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A MATHEMATICAL DETAILS AND PROOFS

A.1 EXTENSION OF RESULTS TO MULTI-CLASS CLASSIFICATION

Generalization scaling laws. Our results extend naturally from binary classification to multi-class
classification. Given some test point x0 of some unknown target class, if x′

tr is the nearest neighbor
to x0 in the training set of the same class (both on Mddata

), the term EDtrain∼Mddata
||x0 − x′

tr||
scales in expectation as

O

((
N + 1

C

)−1/ddata
)

≃ O

((
N

C

)−1/ddata
)

= O(N−1/ddata), (5)

where C is the total number of classes, assuming the classes to be evenly sampled in the train-
ing set. The same logic can be used for the intrinsic representation dimension drepr to show

O
((

N+1
C

)−1/drepr
)

≃ O(N−1/drepr). Therefore, the asymptotic upper bounds in the ddata and
drepr scaling laws (Theorems 1 and 4, respectively) still hold, as well as the derived result of Theo-
rem 5.
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Label sharpness. The label sharpness metric K̂F (Eq. 1) was formulated under the binary classi-
fication scenario, where data is either labeled with 0 or 1 (Sec. 3). However, it could potentially be
extended to the multi-class scenario by simply replacing the |yj − yk| term in the numerator of Eq.
1 with the indicator function 1yj ̸=yk

as

K̂F := max
j,k

(
1yj ̸=yk

||xj − xk||

)
, (6)

which clearly simplifies to Eq. 1 for binary classification. This modification prevents K̂F from being
biased by the numerical value of labels given to different classes, but a more careful extension could
be pursued in the future to confirm a properly theoretically-motivated multi-class label sharpness
metric.

A.2 PROOF OF THEOREM 2 (APPROXIMATING Kf WITH KF )

Proof. Let x1 and x2 be arbitrary datapoints sampled from Mddata
, with nearest neighbors in the

training set Dtrain of x̂1 and x̂2, respectively. Then,

|f(x1)− f(x2)| = |f(x1)− f(x2) + (F(x1)−F(x1) + F(x2)−F(x2)

+ f(x̂1)− f(x̂1) + f(x̂2)− f(x̂2))|
≤ |f(x1)− f(x̂1)|+ |f(x2)− f(x̂2)|+ |F(x1)−F(x2)|

+ |f(x̂1)−F(x1)|+ |f(x̂2)−F(x2)|, (7)

by the triangle inequality. Because we assumed that f(x) = F(x)∀x ∈ Dtrain, i.e., the model is
well-trained, the last two terms can be changed so that we have

|f(x1)− f(x2)| ≤ |f(x1)− f(x̂1)|+ |f(x2)− f(x̂2)|+ |F(x1)−F(x2)|
+ |F(x̂1)−F(x1)|+ |F(x̂2)−F(x2)|. (8)

Using the Lipschitz continuity of f and F , we have that

|f(x1)− f(x2)| ≤ Kf (||x1 − x̂1||+ ||x2 − x̂2||) +KF (||x1 − x2||+ ||x1 − x̂1||+ ||x2 − x̂2||)
= KF ||x1 − x2||+ (Kf +KF )(||x1 − x̂1||+ ||x2 − x̂2||). (9)

Recall that the expected nearest-neighbor distance on Mddata
for some N samples scales as

O(N−1/ddata). Then, E ||x1 − x̂1|| = E ||x2 − x̂2|| = O((N + 1)−1/ddata) ≃ O(N−1/ddata).
If we take the expectation of both sides of Eq. (9) over the training set, we can use this fact to obtain

E |f(x1)− f(x2)| ≤ KF E ||x1 − x2||+O(max(Kf ,KF )(N
−1/ddata)). (10)

But, the term on the right goes to zero as N → ∞, so then
Pr (|f(x1)− f(x2)| ≤ KF ||x1 − x2||) → 1 as N → ∞, or in other words, the probability
that f is Lipschitz with the same constant KF of F . (A very similar proof can also be made to show
that Pr (|F(x1)−F(x2)| ≤ Kf ||x1 − x2||) → 1 as N → ∞). Therefore, the Lipschitz constant
of f converges to KF in probability, or in other words, Kf → KF .

A.3 PROOF OF THEOREM 4 (GENERALIZATION ERROR AND REPRESENTATION INTRINSIC
DIM. SCALING LAW)

Proof. Let f be written as a composition of an encoder g, which outputs the final hidden representa-
tions of the input image, and a final output sigmoid (or softmax for multi-class classification) layer
h, as f = h ◦ g. Write the true label function F similarly, as some F = H ◦ G for unknown H and
G analogous to h and g. Assume h and H to be Lipschitz with respective constants Kh and KH.
Analogous to assuming f(x) = F(x) for all x in the training set Dtrain, posit a similar claim of
g(x) = G(x) := z, and h(z) = H(z), ∀x ∈ Dtrain.

Let x be from the training set Dtrain with nearest neighbor (also in the training set) x̂. Recall that
we assume that g(x) = G(x)∀x ∈ Dtrain, and that the loss vanishes at the true target label, as in
Bahri et al. (2021). Let z = g(x) and ẑ = g(x̂).

15



Published as a conference paper at ICLR 2024

Then, as we assumed f and F to be Lipschitz,

ℓ(f(x)) = |ℓ(f(x))− ℓ(F(x))| ≤ KL|f(x)−F(x)| (11)
= KL|h(g(x))−H(G(x))| = KL|h(z)−H(z)| (12)

where ℓ(f(x)) is the loss evaluated at a single datapoint, and the first equality is due to the loss
vanishing at the true target label (ℓ(F(x)) = 0), and being non-negative. Continuing,

ℓ(f(x)) ≤ KL|h(z)−H(z)| (13)
= KL|h(z)−H(z) + (h(ẑ)− h(ẑ) +H(ẑ)−H(ẑ))| (14)
≤ KL (|h(z)− h(ẑ)|+ |H(z)−H(ẑ)|+ |h(ẑ)−H(ẑ)|) , (15)

with the last line from the triangle inequality. As h(z) = H(z) for all {z = g(x) : x ∈ Dtrain}, the
last term vanishes, allowing us to write

ℓ(f(x)) ≤ KL (|h(z)− h(ẑ)|+ |H(z)−H(ẑ)|) (16)
≤ KL (Kh||z − ẑ||+KH||z − ẑ||) = KL(Kh +KH)||z − ẑ||, (17)

so then

ℓ(f(x)) ≤ KL (Kh||z − ẑ||+KH||z − ẑ||) = KL(Kh +KH)||z − ẑ||, (18)

and

L = E
x∼Dtest

ℓ(f(x)) ≤ KL(Kh +KH) E
z,ẑ∼Dtrain

||z − ẑ||, (19)

where the rightmost expectation is taken over all {z = g(x) : x ∈ Dtrain} with corresponding
nearest neighbor ẑ (on the representation manifold). As the expectation of the nearest-neighbor
distance of the representations on the manifold scales as O(N−1/drepr), it follows that

L = O(KL max(Kh,KH)N−1/drepr). (20)

Because h = H on the training set representations, the same procedure as the proof for Theorem
2 can be used to show that KH ≃ Kh. Finally, note that the output layer h was assumed to be a
sigmoid. As the standard sigmoid (or softmax) layer is 1−Lipschitz (Gao & Pavel, 2017), KH ≃
Kh = 1, so then

L ≃ O(KLN
−1/drepr). (21)

A.4 PROOF OF THEOREM 3 (ADVERSARIAL ROBUSTNESS AND LABEL SHARPNESS
SCALING LAW)

Proof. Proposition 1 of (Tsuzuku et al., 2018) states that R̂(f, x0) ≥ Mf,x0
/(
√
2Kf ) where

Mf,x0 > 0 is the prediction margin, the difference between the target class prediction and the
highest non-target class prediction of f(x0). Applying Thm. 2 given sufficiently large N then gives
R̂(f) = Ex0∼Mddata

R̂(f, x0) ≥ Ex0∼Mddata
Mf,x0

/(
√
2Kf ) = Ω (1/Kf ) ≃ Ω (1/KF ).

A.5 PROOF OF THEOREM 5 (BOUNDING OF REPRESENTATION INTRINSIC DIM. WITH
DATASET INTRINSIC DIM.)

Proof. The estimation assumption implies that

KL max(Kf ,KF )N
−1/ddata ≈ KLN

−1/drepr ⇒ N−1/ddata ≈ N−1/drepr

max(Kf ,KF )
, (22)

after which taking the logarithm of both sides gives{
drepr ≲ ddata if Kf ,KF ≤ 1

drepr ≳ ddata otherwise,
(23)

i.e., drepr ≲ ddata if the trained model f and target model F are 1-Lipschitz (with respect to nearest
neighbors in the training set).
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Now, note that in our classification task setting, the decision boundaries/predictions of some K-
Lipschitz network f are the same as the 1−Lipschitz version 1

K f (Béthune et al., 2022). As such,
the scaling behavior we analyze here of L vs. drepr is the same as if Kf = 1. As KF ≃ Kf

(Theorem 2), Eq. (23) can be simplified to just drepr ≲ ddata. In practice, we also found that all
datasets had KF ≪ 1 (Fig. 1), so the first case of Eq. (23) should hold true anyways.

B ANALYSIS OF INTRINSIC DATASET PROPERTY CHARACTERISTICS
(INTRINSIC DIMENSION AND LABEL SHARPNESS)

B.1 INVARIANCE OF INTRINSIC DATASET PROPERTIES TO TRANSFORMATIONS

In Fig. 6, left, we show that measured dataset intrinsic dimension ddata estimates are barely affected
by image resizing over a range of resolutions (square image sizes of [32, 64, 128, 256, 512]), with
the specific example of 32×32 shown in the right of Fig. 7. We show the similar result of measured
dataset label sharpness K̂F being invariant to image resizing in Fig. 6, right, and Fig. 8, right,
besides all datasets’ K̂F values being multiplied by the same positive constant (i.e., the relative
placement of the K̂F of each dataset stays the same with respect to such transformations). Because
this constant is the same for all datasets for the given image resolution, it has no effect on the scaling
law result of Eq. (2), as it can be folded into the constant a.

We show similar results for modifying the channel count of images (i.e., modifying all grayscale
images to RGB) in the left of Figs. 7 and 8.
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Figure 6: Left: Dependence of measured intrinsic dimension (ddata) of the image datasets which
we analyze with respect to image size (height and width). ddata values are averaged over all training
set sizes; error bars indicate 95% confidence intervals. Right: Same, but for measured dataset label
sharpness K̂F . K̂F values are averaged over all class pairings (Sec. 3.2); error bars indicate 95%
confidence intervals.
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Figure 7: Measured intrinsic dimension (ddata) of the natural (orange) and medical (blue) image
datasets which we analyze (Sec. 4), for all images changed to RGB/3-channel (left), and all images
resized to 32 × 32 (right). ddata values are averaged over all training set sizes; error bars indicate
95% confidence intervals. Compare to the default results in Fig. 1, left (224 × 224, original image
channel counts) for reference.
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Figure 8: Measured label sharpnesses (K̂F ) of the natural (orange) and medical (blue) image
datasets which we analyze (Sec. 4), for all images changed to RGB/3-channel (left), and all im-
ages resized to 32 × 32 (right). K̂F values are averaged over all class pairings (Sec. 3.2); error
bars indicate 95% confidence intervals. Compare to the default results in Fig. 1, right (224 × 224,
original image channel counts) for reference.

C ADDITIONAL RESULTS, EXTENSIONS, AND APPLICATIONS

C.1 LIKELIHOOD ANALYSIS OF THEORETICAL AND EMPIRICAL GENERALIZATION
SCALING LAWS

We hypothesized in the main text that the observed discrepancies in generalization scaling between
natural and medical images with respect to intrinsic dataset dimension ddata (Fig. 2) were at least
partially caused by the notable differences in dataset label sharpness (KF ) between these two do-
mains, indicated by our derived generalization scaling law of Equation (2). If we take Eq. (2) as an
equality (in other words, a model that can be regressed to the observed generalization data in Fig. 2),
we can analyze the likelihood that the observed shift between domains is caused by the scaling law’s
accounting for KF by seeing if the likelihood of our scaling law model (Model A) which accounts
for KF ,

yA(ddata, N,KF ; a) := logL ≃ − 1

ddata
logN + logKF + a (24)

is higher than the likelihood of a model that does not account for KF (Model B),

yB(ddata, N ; a) := logL ≃ − 1

ddata
logN + b. (25)

Here, recall that L is the test loss of a trained network given the intrinsic dimension ddata and label
sharpness KF of the network’s training dataset (Sec. 3), and N is the size of the training set. Each
of the two scaling law models A and B will be fit to the observed generalization scaling data D:
D = {(L; ddata, N,KF )i}∀i for model A and D = {(L; ddata, N)i}∀i for model B, using all result
data i for a given network architecture (i.e., the datapoints in Fig. 2); the fitted parameters are a and
b, for each respective model. We obtained these fitted models using SciPy’s curve fit function
(Virtanen et al., 2020), resulting in best-fit parameters of â and b̂.

The likelihood ratio between two models is a well-known statistical test for determining
the model that better explains the observed data (Vuong, 1989), and is defined by R :=
p(D|model A)/p(D|model B). For such regression problems, the likelihood ratio is evaluated as

R =
p(D|model A)

p(D|model B)
=

exp
[
− 1

2

∑
i(logLi − yA(ddata,i, Ni,KF,i; â))

2
]

exp
[
− 1

2

∑
i(logLi − yB(ddata,i, Ni; b̂))2

] . (26)

Here, logR > 0 will indicate that model A explains the data better, logR < 0 will indicate that
model B explains the data better, and logR ≈ 0 indicates that neither model is preferred.

As shown in Table 2, we found that logR > 0 by a large margin for all network architectures,
supporting the importance of accounting for KF in the scaling law, due to the variability of it across
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different domains. These results seem reasonable because as shown in Fig 2, there is a visible
separation between the loss curves for the domains of natural and medical images. Allowing the
scaling law to account for the label sharpness KF of the dataset will make it more accurate because
different datasets possess different KF values (Fig. 1), and by Equation (24), different KF values
will move the loss curve up and down.

ResNet-18 ResNet-34 ResNet-50 VGG-13 VGG-16 VGG-19
13.5 7.6 11.7 8.1 10.5 12.3

Table 2: Log-ratio logR between (A) the likelihood of the network generalization ddata scaling law
model that accounts for label sharpness, and (B) the likelihood of the scaling law model that does
not, given generalization data observed in our experiments (Fig. 2), for each network architecture.

C.2 EVALUATING A DATASET FROM AN ADDITIONAL DOMAIN

In this section, we extend our analysis to a new dataset from a third domain beyond natural images
and radiology images, in order to determine whether our hypotheses extend to other domains (e.g.,
that dataset label sharpness is related to which domain the dataset is within). We use the ISIC skin
lesion image dataset of Codella et al. (2018), which interestingly, has certain characteristics that both
natural and radiological images share, such as being RGB photographs (like natural images), and
having standardized acquisition procedure and object framing for the purpose of clinical tasks (like
radiological images). For all experiments we use the task/labeling for melanocytic nevus detection.

First, we find that ISIC has an intrinsic dimension ddata ≃ 12 that is in between typical natural
image dataset ddata values and typical radiology dataset ddata values (Fig. 9, left). We similarly see
that its label sharpness K̂F ≃ 10−4 is in the upper end of typical natural image dataset K̂F values,
and below all radiology dataset K̂F (Fig. 9, right). It makes intuitive sense that these intrinsic
properties of the ISIC dataset are in between the two domains of natural and radiological images,
given the aforementioned characteristics of images from both domains that it possesses.
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Figure 9: Measured intrinsic dimension (ddata, left) and label sharpnesses (K̂F , right) of the natural
(orange) and medical (blue) image datasets which we analyze (Sec. 4), with the ISIC dataset
included on the right of both figures. ddata values are averaged over all training set sizes, and K̂F
over all class pairings (Sec. 3.2); error bars indicate 95% confidence intervals.

We next performed the same generalization experiments as in the main text for ISIC, training each
network model for the assigned task with N = 1750. Given our generalization scaling law of
Eq. (2), ISIC having a KF value between the typical respective values of natural and radiological
domains would imply that models trained on the dataset would have test loss values between the
models trained on these two domains, given ISIC’s ddata. We see in Fig. 10 that this was indeed the
case for all network architectures; the generalization ability of the ISIC models (indicated by pur-
ple circles) are between the typical generalization curves of natural image models and radiological
image models.

Moreover, the “in-between” KF of ISIC also implies that models trained on this dataset would be
more adversarially robust than the radiological image models (with their high dataset KF values),

19



Published as a conference paper at ICLR 2024

5.0 7.5 10.0 12.5 15.0 17.5 20.0
ddata (dataset intrinsic dim.)

10 2

10 1

100

L 
(t

es
t l

os
s)

model: resnet18

5.0 7.5 10.0 12.5 15.0 17.5 20.0
ddata (dataset intrinsic dim.)

10 2

10 1

100

L 
(t

es
t l

os
s)

model: resnet34

5.0 7.5 10.0 12.5 15.0 17.5 20.0
ddata (dataset intrinsic dim.)

10 2

10 1

100

L 
(t

es
t l

os
s)

model: resnet50

5.0 7.5 10.0 12.5 15.0 17.5 20.0
ddata (dataset intrinsic dim.)

10 2

10 1

100

L 
(t

es
t l

os
s)

model: vgg13

5.0 7.5 10.0 12.5 15.0 17.5 20.0
ddata (dataset intrinsic dim.)

10 3

10 2

10 1

100
L 

(t
es

t l
os

s)

model: vgg16

5.0 7.5 10.0 12.5 15.0 17.5 20.0
ddata (dataset intrinsic dim.)

10 3

10 2

10 1

100

L 
(t

es
t l

os
s)

model: vgg19
500 750 1000 1250 1500 1750

medical

training set size (N)

natural

Figure 10: Same as Fig. 2, but with ISIC dataset results added with purple circles.

yet less robust than the natural image models (with their low dataset KF ) (Theorem 3). In Fig. 11
we see that this is the case for some network architectures, while for others, ISIC models (purple
circles) end up close to the natural image models.
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Figure 11: Same as Fig. 3, but with ISIC dataset results added with purple circles.

C.3 PRACTICAL APPLICATION: TASK SELECTION FOR MEDICAL IMAGES

In this section we will demonstrate a practical usage of our formalism. It is common for new medical
image datasets to come equipped with many different labels provided by clinical annotators, prior
to any attempt to train a model to learn to make such predictions from the data. The question we
examine in this section is: given a new dataset with a variety of image labels, which tasks will be
easier for a model learn, and which will be harder? This is an important question to guide the
model development process of practitioners who wish to take the first steps of training models for
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automated diagnosis of a new dataset and/or modality, the answer of which may not be clear solely
from the visible image characteristics.

For example, the RSNA-IH-CT dataset (Sec. 4) was annotated with labels for different types of
hemorrhages, but some could be easier to detect than others. Consider that we wish to decide
whether to train a binary classification model to (1) detect any type of hemorrhage out of 5 sub-
types or (2) detect a specific type, such as epidural hemorrhage. Naı̈vely, it may seem that the
second task is more specific and therefore may be more challenging, yet if some visual characteristic
makes epidural hemorrhages easily noticeable, the first task could be more challenging, as it requires
learning to differentiate between (a) healthy cases and (b) each type of hemorrhage. We can get a
general idea for the relative difficulty of these two tasks using our derived scaling law, as follows.

Let’s say that we wish to estimate which task is likely to be more challenging for a given model to
learn by determining which has the higher expected test loss L. Our scaling law (Eq. (2)) estimates
that L ≃ O(KFN

−1/ddata), but because the equation is a bound (not an equality), estimating
absolute test loss values is not feasible. However, if we instead consider the ratio of test losses for
two different possible tasks on the same dataset, a prediction is more tractable. While N and ddata
are both independent of task choice, the label sharpness KF (Sec. 3.2) will change depending on the
labels assigned to the data for the given task, which can be quickly measured from the dataset without
any model training. If we take K

(1)
F and L(1) to be the measured label sharpness and expected test

loss for the first task (detection of any hemorrhage), respectively, and likewise for K(2)
F and L(2) for

the second task (epidural hemorrhage detection), we get that approximately,

L(1)

L(2)
∝
∼

K
(1)
F N−1/ddata

K
(2)
F N−1/ddata

=
K

(1)
F

K
(2)
F

, (27)

implying that the task with the higher KF will likely be more challenging for the model (higher test
loss L).

To test this, we measured K̂
(1)
F = 2.1 ± 0.4 × 10−4 and K̂

(2)
F = 1.45 ± 0.06 × 10−4 for the two

respective tasks (95% CI over 25 evaluations of M2 pairings M = 1000, as in Sec. 3.2 and Fig.
1). Although approximate, Eq. (27) indicates that task 2 will be easier. We then trained each of our
evaluated models for each of the two tasks, with results shown in Table 3 (N = 1750 and all other
training details are the same as for the main paper experiments). We see that all models obtained
lower test loss on task 2 than on task 1, and similarly obtained higher test accuracy, indicating that
task 2 was indeed easier.

ResNet-18 ResNet-34 ResNet-50 VGG-13 VGG-16 VGG-19 K̂F
Task 1 1.29 1.23 1.03 0.69 0.50 0.51 2.1± 0.4
Task 2 0.64 0.66 0.66 0.63 0.62 0.90 1.45± 0.06
Task 1 76% 74% 74% 73% 75% 76% 2.1± 0.4
Task 2 80% 83% 83% 85% 82% 81% 1.45± 0.06

Table 3: Top section: Test set loss for each model trained on each of the two hemorrhage detection
tasks, alongside the measured label sharpness K̂F for each task (Task 1 is detecting any hemorrhage,
Task 2 is detecting epidural hemorrhage). Bottom section: Same, but for test set accuracy.

Note that Equation (27) is just an approximation, and that tasks with more similar measured KF
values for the same dataset could be harder to distinguish. Of course, this experiment is just an
example, and future study with other datasets is warranted.

C.4 EVALUATION AT MUCH HIGHER TRAINING SET SIZES

While many of our datasets do not support going to substantially higher training set sizes than our
main experiments’ maximum of N = 1750 (see Sec. 4), we can still evaluate the generalization
scaling of models training on two datasets that do allow for significantly higher N . To this end, we
trained each of our six models on the CheXpert medical image dataset and on the CIFAR-10 natural
image dataset (for classes 1 and 2) at the highest training set size possible for binary classification on
these datasets, N = 9250. We would expect from our generalization scaling law (Eq. (2)), that for
a fixed dataset (and therefore ddata and KF ) and architecture, the loss would decrease with higher
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N . The results of this are shown in Tables 4 and 5 below; we see that this is indeed the case for
all models (lower loss for higher training set size). We also see that the general trend of the natural
image models having much lower loss than the medical image models is maintained, even though
these two datasets have similar intrinsic dimensions (ddata ≃ 15− 17).

N ResNet-18 ResNet-34 ResNet-50 VGG-13 VGG-16 VGG-19
9250 0.1660 0.1821 0.1179 0.1086 0.1045 0.0828
1000 0.5312 0.7402 0.5128 0.9764 0.6001 0.3974

Table 4: Test losses for models trained on CIFAR-10 binary classification for high training set size
N = 9250 compared to those trained on N = 1000.

N ResNet-18 ResNet-34 ResNet-50 VGG-13 VGG-16 VGG-19
9250 0.7712 0.6370 0.6789 0.6014 0.6014 0.6016
1000 1.3479 0.7894 0.9793 0.6700 0.7409 0.6806

Table 5: Test losses for models trained on CheXpert binary classification for high training set size
N = 9250 compared to those trained on N = 1000.

C.5 DEPENDENCE OF NETWORK PERFORMANCE ON IMAGE RESOLUTION

It seems plausible that training a network to perform certain medical image binary classification
tasks would be difficult at low image resolutions, due to the visual similarity of positive and negative
images for some tasks (as any opposed to the typically low visual similarity of images from different
classes in natural image datasets). To test this, we trained a ResNet-18 on each medical image
dataset (with N = 1750 and all other training settings at their defaults) over a wide range of image
resolutions (square image sizes of [32, 64, 128, 256, 512]), to see if the test accuracy was smaller for
low resolutions. The results are shown in Fig. 12, and surprisingly, there is little performance drop
for small resolutions. This may actually make sense, considering datasets like MedMNIST (Yang
et al., 2023), where training for a wide variety of medical image classification tasks is possible even
at 28 × 28 resolution. Of course, this would probably not be the case for more fine-grained tasks
such as semantic segmentation.
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Figure 12: Dependence of network performance on image size for different medical image classifi-
cation datasets (ResNet-18, training set size of 1750).

D ADDITIONAL VISUALIZATIONS

D.1 EXAMPLE ADVERSARIAL ATTACKS ON MEDICAL IMAGES

We show example attacked medical images for each dataset in Fig. 13.
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Figure 13: Susceptibility of medical images to adversarial attack. Top row: test set prediction
accuracy of models trained on each medical image dataset for its corresponding diagnostic task (Sec.
4), with example test images shown. Bottom Row: accuracies after each test set was attacked by
FGSM (ϵ = 2/255), with example attacked images shown. The models are ResNet-18s with training
set sizes of N = 1750.

E MAIN RESULTS WITH OTHER METRICS

In this section we will show our main results but with other metrics for generalization, adversarial
robustness, and/or intrinsic dimensionality.

E.1 GENERALIZATION SCALING WITH ddata AND drepr

Continuation of Sec. 5.1. In Fig. 14 we show the scaling of test accuracy with intrinsic dataset
dimension ddata, using the default MLE estimator (Sec. 3.1). In Figs. 15 and 16 we show the scaling
of test loss and accuracy, respectively, but instead using TwoNN (Sec. 3.1) to estimate ddata.
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Figure 14: Scaling of test accuracy/generalization ability with training set intrinsic dimension
(ddata) for natural and medical datasets.

Continuation of Sec. 7. Next, in Fig. 17 we show the scaling of test accuracy with learned
representation intrinsic dimension drepr, using the default TwoNN estimator (Sec. 3.1). In Figs. 18
and 19 we show the scaling of test loss and accuracy, respectively, but instead using MLE (Sec. 3.1)
to estimate drepr.
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Figure 15: Scaling of log test loss/generalization ability with training set intrinsic dimension (ddata)
for natural and medical datasets, with ddata computed via TwoNN (Facco et al., 2017).
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Figure 16: Scaling of test accuracy/generalization ability with training set intrinsic dimension
(ddata) for natural and medical datasets, with ddata computed via TwoNN (Facco et al., 2017).
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Figure 17: Scaling of test accuracy/generalization ability with the intrinsic dimension of final hidden
layer learned representations of the training set (drepr) for natural and medical datasets.
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Figure 18: Scaling of log test loss/generalization ability with the intrinsic dimension of final hidden
layer learned representations of the training set (drepr) for natural and medical datasets, with ddata
computed via MLE (Sec. 3.1).
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Figure 19: Scaling of test accuracy/generalization ability with the intrinsic dimension of final hidden
layer learned representations of the training set (drepr) for natural and medical datasets, with ddata
computed via MLE (Sec. 3.1).

E.2 BOUNDING HIDDEN REPRESENTATION INTRINSIC DIMENSION WITH DATASET
INTRINSIC DIMENSION

In Fig. 20 we show the ddata vs. drepr results as in Fig. 5, but with dimensionality estimates
computed with TwoNN instead of MLE (Sec. 3.1).
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Figure 20: Training dataset intrinsic dimension ddata vs. learned representation intrinsic dimension
drepr, both computed using TwoNN instead of MLE (Sec. 3.1). Each point corresponds to a (model,
dataset, training set size) combination.

E.3 ADVERSARIAL ROBUSTNESS SCALING WITH K̂F

Continuation of Sec. 6. In Figs. 21, 22 and 23, we show the scaling of test loss penalty due
to FGSM adversarial attack with respect to measured dataset label sharpness K̂F , for attack ϵ of
1/255, 4/255, and 8/255, respectively. In Figs 24, 25, 26 and 27 we instead show the scaling of
test accuracy penalty, for each FGSM attack ϵ of 1/255, 2/255, 4/255, and 8/255, respectively.
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Finally, in Tables 6 and 7 we report per-domain correlations of loss penalty and dataset KF , for
medical images and natural images respectively.

1 2 3

KF
1e 4

0

5

10

15

20

25

lo
ss

model: resnet18

1 2 3

KF
1e 4

0

2

4

6

8

10

lo
ss

model: resnet34

1 2 3

KF
1e 4

0

5

10

15

20

lo
ss

model: resnet50

1 2 3

KF
1e 4

0

5

10

15

20

lo
ss

model: vgg13

1 2 3

KF
1e 4

0

5

10

15

20

lo
ss

model: vgg16

1 2 3

KF
1e 4

0.0

2.5

5.0

7.5

10.0

12.5

lo
ss

model: vgg19

Figure 21: Scaling of test set loss penalty due to ϵ = 1/255 FGSM adversarial attack with dataset
label sharpness KF for natural (orange) and medical (blue) datasets.
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Figure 22: Scaling of test set loss penalty due to ϵ = 4/255 FGSM adversarial attack with dataset
label sharpness KF for natural (orange) and medical (blue) datasets.

F TRAINING AND IMPLEMENTATIONAL DETAILS

This section provides training and implementation details beyond that of Sec. 4. We train all models
with a binary cross-entropy loss function, optimize by Adam (Kingma & Ba, 2015) with a weight
decay strength of 10−4 for 100 epochs. We use learning rates of 10−3 for ResNet models on all
datasets, and 10−4 for VGG models on all datasets except SVHN, which required 10−6 to avoid
loss divergence. ResNet-18, -34 and -50 models were trained with batch sizes of 200, 128, and 64,
respectively, and 32 for all VGG models. We do not use any training image augmentations beyond
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Figure 23: Scaling of test set loss penalty due to ϵ = 8/255 FGSM adversarial attack with dataset
label sharpness KF for natural (orange) and medical (blue) datasets.
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Figure 24: Scaling of test set accuracy penalty due to ϵ = 1/255 FGSM adversarial attack with
dataset label sharpness KF for natural (orange) and medical (blue) datasets.

Atk. ϵ RN-18 RN-34 RN-50 V-13 V-16 V-19
1/255 0.67 0.26 0.43 0.55 0.69 0.6
2/255 0.53 0.01 0.28 0.57 0.71 0.57
4/255 0.41 −0.16 0.14 0.56 0.7 0.53
8/255 0.31 −0.23 0.04 0.56 0.66 0.49

Table 6: Pearson correlation r between test loss penalty due to FGSM attack and dataset label
sharpness K̂F , over all medical image datasets and all training sizes. “RN” = ResNet, “V” = VGG.
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Figure 25: Scaling of test set accuracy penalty due to ϵ = 2/255 FGSM adversarial attack with
dataset label sharpness KF for natural (orange) and medical (blue) datasets.
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Figure 26: Scaling of test set accuracy penalty due to ϵ = 4/255 FGSM adversarial attack with
dataset label sharpness KF for natural (orange) and medical (blue) datasets.

Atk. ϵ RN-18 RN-34 RN-50 V-13 V-16 V-19
1/255 −0.39 −0.37 −0.39 −0.36 −0.38 −0.24
2/255 −0.42 −0.37 −0.41 −0.42 −0.41 −0.36
4/255 −0.49 −0.41 −0.44 −0.47 −0.43 −0.53
8/255 −0.58 −0.47 −0.48 −0.5 −0.43 −0.66

Table 7: Pearson correlation r between test loss penalty due to FGSM attack and dataset label
sharpness K̂F , over all natural image datasets and all training sizes. “RN” = ResNet, “V” = VGG.
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Figure 27: Scaling of test set accuracy penalty due to ϵ = 8/255 FGSM adversarial attack with
dataset label sharpness KF for natural (orange) and medical (blue) datasets.

resizing to 224 × 224 and linear normalization to [0, 1]. We perform all experiments on a 48 GB
NVIDIA A6000.

G MEDICAL IMAGE DATASET DETAILS

This section goes into full detail into the binary classification task definitions for each medical image
dataset, beyond what is mentioned in Section 4. We follow the same task definitions for the medical
image datasets as in Konz et al. (2022). Specifically:

• For OAI (Tiulpin et al., 2018), we use the screening packages 0.C.2 and 0.E.1, and define
a negative class of X-ray images with Kellgren-Lawrence scores of 0 or 1, and a positive
class of images with scores of 2+.

• For DBC (Saha et al., 2018), we use fat-saturated breast MRI slices. Slice images with a
tumor bounding box label are positive, and any slice at least 5 slices away from a positive
slice is negative.

• We use the same slice-labeling procedure as DBC for BraTS (Menze et al., 2014), for
glioma labels in T2 FLAIR brain MRI slices.

• For Prostate MRI (Sonn et al., 2013), we use slices from the middle 50% of each MRI
volume. Slices are labeled as negative if the volume’s cancer risk score label is 0 or 1, and
positive for 2+.

• For brain CT hemorrhage detection in RSNA-IH-CT (Flanders et al., 2020), we detect for
any type of hemorrhage.

30


	Introduction
	Related Works
	Preliminaries
	Estimating Dataset Intrinsic Dimension
	Estimating Dataset Label Sharpness

	Datasets, Models and Training
	The Relationship of Generalization with Dataset Intrinsic Dimension and Label Sharpness
	Bounding generalization ability with dataset intrinsic dimension
	Generalization Discrepancies Between Imaging Domains

	Adversarial Robustness and Training Set Label Sharpness
	Connecting Representation Intrinsic Dimension to Dataset Intrinsic Dimension and Generalization
	Appendix
	I Supplementary Materials
	Mathematical Details and Proofs
	Extension of Results to Multi-Class Classification
	Proof of Theorem 2 (Approximating Kf with KF)
	Proof of Theorem 4 (Generalization Error and Representation Intrinsic Dim. Scaling Law)
	Proof of Theorem 3 (Adversarial Robustness and Label Sharpness Scaling Law)
	Proof of Theorem 5 (Bounding of Representation Intrinsic Dim. with Dataset Intrinsic Dim.)

	Analysis of Intrinsic Dataset Property Characteristics (Intrinsic Dimension and Label Sharpness)
	Invariance of Intrinsic Dataset Properties to Transformations

	Additional Results, Extensions, and Applications
	Likelihood Analysis of Theoretical and Empirical Generalization Scaling Laws
	Evaluating a Dataset from an Additional Domain
	Practical Application: Task Selection for Medical Images
	Evaluation at Much Higher Training Set Sizes
	Dependence of Network Performance on Image Resolution

	Additional Visualizations
	Example Adversarial Attacks on Medical Images

	Main Results with Other Metrics
	Generalization Scaling with ddata and drepr
	Bounding Hidden Representation Intrinsic Dimension with Dataset Intrinsic Dimension
	Adversarial Robustness scaling with F

	Training and Implementational Details
	Medical Image Dataset Details




