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Fig. S1: The proposed framework as a probabilistic graphical
model.

S1 DERIVING THE VARIATIONAL LOWER-BOUND

In this section we derive the variational lower-bound in-
troduced in Sec.2.3 of the main article. We firstly introduce
Lemmas 1 and 2 as they appear in our derivations.

Lemma 1. The KL-divergence between two normal distri-
butions N1(. ; µ1,Σ1) and N2(. ; µ2,Σ2) can be
computed as follows:

KL
(
N1 || N2

)
=

1

2
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(S1)

Lemma 2. Let p1 and p2 be two normal distributions:
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Fig.S1 illustrates the framework as a probabilistic graphical
model. A general feed-forward pipeline takes in a set of

input(s) X and produces a set of output(s) Y . The general
pipeline is required to have at least one ANN as a submod-
ule. The ANN submodule is required to take in only one
input x and to produce only one output v, where x and
v are tensors of arbitrary sizes. As illustrated in Fig.S1, the
ANN’s input x can depend arbitrarily on some other inter-
mediate variables in the pipeline. This relation is modeled
by the conditional distribution p

(
xn|Parent(xn)

)
where

Parent(xn) is the set of all variables which are connected
to xn. Similarly, as illustrated in Fig.S1 the pipeline’s output
Y can arbitrarily depend on some intermediate variables
in the pipeline. This relation is modeled by the conditional
distribution p

(
Yn|Parent(Yn)

)
. In Fig.S1 the lower boxes

are the inducing points and other variables that determine
the GPs’ posterior. More precisely, in Fig.S1 {x̃m}Mm=1 are
some inducing points (e.g. some training images). Vectors
in the kernel space are denoted by ũ and u. Moreover, the
observed values are denoted by v and ṽ. Informally, u and
v denote the input/output of the GPs. When referring to
one of the M inducing points a ”tilde” is used (as (ũ, ṽ)),
however (u, v) corresponds to a point that can be anywhere
in the kernel-space.

The inducing instances {x̃m}Mm=1 are mapped to the
kernel-spaces by the kernel mappings {f1(.), ..., fL(.)}. In
Fig.S1 the variables {ũm}Mm=1 are the kernel-space rep-
resentations of the inducing points {x̃m}Mm=1. Moreover,
{ṽm}Mm=1 are the GP’s output values at the inducing points.
Given an instance xn, it is firstly fed to the kernel mappings
{f1(.), ..., fL(.)} and the kernel-space representations un

are obtained. Afterwards, the GPs’ outputs on un depend on
un as well as all other inducing points because the inducing
points actually determine the GPs’ posterior on all kernel-
space points including un. Therefore, in Fig.S1 the variable
vn is not only connected to un but it is also connected to
the box at the bottom (i.e. all inducing points and other
variables associated with them).

As usual, the variational lower-bound is equal to

L = E∼q

[
log p(all variables)

]
− E∼q

[
log q(hidden variables)

]
.

(S3)
The likelihood of all variables in Eq.S3 factorizes as the
product of conditional distributions of each variable given



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

its parents. Therefore

p(all variables) =
∏

variable t

p
(
t|Parent(t)

)
. (S4)

In Eq.S4 only some conditional distributions appear in our
derivations which are discussed at the following.

• The variable xn: the ANN’s input xn can depend ar-
bitrarily on some other intermediate variables in the
pipeline. In our derivations we leave this conditional
distribution as p

(
xn|Parent(xn)

)
.

• The variable un: Given a training instance xn, the
kernel-space representations un are deterministically
obtained by feeding the instance to the kernel-
mappings [f1(.), ..., fL(.)].

• The variable vn: The ANN’s output is required to
depend only on the input, so

p
(
vn|Parent(vn)

)
= p

(
vn|un,xn, {x̃m, ũm, ṽm}Mm=1

)
.

(S5)
The above distribution is actually the GPs’ posterior
at un (i.e. the normal distribution of Eq.1 of the main
article).

• The variable x̃m: the inducing point x̃m can depend
arbitrarily on some other intermediate variables in
the pipeline. In our derivations we leave this condi-
tional distribution as p

(
x̃m|Parent(x̃m)

)
.

• The variable ũm: Given an inducing point x̃m, the
kernel-space representations ũm are deterministi-
cally obtained by feeding the inducing point x̃m to
the kernel-mappings [f1(.), ..., fL(.)].

• The variables v̂m: Given the kernel-space representa-
tions {ũ(ℓ)

m }Mm=1, the variables {ṽ(ℓ)1 , ..., ṽ
(ℓ)
M } follow

a M -dimensional Gaussian distribution with zero
mean and a covariance matrix determined by the GP
prior covariance among the variables {ũ(ℓ)

m }Mm=1.
• The variable Yn: the pipeline’s output Y can arbi-

trarily depend on some intermediate variables in the
pipeline. In our derivations we leave this conditional
distribution as p

(
Yn|Parent(Yn)

)
.

According to Eq.S4, the likelihood of all variables factorizes
as

p(all variables) =
∏

variable t

p
(
t|Parent(t)

)
=

(∏
n

p(xn|Parent(xn))
)
×

(∏
n

p(un|xn)
)
×(∏

n

∏
ℓ

p(v(ℓ)n |un,xn, {x̃m, ũm, ṽm}Mm=1)
)
×(∏

m

p(x̃m|Parent(x̃m)
)
×

(∏
m

p(ũm|x̃m)
)
×(∏

ℓ

p(ṽ
(ℓ)
1:M |0,Kprior(ũ

(ℓ)
1:M , ũ

(ℓ)
1:M ))

)
×(∏

n

p(Yn|Parent(Yn))
)
×

( ∏
other vars t

p
(
t|Parent(t)

))
.

(S6)

Now we derive the lower-bound L with respect to each
parameter separately.

S1.1 Deriving the Lower-bound With Respect to the
Kernel-mappings

In the right-hand-side of Eq.S6 only the following terms are
dependant on the kernel-mappings [f1(.), ..., fL(.)]:

[∏
m

p(ũm|x̃m)×
∏
ℓ

p(ṽ(ℓ)m |0,Kprior(ũ
(ℓ)
1:M , ũ

(ℓ)
1:M ))

]
×[∏

n

p
(
un|xn

)
×

∏
ℓ

p
(
v(ℓ)n |un,xn, {x̃m, ũm, ṽm}Mm=1

)]
.

(S7)

Note that in the above equation the terms p(ũm|x̃m) and
p(un|xn) are equal to 1 because ũm and un are determin-
istically obtained from x̃m and xn. Therefore, in Eq.S3 the
terms containing the kernel mappings [f1(.), ..., fL(.)] are as
follows:

Lf = E∼q

[∑
ℓ

log p(v(ℓ)|u,x, {x̃m, ũm, ṽm}Mm=1)
]
+∑

ℓ

E∼q

[
log p(ṽ

(ℓ)
1:M |0,Kprior(ũ

(ℓ)
1:M , ũ

(ℓ)
1:M ))

]
−∑

ℓ

E∼q

[
log q2(ṽ

(ℓ)
1:M )

]
= E∼q

[∑
ℓ

log p(v(ℓ)|u,x, {x̃m, ũm, ṽm}Mm=1)
]
−∑

ℓ=1

E∼q

[
KL

(
q2(ṽ

(ℓ)
1:M ) || p(ṽ(ℓ)

1:M |0,Kprior(ũ
(ℓ)
1:M , ũ

(ℓ)
1:M ))

)]
.

(S8)

We simplify the two terms on the right-hand-side of Eq.S8.
The first term is the expected log-likelihood of a Gaussian
distribution (i.e. the conditional log-likelihood of ṽℓ as in
Eq.1 of the main article). Also the variational distribution
q(.) is Gaussian. Therefore, we can use Lemma.2 to simplify
the first term:

E∼q

[ L∑
ℓ=1

log p(v(ℓ)|u,x, {x̃m, ũm, ṽm}Mm=1)
]
=

L∑
ℓ=1

E∼q

[
log p(v(ℓ)|u,x, {x̃m, ũm, ṽm}Mm=1)

]
=

L∑
ℓ=1

[
−

(
µv(u

(ℓ), ũ
(ℓ)
1:M , ṽ

(ℓ)
1:M )− gℓ(x)

)2
+ σ2

g

covv(u(ℓ), ũ
(ℓ)
1:M , ṽ

(ℓ)
1:M )

− 1

2
log

(
covv(u

(ℓ), ũ
(ℓ)
1:M , ṽ

(ℓ)
1:M )

)
− 1

2
log(2π)

]
.

(S9)

Note that the two terms of Eq.S9 are the two terms which
were presented and discussed in Eq.5 of the main article.

Now we simplify the KL-term on the right-hand-side of
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Eq.S8. According to Lemma.1 we have that

KL
(
q2(ṽ

(ℓ)
1:M ) || p(ṽ(ℓ)

1:M |0,Kprior(ũ
(ℓ)
1:M , ũ

(ℓ)
1:M ))

)
=

+ 0.5
(
log(

σ2
gp

σ2
φ

)
)

− 0.5M

+
σ2
φ

σ2
gp

+
φ

(ℓ)T

1:Mφ
(ℓ)
1:M

σ2
gp

,

(S10)

where φ are the variational parameters of q2(.) as in Eq.4 of
the main article. Therefore, the KL-term of Eq.S8 is a con-
stant with respect to the kernel mappings [f1(.), ..., fL(.)]
and can be discarded. All in all, the lower-bound for opti-
mizing the kernel-mappings is equal to the right-hand-side
of Eq.S9 which was introduced and discussed in Sec.2.3. of
the main article.

S1.2 Deriving the Lower-bound With Respect to the
ANN Parameters

According to Eq.4 of the main article, in our formulation the
ANN’s parameters appear as some variational parameters.
Therefore, the likelihood of all variables (Eq.S6) does not
generally depend on the ANN’s parameters. But according
to the general ELBO formulation in Eq.S3 the ELBO L
depends on ANN’s parameters, because when computing
the expectation the variables are drawn from the variational
distribution q(.). We estimated the ELBO of Eq.S3 by the
average over few samples. More precisely, given a training
instance x, we firstly computed the kernel-space represen-
tations as:

u(ℓ) = fℓ(x), 1 ≤ ℓ ≤ L. (S11)

Afterwards, we used the reparametrization trick for Eq.1 of
the main article to draw a sample for v(ℓ) as follows:

z
(ℓ)
q2 ∼ N (0, 1),

v(ℓ) ∼ µv(u
(ℓ), ũ

(ℓ)
1:M , ṽ

(ℓ)
1:M ) + z

(ℓ)
q2 covv(u

(ℓ), ũ
(ℓ)
1:M , ṽ

(ℓ)
1:M ),

(S12)

where µv(., ., .) and covv(., ., .) are defined in Eqs.2 and 3 of
the main article. Moreover, we continue the forward pass of
the original pipeline to get a sample Y . Having drawn x, u,
v, and Y from the variational distribution, we estimate the
ELBO of Eq.S3 by these samples.

L =

E∼q

[
log p(all variables)

]
− E∼q

[
log q(hidden variables)

]
≈ log p(all variables)

∣∣∣
x,u,v,Y

−
M∑
m

L∑
ℓ

E∼q2

[
log q2(ṽ

(ℓ)
m )

]
(S13)

In the above equation, the second term on the right-hand-
side is the entropy of a normal distribution and it only
depends on the variance of the q2 distribution. As we let

the variance of q2 be fixed (σ2
g in Eq.4 of the main article),

the second term is a constant. Therefore,

L ≈ log p(all variables)
∣∣∣
x,u,v,Y

. (S14)

Among the likelihood term on the right-hand-side of Eq.S6
the conditional distribution of all variables before un (e.g.
xn and Xn) are independent of the ANN’s parameters (i.e.
the parameters of the function g(.)). On the other hand, for
all variables that appear after un, the conditional distribu-
tion depends on the ANN’s parameters. Indeed, according
to Eq.S14

Lann ≈
[ L∑
ℓ=1

log p(v(ℓ)|u,x, {x̃m, ũm, ṽm}Mm=1)
]∣∣∣

x,v
+

log p(Y|Parent(Y))
∣∣∣
x,v,Y

+( ∑
other vars after un

log p(t|Parent(t))
)∣∣∣

x,v,Y
.

(S15)

In the above equation, the first term on the right-hand-side
is the log-likelihood of the normal distribution of Eq.1:

log p(v(ℓ)|u,x, {x̃m, ũm, ṽm}Mm=1) =

− 1

2

[ L∑
ℓ=1

(µv(u
(ℓ), ũ

(ℓ)
1:M , ṽ

(ℓ)
1:M )− gℓ(x))

2

covv(u(ℓ), ũ
(ℓ)
1:M , ṽ

(ℓ)
1:M )

]
+

(
some terms independent from g(.)

)
.

(S16)

In Eq.S15 the term p
(
Y|Parent(Y)

)
is the likelihood of

the output(s) of the whole pipeline as illustrated by Fig.1a
of the main article, given the ANN’s output and all other
intermediate variables on which the final output Y depends.
This likelihood turns out to be equivalent to commonly-used
losses like the cross-entropy loss or the mean-squared loss.
Here we elaborate upon how this happens. Let the task be a
classification, and let Ŷ ∈ RL be the pipeline’s output. The
final model prediction Y is done as follows:

Y ∼ Categorical(ŶK , ..., ŶK) (S17)

Therefore we have that

p
(
Y|Parent(Y)

)
= (Ŷ1)I[Y==1]× ...×(ŶK)I[Y==K], (S18)

where I[.] is the indicator function. So, we have that

log p
(
Y|Parent(Y)

)
=

I[Y == 1] log(Ŷ1) + ...+ I[Y == K] log(ŶK).
(S19)

Therefore, when the pipeline is for classification,
log p(Y|v, etc.) will be equal to the cross-entropy loss.
This conclusion was introduced and discussed in Eq.6 of
the main article. We can draw similar conclusions when
the pipeline is for other tasks like regression, or even a
combination of tasks.

In the general pipeline of Fig.S1, if all stages after v
are deterministic (of course except the final stage which is
probabilistic like Eq.S17), the third term on the right-hand-
side of Eq.S15 becomes 1. Therefore, the right-hand-side of
Eq.S15 is equal to Eq.6 of the main article. As we discussed
in Sec.2.3 of the main article, Lann has two terms: the first
terms encourages the GP-ANN analogy and the second term
seeks to lower the task-loss.
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Algorithm S1 Method Forward GP

Input: Input instance x and inducing instance x̃, list of
matrices U, list of vectors V.

Output: List of GP posterior means µ, and covariances cov.
Initialisation : µ = list(L), cov = list(L).

1: for ℓ = 1 to L do
2: u = fℓ(x) //map x to the kernel space of the ℓ-th GP.
3: Uℓ ← U[L] //get the inducing points of the ℓ-th GP.
4: Vℓ ← V[L] //observed values at the inducing points.
5: if training then
6: Uℓ[x̃.index]← fℓ(x̃) //to pass gradient w.r.t. fℓ(.)
7: end if
8: µ[ℓ]← uTUT

ℓ

(
UℓU

T
ℓ + σ2

gpI
)−1

Vℓ.
9: cov[ℓ]← uTu− uTUT

ℓ

(
UℓU

T
ℓ + σ2

gpI
)−1

Uℓu.
10: end for
11: return µ and cov

Algorithm S2 Method Optim KernMappings

Input: Input instance x and inducing instance x̃, list of
matrices U, list of vectors V.

Output: Kernel-space mappings [f1(.), ..., fL(.)].
Note the important modifiactions to Alg.S2 which are ex-
plained in Sec.S5.
Initialisation : loss← 0.

1: µ, cov ← forward GP(x, x̃, U, V) //feed x to GPs.
2: µann ← g(x) //feed x to ANN.
3: for ℓ = 1 to L do
4: loss← loss+

(µ[ℓ]−µann[ℓ])
2+σ2

g

cov[ℓ] + log(cov[ℓ]). //Eq.5.
5: end for
6: δ ← ∂ loss

∂ params
(
[f1(.),...,fL(.)]

) .//the gradient of loss.

7: params
(
[f1, ..., fL]

)
← params

(
[f1, ..., fL]

)
− lr × δ

//update the parameters.
8: lr ← updated learning rate
9: return [f1(.), ..., fL(.)]

S1.3 Deriving the Lower-bound With Respect to q2(.)
Parameters

In Eq.4 of the main article we considered the variational pa-
rameters {φ(ℓ)

m }Mm=1 for the hidden variables {ṽ(ℓ)m }Mm=1. The
ELBO of Eq.S3 can be optimized with respect to {φ(ℓ)

m }Mm=1

as well. But we noticed that optimizing {φ(ℓ)
m }Mm=1 is compu-

tationally unstable. Therefore, we set {φ(ℓ)
m }Mm=1 according

to the following rule:

φ(ℓ)
m = gℓ(x̃m),

1 ≤ m ≤M, 1 ≤ ℓ ≤ L.
(S20)

We set {φ(ℓ)
m }Mm=1 as above because ṽ(ℓ)m is simply the ℓ-th GP

posterior mean at the inducing point x̃m. To make the GP’s
posterior mean equal to the ANN’s output, ṽ(m)

ℓ should be
equal to the ANN’s (i.e. g(.)’s) output at the m-th inducing
point.

S2 ALGORITHM DETAILS

During training, to compute GP’s posterior we firstly
need to have the M inducing points {(ũ(ℓ)

m , ṽ
(ℓ)
m )}Mm=1.

Algorithm S3 Method Init GPparams

Input: Dataset of inducing points [x̃1, ..., x̃M ].
Output: List of matrices U, list of vectors V.

Initialisation : U = list(L), V = list(L).
1: for ℓ = 1 to L do
2: V[ℓ]← [g(x̃1)[ℓ], ..., g(x̃M )[ℓ])].
3: end for
4: for ℓ = 1 to L do
5: U[ℓ]← [fℓ(x̃1), ..., fℓ(x̃M )].
6: end for
7: return U and V

Algorithm S4 Method Explain ANN

Input: Training dataset ds train, and the inducing dataset
ds inducing.

Output: Kernel-space mappings [f1(.), ..., fL(.)], and the
other GP parameters U and V.
Initialisation : U, V ← Init GPparams(ds inducing).

1: for iter = 1 to max iter do
2: x← randselect(ds train).
3: x̃← randselect(ds inducing)
4: [f1(.), ..., fL(.)] ← Optim KernMapings(x, x̃,U,V).
5: x̃← randselect(ds inducing).
6: for ℓ = 1 to L do
7: //update kernel-space representations.
8: U [ℓ][x̃.index]← fℓ(x̃)
9: end for

10: end for
11: return [f1(.), ..., fL(.)], U, V

It is computationally prohibitive to repeatedly update
{ũ(ℓ)

m }Mm=1 by mapping all M instances to the kernel space
as ũ(ℓ)

m = fℓ(x̃m). On the other hand, as the kernel-space
mappings {fℓ(.)}Lℓ=1 keep changing during training, we
need to somehow track how the inducing points {ũ(ℓ)

m }Mm=1

change during training. To this end, we consider a matrix
whose m-th row contains the value of fℓ(x̃m) at some point
during training, where x̃m is the m-th inducing instance.
During training, we keep updating the rows of this matrix
by feeding mini-batches of instances to fℓ(.). Note that
we have as many GPs as the number of ANN’s output
heads. Therefore, for each GP we consider a separate matrix
containing the representations of the inducing instances in
the ℓ-th kernel space. In Algs.S1, S2, S3, and S4 the variable
U is a list containing all of the the aforementioned matrices.
To explain a given ANN, we let the ANN to be fixed
and we only train the GPs’ parameters. This procedure is
explained in Alg.S4. In each iteration, the kernel-mappings
are updated according to the objective function of Eq.5
(line 3 of Alg.S2). Afterwards, to make the matrices in U
track the changes in [f1(.), ..., fL(.)], we map an inducing
instance (or a mini-batch of inducing instances) to the kernel
spaces, and we update the corresponding matrices and
rows in U according to the newly obtained kernel-space
representations. Updating U is done in line 8 of Alg.S4.
The method in Alg.S1 computes the GPs’ posterior means
and covariances at any instance like x, given the observed
inducing points as specified by U and V. Note that this



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

Algorithm S5 Method Efficiently Compute AATinvb

Input: Matrix A of size M ×D, vector b of size M × 1, and
positive scalar σ.

Output: The vector output = (AAT + σ2I)−1b.
1: Ẽ, λ̃← eigendecomp

(
ATA+ σ2I

)
.

2: [ẽ1, ..., ẽD]← Ẽ
3: [λ̃1, ..., λ̃D]← λ̃
4: [e1, ..., eD]← [Aẽ1, ...,AẽD]
5: [λ1, ..., λD]← [λ̃1, ..., λ̃D]
6: E← [e1, ..., eD]
7: Λ← diagonal( 1

λ1+σ2 , ...,
1

λD+σ2 )

8: output ← EΛET b + 1
σ2 (b − EET b) //according to

//Eq.S21 in supplementary material
9: return output

method returns two outputs, because a GP’s posterior at x
is a normal distribution described by its mean and variance.
In Alg.S1 lines 8 and 9 correspond to the equations of GP
posterior (i.e. Eqs. 1 and 2 of the main article). The method
in Alg.S1 is used both during training and testing. During
training, this method is called whenever ANN’s output and
GP’s posterior are encouraged to be close. During training,
according to line 6 of Alg.S1 only the matrix row(s) corre-
sponding to the fed inducing instance(s) are the result of
mapping the inducing instance(s) via the kernel-mapping,
and all other rows are kept fixed. Line 6 of Alg.S1 allows
for computing the gradient of loss with respect to kernel-
mappings [f1(.), ..., fL(.)]. During testing we call Alg.S1 to
get the GP’s posterior at a test instance like xtest. Alg.S3
initializes the GP parameters U and V. For the ℓ-th GP,
the vector V[ℓ] is initialized to the ℓ-th output head of the
ANN at all inducing images. In Alg.S3, the vector V[ℓ] is
initialized in line 2. Moreover, for the ℓ-th GP the matrix
U[ℓ] is initialized by mapping all inducing instances to
the ℓ-th kernel-space via the mapping fℓ(.). In Alg.S3 the
matrix U[ℓ] is initialized in line 5. The method in Alg.S3 is
called only once before training the GP. For instance, when
explaining an ANN in Alg.S4, the initialisation is done once
at the beginning of the procedure.

S2.1 Efficiently Computing Gaussian Process Poste-
rior

Let A be an arbitrary M × D matrix where M >> D.
Moreover, let b be a M -dimensional vector and let σ be
a scalar. The computational techniques [10] allow us to
efficiently compute:

(AAT + σ2IM×M )−1 b.

The idea is that AAT and therefore its inverse are of rank
D. Therefore, (AAT )−1 has D non-zero eigenvalues like
{λ1, ..., λD} and the rest of its eigenvalues are zero. Let
the corresponding eigenvectors be {e1, ..., eD}. To compute
(AAT )−1b we can simply project b to the D-dimensional
space of the eigenvectors. By doing so, we avoid the O(M3)
computational complexity. Let {λ1, ..., λD} be the non-zero
eigenvalues of AAT and let {e1, ..., eD} be the correspond-
ing eigenvectors. From linear algebra, it follows that for
AAT + σ2IM×M the eigenvalues and the eigenvectors are

{λ1 + σ2, ..., λD + σ2, σ2, ..., σ2} and {e1, ..., eD}, respec-
tively. Note that M − D eigenvectors are added all of
which are equal to σ2. Similarly, from linear algebra it fol-
lows that for the inverse of AAT + σ2IM×M the eigenval-
ues and eigenvectors are { 1

λ1+σ2 , ...,
1

λD+σ2 ,
1
σ2 , ...,

1
σ2 } and

{e1, ..., eD, eD+1, ..., eM} respectively. Note that although
there are M eigenvectors, only the first D eigenvectors ap-
pear in our computations. More precisely, let E ∈ RM×D be
a matrix whose columns are {e1, ..., eD}. Let Λ be a diago-
nal matrix whose diagonal is formed by { 1

λ1+σ2 , ...,
1

λD+σ2 }.
In the space of the D eigenvectors the linear transformation
on any vector like b is equal to EΛET b, meaning that
multiplication by ET transforms b to the space of the D
eigenvectors, multiplication by Λ performs the transforma-
tion in that space, and multiplication by E transforms the
result back to the original space. The (M −D) eigenvalues
that correspond to the rest of the eigenvectors are all the
same and are equal to 1

σ2 . Therefore, there is no need to
project b to the space of the (M −D) eigenvectors because
the linear transformation in that space is simply a scaling by
1
σ2 . All in all, we have that(
AAT+σ2IM×M

)−1
b = EΛET b+

1

σ2
(b−EET b). (S21)

Complexity of computing the right-hand-side of Eq.S21 is
way lower than theO(M3) requirement of the standard ma-
trix inversion. We borrowed more computational ideas from
the work on fast spectral clustering [10]. To compute the first
D eigenvlaues and eigenvectors of AAT , we worked with
the D-by-D matrix ATA rather than the M -by-M matrix
AAT (recall that D << M ), because given the eigenvalues
and eigenvectors of ATA, those of AAT are easily com-
putable [10]. The procedure is explained in Alg.S5. In Alg.S5,
lines 1-3 compute the eigenvalues/vectors of the matrix
ATA. Afterwards, lines 4 and 5 compute the first D eigen-
values/vectors of AAT using those of ATA. Finally, line
8 computes (AAT + σ2I)−1b according to the right-hand-
side of Eq.S21. To make the computations faster, we made
use of the following equation AAT =

∑
m A[m, :]A[m, :]T ,

where A[m, :] is the m-th row of the matrix A. Thanks to
this equation, we compute AAT only once at the beginning
of the training. Afterwards, as each mini-batch alters only
some rows of A, we update the previously computed AAT

by considering only the effect of the modified rows.

S2.2 Computing Pixel Contributions to the Similarity

We first explain the idea of CAM [34], afterwards we modify
it for the architectures of our kernel modules. Let the kernel
mapping f(.) be a convolutional neural network that pro-
duces a volumetric map of size C × H × W followed by
a spatial average pooling that produces the C-dimensional
vector in the kernel-space. In this case, K(x1,x2) is as
follows:

K(x1,x2) = f(x1)
T f(x2)

=
( H∑
i=1

W∑
j=1

z
(1)
ij

)T ( H∑
k=1

W∑
ℓ=1

z
(2)
kℓ

)
=

H∑
i=1

W∑
j=1

H∑
k=1

W∑
ℓ=1

(
z
(1)T

ij z
(2)
kℓ

)
,

(S22)
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where z(1) and z(2) are the volumetric maps of size
C ×H ×W and the indices (i, j) and (k, ℓ) index the spatial
locations over the volumetric maps. The last term in Eq.S22
shows that the total similarity K(x1,x2) is the sum of
the contributions from each pair of positions (i, j) on x1

and (k, ℓ) on x2. To compute the contribution of a specific
location like (i, j) on x1, we sum up the contributions of
(i, j) on x1 and all possible locations {(k, ℓ)}Hk=1

W
ℓ=1 on x2.

The kernel-mappings that we used have a slightly differ-
ent architecture than a volumetric map followed by spatial
average pooling. Our kernel mappings produce a volumet-
ric map of size C × H ×W followed by a spatial average
pooling that produces a C-dimensional vector. Afterwards,
the resulting vector is divided by its ℓ2-norm to produce
a vector of norm 1. Consequently, this vector of norm 1 is
fed to a leaky ReLU layer that produces the final kernel-
space representation f(x). For this architecture the pixel
contributions can be computed according to an equation
similar to Eq.S22 as follows. Our kernel mappings produce
the volumetric map z of size C×H×W followed by a spatial
average pooling that produces the C-dimensional vector a:

a =
H∑
i=1

W∑
j=1

zij . (S23)

Afterwards, the resulting vector is divided by its ℓ2-norm to
produce the vector b of norm 1:

b = [
a1
||a||2

, ... ,
aC
||a||2

]. (S24)

Consequently, this vector of norm 1 is fed to a leaky ReLU
layer that produces the final kernel-space representation
f(x):

f(x) = leakyReLU(b). (S25)

We begin with simplifying Eq.S25. The leaky ReLU activa-
tion function multiplies the input by a constant and this
constant depends on the sign of the input. Therefore, apply-
ing the leaky ReLU activation is equivalent to multiplication
by a diagonal matrix Λ. Therefore,

f(x) = Λb. (S26)

Let x1 and x2 be two images, and z(1) and z(2) be the
corresponding volumetric maps. We have that

a(1) =
H∑
i=1

W∑
j=1

z
(1)
ij ,

a(2) =
H∑

k=1

W∑
ℓ=1

z
(2)
kℓ .

(S27)

And

b(1) = [
a
(1)
1

||a(1)||2
, ... ,

a
(1)
C

||a(1)||2
],

b(2) = [
a
(2)
1

||a(2)||2
, ... ,

a
(2)
C

||a(2)||2
].

(S28)

And

f(x(1)) = Λ(1)b(1),

f(x(2)) = Λ(2)b(2).
(S29)

Now we simplify the similarity K(x1,x2):

K(x1,x2) =
(
Λ(1)b(1)

)T (
Λ(2)b(2)

)
=

(
Λ(1)TΛ(2))(b(1)T b(2))

=

(
Λ(1)TΛ(2))

||a(1)||2 ||a(2)||2
( H∑
i=1

W∑
j=1

z
(1)
ij

)T ( H∑
k=1

W∑
ℓ=1

z
(2)
kℓ

)
=

(
Λ(1)TΛ(2))

||a(1)||2 ||a(2)||2

H∑
i=1

W∑
j=1

H∑
k=1

W∑
ℓ=1

(
z
(1)T

ij z
(2)
kℓ

)
.

(S30)

Indeed, as the used architecture for kernel-mappings is
slightly different than producing a volumetric map followed
by spatial average pooling, instead of Eq.S22, we used
Eq.S30 that we derived above.

S3 EXAMINING FAITHFULNESS OF GPS TO ANNS

In Sec.4.1. of the main article, we examined the faithfulness
of the found GPs to their corresponding ANNs. In this
section we provide more information and insights about the
analogy between the GPs found by our proposed GPEX and
their corresponding ANNs. Figs.S2, S4, and S6 illustrate the
scatter plots of ANN-GP outputs on Cifar10 [15], MNIST
[6], and Kather [12], respectively. These scatter plots are
obtained on the testing set which has been invisible to the
proposed GPEX. Note that in Figs.S2, S4, and S6 each ANN’s
output head and its corresponding GP have a seprate scatter
plot.

In the main article, we discussed that our proposed
GPEX is applicable to any subcomponent of a pipeline. To
verify this, in Sec.4.1. of the main article we applied the
proposed GPEX to attention subcomponents of classifier
pipelines. Here we provide more information about the
faithfulness of the found GPs to the attention subcompo-
nents. Figs.S3, S5, and S7 illustrate the scatter plots for
attention submodules and their corresponding GPs.

For Cifar10 [15] in Fig.S3, each attention mask is 3 x 3
and we have 9 scatter plots. According to Fig.S3, in attention
masks some output heads like head 1, head 2, and head 3
do not turn on for any instnace (the values change around
-2, and sigmoid of -2 is a small number). Therefore, in Fig.3
of the main article we have excluded the attention heads
which are always off. Similarly, for MNIST [6] and Kather
[12] we see some attention heads are always off in Figs.S5
and S7, and we have excluded those heads in Fig.3 of the
main article.

So far we reported corelation coeffients (Fig.3 of the
main article) and scatter plots (Figs.S2, S3, S4, S5, S6, S7)
to examine the faithfulness of GPs to their corresponding
ANNs. To get more insights, we selected mini-batches of
testing instances and fed each mini-batch to both ANN and
corresponding GPs. The output from ANN (and simmilarly
GPs) is a matrix of shape batchsize × Dv , where Dv is the
number of output heads from the ANN. Ideally, we should
get two identical batchsize × Dv matrices for each mini-
batch, because the GPs are supposed to be faithfull to ANNs.
Figs. S59, S60, S61, and S62 illustrate the heatmaps for four
randomly fed mini-batches from Cifar10 [15], MNIST [6],
Kather [12], and DogsWolves [30], respectively. According
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to Figs. S59, S60, S61, and S62 the outputs from GPs almost
match those from their corresponding ANNs. In Figs. S59,
S60, S61, and S62 the red rectangles show the test instances
for which the GP’s decision (i.e. the class with the highest
score) does not match the ANN’s decision. According to
Figs. S59, S60, S61, and S62 the disagreement between GPs
prediction and ANN prediction mostly happens when either
some output activations are very close to one another or
all activations are close to zero. This is consistent with the
scatter plots of Figs. S2, S4, and S6 in which the scatters are
slightly dispersed for intermediate values. Tab. S1 reports
the test accuracy of the ANNs and their corresponding GPs.
We see that GPs’ accuracies are slightly lower than those
of the corresponding ANNs. Figs. S59, S60, S61, and S62
provide insights about how this small disagreement can be
potentially solved in future research by, e.g., preventing the
ANN from having near-zero activations or having output
heads which are very close to one another. We repeated
the experiment with 5 different random splits and reported
the results in Fig. S67. According to Fig. S67 the correlation
coefficients are high for different training/testing splits.

We repeated the experiment of Figs. S59, S60, S61, and
S62 for the attention submodules and corresponding GPs.
Reults are provided in Figs. S63, S64, and S65. According to
Figs. S63, S64, and S65 our proposed GPEX has found GPs
which are faithful to the attention submodules.

S4 EXPLAINING ANNS’ DECISIONS

In Sec.4.2 of the main article we applied our proposed
method (i.e. Alg.S4) to some ANN classifiers. Afterwards,
we explained the decisions made by the ANNs via the GPs
and the kernel-spaces that our proposed GPEX has found.
Here we are going to provide more explanations for ANNs’
decisions on more testing instances.

We explain the decision made for a test instance like xtest

as follows. We consider the GP and the kernel-space that
correspond to the ANN’s head with maximum value (i.e.
the ANN’s head that relates to the predicted label). Con-
sequently, among the instances in the inducing dataset, we
find the 10 closest instances to xtest, like {xi1,xi2, ...,xi10}.
Intuitively the ANN has labeled xtest in that way because it
has found xtest to be similar to {xi1,xi2, ...,xi10}. Besides
finding the nearest neighbours, we provide explanation as
to why xtest and an instance like xij , 1 ≤ j ≤ 10 are
considered similar by the model. The procedure is explained
in Sec.S2.2.

For MNIST digit classification, some test instances and
nearest neighbours in training set are shown in Figs.S8, S9,
S10, and S11. In these figures each row corresponds to a test
instance. The first column depicts the test instance itself and
columns 2 to 11 depict the 10 nearest neighbours. According
to rows 2 and 3 of Fig.S8, the classifier has labeled the two
images as digit 1 because it has found 1 digits with similar
inclinations in the training set. We see the model has also
taken the inclination into account for the test instances of
rows 8 and 9 of Fig.S8 and rows 1, 2, and 3 of Fig.S11. In
Fig.S8, according to rows 4, 5, and 6 the test instances are
classified as digit 2 because 2 digits with similar styles are
found in the training set. We see the model has also taken
the style into account for the test instances of rows 7, 8, 9,

10, 11 of Fig.S8 and rows 1, 2, 3, 4, 5, 6, 7, and 8 of Fig.S9. For
instance, the test instance in row 1 of Fig.S9 is a 4 digit with
a short tail and the two nearest neighbours are alike. Or for
the test instances in rows 5, 6, 7, and 8 of Fig.S10 the test
instances have incomplete circles in the same way as their
nearest neighbours.

Figs.S12, S13, S14, S15, S16, S17, S18, and S19 illustrate
sample explanations for similarities. For instance row 1 of
Fig.S12 illustrates a test instance as well as the 10 nearest
neighbours. The second row of Fig.S12 highlights to what
degree each region of each nearest neighbour contributes
to its similarity to the test instance. The third row of
Fig.S12 illustrates to what degree each region of the test
instance contributes to its similarity to each of the nearest
neighbours. For example, according to rows 1, 2, and 3
of Fig.S17 the cross pattern of the 8 digits have had a
significant contribution to their similarities. For MNIST [6],
more similarity explanations are provided in Figs.S12, S13,
S14, S15, S16, S17, S18, and S19.

Figs.S36, S37, S38, S39, S40, S41, S42, S43, S44, S45, S46,
S47, S48, and S49 illustrate some sample explanations for
Cifar10 [15]. Like before, each row corresponds to a test
instance, the first column depicts the test instance itself and
columns 2 to 11 depict the 10 nearest neighbours. In rows
8, 9, 10, and 11 of Fig.S44 and rows 1 and 2 of Fig.S45, the
test instances are captured from horses’ heads from closeby,
and the nearest neighbours are alike. However, in rows 3,
4, 5, 6, 7, 8, and 9 of Fig.S45 the test images are taken
from faraway and the found similar training images are also
taken from faraway. Intuitively, as the classifier is not aware
of 3D geometry, it finds training images which are captured
from the same distance. We constantly observe this pattern
in more explanations: row 6, 7, 8, 9, 10, and 11 in Fig.S39,
all rows of Fig.S40, rows 1, 2, 6, 7, 8, 9, 10 and 11 of Fig.S41,
rows 1, 7, 8, 9, 10, and 11 of Fig.S42, rows 1, 2, 3, 4, 5, 6, 7,
and 8 of Fig.S43, all rows of Fig.S45 and rows 1-10 of Fig.S46.

Animal faces tend to be recognized by similar faces. We
see this pattern in rows 2, 3, 4, 5 and 6 of Fig.S40, rows 6,
7, 8, and 9 of Fig.S41, rows 7 and 8 of Fig.S43, rows 8, 9,
10, and 11 of Fig.S44 and rows 1, 2, 10, and 11 of Fig.S45.
To classify airplanes, the model has taken into account the
inclination. For instance, in Fig.S36 the model has taken into
account whether the airplane is taking off (rows 1, 8, 9, 10,
and 11 of Fig.S36), flying straight (rows 2 and 4 of Fig.S36)
or is inclined downwards (rows 3, 5, 6 and 7 of Fig.S36).
Furthermore, the bat-like airplanes are recognized by the
model because similar bat-like airplanes are found in the
training set, as we see in rows 1, 2, 3, 4, 5, 6 and 7 of Fig.S37.
Cessnas are often classified by finding cessnas in the training
set, as we see in rows 8, 9 and 10 of Fig.S37 and row 1 of
Fig.S38.

Since the classifier has no knowledge about 3D geometry,
it tends to find training instances which are captured from
the same angle as the test instance, as we see in rows 6, 7,
8, 9, 10 and 11 of Fig.S39, rows 7, 8, 9, 10 and 11 of Fig.S42,
rows 9, 10 and 11 of Fig.S43, rows 1, 2, 3, 4, 5, 6 and 7 of
Fig.S44, row 11 of Fig.S46, all rows of Fig.S47, and rows 1, 2,
3, 4, 5, 6, 7, and 8 of Fig.S48. In rows 3, 4, and 5 of Fig.S41 it
seems the model takes into account the ostrich-like shape of
the animal. In rows 2, 3, 4, and 6 of Fig.S42 the horns seem
to have an effect. In rows 6, 7, 8, and 9 of Fig.S45, we see
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the model have made use of the riders to classify the test
instances as horse. According to rows 1, 2, 3, 4, 5, 6, 7, 8, 9,
and 10 of Fig.S46, the model distinguishes between medium
sized ships and huge cargo ships. To classify firefighter
trucks, model tends to find similar firefighter trucks in the
training set, as we see in rows 10 and 11 of Fig.S47, and
rows 1, 2, 3, and 4 of Fig.S48. For some testing instances, the
model finds training instances which are almost identical to
the test instance, as we see in rows 2 and 5 of Fig.S40, row 7
of Fig.S42, row 8 of Fig.S43, and row 8 of Fig.S48.

In rows 2, 4, 5, 6, 7, 8, 9, 10, and 11 of Fig.S38 it seems the
classifier has taken into account the blue background. We
used the proposed GPEX to explain as to why some testing
instances get missclassified. Rows 9, 10, and 11 of Fig.S48
and all rows of Fig.S49 illustrate some instances which are
misclassified. For instance in row 10 of Fig.S48 the test image
shows an airplane, but the model has classified it as a cat,
because it is similar to the cat faces shown in columns 2 to
11 (can you find the cat face in the airplane image?). In row
11 of Fig.S48, the car is classified as truck partially because
it very similar to the truck at column 2. In row 2 of Fig.S49,
the deer is classified as horse partially because it is very
similar to the training image shown in column 2. In row 3 of
Fig.S49, we hypothesize the dog is classified as cat because
the model has taken into account the cyan and red colors
in the background. In this case, adding dog images with
cyan and red background may make the model classify this
test instance correctly. In rows 5 and 6 of Fig.S49, the model
correctly understands the test images are similar to some
faces from other animals, but it fails to find similar frog faces
in the training set. In this case, adding more images from
frog faces may solve this issue. In row 7 of Fig.S49 the horse
is classified as airplane, because the model thinks the horse
image is similar to some airplane training images which are
taking off. Interestingly, the jumping frog in column 4 has
been considered similar to the horse image. It seems having
inclined edges (due to taking off, jupming) has contributed
to the similarities, and therefore the model has incorrectly
classified the horse as airplane.

For the DogsWolves dataset [30] the explanations are
provided in Figs.S25-S35. According to rows 10, 11, and 12
of Fig.S29, the red ball in the dog’s mouth (as highlighted
in row 12 of Fig.S29) has the most contribution to the
similarities. According to row 2 of Fig.S29, patterns like
human hand in column 4 or woody or pink background in
columns 8, 10, and 11 are highlighted in nearest neighbours
while in the test insntace (row 3 of Fig.S29) the red ball at the
bottom right is highlighted. Our explanations consistently
show that the model detects dogs by any pattern that rarely
appear in a wolf image. For instance in rows 4-6 of Fig.S29,
according to row 4 humans in columns 3, 9, and 11, and
dog collars or costumes in columns 4, 5, 6, and 10, and the
brick wall in the test instance (row 6 of Fig.S29) are used
by the model. According to rows 9, 12, and 15 of Fig.S29,
the flowers, the red ball in the dogs mouth, and the children
are used by the model, respectively. According to rows 3,
6, 9, 12, and 15 of Fig.S30, the red rope, the dog’s color,
red patterns, brown background and brown background
are used by the model, respectively. According to rows 3,
6, 9, 12, and 15 of Fig.S31, brown background, human,
brown background, the red wallet, and the pink ball are

used by the model, respectively. According to rows 3, 6, 9,
12, and 15 of Fig.S32, the child, pink pillow, brown color,
orange background, and red blood are used by the model,
respectively. Note that in Fig.S32 the last two instances
(rows 10-15) are misclassified. In Fig.S33 all test instances
get misclassified. According to rows 3, 6, 9, 12, and 15
of Fig.S33, colorful background, the red object attached to
the wolf, background, white background, and dark-green
background are used by the model, respectively. Figs.S34
and S35 illustrate more explanations. For instance, according
to row 6 of Fig.S34 and row 12 of Fig.S35, the test instances
are misclassified due to their dark background. Moreover,
according to rows 3, 6, and 15 of Fig.S35, the test instances
are misclassified due to their background. All in all, our
explanations reveal that for the DogsWolves dataset [30]
the model makes use of potentially incorrect clues to label
instances. This is not surprising because the dataset has only
2000 images.

For Kather dataset [12], some explanations are shown
in Figs.S20, S21, S22, S23, and S24. Like before, in Figs.S20
and S21 each row corresponds to a test instance, the first
column depicts the test instance itself and columns 2 to 11
depict the 10 nearest neighbours. In row 1 of Fig.S20, the test
image is classified as fat tissue. According to rows 1, 2, and
3 of Fig.S22, the similarity is due to the wire mesh formed
by cellular membranes described by our expert pathologist.
Row 13 of Fig.S22 shows cancer-associated stroma which
is classified correctly. All 10 nearest neighbours are also
cancer-associated stroma. Distinguishing between cancer-
associated stroma and normal smooth muscle is a chal-
lenging task even for expert pathologists, and they often
look similar. According to rows 13, 14, and 15 of Fig.S22,
the model cares about both the stroma and nuclei. In row
7 of Fig.S22, the test image is correctly classified as lym-
phocytes. For a pathologist they represent scattered well
defined round structures. According to rows 7, 8, and 9 of
Fig.S22, the model considers all regions which matches the
way pathologists recognize lymphocytes. In rows 1, 2 and 3
of Fig.S23 and rows 1, 2, and 3 of Fig.S24, for the two test
instances the model takes into account nuclei which is not
the same way that a pathologists would classify the images.
We hypothesize that for the model it is easier to extract fea-
tures from nuclei than to consider the context information.
Because even small changes in nuclei is easily measurable
by the model while it is not easily noticeable by human
eyes. The test image in row 7 of Fig.S24 gets missclassified.
According to rows 7, 8, and 9 of Fig.S24 the artificial white
holes are considered as glandular lumens by the model and
that explains why the test instance gets misclassified. The
test image in row 10 of Fig.S23 gets misclassified. According
to rows 10, 11, and 12 of Fig.S23, the test image is smooth
muscle. But it contains artifactual white spaces (retractions)
like the found similar training instances. This make the
model think the test image is similar to debris images that
contain artifactual white spaces. For Kather dataset [12],
more sample explanations are provide in Figs.S22, S23, and
S24.
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S5 PRACTICAL DETAILS AND PARAMETER SET-
TINGS

In this section we discuss some practical details which
we have not yet discussed in this paper. Moreover, we
provide the exact parameter settings that we used through-
out our experiments. As explained in Sec.3 of the main
article, there are L kernel mappings that we denoted by
[f1(.), f2(.), ..., fL(.)]. One can implement this kernel map-
pings by, e.g., considering L independent CNNs. However,
doing so dramatically increases the computation cost. There-
fore, we modeled the L mappings by a common ResNet-
50 [9] backbone. After the common backbone, we placed
L branches. Each branch has two convolutional layers fol-
lowed by global spatial average pooling that produce a
vector. Each branch ends with an L2 normalizer layer (that
sets the L2-norm of the vector to 1) followed by a leaky-
ReLU layer. During our experiments, we noticed that the
L2-normalization layer and the final leaky-ReLU layer are
essential. Without the L2 normalization layer, the vectors in
the kernel-space can have arbitrarily-small or arbitrarily-big
elements, and this makes the training unstable. We included
the last leaky-ReLU layer, because according to GP posterior
mean formula, vectors in the kernel-space go through a
linear transformation. Therefore, without the last leaky-
ReLU layer, the pipeline would have two consequtive linear
layers. Throughout our experiments, we set the output of
each branch (i.e. vectors in the kernel-space of each GP) to
be 20-dimensional.

As illustrated by Fig.S66 (to be discussed in Sec.S7),
we need to make the inducing dataset as large as pos-
sible. Therefore, throughout our experiments we selected
the whole training dataset as the inducing dataset. Unlike
training instances, we didn’t apply data-augmentation on
inducing instances. By doing so, the training dataset and
the inducing dataset will have very similar instances. This
causes a difficulty that we are going to discuss in this part.
The kernel-mappings [f1(.), ..., fL(.)] are trained according
to Alg.S4. After selecting an instance like x from the training
dataset, x is actually the augmented version of an inducing
instance like x̃m. Indeed, we have that x = DataAug(x̃m).
Because x and x̃m are very similar, they will be very close
to one another in the kernel-spaces regardless of what pa-
rameters [f1(.), ..., fL(.)] have. Therefore, regardless of the
kernel-mappings, the GP-mean will match the ANN value
at x, and there will be no training signal for the kernel-
mappings [f1(.), ..., fL(.)]. Note that in this case the GPs
match the ANNs only on training instances, and the analogy
does not generalize to testing instances. To avoid this issue,
we optimized the GP-ANN analogy (i.e. the objective in Eq.5
of the main article) on instances like λxi +(1−λ)xj , where
xi and xj are two instances randomly selected from the
training set and λ is a scalar uniformly selected from [−1, 2].

When applying our proposed GPEX we used Adam opti-
mizer [14]. Although the AMSGrad version of this optimizer
is often recommended, for our proposed GPEX we noticed
the Adam optimizer [14] without AMSGrad works the best.
For explaining classifier ANNs, we used a learning-rate of
0.0001 while for explaining the attention submodules we
used a learning rate of 0.00001. On a RTX3090 GPU, the
experiments took around 3 days for the 4 image datasets

and around 2 hours for the biological dataset. We ran Alg.
S4 for 200 epochs. Afterwards, we ran line 8 of Alg. S4 for
the inducing dataset. Afterwards, we continued Alg.S4 for
200 more epochs and repeating line 8 of Alg.S4 10 times
instead of once.

S6 QUALITATIVE COMPARISION OF GPEX AND
REPRESENTER POINT SELECTION

We qualitatively compared the explanations of our proposed
GPEX to those of representer point selection [33]. The results
are provided in Figs.S50, S51, S52, S53, S54, S55, S56, and
S57. In each triple, the first row shows the test instance and
the 10 nearest neighbours found by our proposed GPEX.
The second row shows the 10 nearest neighbours selected
by representer point selection [33]. The third row shows
the 10 nearest neighbours according to the kernel-space of
representer point selection [33]. Representer point selection
[33] assigns an importance weight to each training instance.
Therefore, some training instances tend to appear as nearest
neighbours regardless of what the testing instance is. We
see this behaviour in rows 2, 5, 8, 11, and 14 of Figs.S50-S57.
However, for our proposed GPEX the nearest neighbours
can freely change for different test instances. We see this
behaviour in rows 1, 4, 7, 10, and 13 of Figs.S50-S57. If we
ignore the importance weights in representer point selection
[33], the aforementioned issue in that method happens less
frequently, as we see in rows 3, 6, 9, 12, and 15 of Figs.S50-
S57. However, the issue is that without the importance
weights, the explainer model in representer point selection
[33] will not be faithful to the ANN itself.

S7 PARAMETER ANALYSIS

To analyze the effect of the number of inducing points (i.e.
the variable M in Sec. S2) we applied the proposed GPEX
to the classifier CNN that we trained on Cifar10 dataset [15]
in Sec. 4.1 of the main manuscript. This time, instead of
considering all training instances as the inducing dataset,
we randomly selected some training instances. In Fig. S66,
the horizontal axis shows the size of the inducing dataset.
For each size, we repeated the experiment 5 times (i.e. split
1-5 in Fig. S66). According to Fig. S66, to obtain GPs which
are faithful to ANNs one needs to have a lot of inducing
points. This highlights the importance of the scalability
techniques that we used (the computational techniques are
elaborated upon in Sec. S2.1 of supplementary material).
Another intriguing point in Fig. S66 is that if we are to select
a few training images as inducing points, the correlation
coefficients highly depend on which instances are selected.
More precisely, Fig. S66 suggests that one may be able
to reach high correlation coefficients by selecting a few
inducing points from the training set in a subtle way.

So far we analyzed the effect of the size of inducing
dataset. Here we analyze two other important factors: the
width of the second last layer and number of epochs for
which the ANN has been trained. On Cifar10 [15] we trained
ANNs with different number of neurons in the second last
layer and we analyzed the ANN at different checkpoints
during training (10, 50, 100, 150, and 200 epochs). The result
is shown in Fig.S58. According to Fig.S58, increasing the
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width of the second last layer increases the correlation co-
efficients. However, as illustrated by Fig.S58, the proposed
GPEX can achieve almost perfect match even when the sec-
ond last layer of the ANN is not wide. Moreover, according
to Fig.S58, our proposed GPEX can reach high correlation
coefficients even when the ANN’s parameters are not a local
minimum of the classification loss. This empirical results
show that most theoretical results like requiring all layers
of the ANN to be wide [5], or requiring the ANN to be
optimized on a loss [20] may not be necessary.
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Fig. S2: Scatters for Cifar10 (classifier).

Fig. S3: Scatters for Cifar10 (attention).
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Fig. S4: Scatters for MNIST (classifier).
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Fig. S5: Scatters for MNIST (attention).
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Fig. S6: Scatters for Kather dataset (classifier).
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Fig. S7: Scatters for Kather dataset (attention).
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Fig. S8: Explanations for MNIST (set 1).
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Fig. S9: Explanations for MNIST (set 2).
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Fig. S10: Explanations for MNIST (set 3).
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Fig. S11: Explanations for MNIST (set 4).
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Fig. S12: Explanations for MNIST (set 5).
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Fig. S13: Explanations for MNIST (set 6).
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Fig. S14: Explanations for MNIST (set 7).
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Fig. S15: Explanations for MNIST (set 8).
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Fig. S16: Explanations for MNIST (set 9).
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Fig. S17: Explanations for MNIST (set 10).
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Fig. S18: Explanations for MNIST (set 11).
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Fig. S19: Explanations for MNIST (set 12).
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Fig. S20: Explanations for Kather dataset (set 1).
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Fig. S21: Explanations for Kather dataset (set 2).
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Fig. S22: Explanations for Kather dataset (set 3).
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Fig. S23: Explanations for Kather dataset (set 4).
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Fig. S24: Explanations for Kather dataset (set 5).
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Fig. S25: Explanations for DogsWolves (set 1).
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Fig. S26: Explanations for DogsWolves (set 2).
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Fig. S27: Explanations for DogsWolves (set 3).
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Fig. S28: Explanations for DogsWolves (set 4).
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Fig. S29: Explanations for DogsWolves (set 5).
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Fig. S30: Explanations for DogsWolves (set 6).
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Fig. S31: Explanations for DogsWolves (set 7).
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Fig. S32: Explanations for DogsWolves (set 8).
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Fig. S33: Explanations for DogsWolves (set 9).
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Fig. S34: Explanations for DogsWolves (set 10).
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Fig. S35: Explanations for DogsWolves (set 11).
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Fig. S36: Explanations for Cifar10 (set 1).
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Fig. S37: Explanations for Cifar10 (set 2).
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Fig. S38: Explanations for Cifar10 (set 3).
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Fig. S39: Explanations for Cifar10 (set 4).
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Fig. S40: Explanations for Cifar10 (set 5).
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Fig. S41: Explanations for Cifar10 (set 6).
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Fig. S42: Explanations for Cifar10 (set 7).
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Fig. S43: Explanations for Cifar10 (set 8).
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Fig. S44: Explanations for Cifar10 (set 9).
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Fig. S45: Explanations for Cifar10 (set 10).
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Fig. S46: Explanations for Cifar10 (set 11).
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Fig. S47: Explanations for Cifar10 (set 12).
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Fig. S48: Explanations for Cifar10 (set 13).
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Fig. S49: Explanations for Cifar10 (set 14).
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Fig. S50: Comparing the proposed GPEX with representer point selection [33] (set 1).
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Fig. S51: Comparing the proposed GPEX with representer point selection [33] (set 2).
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Fig. S52: Comparing the proposed GPEX with representer point selection [33] (set 3).
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Fig. S53: Comparing the proposed GPEX with representer point selection [33] (set 4).
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Fig. S54: Comparing the proposed GPEX with representer point selection [33] (set 5).
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Fig. S55: Comparing the proposed GPEX with representer point selection [33] (set 6).
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Fig. S56: Comparing the proposed GPEX with representer point selection [33] (set 7).
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Fig. S57: Comparing the proposed GPEX with representer point selection [33] (set 8).
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Fig. S58: Parameter analysis of Sec.S7.
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Cifar10 [15] MNIST [6] Kather [12] DogsWolves [30]
ANN accuracy 95.43 99.56 96.80 80.50
GPs accuracy 92.26 99.41 93.60 78.75

TABLE S1: Accuracies of ANN classifiers versus the accuracies of the explainer GPs on four datasets.

batch 1 batch 2 batch 3 batch 4

Fig. S59: Comparing GP and ANN outputs for four batches of Cifar10 dataset [33]. The red rectangles highlight the instnaces
for which the predictions of GP and ANN (i.e. the class with maximum score) are different.

batch 1 batch 2 batch 3 batch 4

Fig. S60: Comparing GP and ANN outputs for four batches of MNIST dataset [32]. The red rectangles highlight the instnaces
for which the predictions of GP and ANN (i.e. the class with maximum score) are different.

batch 1 batch 2 batch 3 batch 4

Fig. S61: Comparing GP and ANN outputs for four batches of Kather dataset [34]. The red rectangles highlight the instnaces
for which the predictions of GP and ANN (i.e. the class with maximum score) are different.
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batch 1 batch 2 batch 3 batch 4

Fig. S62: Comparing GP and ANN outputs for four batches of DogsWolves dataset [35]. The red rectangles highlight the
instnaces for which the predictions of GP and ANN (i.e. the class with maximum score) are different.

batch 1 batch 2 batch 3

Fig. S63: Comparing GP and ANN (attention submodule) outputs for 3 batches of Cifar10 dataset [15].

batch 1 batch 2 batch 3

Fig. S64: Comparing GP and ANN (attention submodule) outputs for 3 batches of MNIST dataset [6].

batch 1 batch 2 batch 3

Fig. S65: Comparing GP and ANN (attention submodule) outputs for 3 batches of Kather dataset [12].
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Fig. S66: Analyzing the effect of the size of inducing dataset.
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MNIST

Kather

Cifar10

Fig. S67: Correlation coefficients for 5 splits.


