE values are reported with 15 bins. The best results for each combi-

nation is in bold, and our method (CC) is highlighted. Results are averaged over 5 runs.

In Table [11] the CECE results further reinforce the effectiveness of CC across all metrics. For
CIFAR-10, CC improves CECE for all models compared to baseline methods. For instance, with
ResNet-50, the CECE decreases from 0.91 to 0.39. Similar trends are observed on CIFAR-100,
with Wide-ResNet showing a reduction in CECE from 0.34 (baseline) to 0.18 when using CC,
demonstrating enhanced class-wise calibration.

Dataset Model Cross-Entropy Brier Loss MMCE LS-0.05 FLSD-53 FL-3
base ours base ours base ours base ours base ours base ours
ResNet-50 0.91 0.39 0.46 0.35 0.94 0.47 0.71 0.53 042 0.35 0.43 0.39
CIFAR-10 ResNet-110 0.92 0.41 0.59 0.41 1.04 0.50 0.66 0.67 0.48 0.39 0.43 0.37
DenseNet-121 0.92 0.43 0.46 0.37 1.04 0.59 0.60 048 041 0.35 0.42 0.35
Wide-ResNet 0.68 0.32 0.44 0.32 0.70 0.38 0.79 0.41 0.41 0.28 0.44 0.30
ResNet-50 0.38 0.20 0.22 0.19 0.34 0.18 0.23 022 0.20 0.19 0.20 0.19
CIFAR-100 ResNet-110 0.41 0.21 0.24 0.19 0.42 020 0.26 022 024 0.19 0.24 0.20
DenseNet-121 0.45 0.23 0.20 0.20 0.42 0.23 0.29 022 0.19 0.19 0.20 0.19
Wide-ResNet 0.34 0.18 0.19 0.18 0.30 0.17 0.21 0.19 0.18 0.17 0.18 0.17

Table 11: Comparison of Train-time Calibration Methods Using CECE| Across Various
Datasets and Models. CECE values are reported with 15 bins. The best results for each com-
bination is in bold, and our method (CC) is highlighted. Results are averaged over 5 runs.

Table [12] presents the NLL comparison. It is interesting as mentioned in the main section, the CC

method sometimes produces higher NLL values.

Dataset Model Cross-Entropy Brier Loss MMCE LS-0.05 FLSD-53 FL-3
Base Ours Base Ours Base Ours Base Ours Base Ours Base Ours
ResNet-50 41.2 20.4 18.7 22.3 44.8 20.9 27.7 29.3 17.6 227 184 242
CIFAR-10 ResNet-110 475 25.5 20.4 22.5 55.7 25.5 29.9 294 185 219 17.8 231
DenseNet-121 429 24.0 19.1 21.2 52.1 31.2 28.7 285 184 272 180 283
Wide-ResNet 26.8 17.1 159 16.2 28.5 18.2 21.7 24.5 14.6 17.6 15.2 19.9
ResNet-50 1537  113.0 99.6 1335 1253 1167 121.0 1339 88.0 1288 875 128.1
CIFAR-100 ResNet-110 179.2 1223 1107 1469 180.6 1253 133.1 1414 899 1269 909 1320
DenseNet-121  205.6  163.1 983 1399 166.6 1468 142.0 1858 855 1290 871 1308
Wide-ResNet 140.1  102.5 84.6 98.7 119.6 1093 108.1 1366 769 108.7 747 106.8

Table 12: Comparison of Train-time Calibration Methods Using NLL,| Across Various
Datasets and Models. The best-performing method for each dataset-model combination is in bold,
and our method (CC) is highlighted. Results are averaged over 5 runs.

Table [I3] presents a comparison of classification accuracies. While achieving superior calibration
performance by CC, the accuracy remains unaffected across all metrics.
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Dataset Model Cross-Entropy Brier Loss MMCE LS-0.05 FLSD-53 FL-3
base ours base ours base ours base ours base ours base ours

ResNet-50 95.05 9506 9499 9501 9501 9499 9471 94.68 95.02 9495 9475 9475
ResNet-110 95.11 95.16 9452 9448 94.60 94.63 9448 9449 9457 94.63 9492 9494

CIFAR-10 o eNet-121  95.02 9501 9490 94.86 94.59 0460 9491 9491 0458 9451 9466 9466
Wide-ResNet 9613 9612 9592 9590 9609 9605 9580 9583 9599 0601 9587 95.87
ResNet-50 7670 7671 7660 7658 7680 7680 76.56 7665 7679 7673 7124 7734
AR ReNetlI0 7727 7707 7491 7479 7693 7696 7657 7664 7748 7749 7708 77.04

DenseNet-121 7547 7549  76.27 7630 76.03 76.03 7594 7596 7734 7734 76.76 76.85
Wide-ResNet ~ 79.29  79.25 7943 79.29 7927 79.23 78.83 7888 7991 79.92 80.30 80.34

Table 13: Comparison of Train-time Calibration Methods Using Accuracy{ Across Various
Datasets and Models. Top-1 Accuracy values are reported. The best results for each combination
is in bold, and our method (CC) is highlighted. Results are averaged over 5 runs.
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