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ABSTRACT

Spatio-temporal modeling of real-world data is a challenging problem as a re-
sult of inherent high-dimensionality, measurement noise, and expensive data col-
lection procedures. In this paper, we present Sparse Identification of Nonlinear
Dynamics with SHallow Recurrent Decoder networks (SINDy-SHRED) to jointly
solve the sensing and model identification problems with simple implementation,
efficient computation, and robust performance. SINDy-SHRED utilizes Gated
Recurrent Units (GRUs) to model the temporal sequence of sensor measurements
along with a shallow decoder network to reconstruct the full spatio-temporal field
from the latent state space using only a few available sensors. Our proposed al-
gorithm introduces a SINDy-based regularization. Beginning with an arbitrary
latent state space, the dynamics of the latent space progressively converges to a
SINDy-class functional, provided the projection remains within the set. We con-
duct a systematic experimental study including synthetic PDE data, real-world
sensor measurements for sea surface temperature, and direct video data. With no
explicit encoder, SINDy-SHRED allows for efficient training with minimal hy-
perparameter tuning and laptop-level computing. SINDy-SHRED demonstrates
robust generalization in a variety of applications with minimal to no hyperpa-
rameter adjustments. Additionally, the interpretable SINDy model of latent state
dynamics enables accurate long-term video predictions, achieving state-of-the-art
performance and outperforming all baseline methods considered, including Con-
volutional LSTM, PredRNN, ResNet, and SimVP.

1 INTRODUCTION

Modeling unknown physics is an exceptionally challenging task that is complicated further by the
computational burden of high-dimensional state spaces and expensive data collection. Partial dif-
ferential equations (PDEs) derived from first principles remain the most ubiquitous class of models
to describe physical phenomena. However, we frequently find that the simplifying assumptions
necessary to construct a PDE model can render it ineffectual for real data where the physics is
multi-scale in nature, only partially known, or where first principles models currently do not exist.
In such cases, machine learning (ML) method offers an attractive alternative for learning both the
physics and coordinates necessary for quantifying observed spatio-temporal phenomenon. Many
recent efforts utilizing ML techniques seek to relax the computational burden for PDE simulation
by learning surrogate models to forward-simulate or predict spatiotemporal systems. However, this
new machine learning paradigm frequently exhibits instabilities during the training process, unstable
roll outs when modeling future state predictions, and often yields minimal computational speedups.

Shallow Recurrent Decoder networks (SHRED) (Williams et al., 2024) are a recently introduced
architecture that utilize data from sparse sensors to reconstruct and predict the entire spatiotem-
poral domain. Similar to Takens’ embedding theorem, SHRED models trade spatial information
at a single time point for a trajectory of sensor measurements across time. Previous work has
shown SHRED can achieve excellent performance in examples ranging from weather forecast-
ing, atmospheric ozone concentration modeling, and turbulent flow reconstructions. In this paper,
we introduce Sparse Identification of Nonlinear Dynamics with SHallow Recurrent Decoder net-
works (SINDy-SHRED). SINDy-SHRED exploits the latent space of recurrent neural networks for
sparse sensor modeling, and enforces interprebility via a SINDy-based functional class. In this way,
SINDy-SHRED enables a robust and sample-efficient joint discovery of the governing equation and
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Figure 1: Illustration of the SINDy-SHRED architecture. SINDy-SHRED transfers the original
sparse sensor signal (red) to an interpretable latent representation (purple) that falls into the SINDy-
class functional. The shallow decoder performs a reconstruction in the pixel space.

coordinate system. With the correct governing equation, SINDy-SHRED can perform an accurate
long-term prediction in a learned latent space, and in turn allow for long-term forecasting in the
pixel space. For practical applications, SINDy-SHRED is a lightweight model which can perform
low-rank recovery with only a few (e.g. three) active sensors, which is critical for large-scale scien-
tific data modeling and real-time control. It does not require large amounts of data during training,
thereby avoiding a common pitfall in existing ML techniques for accelerating physics simulations.
SINDy-SHRED also exhibits remarkable training speed, even when executed on a single laptop.
Furthermore, SINDy-SHRED is highly reproducible with minimal effort in hyperparameter tuning.
The recommended network structure, hyperparameter, and training setting can generalize to many
different datasets. In short, we demonstrate SINDy-SHRED to be very robust and highly applicable
in many modern scientific modeling problems.

Existing work seeking to perform data-driven, long-term forecasts of spatio-temporal phenomena
typically suffers from (i) instabilities and (ii) massive computational requirements. We find that
SINDy-SHRED ameliorates many of these issues because (i) it is based on a stable equation dis-
covery and (ii) the learned model is an ODE in a learned latent space, rendering simulation more
computationally efficient. We further conjecture that the fact SINDy-SHRED does not include a
spatial encoder contributes to the architecture’s robustness, rendering it more difficult for the model
to overfit during training.

We perform a wide range of studies to demonstrate the effectiveness of SINDy-SHRED. We first
apply the model on the sea surface temperature data, which is a complex real-world problem. We
also consider data from a complex simulation of atmospheric chemistry, video data of flow over a
cylinder, and video data of a pendulum. The ability of SINDy-SHRED to perform well on video
data is an important result for so-called “GoPro physics.” With extremely small sample size and
noisy environments, SINDy-SHRED achieves governing equation identification with stable long-
term predictions. Finally, we demonstrate the performance of SINDy-SHRED on a chaotic 2D
Kolmogorov flow (in Appendix D), finding a reasonable model even in the presenece of chaos. The
contribution of our paper is three-fold.
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• We propose SINDy-SHRED to incorporate symbolic understanding of the latent space of
recurrent models of spatio-temporal dynamics.

• We further analyze the latent space of case studies and propose scientific models for these
systems.

• We systematically study SINDy-SHRED and compare to popular deep learning algorithms
in spatio-temporal prediction.

2 RELATED WORKS

Traditionally, spatio-temporal physical phenomena are modeled by Partial Differential Equations
(PDEs). To accelerate PDE simulations, recent efforts have leveraged neural networks to model
physics. By explicitly assuming the underlying PDE, physics-informed neural networks (Raissi
et al., 2019) utilize the PDE structure as a constraint for small sample learning. However, assuming
the exact form of governing PDE for real data can be a strong limitation. There have been many
recent works on learning and predicting PDEs directly using neural networks (Khoo et al., 2021; Li
et al., 2020b; Holl et al., 2020; Lu et al., 2021; Lin et al., 2021). Meanwhile, PDE-find (Rudy et al.,
2017; Messenger & Bortz, 2021; Fasel et al., 2022) offers a data-driven approach to identify PDEs
from the spatial-temporal domain. Still, the high-dimensionality and required high data quality can
be prohibitive for practical applications.

In parallel, previous efforts in the discovery of physical law through dimensionality reduction tech-
niques (Champion et al., 2019; Lusch et al., 2018; Mars Gao & Nathan Kutz, 2024) provide yet
another perspective on the modeling of scientific data. The discovery of physics from a learned
latent space has previously been explored by (Fukami et al., 2021; Cheng et al., 2024; Farenga et al.,
2024; Conti et al., 2023; Wu et al., 2022; Li et al., 2020a), yet none of these methods consider a
regularization on the latent space with no explicit encoder. Yu et al. proposed the idea of physics-
guided learning (Yu & Wang, 2024) which combines physics simulations and neural network ap-
proximations. Directly modeling physics from video is also the subject of much research in the
field of robotics (Finn et al., 2016; Todorov et al., 2012; Sanchez-Gonzalez et al., 2018), computer
vision (Xie et al., 2024; Wu et al., 2017) and computer graphics (Kandukuri et al., 2020; Liu et al.;
Wu et al., 2015; Mrowca et al., 2018), since many fields of research require better physics mod-
els for simulation and control. From the deep learning side, combining the structure of differential
equations into neural networks (He et al., 2016; Chen et al., 2018) has been remarkably successful
in a wide range of tasks. When spatial-temporal modeling is framed as a video prediction problem,
He et al. found (He et al., 2022) that random masking can be an efficient spatio-temporal learner,
and deep neural networks can provide very good predictions for the next 10 to 20 frames (Shi et al.,
2015; Wang et al., 2017; Gao et al., 2022; Guen & Thome, 2020). Generative models have also been
found to be useful for scientific data modeling (Mirza, 2014; Song et al., 2021; Cachay et al., 2024).

3 METHODS

The shallow recurrent decoder network (SHRED) is a computational technique that utilizes recur-
rent neural networks to predict the spatial domain. (Williams et al., 2024). The method functions
by trading high-fidelity spatial information for trajectories of sparse sensor measurements at given
spatial locations. Mathematically, consider a high-dimensional data series {Xi}Ti=1 ∈ R(W×H)⊗T

that represents the evolution of a spatio-temporal dynamical system, W , H , and T denote the width,
height, and total time steps of the system, respectively. In SHRED, each sensor collects data from a
fixed spatial position in a discretized time domain. Denote the subset of sensors as S , the input data
of SHRED is {XS}Ti=1 ∈ Rcard(S)⊗T . Provided the underlying PDE allows spatial information to
propagate, these spatial effects will appear in the time history of the sensor measurements, enabling
the sensing of the entire field using only a few sensors. In vanilla SHRED, a Long Short-Term Mem-
ory (LSTM) module is used to map the sparse sensor trajectory data into a latent space, followed by
a shallow decoder to reconstruct the entire spatio-temporal domain at the current time step.

SHRED enables efficient sparse sensing that is widely applicable to many scientific problems (Ebers
et al., 2024; Kutz et al., 2024; Riva et al., 2024). The advantage of SHRED comes from three
aspects. First, SHRED only requires minimal sensor measurements. Under practical constraints,
collecting full-state measurements for data prediction and control can be prohibitively expensive.
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Second, SHRED does not require grid-like data collection, which allows for generalization to more
complex data structures. For example, it is easy to apply SHRED to graph data with an unknown
underlying structure, such as human motion data on joints, robotic sensor data, and financial market
data. Moreover, SHRED is theoretically rooted in PDE modeling methods from the perspective
of separation of variables, which has the potential to offer strong theoretical guarantees such as
convergence and stability.

3.1 EMPOWERING SHRED WITH REPRESENTATION LEARNING AND PHYSICS DISCOVERY

To achieve a parsimonious representation of physics, it is important to find a representation that
effectively captures the underlying dynamics and structure of the system. In SINDy-SHRED (shown
in Fig. 1), we extend the advantages of SHRED, and perform a joint discovery of coordinate systems
and governing equations. This is accomplished by enforcing that the latent state of the recurrent
network follows an ODE in the SINDy class of functions.

Finding better representations SHRED has a natural advantage in modeling the latent govern-
ing physics due to its small model size. SHRED is based on a shallow decoder with a relatively
small recurrent network structure. The relative simplicity of the model allows the latent represen-
tation to maintain many advantageous properties such as smoothness and Lipschitzness. Exper-
imentally, we observe that the hidden state space of a SHRED model is generally very smooth.
Second, SHRED does not have an explicit encoder, which avoids the potential problem of spec-
tral bias (Rahaman et al., 2019). Many reduced-order modeling methods that rely on an encoder
architecture struggle to learn physics and instead focus only on modeling the low-frequency infor-
mation (background) (Refinetti & Goldt, 2022; Champion et al., 2019; Mars Gao & Nathan Kutz,
2024). Building upon SHRED, we further incorporate SINDy to regularize the learned recurrence
with a well-characterized and simple form of governing equation. In other words, we perform a
joint discovery of a coordinate system (which transfers the high-dimensional observation into a low-
dimensional representation) and the governing law (which describes how the summarized latent
representation progresses forward with respect to time) of the latent space of a SHRED model. This
approach is inspired by the principle in physics that, under an ideal coordinate system, physical phe-
nomena can be described by a parsimonious dynamical model (Champion et al., 2019; Mars Gao
& Nathan Kutz, 2024). When the latent representation and the governing law are well-aligned, this
configuration is likely to capture the true underlying physics. This joint discovery results in a la-
tent space that is both interpretable and physically meaningful, enabling robust and stable future
prediction based on the learned dynamics.

3.2 SINDY-SHRED: LATENT SPACE REGULARIZATION VIA SINDY

As a compressive sensing procedure, there exist infinitely many equally valid solutions for the latent
representation. Therefore, it is not necessary for the latent representation induced by SHRED to
follow a well-structured differential equation. For instance, even if the exhibited dynamics are fun-
damentally linear, the latent representation may exhibit completely unexplainable dynamics, making
the model challenging to interpret and extrapolate. Therefore, in SINDy-SHRED, our goal is to fur-
ther constrain the latent representations to lie within the SINDy-class functional. This regularization
promotes models that are fundamentally explainable by a SINDy-based ODE, allowing us to iden-
tify a parsimonious governing equation. The SINDy class of functions typically consists of a library
of commonly used functions, which includes polynomials, and Fourier series. Although they may
seem simple, these functions possess surprisingly strong expressive power, enabling the model to
capture very complex dynamical systems.

SINDy as a Recurrent Neural network We first reformulate SINDy using a neural network form,
simplifying its incorporation into a SHRED model. ResNet (He et al., 2016) and Neural ODE (Chen
et al., 2018) utilize skip connections to model residual and temporal derivatives. Similarly, this could
also be done via a Recurrent Neural Network (RNN) which has a general form of

zt+1 = zt + f(xt), (1)
where f(·) is some function of the input. From the Euler method, the ODE forward simulation via
SINDy effectively falls into the category of Recurrent Neural Networks (RNNs) which has the form

zt+1 = zt + fΘ(xt,Ξ,∆t), (2)
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xt

+

identity·x = Θ(x)

xt+1

Δt

Figure 2: Diagram of the RNN form of
SINDy.

where fΘ(xt,Ξ,∆t) = Θ(xt)Ξ∆t is a nonlinear func-
tion. Notice that this fΘ(·) has exactly the same formula-
tion as in SINDy (Brunton et al., 2016). The application
of function libraries with sparsity constraints is a manner
of automatic neural architecture search (NAS) (Zoph &
Le, 2016). Compared to all prior works (Champion et al.,
2019; Fukami et al., 2021; Conti et al., 2023), this imple-
mentation of the SINDy unit fits better in the framework of
neural network training and gradient descent. We utilize
trajectory data {zi}Ti=1 and forward simulate the SINDy-
based ODE using a trainable parameter Ξ. To achieve bet-
ter stability and accuracy for forward integration, we use
Euler integration with k mini-steps (with time step ∆t

k ) to
obtain zt+1. In summary, defining h = ∆t

k , we optimize
Ξ with the following:

Ξ = argmin

∥∥∥∥∥zt+1 −

(
zt +

k−1∑
i=0

Θ(zt+ih)Ξh

)∥∥∥∥∥
2

2

, zt+ih = zt +Θ(zt+(i−1)h)Ξh, min ∥Ξ∥0 .

(3)

To achieve ℓ0 optimization, we perform pruning with ℓ2 which approximates ℓ0 regularization under
regularity conditions (Zheng et al., 2014; Gao et al., 2023; Blalock et al., 2020). Applying SINDy
unit has the following benefits: (a) The SINDy-function library contains frequently used functions
in physics modeling (e.g. polynomials and Fourier series). (b) With sparse system identification, the
neural network is more likely to identify governing physics, which is fundamentally important for
extrapolation and long-term stability.

Latent space regularization via ensemble SINDy We first note that we deviate from the original
SHRED architecture by using a GRU as opposed to an LSTM. This choice was made because we
generally found that GRU provides a smoother latent space. Now, recall that our goal is to find a
SHRED model with a latent state that is within the SINDy-class functional. However, the initial
latent representation from SHRED does not follow the SINDy-based ODE structure at all. On the
one hand, if we naively apply SINDy to the initial latent representation, the discovery is unlikely
to fit the latent representation trajectory. On the other hand, if we directly replace the GRU unit to
SINDy and force the latent space to follow the discovered SINDy model, it might lose information
that is important to reconstruction the entire spatial domain. Therefore, it is important to let the two
latent spaces align progressively.

In Algorithm 1, we describe our training procedure that allows the two trajectories to progressively
align with each other. To further ensure a gradual adaptation and avoid over-regularization, we intro-
duce ensemble SINDy units with varying levels of sparsity constraints, which ranges the effect from
promoting a full model (all terms in the library are active) to a null model (where no dynamics are
represented). From the initial latent representation ziter 0

1:t from SHRED, the SINDy model first pro-
vides an initial estimate of ensemble SINDy coefficients {Ξ̂i

0}Bi=b. Then, the parameters of SHRED
will be updated towards the dynamics simulated by {Ξ̂0}Bi=b, which generates a new latent repre-
sentation trajectory ziter 1

1:t . We iterate this procedure and jointly optimize the following loss function
to let the SHRED latent representation trajectory approximate the SINDy generated trajectory:

L =
∥∥Xt − fθD (fθGRU(X

S
t−L:t))

∥∥2
2
+

B∑
i=1

∥∥∥∥∥∥ZGRU
t −

ZGRU
t−1 +

k−1∑
j=0

Θ(Zt−1+jh)Ξ
(i)h

∥∥∥∥∥∥
2

2

+ λ ∥Ξ∥0 ,

(4)

where Zt−1+ih = Zt +Θ(Zt−1+(i−1)h)Ξh, Zt−1 = ZGRU
t−1 , and h = ∆t

k .

4 EXPERIMENT

In the following, we perform case studies across a range of scientific and engineering problems.
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Algorithm 1 Latent state space regularization via SINDy

Input: input XS
t−L:t+1, Xt, SINDy library Θ(·), timestep ∆t.

1: function LATENTSPACESINDY(XS
t−L:t+1,Xt+1,∆t)

2: for i in 0, 1, · · · , n− 1: do
3: Zt, Zt+1 = fθGRU(X

S
t−L:t), fθGRU(X

S
t−L+1:t+1);

4: for j in (0, 1, ∆t
k ): do ▷ SINDy forward simulation

5: ZSINDy
t+ j+1

k ∆t
= ZSINDy

t+ j
k∆t

+Θ(ZSINDy
t+ j

k∆t
)Ξ∆t

6: end for
7: X̂t+1 = fθD (Zt+1) ▷ SHRED reconstruction

8: θGRU,Ξ, θD = argminθGRU,Ξ,θD

∥∥∥Xt+1 − X̂t+1

∥∥∥2
2
+
∥∥∥ZGRU

t+1 −ZSINDy
t+1

∥∥∥2
2
+ λ ∥Ξ∥0

9: if i mod 100 = 0 then
10: Ξ[|Ξ| < threshold] = 0
11: end if
12: end for ▷ Train until converges
13: end function

Sea-surface temperature The first example we consider is that of global sea-surface temperature.
The SST data contains 1,400 weekly snapshots of the weekly mean sea surface temperature from
1992 to 2019 reported by NOAA (Reynolds et al., 2002). The data is represented by a 180 × 360
grid, of which 44,219 grid points correspond to sea-surface locations. We standardize the data with
its own min and max, which transforms the sensor measurements to within the numerical range of
(0, 1). We randomly select 250 sensors from the possible 44,219 locations and set the lag parameter
to 52 weeks. The inclusion of 250 sensors is a substantial deviation from previous work with SHRED
in which far fewer sensors were used Williams et al. (2024). However, we found greater robustness
in the application of E-SINDy to the learned latent state when more sensors were utilized. Thus,
for each input-output pair, the input consists of the 52-week trajectories of the selected sensors,
while the output is a single temperature field across all 44,219 spatial locations. SINDy-SHRED
aims to reconstruct the entire sea surface temperature locations from these randomly selected sparse
sensor trajectories. We include the details of the experimental settings of SINDy-SHRED in the
Appendix C.1. From the discovered coordinate system, we define the representation of physics - the
latent hidden state space - to be (z1, z2, z3). The dynamics progresses forward via the following set
of equations: 

ż1 = 4.68z2 − 2.37z3,

ż2 = −3.10z1 + 3.25z3,

ż3 = 2.72z1 − 5.55z2.

(5)

1 2 3 4 5 6 7
1
0
1

z1

1 2 3 4 5 6 7
Years

z2

1 2 3 4 5 6 7

z3

Figure 3: Extrapolation of latent representation in SINDy-SHRED from the discovered dynamical
system for SST. Colored: true latent representation. Grey: SINDy extrapolation.

The discovery of a linear system describing the evolution of the latent state is in line with prior
work on SST data De Bézenac et al. (2019) in which it as assumed that the underlying physics is an
advection-diffusion PDE. In Fig. 3 (a) we further present the accuracy of this discovered system by
forward simulating the system from an initial condition for a total of 27 years (c.f. Fig. 15). It is
observable how the discovered law is close to the true evolution of latent hidden states and, critically,
there appears to be minimal phase slipping. Extrapolating the latent state space via forward inte-
gration, we can apply the shallow decoder to return forecasts of the high-dimensional data. Doing
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Real Data

0 weeks 25 weeks 50 weeks

SINDy-SHRED Prediction

75 weeks 100 weeks

Figure 4: Long-term global sea-surface temperature prediction via SINDy-SHRED from week 0 to
week 100. We crop the global temperature map for better visualization.

so, we find an averaged MSE error of 0.57 ± 0.10◦C for all prediction lengths in the test dataset.
In Fig. 4, we show SINDy-SHRED produces stable long-term predictions for SST data. We further
include Fig. 16 to demonstrate the extrapolation of each sensor. The sensor level prediction is based
on the global prediction of the future frame, and we visualize the signal trajectory of specific sensor
locations. We find SINDy-SHRED is robust for out-of-distribution sensors, though its extrapolation
may not accurately capture anomalous events.

3D Atmospheric ozone concentration The atmospheric ozone concentration dataset (Bey et al.,
2001) contains a one-year simulation of the evolution of an ensemble of interacting chemical species
through a transport operator using GEOS-Chem. The simulation contains 1,456 temporal samples
with a timestep of 6 hours over one year for 99,360 (46 by 72 by 30) spatial locations (latitude,
longitude, elevation). The data presented in this work has compressed by performing an SVD and
retaining only the first 50 POD modes. As with the SST data, we standardize the data within the
range of (0, 1) and randomly select and fix 3 sensors out of 99,360 spatial locations (0.5%). We in-
clude the details of the experimental settings of SINDy-SHRED in the Appendix C.2. The converged
latent representation presents the following SINDy model:

ż1 = −0.002− 0.013z2 + 0.007z3,

ż2 = −0.001z1 + 0.004z2 − 0.008z3,

ż3 = 0.002 + 0.012z2 − 0.005z3.

(6)

The identified governing physics is close to a linear system with constant terms for damping. Unlike
traditional architectures for similar problems, which may include expensive 3D convolution, SINDy-
SHRED provides an efficient way of training, taking about half an hour. Although the quantity
of data is insufficient to perform long term-predictions, SINDy-SHRED still exhibits interesting
behavior for a longer-term extrapolation which converges to the fixed point at 0 (as shown in Fig. 17).
From the extrapolation of the latent state space, the shallow decoder prediction has an averaged MSE
error of 1.5e−2. In Fig. 6, we visualize the shallow decoder prediction up to 14 weeks. In Fig. 18,
we reconstruct the sensor-level predictions which demonstrate the details of the signal prediction.
The observations are much noiser than the SST data, but SINDy-SHRED provides a smoothed
extrapolation for the governing trends.

GoPro physics data: flow over a cylinder In this subsection, we demonstrate the performance
of SINDy-SHRED on an example of so-called “GoPro physics modeling.” The considered data
is collected from a dyed water channel to visualize a flow over a cylinder (Albright, 2017). The
Reynolds number is 171 in the experiment. The dataset contains 11 seconds of video taken at 30
frames per second (FPS). We manually perform data augmentation and repeat the latter part of the
video once to increase the number of available training samples . We transfer the original RGB
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1
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z1

1 4 7 10 12
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z2
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z3

Figure 5: Extrapolation of latent representation in SINDy-SHRED from the discovered dynamical
system for Ozone data. Colored: true latent representation. Grey: SINDy extrapolation.

Real Data

0 weeks 3 weeks 7 weeks

SINDy-SHRED Prediction

10 weeks 14 weeks

Figure 6: Long-term global Ozone data prediction via SINDy-SHRED with elevation 0 from week
0 to week 14.

channel to gray scale and remove the background by subtracting the mean of all frames. After the
prior processing step, the video data has only one channel (gray) within the range (0, 1) with a
height of 400 pixels and a width of 1,000 pixels. We randomly select and fix 200 pixels as sensor
measurements from the entire 400, 000 space, which is equivalent to only 0.05% of the data. We
set the lag parameter to 60 frames. We include the details of the experimental settings of SINDy-
SHRED in the Appendix C.4. We define the representation of the hidden latent state space as
(z1, z2, z3, z4). We discover the following dynamical system:

ż1 = −0.69z2 + 0.98z3 − 0.40z4,

ż2 = 1.00z1 − 0.78z31− 0.31z2z
2
3 ,

ż3 = −1.029z1 + 0.59z2 + 0.41z4.

ż4 = −0.26z21 − 0.29z22z3 − 0.39z33 .

(7)

Compared to the systems discovered in all previous examples, the flow over a cylinder model is much
more complex with significant nonlinear interactions. In Eqn. 7, we find that z1 and z3 behave like
a governing mode of the turbulence swing; z2 and z4 further depict more detailed nonlinear effects.
We also present the result of extrapolating this learned representation. We generate the trajectory
from the initial condition at time point 0 and perform forward integration for extrapolation. As
shown in Fig. 7, the learned ODE closely follows the dynamics of z1 and z3 up to 7 seconds (210
timesteps); z2 and z4 also have close extrapolation up to 3 seconds.

This learned representation also nicely predicts the future frames in pixel space. The shallow decoder
prediction has an averaged MSE error of 0.030 (equivalently 3%) over the entire available trajectory.
In Fig. 8, we observe that the autoregressively generated prediction frames closely follow the true
data, and further in Fig. 21, we find that the predictions are still stable after 1,000 frames, which is
out of the size of the original dataset. The sensor-level prediction in Fig. 20 further demonstrates the
accuracy of reconstruction in detail.
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Figure 7: Extrapolation of latent representation in SINDy-SHRED from the discovered dynamical
system for flow over a cylinder data. Colored: true latent representation. Grey: SINDy extrapolation.

Original video

Real data

0 frame 60 frames

SINDy-SHRED prediction

120 frames 180 frames

Figure 8: Long-term pixel space video prediction via SINDy-SHRED. We demonstrate the forward
prediction outcome up to 180 frames.

Baseline study: prediction of single shot real pendulum recording In this subsection, we com-
pare the performance of SINDy-SHRED to other popular existing learning algorithms. We perform
the baseline study particularly on video data of a pendulum since many deep learning algorithms
are hard to scale up to deal with large scientific data. In the following, we demonstrate the result of
video prediction on the pendulum data using ResNet (He et al., 2016), convolutional LSTM (con-
vLSTM) (Shi et al., 2015), and PredRNN (Wang et al., 2017), and SimVP (Gao et al., 2022). The
pendulum in our experiment is not ideal and includes complex damping effects. We use a nail on the
wall and place the rod (with a hole) on the nail. This creates complex friction, which slows the rod
more when passing the lowest point due to the increased pressure caused by gravity. The full model
we discovered from the video (as shown in Fig. 9) includes four terms:

z̈ = 0.17ż2 − 0.06ż3 − 10.87 sin(z) + 0.48 sin(ż). (8)

As shown in Table 1, SINDy-SHRED outperforms all baseline methods for total error and long-term
predictions. Generally, all baseline deep learning methods perform well for short-term forecasting,
but the error quickly accumulatesfor longer-term predictions. This is also observable from the pre-
diction in the pixel space as shown in Fig. 10. SINDy-SHRED is the only method that does not
produce collapsed longer-term predictions. In Fig. 22, the sensor level prediction also demonstrates
the robustness of the SINDy-SHRED prediction. PredRNN is the second best method as measured
by the total error. However, PredRNN is expensive in computation which includes a complex for-
ward pass with an increased number of parameters. It is also notable that the prediction of PredRNN
collapses after 120 frames, after which only an averaged frame over the entire trajectory is pre-
dicted. ConvLSTM has a relatively better result in terms of generation, but the long-term prediction
is still inferior compared to SINDy-SHRED. Additionally, we note that 2D convolution is much
more computationally expensive. For larger spatiotemporal domains (e.g. the SST example and 3D
ozone data), the computational complexity of convolution will scale up very quickly, which makes
the algorithm impractical to execute. Similar computational issues will occur for diffusion models
and generative models, which is likely to be impractical to compute, and unstable for longer-term
predictions. In summary, we observe that SINDy-SHRED is not only a more accurate long-term
model, but is also faster to execute and smaller in size.
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Figure 9: Extrapolation of latent representation in SINDy-SHRED from the discovered dynamical
system for the pendulum moving data. Blue: true latent representation. Grey: SINDy extrapolation.

Real data

Original 
video

SINDy-SHRED

ConvLSTM

PredRNN

SimVP

ResNet

20 frames 45 frames 70 frames 95 frames 120 frames 145 frames 170 frames 195 frames 220 frames 245 frames

Time

Figure 10: The pendulum video generation outcome from ResNet, SimVP, ConvLSTM, PredRNN,
and SINDy-SHRED from frame 20 to frame 245.

Models Params # Training time T = [0, 100] T = [100, 200] T = [200, 275] Total

ResNet (He et al., 2016) 2.7M 24 mins 2.08 × 10−2 1.88 × 10−2 2.05 × 10−2 2.00 × 10−2

SimVP (Gao et al., 2022) 460K 30 mins 2.29 × 10−2 2.47 × 10−2 2.83 × 10−2 2.53 × 10−2

PredRNN (Wang et al., 2017) 444K 178 mins 1.02 × 10−2 1.79 × 10−2 1.69 × 10−2 1.48 × 10−2

ConvLSTM (Shi et al., 2015) 260K 100 mins 9.24 × 10−3 1.86 × 10−2 1.99 × 10−2 1.55 × 10−2

SINDy-SHRED∗ 44K 17 mins 1.70 × 10−2 9.36 × 10−3 5.31 × 10−3 1.05 × 10−2

Table 1: Comparison table of SINDy-SHRED to baseline methods for parameter size, training time,
and mean-squared error over different prediction horizon.

5 CONCLUSION

In this paper, we present SINDy-SHRED, which jointly performs the discovery of coordinate sys-
tems and governing equations with low computational cost and strong predictive power. Through
experiments, we show that our method can produce robust and accurate long-term predictions for a
variety of complex problems, including global sea-surface temperature, 3D atmospheric ozone con-
centration, flow over a cylinder, and a moving pendulum. SINDy-SHRED achieves state-of-the-art
performance in long-term autoregressive video prediction, outperforming ConvLSTM, PredRNN,
ResNet, and SimVP with the lowest computational cost and training time.
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A CHALLENGES IN ROLLING OUT NEURAL NETWORKS FOR FITTING A
SIMPLE SINE FUNCTION

In the following example, we consider a simple use case in which we fit a simple sine function
using recurrent neural networks. Surprisingly, extrapolating a simple sine function can be highly
nontrivial for neural networks.

We implement a GRU network in the following. The GRU network consists of an input layer,
three stacked GRU layers with size 500, and a fully connected output layer. We employ the Adam
optimizer with a learning rate of 0.001 and used the mean squared error (MSE) as the loss function.
We train the GRU network with 150 epochs with a batch size of 1. The input sequences are made
up of 50 time steps, normalized to the range [0, 1].
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Figure 11: Fitting the sine function using a GRU network could be challenging.

Even though the training loss is near-optimal with 1e−7. However, the extrapolation is very poor. We
note here that by carefully specifying the GRU network and making it a mostly linear unit (within
the SINDy-class functional), the extrapolation result could be reasonable. But, the general setting of
GRU networks, as shown in Fig. 11, fails to predict well. This motivating example demonstrates the
fact that knowledge with physical meanings, e.g. the sine function here, is hard for neural networks
to approximate accurately in extrapolation. Therefore, this demonstrates the necessity of integrating
well-characterized ODE structures with non-linear functions into deep learning models, as they are
important for accurate learning and prediction of physics.

B QUALITATIVE RESULT ON THE ERROR BOUNDS

We further establish the statistical foundation for dynamical system learning. When the underlying
dynamical system can be closely described by a linear combination of the library of functions, ob-
taining a “governing equation” will have huge benefits for long-term extrapolation. Due to the nature
of forward integration,error accumulates rapidly making an approximate system undesirable for ex-
trapolation. In the following, we formalize this statement by analyzing the Rademacher complexity
of SINDy-class and neural networks functional.

The system we wish to study has the form that

ẋ = f(x), (9)

which is an ODE describing the trajectory of a dynamical system in a learned latent space.
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Suppose that the dynamical system has the form ẋ = f(x), and we have measurements of x =
{x1,x2, ...,xt,xt+1, ...,xT } with time gap ∆t. We first define the SINDy-class functional:

FSINDy := {Θξ : ξ ∈ Rp} , (10)

where all f ∈ FSINDy are functions of a convex (linear) combination of functions in
Θ(·), and all functions in the library are within L2(P ). An example of Θ(x) is to have
[x, x2, x3, x4, sin(x), cos(x)], and this could represent a dynamical system with the following form

ḟ(x) = a1x+ a2x
2 + a3x

3 + a4x
4 + a5 sin(x) + a6 cos(x), (11)

where a1, a2, ..., a6 are constants.

Then, we consider the target function f to be within F0.

F0 := {f0 : sup
x∈X

|f0(x)− f(x)| < ϵ, f ∈ FSINDy}, (12)

where f0(·) is a function within convex (linear) combination of functions in Θ(·). We further assume
that F0 is L-Lipschitz.

We note that F0 is a wide class of functions. Since Θ(·) covers polynomials and the Fourier series,
the functional class F0 could model the governing effect for all differentiable functions from Taylor’s
approximation. Then, we consider the two-layer ReLU functional class FReLU to be

FReLU := {x 7→ θ2σ (θ1x)} , (13)

where θ1 ∈ Rp×d, θ2 ∈ Rd×p, and σ(x) = max(0, x) represents the ReLU function. In the
following, we additionally require the following conditions on the input data that

∥x∥∞ ≤ 1, ∥x∥2 ≤
√
d, |f(x)| ≤ 1

2
. (14)

Define the error of dynamical system simulation as

E(x, t) = x(t)− x̂(t). (15)

Theorem 1. Suppose we have a target function f0 ∈ F0 and the approximation is f̂ . Suppose that
the approximation error of f̂ is up to ϵ as supx |f0(x) − f̂(x)| < ϵ. The generalization error is up
to Egen with probability 1 − δ. Then, simulating the system up to time T will reach the error with

rate O
(

ϵ+Egen

L exp(LT )
)

.

Proof. The error E(·) is defined as

E(x, t) = x(t)− x̂(t) (16)

By taking the derivative with respect to t on both sides, we get

Ė(x, t) = f0(x)− f̂(x̂) (17)

= [f0(x)− f0(x̂)] + [f0(x̂)− f̂(x̂)]
generalization error

(18)

The generalization error includes the regret and the approximation error. We first observe that
d
dt ||E(x, t)|| ≤ || ddtE(x, t)|| from Cauchy-Schwarz. Considering the norm, due to the triangle in-
equality,

d

dt
∥x(t)− x̂(t)∥ ≤ ∥f0(x)− f0(x̂)∥+

∥∥∥f0(x̂)− f̂(x̂)
∥∥∥ (19)

Suppose x̂ is still within the input domain, from the prior result, we know with probability 1− δ we
have

sup
x

∥∥∥f(x)− f̂(x)
∥∥∥ ≤ ϵ+ Egen. (20)
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Then, since the functional class F0 is L-Lipschitz, we have

d

dt
∥x(t)− x̂(t)∥ ≤ L ∥x− x̂∥+ ϵ+ Egen. (21)

By applying the differential form of Grönwall’s inequality, we see

E(x, t) ≤
ϵ+ Egen

L

(
eLT − 1

)
, (22)

which is the upper bound of the error.

By observing Thm. 1, we found the error has rate O
(

ϵ+Egen

L eLT
)

. Therefore, as T increases, the

error will be magnified with a factor of eT . This type of error accumulation will create problems
for neural networks. By increasing the power of approximation (having a smaller ϵ), the neural
network will lose the ability to generalize, leading to a large Egen. Meanwhile, when Egen is large,
the extrapolation may be out of the input domain X , resulting in unstable extrapolations of the
dynamical system. However, the SINDy-class functional is inherently designed to avoid this issue.
We analyze the error for the SINDy-class functional in the following.
Theorem 2. The SINDy-class functional, with probability 1− δ, will have an error with order

E(T ) = O

ϵ+
√

Mn

n

L
eLT

 (23)

Proof. First, we note that by definition, the optimal solution ξ0 can reach an error of ϵ pointwise.
Then, we consider the empirical risk minimizer ξ̂, and study the regret:

Reg(ξ̂) = Pℓ(ξ̂)− Pℓ(ξ0). (24)

In the task of regression, we know this ℓ(·) is

ℓ(x, ξ) = [f0(x)−Θ(x)ξ]2 (25)

Define g ∈ G := {x 7→ ℓ(x, ξ) : ξ ∈ Ξ}. From the empirical process theory, we know

Reg(ξ̂) ≤ Pℓ(ξ̂)− Pℓ(ξ0) +
[
Pnℓ(ξ0)− Pnℓ(ξ̂)

]
(26)

= (Pn − P ) [ℓ(ξ0)− ℓ(ξ̂)] (27)

≤ |(Pn − P )ℓ(ξ0)|+ (Pn − P )ℓ(ξ̂)| (28)
≤ 2 sup

ξ∈Ξ
|(Pn − P )ℓ(ξ)| = 2 sup

g∈G
|(Pn − P )g| = 2 ∥Pn − P∥G (29)

So we need to study this functional class G.

We expand the definition of G :=
{
x 7→ [f0(x)−Θ(x)ξ]2 : ξ ∈ Ξ

}
. Using the definition of f0, we

have G :=
{
x 7→ [Θ(x)(ξ0 − ξ) + η(x)]2 : ξ ∈ Ξ

}
where η(x) denotes some quantity that is upper

bounded by η > 0.

We see from Markov’s inequality that for t > 0 and some a > 0,

P
(

Reg(ξ̂) >
(
Mn

n

)a

t

)
≤ P

(
2 ∥Pn − P∥G >

(
Mn

n

)a

t

)
(30)

≤
2E∥Pn − P∥G(

Mn

n

)a
t

(31)

≤
2E∥Rn∥G(

Mn

n

)a
t
, (32)
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where E∥Rn∥G denotes the Rademacher complexity. Rn(g) = 1
n

∑n
i=1 ϵig(xi); ϵi’s are indepen-

dent Rademacher random variables Unif(0, 1), and ∥Rn∥G = supg∈G |Rn(g)|.
We start from the case that x is univariate. We assume that the data we have have the form
{(xi,yi)}Ni=1 where xi has a bounded domain and yi is within range [− 1

2 ,
1
2 ]. Define the em-

pirical risk minimizer ξ0 : w 7→ EP [y | x = xi]. The estimator ξ̂n minimizes empirical MSE
Rn : ξ 7→ 1

n

∑n
i=1[yi − ξ(xi)]

2. We denote ΘM be the class of functions whose range falls in
[− 1

2 ,
1
2 ] with total variation not larger than M . The total variation is defined as a class of functions

h : [0, 1] 7→ R that satisfies ∀k ∈ N, and ∀0 = x0 < x1 < ... < xn−1 < xk < 1:
n−1∑
i=1

|h(xi+1)− h(xi)| ≤ M. (33)

By plugging in the definition of G, we find
n−1∑
i=0

|g(xi+1; f0, ξ)− g(xi; f0, ξ)| (34)

=

n−1∑
i=0

|(Θ(xi+1)(ξ0 − ξ) + ϵ(xi+1))
2 − (Θ(xi)(ξ0 − ξ) + ϵ(xi))

2| (35)

=

n−1∑
i=0

|(ξ − ξ0)
2[Θ(xi+1)

2 −Θ(xi)
2] + 2(ξ0 − ξ)[Θ(xi+1)η(xi+1)−Θ(xi)η(xi)] + [η(xi1)

2 − η(xi)
2]|

(36)

We see that the above quantity is bounded because ξ has a bounded domain, Θ(·) is Lipschitz within
[0, 1], and ϵ(·) is bounded by a constant. We note this constant as Mn, which corresponds to Mn in
Eq. 30.

Say Q is a continuous distribution on [0, 1]. The covering number of the functional class G and the
covering number of ΘM is connected through N (ϵ,G, L2) ≤ N (ϵ,ΘM , L2).

Suppose that we have an ϵ/4-cover of θM which contains {θ1, θ2, ..., θn}. We see that {ℓ(θj)} is an
ϵ-cover of G by

∥ℓ(θ)− ℓ(θj)∥2L2(Q) =

∫
[(y − θx)2 − (y − θjx)

2]2dQ(x) (37)

=

∫
[(2y − θx− θjx)(θx− θjx)]

2dQ(x) (38)

≤ sup
x,y

(2y − θx− θjx)
2

∫
(θx− θjx)

2dQ(x) (39)

[{θj} is an
ϵ

4
-cover] ≤ ϵ2. (40)

Then, from Lemma 1, we know that N (ϵ,ΘM ,L2) is bounded by 13
ϵ . Since the Rademacher random

variable is sub-Gaussian, we can control the Rademacher complexity further using the Dudley’s
entropy integral,

E∥Rn∥G ≤ 8n−1/2 sup
Q

∫ ∞

0

√
logN (ϵ,ΘMn

,L2(Q))dϵ (41)

[D := sup
x,y

d(x, y)] = 8n−1/2 sup
Q

∫ D

0

√
logN (ϵ,ΘMn

,L2(Q))dϵ (42)

≤ 8n−1/2 sup
Q

∫ D

0

√
logN (ϵ,ΘMn ,L2(Q))dϵ (43)

≤ CMn√
n

. (44)
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From a similar process, we can bound the multivariate input version by some other constant Cp that
bounds the norm of the possible parameters (i.e. ∥ξ∥2 ≤ Cp). By applying the differential form of
Grönwall’s inequality, we see

E(x, t) ≤
(
2CMn

L
√
n

+ ϵ

)(
eLT − 1

)
, (45)

which is the upper bound of the error.

We note here that in theory it is possible to push E(x, t) = OP

(
n−2/3

)
under the condition Mn =

o(n), which is better than the current rate OP

(
n−1/2

)
.

Here, we find that the generalization error is independent of ϵ for the SINDy-class functional. There-
fore, the approximation-generalization tradeoff does not hurt SINDy when the target function is
within F0.

Now, we see the proof for neural networks. There are two factors that might cause the generalization
to be large. First, when the target functional to learn is very close to FSINDy with small ϵ. In this case,
to obtain a better approximation, the network has to increase the size of the hidden layer. This will
lead to an increase in terms of the Rademacher complexity and therefore the generalization error.
In addition, the input data for neural networks are different. Unlike the ODE forward integration
structure in SINDy, neural networks frequently use the previous L data points as input to predict
the value at tL+1. This will lead to a larger input space, which will also increase the generalization
error. We show the details of the theorem in the following.
Theorem 3. If we use a function in FReLU to learn a dynamical system, we expect to have an error
of up to

E(T ) = O

(
ϵeLT +

W1W2√
n

√
log

(
Λ(d)

ϵ

)
eLT

)
, (46)

where W1,W2,Λ(d) satisfies ∥θ1∥2 ≤ W1, ∥θ2∥2 ≤ W2, and
∫
Rd ∥ω∥2 |f̂(ω)|dω ≤ Λ(d), where∫

∥ω∥2 |f̂(ω)|dω.

Proof. We know that to reach an approximation error of ϵ uniformly, from Barron’s approximation
theorem, we know:

inf
f̂∈FReLU

sup
x

|f0(x)− f̂(x)| ≤ Λ(d)

p
, (47)

where Λ(d) is the Barron constant and p is the size of hidden layer. We know, under the same

Λ(d),W1,W2, we need p ≥
(

Λ(d)
ϵ

)2
= O

(
Λ(d)2

ϵ2

)
.

We can know the Radamacher complexity from classical result (Bartlett & Mendelson, 2002) (c.f.
Thm. 18) is bounded by

R̂n(F) ≤
CW1W2

√
log(p)√

n
, (48)

for some constant C.

From the required precision for approximation, we know that the generalization error scales with

Egen = O

(
W1W2√

n

√
Λ(d)

ϵ

)
. (49)

Using the Grönwall’s inequality again, we see

E(T ) = O

(
ϵeLT +

W1W2√
n

√
log

(
Λ(d)

ϵ

)
eLT

)
. (50)
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From Thm. 3, we see the dilemma of neural networks. The generalization error will increase as ϵ gets
smaller. In this case, when f0 can be closely represented via FSINDy with ϵ → 0, the neural network
will fail to perform reasonable extrapolations. In practice, regularization techniques can be applied
to mitigate unstable predictions. However, this will reduce the accuracy of the approximation and
make the theoretical behavior difficult to characterize.

Another way is to show the bound using (Bartlett & Mendelson, 2002) will incorporate a factor of
O
(√

d
)

. It is also possible to show the instability of neural networks due to the magnification of
the input space by the factor of L (length of the input trajectory).

B.1 TECHNICAL LEMMAS

Lemma 1. (Bartlett et al., 1997). For all ϵ < 1
12 , we have

(log2 e)
1

54ϵ
≤ log2 N (ϵ,F1,L2) ≤ 13

ϵ
, (51)

where F1 has bounded variation and takes value from [0, 1] to [−1/2, 1/2]. L2 denotes the norm
||f ||L1(P ) =

∫
|f(x)|dP (x).

Definition 1. A function g : S × S 7→ [0,∞) is called a pseudometric on S if:

(a) d(x, x) = 0, ∀x ∈ S.

(b) d(x, y) = d(y, x), ∀x, y ∈ S.

(c) d(x, z) ≤ d(x, y) + d(y, z), ∀x, y, z ∈ S

We denote a pseudometric space by (S, d).
Definition 2. Let (S, d) be a pseudometric space and let T ⊆ S. T1 ⊆ T is called an ϵ-cover if
∀θ ∈ T , there is a θ1 ∈ T1 s.t. d(θ, θ1) ≤ ϵ.

And the ϵ-covering number of T is defined as

N (ϵ, T, d) = min{|T1| : T1 is an ϵ-cover of T}, (52)

where |T1| denotes the cardinality of set T1.
Lemma 2. (Barron, 1993) To reach an approximation error of ϵ, fixing the norm of network param-
eters, we need to satisfy

p ≤
C ∥f∥2B W 2

ϵ2
. (53)

C EXPERIMENTAL DETAILS

C.1 SEA-SURFACE TEMPERATURE DATA

For the SST data in SINDy-SHRED, we set the latent dimension to 3 because we observe only
minor impacts on the reconstruction accuracy when the latent dimension is ≥ 4. We include 2
stacked GRU layers and consider the , and a two-layer ReLU decoder with 350 and 400 neurons.
For the E-SINDy regularization, we set the polynomial order to be 3 and the ensemble number is 10.
In the latent hidden-state forward simulation, we use Euler integration with dt = 1

520 , which will
generate the prediction of next week via 10 forward integration steps. During training, we apply the
AdamW optimizer with a learning rate of 1e−3 and a weight decay of 1e−2. The batch size is 128
with 1,000 training epochs. The thresholds for E-SINDy range uniformly from 0.1 to 1.0, and the
thresholding procedure will be executed every 100 epochs. We use dropout to avoid overfitting with
a dropout rate of 0.1. The training time is within 30 minutes from a single NVIDIA GeForce RTX
2080 Ti.

C.2 3D ATMOSPHERIC OZONE CONCENTRATION

For the ozone data, we set the lag parameter is set to 100. Thus, for each input-output pair, the input
consists of the 62.5 day measurements of the selected sensors, while the output is the measurement
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across the entire 3D domain. In SINDy-SHRED, we follow the same network architecture as in the
SST experiment. We set dt = 0.025, and the thresholds for E-SINDy range uniformly from 0.015
to 0.15. The thresholding procedure will be executed every 300 epochs, and we apply AdamW
optimizer with learning rate 1e−3.

C.3 FLOW OVER A CYLINDER

In the flow over a cylinder experiment, we follow the same settings as in the prior experiments and
select the latent dimension to be 4. The forward integration time step is set to dt = 1

300 correspond-
ing to the frame rate of 30 FPS. We set the batch size at 64 and the learning rate to 5e−4. The
thresholding procedure is executed every 300 epochs with thresholds ranging from (1e−4, 1e−3).

C.4 BASELINE EXPERIMENT ON PENDULUM

Autoregressive training. The raw pendulum data are collected from a 14-second GoPro record-
ing. The raw data are present difficulties during training because of their high-dimensionality
(1080 × 960), so we follow the same preprocessing procedure as in (Mars Gao & Nathan Kutz,
2024) to obtain a set of training data with 390 samples, width 24 and height 27. For most of the
models, we apply autoregressive training to help the model achieve better long-term prediction ca-
pabilities. From the initial input {X1,X2, ...,XL} with lag L, the model autoregressively predicts
the next frame X̂L+1 and use it as a new input {X2,X3, ..., X̂L+1}. This step will be repeated L

times to obtain {X̂L+1, X̂L+2, ..., X̂2L}. We treat this as the prediction and optimize the loss from
this quantity. In the following baseline models, we uniformly set L = 20.

C.4.1 BASELINE METHODS AND SINDY-SHRED SETTING

ResNet. We use the residual neural network (ResNet) (He et al., 2016) as a standard baseline. We
set the input sequence length to 20, and we predict the next frames autoregressively. For ResNet,
the first convolutional layer has 64 channels with kernel size 3, stride 1 and padding 1. Then, we
repeat the residual block three times with two convolutional layers. We use ReLU as the activation
function. After the residual blocks, the output is generated via a convolutional layer with kernel size
1, stride 1, and padding 0. We set the batch size to 8, and we use AdamW optimizer with learning
rate 1e−3, weight decay 1e−2 for the training of 500 epochs.

SimVP. SimVP (Gao et al., 2022) is the recent state-of-the-art method for video prediction. This
method utilizes ConvNormReLU blocks with a spatio-temporal features translator (i.e. CNN). The
ConvNormReLU block has two convolutional layers with kernel size 3, stride 1, and padding 1.
After 2D batch normalization and ReLU activation, the final forward pass includes a skip connection
unit before output. The encoder first performs a 2D convolution with 2D batch normalization and
ReLU activation. Then, three ConvNormReLU blocks will complete the input sequence encoding
process. The translator in our implementation is a simple CNN which contains two convolutional
layers. The decoder has a similar structure to the encoder by reversing its structure. We similarly set
the batch size to 8 with AdamW optimizer for 500 epochs.

ConvLSTM. Convolutional Long Short-Term Memory (Shi et al., 2015) is a classical baseline for
the prediction of video sequence and scientific data (e.g. weather, radar echo, and air quality). The
ConvLSTM utilizes features after convolution and performs LSTM modeling on hidden states. The
ConvLSTM model has two ConvLSTM cells that have an input 2D convolutional layer with kernel
size 3 and padding 1 before the LSTM forward pass. The decoder is a simple 2D convolution with
kernel size 1, and zero padding. We similarly set the batch size to 8 with AdamW optimizer for 500
epochs.

PredRNN. PredRNN (Wang et al., 2017) is a recent spatiotemporal modeling technique that builds
on the idea of ConvLSTM. We follow the same network architecture setting as in ConvLSTM and
similarly set the batch size to 8 with AdamW optimizer for 500 epochs.

SINDy-SHRED. We select and fix 100 pixels as sensor measurements from the entire 648 dimen-
sional space. We remove non-informative sensors, defined as remaining constant through the entire

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

video. We set the lag to 60. For the setting of network architecture in SINDy-SHRED, we follow
the same settings as in the prior experiments but with latent dimension of 1. The timestep of forward
integration is set to dt = 1

300 corresponding to frame rate of the video at 30 FPS. We set the batch
size at 8 and the learning rate to 5e−4. The thresholding procedure is executed every 300 epochs
with thresholds ranging from (0.4, 4.0). We include 3 stacked GRU layers, and a two-layer ReLU
decoder with 16 and 64 neurons. We use dropout to avoid overfitting with a dropout rate of 0.1.
SINDy-SHRED discovers two candidate models.

D EXPERIMENT ON THE 2D KOLMOGOROV FLOW

The 2D Kolmogorov flow data is a chaotic turbulent flow generated from the pseudospectral Kol-
mogorov flow solver (Canuto et al., 2007). The solver numerically solves the divergence-free
Navier-Stokes equation:

{
∇ · u = 0

∂tu+ e∇u = −∇p+ v∆u+ f
, (54)

where u stands for the velocity field, p stands for the pressure, and f describes an external forcing
term. Setting the Reynolds number to 30, the spatial field has resolution 80 × 80. We simulate the
system forward for 180 seconds with 6, 000 available frames. We standardize the data within the
range of (0, 1) and randomly fix 10 sensors from the 6,400 available spatial locations (0.16%). The
lag parameter is set to 360.

For the setting of SINDy-SHRED, we slightly change the neural network setting because the output
domain is 2D. Therefore, after the GRU unit, we use two shallow decoders to predict the output of
the 2D field. The two decoders are two-layer ReLU networks with 350 and 400 neurons. We set the
latent dimension to 3. The time step for forward integration is set to dt = 0.003 which corresponds
to the FPS during data generation. We set the batch size to 256 and the learning rate to 5e−4 using
the Lion optimizer (Chen et al., 2024). The thresholding procedure is executed every 100 epoch
with the total number of training epochs as 200. The thresholds range from (0.4, 4).

As a chaotic system, the latent space of the Kolmogorov flow is much more complex than all the prior
examples we considered. Thus, we further apply seasonal-trend decomposition from the original
latent space. We define the representation of the latent hidden state space after decomposition as
(z1, z2, z3, z4, z5, z6), where (z2i, z2i+1) is the seasonal trend pair of the original latent space.



ż1 = −0.007z3 + 0.009z5,

ż2 = −0.207z4,

ż3 = −0.011z1 − 0.008z5,

ż4 = 0.103z2,

ż5 = −0.012z1 + 0.006z3.

ż6 = 0.151z1z2.

(55)

In Eqn. 55, we find that z1, z3, z5 are essentially a linear system. z2, z4, z6 capture higher-order
effects that are difficult to model without signal separation. We generate the trajectory from the
initial condition at time point 0 and perform forward integration in Fig. 12. As we increase the
Reynolds number, the discovery fails to produce robust predictions.

This representation also demonstrates nice predictions for future frames. In Fig. 13, the future
prediction has an averaged MSE error of 0.035 for all available data samples. The sensor-level
prediction in Fig. 23 further demonstrates the details of the reconstruction.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

1

0

1

z1

1

0

1

z2

30 60 90 120
Minute(s)

1

0

1

z3

Figure 12: Extrapolation of latent representation in SINDy-SHRED from the discovered dynamical
system for the 2D Kolmogorov flow data. Colored: true latent representation. Black: SINDy ex-
trapolation.

(a)

(b)

Figure 13: Long-term predictiion via SINDy-SHRED for 2D Kolmogorov flow data.
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E SENSOR LEVEL PLOTS OF EXPERIMENTS

E.1 SEA SURFACE TEMPERATURE

3D visualization of SINDy-SHRED

(a) (b)

Figure 14: 3D reconstruction of the original latent space and SINDy simulated latent space.

Long-term extrapolation of SINDy-SHRED.

1

0

1

z1

1

0

1

z2

0 5 10 15 20 25
Year(s)

1

0

1

z3

Figure 15: Extrapolation of latent representation in SINDy-SHRED from the discovered dynamical
system for SST over the entire 27 years. Colored: true latent representation. Grey: SINDy extrapo-
lation.
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Sensor-level prediction on the SST dataset.
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Figure 16: Extrapolation of SINDy-SHRED for sensor-level predictions on the SST data. We ran-
domly picked 18 sensors from spatial locations that are not in the sparse sensor training. The ex-
trapolation shows the SINDy-SHRED prediction for the following 300 weeks.

E.2 OZONE DATA

Convergence behavior of SINDy-SHRED on the Ozone dataset.
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Figure 17: Long term extrapolation of Ozone data. The latent SINDy model presents a convergence
behavior towards the mean-field solution.

Sensor-level prediction on the Ozone dataset.
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Figure 18: Extrapolation of SINDy-SHRED for sensor-level predictions on the Ozone data. We
randomly picked 18 sensors from spatial locations that are not in the sparse sensor training. The
extrapolation shows the SINDy-SHRED prediction for the following 40 weeks.
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(a)

(b)

(c)

(d)

Figure 19: Reconstruction of atmospheric ozone concentration data for different elevation (a) 0 km
(b) 4 km (c) 8 km (d) 12 km.
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E.3 FLOW OVER A CYLINDER

Sensor-level prediction on the flow over a cylinder dataset.
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Figure 20: Extrapolation of SINDy-SHRED for sensor-level predictions on the flow over a cylinder
data. We randomly picked 18 sensors from spatial locations that are not in the sparse sensor training.
The extrapolation shows the SINDy-SHRED prediction for the following 400 frames.

Long-term extrapolation on the flow over a cylinder dataset.
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Figure 21: Prediction of the flow over a cylinder data from time step 0 (reconstruction) to 1000
frames. We note this extrapolation is completely out of the dataset. The real data for testing is only
available up to 500 frames.

E.4 PENDULUM

Sensor-level prediction on the moving pendulum dataset.
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Figure 22: Extrapolation of SINDy-SHRED for sensor-level predictions on the moving pendulum
data. We randomly picked 18 sensors from spatial locations that are not in the sparse sensor training.
The extrapolation shows the SINDy-SHRED prediction for the following 382 frames.
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E.5 KOLMOGOROV FLOW

Sensor-level prediction on the chaotic 2D Kolmogorov flow dataset.
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Figure 23: Extrapolation of SINDy-SHRED for sensor-level predictions on the 2D Kolmogorov
flow data. We randomly picked 18 sensors from spatial locations that are not in the sparse sensor
training. The extrapolation shows the SINDy-SHRED prediction for the following 1500 frames.
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