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ABSTRACT

Referenceless metrics (e.g., CLIPScore) use pretrained vision—language models to
assess image descriptions directly without costly ground-truth reference texts. Such
methods can facilitate rapid progress, but only if they truly align with human prefer-
ence judgments. In this paper, we introduce ContextRef, a benchmark for assessing
referenceless metrics for such alignment. ContextRef has two components: human
ratings along a variety of established quality dimensions, and ten diverse robustness
checks designed to uncover fundamental weaknesses. A crucial aspect of Context-
Ref is that images and descriptions are presented in context, reflecting prior work
showing that context is important for description quality. Using ContextRef, we
assess a variety of pretrained models, scoring functions, and techniques for incorpo-
rating context. None of the methods is successful with ContextRef, but we show that
careful fine-tuning yields substantial improvements. ContextRef remains a challeng-
ing benchmark though, in large part due to the challenge of context dependence. '

1 INTRODUCTION

Image description generation is an outstanding application area for image-based natural language
generation (NLG). The purpose of an image description is to make the content of an image accessible
to someone who can’t see it. This most prominently affects people with temporary or long-term
vision conditions, but it extends to people online facing image loading issues and those who simply
prefer listening to PDFs and website content. Thus, the potential impact of work in this area is large.

In this context, recent proposals for referenceless evaluation metrics for image-based NLG are very
welcome. Traditionally, evaluation in this area has been based on comparing a proposed description
to a number of ground-truth descriptions (e.g, BLEU, Papineni et al. 2002; CIDEr, Vedantam et al.
2015; SPICE, Anderson et al. 2016; METEOR, Banerjee & Lavie 2005). Such reference-based
metrics heavily rely on high-quality annotations (Anderson et al., 2016), which can be difficult to
obtain. In contrast, referenceless metrics use pretrained vision—language models to assess image
descriptions directly, without costly ground-truth reference texts. This serves a real-world need where
ground-truth descriptions are sparse (Gleason et al., 2019; Williams et al., 2022; Kreiss et al., 2022b).

How well correlated are these referenceless metrics with human preferences, though? Unless there
is a strong correlation, such metrics will lead us in wrong directions. To address this question,
we present ContextRef, a new English-language benchmark for assessing referenceless metrics
against human preferences. ContextRef has two components. The first derives from a human-subjects
experiment eliciting ratings along a variety of quality dimensions (Figure 1 A). The second provides ten
diverse robustness checks designed to stress-test metrics via context manipulations, syntactically and
semantically meaningful alterations to predicted texts, and changes to the input image (Figure 1B).

A crucial feature of ContextRef is that images and descriptions are presented in context. This
reflects much recent work arguing that the context an image is presented in significantly shapes the
appropriateness of a description (Stangl et al., 2020; 2021; Muehlbradt & Kane, 2022; Kreiss et al.,
2022a). For instance, an image of a sculpture in a park presented in the context of a Wikipedia article
on “Sculptures” will require a different description than when presented in an article on “Photographic
Composition.” In the first case, the sculpture and its properties should be prominent; in the second,
the sculpture may require only a passing reference.

*These authors contributed equally to this work.
'All data and code are made available at https://github.com/elisakreiss/contextref.
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Figure 1: Our proposed benchmark. (A) ContextRef questions and distributions of averaged human
ratings in the dataset for each question type. For simplicity, pre-image rating distributions are omitted
(except for imaginability which only has pre-image ratings), since they show similar distribution pat-
terns. Overall, the distributions are robust from the perspective of using the ratings to score reference-
less metrics. (B) ContextRef example with illustrative robustness checks. These checks prove invalu-
able for uncovering undesired behavior of proposed metrics that can’t be detected in naturalistic data.

We use ContextRef to assess a wide variety of referenceless metrics. The metrics we consider vary
along three axes. First, we use a number of different pretrained models. Second, we consider two scor-
ing methods: using the similarity of the learned image and description embeddings, and using the like-
lihood of the description conditioned on the image. Third, since prior referenceless metrics have not ac-
counted for the role of context, we explore methods for integrating context into the metrics themselves.

None of the methods we explore succeed at ContextRef. In particular, while these methods mostly do
show positive correlations with our human data, they fall short on our robustness checks, revealing
that they are insensitive to fundamental changes to the examples they are evaluating. The main source
of variation is the scoring method. In particular, similarity-based metrics tend to be less sensitive to
grammaticality and context, while likelihood-based metrics tend to be less sensitive to uninformative
but predictable text like repetition or irrelevant sentences.

However, we identify a path forward. Careful fine-tuning regimes can start making potential metrics
much more successful at ContextRef. This is encouraging, but ContextRef remains a challenging
benchmark. In particular, our fine-tuning experiments do not lead to models that are sufficiently sensi-
tive to context, as reflected in ContextRef itself. However, we are optimistic that ContextRef can facil-
itate progress on this fundamental challenge for automatically generating useful image descriptions.

2 RELATED WORK

Referenceless metrics leverage pretrained vision—language models and provide scores for novel
descriptions by considering the image directly (Hessel et al., 2021; Lee et al., 2021a;b; Scott et al.,
2023; Lin et al., 2023)2. The most commonly used metric, CLIPScore (Hessel et al., 2021), assigns a
score to each image—description pair based on the cosine similarity of the image and the description in
CLIP’s embedding space (Radford et al., 2021). CLIPScore often correlates better with human quality
judgments than reference-based metrics (Hessel et al., 2021; Kasai et al., 2022), but its inability to
integrate context significantly restricts its practical usefulness (Kreiss et al., 2022a). Kreiss et al.
present initial evidence that context can be successfully integrated into the similarity computation of
CLIPScore, and we develop this exploration much further (discussed in Section 3).

?See Appendix J for a more detailed overview on referenceless metrics.



In addition, recent vision—language models (many directly building on CLIP) have surpassed CLIP in
downstream task performance on many multimodal tasks and offer new potential scoring opportunities.
In this work, we investigate an array of models potentially capable of functioning as contextual
metrics that leverage pretrained models, we investigate the role of similarity- vs. likelihood-based
scoring, and we develop new methods for bringing in context.

An important feature of ContextRef is its series of robustness checks. Extensive research has been
devoted to evaluating the robustness of models to input perturbations, especially in the context of ad-
versarial attacks (Szegedy et al., 2014), including with multimodal models (Qiu et al., 2022; Kim et al.,
2023; Pezzelle, 2023). In particular, works such as Ribeiro et al. (2020) highlight the value of leverag-
ing interpretable changes to the input and confirming the model predictions change (or do not change)
as expected. With ContextRef, we build on this work with a variety of previously-identified and novel
robustness checks (see Section 5) to better understand the differences across scoring strategies.

3 MODELS AND SCORING STRATEGIES

In this section, we describe the models used for our experiments. For all of our approaches, the
exact architectures of the visual and text encoders are designed to be easily interchangeable, and we
tested many choices for each model. We selected current state-of-the-art vision-language models
that cover a wide range of strategies for integrating textual and visual information, with varying
degrees of multimodal pertaining. For consistency, we select one variant of each model according
to their correlation with the human annotations and discuss the selected variants in Appendix D.
We release the details for all models tested with the associated code. Based on the computation of
the description quality score, we distinguish between likelihood-based and similarity-based metrics
(similar to generative and discriminative scores in Lin et al. 2023).

3.1 LIKELIHOOD-BASED METRICS

Likelihood-based metrics score image descriptions conditional on the image and potentially other
information like context. The precise method by which this is done depends on the model. To integrate
context into these metrics without any fine-tuning, we considered two intuitive methods: (1) using
the likelihood of a positive assessment of the description conditioned on an image description
for an image and its context, and (2) using the likelihood of the description conditioned on a
positive assessment, the image, and its context. We include the prompt templates used for the
models in Appendix H, with all of these components. More precisely, we use the perplexity,
lx) = |71‘ Elzil1 log pry(xi|zo.i—1), for a string = with token length || — however, we discuss
explored alternatives in Appendix H. For method (2), we calculate the score as the perplexity where
x = concatenate(image, context, description_is_high_quality, actual_description) — note that
different models vary in how they take images as input, and we pass these in however the methods
permit. Equivalently, in Python, this can be expressed with the simple template string x = f"[Context
: {context}] High quality, accessible, image description: {description}."”.

In initial experiments, it became clear that (2) is the superior option, so we focus on that method, as
approach (1) peaked at about half of its correlational strength. There are multiple possible ways to
calculate these scores; we found that using each language model’s average per-token log-likelihood
across the full sequence was consistently best correlated with human preferences across most models,
as opposed to cumulative log-likelihood or only the log-likelihood of the conditioned variable.

Flamingo The OpenFlamingo v2 (Awadalla et al., 2023) models all use a CLIP-based image encoder
(CLIP ViT-L/14), leveraging frozen, pretrained vision and language models. The visual features are
passed into the language model using a cross-attention-based adapter. These models are a replication
of the Flamingo work that introduced this cross-attention-based training method (Alayrac et al., 2022).

Frozen One approach to permit a text-only language model to operate as a multimodal model with
no additional multimodal fine-tuning is to use a frozen language model (e.g., GPT-2; Radford et al.
2019) and a multimodal embedding model (e.g., CLIP; Radford et al. 2021) to map images to linear
combinations of token embeddings. This combines ideas from Tsimpoukelli et al. (2021) and Norouzi
et al. (2014) and was first introduced by dzryk (2023). We include more intuition in Appendix H.2.

BLIP The BLIP models that we consider (more precisely, BLIP-2 models; Li et al. 2023) use a
ViT image encoder (Dosovitskiy et al., 2021), similar to the Flamingo models. Both OpenFlamingo



and BLIP support a variety of Transformer-based autoregressive text encoders, some of which are
instruction-tuned (including InstructBLIP, which is instruction-tuned to follow directions; Dai et al.
2023). Unlike the other models, they are trained with both a likelihood-based and similarity-based
objective. We analyze both their likelihood-based and similarity-based metric outputs.

3.2 SIMILARITY-BASED METRICS

CLIP CLIP is a widely used multimodal technique mapping text and images to a shared embedding
space using a contrastive objective (i.e., bringing together the embeddings associated with ground-
truth text—image pairs while moving apart unassociated text-image pairs; Radford et al. 2021).
Trained on large amounts of data, CLIP-based methods for image description evaluation (in particular,
CLIPScore; Hessel et al. 2021) have been proposed.

We can incorporate context by including terms that take into account the cosine similarity between
the context and the image or between the description and the context. We use the method proposed
in Kreiss et al. (2022a), which shows a promising correlation with sighted as well as blind and low
vision participant quality judgments. Intuitively, the method amends CLIPScore to incorporate the
similarity of the description and context and replaces the similarity of the description to the image
with the similarity of the description to information added by the image to the context. Explicitly, this
is description - context + description - (image — context), where 7 = \%I We use this as our main

CLIP method and refer to the original CLIPScore (i.e., image - description) as Orig. CLIPScore.

However, despite their widespread use, CLIP-based approaches generally suffer some key limitations.
First, the most widely used Vision Transformer (ViT) models (but not ResNet models; He et al. 2016)
expect center-cropped images, which fundamentally limits their usefulness as image-description-
evaluation tools. In addition, for the default text encoder for CLIP, there is a 77-token character limit,
which also applies to the substantial majority of the text encoders in OpenCLIP (note, however, that
this doesn’t apply to all of the text encoders in OpenCLIP, e.g., to ROBERTA; Ilharco et al. 2021).
We also include CoCa under this umbrella, which modifies CLIP by adding an additional image
captioning objective to the language model and is included in OpenCLIP (Yu et al., 2022b).

BLIP As mentioned, BLIP is trained with both likelihood and similarity objectives. Consequently, we
evaluate both objectives in this study. Notably, BLIP is actually trained with two similarity objectives
— an item matching and an item contrastive score — but, in this study, we focus on the item contrastive
score since it tended to achieve higher correlation with our human judgment data. To compute the
description quality scores, we use BLIP embeddings in the same way we use CLIP embeddings.

4 CONTEXTREF: EVALUATING CORRELATION WITH HUMAN JUDGMENTS

The first part of ContextRef allows users to correlate model-assigned scores with human preference
ratings. Image description quality judgments have been extensively studied; Bernardi et al. (2016)
provide an overview of the various dimensions prior research has explored for determining quality,
including accuracy grammaticality, creativity, and human-like content, which we further elaborate on
in Appendix J. More recent frameworks include THumB (Kasai et al., 2022) and gamified quality
ratings (Scott et al., 2023). Since image accessibility is a fundamental use case of image description
generation and evaluation at scale, we adopt the evaluation scheme proposed by Kreiss et al. (2022a).
They introduce a set of 5 questions to assess multiple dimensions of description quality, which show
a promising correlation between sighted and blind and low vision (BLV) participant judgments.

4.1 STIMULI SELECTION

The data was randomly sampled from the English language subset of the WIT dataset (Srinivasan
et al.,, 2021). To provide an in-depth understanding of how model scoring behavior corresponds
with human description preferences, we prioritized detailed and high-coverage annotations for each
description over increased data sample size. As Sections 4.4 and 5.2 show, the dataset size is sufficient
to highlight robust patterns in model behavior.

Our dataset contains 204 sampled data points, each of which consists of an alt text description
written by Wikipedia editors as well as the corresponding image and context (article title, first
paragraph, section title, section text, caption). Sampling was restricted to data where both an alt
description (as it appears in the HTML alt tag) and a caption (visible to everyone below the image)
were present (Kreiss et al., 2022b). In WIT’s subset of English Wikipedia, 65% of alt descriptions
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Figure 2: Best correlations with human annotations of each model category for predicting description
quality. All correlations for overall, imaginability, and relevance are statistically significant Pearson
correlations (p < 0.001). No irrelevance correlations are significant. Correlations with ratings partici-
pants gave before seeing the image are in light blue, and ratings after seeing the image are in dark blue.
The dashed lines represent the estimated correlational ceiling on the data, based on the correlation
of the original data with the averaged resampled data. A results table is presented in Appendix E.

are identical to the caption, which is generally discouraged in image accessibility guides (e.g., the
WebAIM accessibility guide specifically advises against redundant information®). To optimize for
most informative sampled data, we therefore subsampled such cases to 20% of the crawled data.

4.2 PROCEDURE

Before starting the main study, participants were introduced to the overall goal of making images
nonvisually accessible. Then, participants were given 5 images with their associated description that
they were asked to rate, which were presented within the available context from the Wikipedia article
page. The descriptions were randomly sampled, but each participant saw exactly one description that
was identical to the caption and 4 descriptions that were distinct from the caption. Participants rated
each description twice, once before and once after seeing the image. After the image was revealed,
participants saw what they had previously selected so that they could make an informed decision to
either keep or change their rating. Each image was rated based on 6 distinct questions.

Question order was randomized between participants, except that the overall quality question always
appeared last. Participants were recruited via Prolific (Palan & Schitter, 2018), restricted to US-based
workers. The study had a median completion time of 11.5 minutes, and participants received $2.40
compensation ($12.50/hr). We continued recruitment until all descriptions had received at least
3 annotations from workers who passed the attention check (see Appendix A for details on the
participant population and data exclusions).

4.3 RESULTS: DATASET PROPERTIES

The dataset contains 768 annotations, averaging 3.8 distinct participant ratings for each description
(see examples in Appendix Figure A.4). Overall ratings are the most intuitive quality measure, which
is why they are the focus of the following dataset analyses. Figure 1A shows the distributions of
averaged ratings for each of the questions. Specifically, the overall ratings show encouraging coverage
over the whole scale, which is essential for evaluating the effectiveness of metrics. We also find that
quality ratings are significantly correlated with the description length, that descriptions are regarded as
less useful when they are identical to the associated caption, and that faulty descriptions consistently
receive lower ratings from participants. We include details on these analyses in Appendix B.

4.4 RESULTS: CORRELATION WITH REFERENCELESS METRICS

Using the annotated data, we correlate the description quality as predicted by the metrics with the
averaged human-annotated description quality. We selected the best-performing model variants based
on the highest correlation with the overall post-image ratings (see Appendix D for model details).

3ht‘cps ://webaim.org/techniques/alttext/
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Figure 2 shows the Pearson correlations for each model variant with the human annotations for all
quality assessment questions. There is a strong qualitative difference in correlation between the
ratings participants provided before seeing the image (presented in light blue) vs. after seeing the
image (dark blue), specifically for similarity-based metrics (denoted by circles).

Concretely, similarity-based metrics are uniformly less able to capture pre-image quality judgments
than post-image ones, which is not borne out for any of the likelihood-based metrics (denoted by tri-
angles). Most strikingly, this pattern even holds within the same model type (BLIP-2), suggesting that
the scoring method itself introduces a robust semantic bias for evaluating descriptions. These differ-
ences trace mainly to the descriptions marked as containing inaccurate information (see Appendix F).

While all similarity-based metrics are less successful in predicting pre-image ratings, we place more
emphasis on the post-image ratings for two reasons. First, when establishing the annotation scheme,
Kreiss et al. (2022a) note that sighted participant ratings after seeing the image show slightly higher
correlation with blind and low vision participant judgments. Second, it is only after seeing the
image that sighted users can evaluate whether descriptions are truthful. In the post-image condition,
most metrics achieve reasonably high correlations with the human ratings (with r» ~ 0.4), except
for InstructBLIP (r = 0.2). Nevertheless, the distinction in correlation with the pre-image ratings
already points to a qualitative difference between likelihood- and similarity-based metrics and the
role that image—text alignment plays for achieving this correlation. This is further supported by high
correlations of the predicted ratings within those categories, but not across (see Appendix C).

Based on the correlation with human ratings, these results seem to tell a promising story for the
potential of leveraging powerful pretrained models out-of-the-box for referenceless image description
evaluation. The by-question and across-metric correlational analyses, however, indicate qualitative
differences in the way that the metrics assign these scores.

5 CONTEXTREF: EVALUATING ROBUSTNESS

While the high correlations of the metrics with human ratings are reassuring, they provide only
limited insight into how the metrics work and where they fail. Based on prior work on what makes
descriptions (not) useful and the type of errors language and vision models often make, the second
part of ContextRef introduces dataset augmentations which any metric should be expected to be
sensitive to. These augmentations are in contrast to many previous approaches testing whether models
are insensitive to perturbations (e.g., Qiu et al. 2022; Rohrbach et al. 2018). Here, we expect all
augmentations to necessarily result in lower scores than are assigned to the ground-truth data.

5.1 DATA AUGMENTATIONS

The applied data augmentations manipulate a subset of three potential causes of errors: missing
image—text alignment, over-reliance on string predictability, and lack of contextual sensitivity. We
exemplify each augmentation in Figure 1B.

Shuffled descriptions Descriptions are shuffled to be assigned to a different image from the dataset.
This tests whether a metric integrates image and description information jointly and is commonly
used to uncover object hallucinations (Radford et al., 2021; Hessel et al., 2021; Cui et al., 2018).

Shuffled contexts Contexts that each image originated from are shuffled. Prior work found that if
the connection between the image and the context it appears in isn’t apparent from the description, it
receives low quality ratings, especially from BLV participants (Kreiss et al., 2022a).

Shuffled words Prior work suggests that grammaticality is an indicator of description quality
(Kasai et al., 2022; Mitchell et al., 2012; Elliott & Keller, 2013). Shuffling word order is a long-
standing strategy to investigate sensitivity to grammaticality (Barzilay & Lee, 2004; Cao et al., 2020;
Parthasarathi et al., 2021) and some Transformer-based language model variants can be trained
to effectively perform language modeling without consideration to word order information (Sinha
etal., 2021; Abdou et al., 2022). In addition to string predictability, word shuffling can also affect
image—text alignment since, for instance, property attribution can become ambiguous (e.g., “a red
shirt and blue pants” can become “blue shirt pants a red and”).

Proper name replacement We used GPT-4 (OpenAl, 2023) to identify and replace all proper names
in the descriptions, such as people’s names or locations, with likely alternatives.* The accuracy of

*Using GPT-4 allowed for more naturalistic replacements than could be done with pattern-based methods.



proper nouns based on the image alone is generally difficult to verify but essential for error detection.
Following the same logic, we also replaced dates in this manipulation. 104 out of the 204 descriptions
contain at least one proper name replacement.

Frequent alignment errors Previous work has established a number of common errors that image
description generation models make, including the misidentification of colors, clothing items, or
people’s ages (van Miltenburg & Elliott, 2017). We used GPT-4 to detect and replace those terms
with incongruent alternatives in order to necessarily make the description inaccurate. 153 out of the
204 descriptions contain at least one induced common model error.

Frankenstein images A random object (e.g., a golden crown) is saliently placed within the image
at a random position (Yu et al., 2022a). The score for a description that doesn’t mention the added
object is expected to be lower due to the salience of the image manipulation. This tests image—text
alignment but would likely also be reflected in metrics sensitive to image coherence.

GPT-2 continuations (long/short) To test the effect of string predictability on the predicted rating
(Rohrbach et al., 2018), descriptions were extended by an additional sentence (long condition). We
used GPT-2 (Radford et al., 2019) to generate likely string continuations that are not grounded in
the image. To account for the length artifact, we also created a version where GPT-2 completes
the first half of the description (short condition). This tests image—text alignment by adding image-
independent information that is highly likely.

Irrelevant final sentence To further exaggerate the condition of adding irrelevant but high-probability
strings, we add an irrelevant sentence to the end of a description. The sentence is randomly chosen
from 10 sentences from Wikipedia, e.g., “The elephant is the largest existing land animal.”

Exact repetition Inspired by the observation that language models tend to repeat phrases (Holtzman
etal., 2019; Xu et al., 2022; Tang et al., 2023), we add a test for an exact repetition of the description.
Reference-based evaluation metrics can show a bias towards long sentences with repeated phrases
(SPICE; Liu et al. 2017). Redundant information should be dispreferred by a metric for two reasons.
First, redundant information can lead to undesired pragmatic inferences (Nie et al., 2020), and second,
accessibility technologies like screen readers make it hard to skip ahead and avoid redundant parts.

5.2 RESULTS

To contextualize the behavior of the various metrics for each augmentation type, Figure 3 shows
the exact number of descriptions for which the metrics assigned the same, lower, or higher scores.
Given the nature of the augmentations, a well-calibrated metric should assign a lower score for all
augmented descriptions, resulting in all green bars. Cases where the metrics are insensitive to the
augmentation are marked in light pink. The most problematic cases are marked in dark pink. Here,
the metric considers the augmented data to be of higher quality than the ground truth.

No metric passes all data augmentations out-of-the-box. Across augmentation variants, augmented
descriptions often counter-intuitively receive a higher score than their ground-truth counterparts
(see Appendix G for a complementary analysis of the average assigned scores). This illustrates
fundamental shortcomings of simply selecting referenceless metrics based on human correlation
performance alone, and shows how those metrics can mislead model development based on their
behavior on likely model error patterns.

The data augmentation results further support the previous observation that similarity-based and
likelihood-based metrics show distinct semantic sensitivities. Notably, they strongly differ in their
sensitivity to shuffled descriptions. CLIP correctly decreases the score for almost all shuffled
descriptions, providing evidence that the task is well-defined. The original CLIPScore and BLIP-2 are
similarly successful, which is perhaps unsurprising given the contrastive learning objective underlying
the scores and provides further evidence that similarity-based metrics are sensitive to image—text
mismatches. However, the Frozen metric, which showed a comparatively strong correlation with
the human data, increases its score for more than 25% of all incompatible descriptions, and the best-
performing BLIP-2 does so for more than half. This pattern is similarly reflected in the Frankenstein
images augmentation and suggests a key failure case of the likelihood-based metrics.

When it comes to shuffled contexts, however, likelihood-based metrics appear comparatively more
successful. Even the previously proposed contextual CLIPScore variant that showed encouraging
correlations with sighted and BLV user rating (Kreiss et al., 2022a) fails when the contexts are
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Figure 3: Proportion of augmented descriptions that receive lower scores (green), unchanged scores
(light pink), or counter-intuitively higher scores (dark pink). Metrics are sorted according to their
correlational performance with the human judgments in Figure 2. Across augmentations, models
commonly assign higher scores to augmented descriptions that by definition contain wrong or
irrelevant irrelevant, omit relevant information, or are ungrammatical.

randomly shuffled. Another success story for likelihood-based scores is the shuffled words, where
they achieve ceiling accuracy. In 25% of the descriptions, the similarity-based metrics CLIP and
BLIP-2, however, assign a higher score to the shuffled descriptions than their ordered counterparts.

The most striking failure case of likelihood-based metrics is the strong preference for descriptions that
were augmented to increase the predictability of the string (GPT-2 continuation long, irrelevant final
sentence, and exact repetition). For exact repetition, all likelihood-based metrics show a categorical
preference for the augmented description over the original one, which is only marginally improved
for the case where a correct but completely irrelevant final sentence is added. This suggests that
increased string predictability (independent of the image) biases especially likelihood-based metrics
towards higher scores. This is in line with the prior observation that language models trained for
description generation exhibit strong language priors (Rohrbach et al., 2018).

In sum, all models exhibit unexpected behavior and assign higher scores to descriptions that are
decidedly worse. However, similarity- and likelihood-based metrics show distinct sensitivity patterns
across augmentations. Likelihood-based metrics are highly influenced by added irrelevant information
and show a comparatively low sensitivity for detecting descriptions that don’t belong to an image.
However, they are very sensitive to manipulations of word order and context. Interestingly, Instruct-
BLIP had the lowest correlation with human ratings but seems more sensitive to data manipulations
than the on-the-surface more promising likelihood-based alternatives.

Based on the behavior on augmented data, similarity-based metrics appear more promising since they
consistently judge at least half of all augmented descriptions as worse compared to their original
counterpart. However, increased scores for the augmented examples are still present at an alarming
rate, and the similarity-based metrics seem to fail to respond meaningfully to context perturbations.

6 TOWARDS BETTER METRICS VIA FINE-TUNING WITH CONTEXTREF

While out-of-the-box referenceless metrics appear promising in terms of correlation with human
judgments, they exhibit a wide range of unexpected behaviors on data augmentations that target



image—text alignment, predictability of the string, and context sensitivity. In this section, we explore
the extent to which fine-tuning can guide metrics toward capturing the reduced quality associated with
these expected model-made errors in the augmentations. This is partially motivated by recent trends
in research on large pretrained models, where techniques such as instruction tuning and reinforcement
learning from human feedback (RLHF) have been used to help close gaps between the capabilities of
large pretrained models and real-world usage (Ziegler et al., 2019).

We select CLIP, a similarity-based metric

that is the most robust against the data aug- CLIP Frozen

mentations, and Frozen, a likelihood-based Dataset variant Untuned Tuned Untuned Tuned
metric that had particularly strong over- 1 ea.q Jescr. 100.0 100.0 667 692
all correlation with human ratings but still e contexts 439 488 585  65.9
some promising scoring behavior on the g fed words 67.6 919 1000 100.0
data augmentations. We split the data into proper name repl. 762 81.0 857 857
an 80% train and 20% test split, ensuring freq. align. errs. 893 893 714 75.0

that any augmentations involving data shuf- ¢~ b0 h o img 100.0 100.0 537 537
fling are only shuffled within the respective  GpT.5 cont. short 781 902 61.0 63.4

split to avoid contamination of the test set.  5pT.7 cont. long 659 100.0 24 9.8
We first trained the best-performing CLIP  irrel. final sent. 80.5 100.0 24 195
model for 0.5 epochs with a learning rate of ~ eXact repetition 65.9 100.0 00 00

5¢~9 and a batch size of 64, with the Adam
optimizer (Kingma & Ba, 2014). Fine- Table 1: Model performance (percent) on dataset aug-
tuning CLIP solely on the data augmenta- mentations before and after jointly fine-tuning on the
tions results in deterioration of the human augmentations and human judgments. Accuracy is the
judgment correlation. When reaching 0.5 proportion of descriptions in the test set that receive the
epochs, CLIP achieves some performance expected lower score compared to the ground-truth.
improvements in 7 out of 10 augmentations

but only at the cost of reducing the Pearson correlation with the human judgments from 0.36 to 0.27.

To mitigate this issue, we jointly trained on the augmented data and the raw evaluation scores from
the human-subjects experiment (Section 4). For this training, we maintain other hyperparameters,
but change the learning rate to 2¢~5. While still maximizing for the Pearson correlation with human
judgments on overall (post-image) ratings (from 0.36 to 0.30), fine-tuned CLIP achieves remarkable
performance gains on the data augmentations, shown in Table 1. Augmentations with the highest gains
are shuffled words (+24%), and perfect performance on GPT-2 continuation long (+34%), irrelevant
final sentence (+20%), and exact repetition (+24%). For the shuffled contexts augmentation, fine-
tuned CLIP also improves performance, but doesn’t change its score in 9% of the descriptions and
provides a higher score for about 40% of the augmented data compared to the ground truth.

Fine-tuning Frozen jointly on the human data and data augmentations also improves performance on
many of the data augmentations, but it still largely falls behind CLIP. Even with fine-tuning, Frozen
can’t get any traction on exact repetition and still largely provides higher scores for descriptions
containing irrelevant information (GPT-2 continuation long and irrelevant final sentence).

These fine-tuning results highlight how fine-tuning existing models to align with common model short-
comings can be an effective strategy for developing more intuitive referenceless metrics. For CLIP, a
similarity-based metric, fine-tuning can alleviate most of the unintuitive behavior. However, context-
sensitivity remains challenging, suggesting that especially a successful integration of context might re-
quire more fundamental innovations to successfully guide metric alignment with people’s judgments.

7 CONCLUSION

Referenceless image description evaluation metrics can support and promote fast progress on image
description generation models, but only if they reliably correlate with human preferences. We
introduce ContextRef, a benchmark for assessing these metrics against the results of a human-subjects
experiment and against data augmentations that should systematically make descriptions worse. We
find that no metric excels across all parts of ContextRef, but careful fine-tuning improves metric
performance. Integrating context remains a challenge, though; we hope that ContextRef spurs new
research on this important aspect of image description generation.
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A RECRUITMENT DETAILS AND DATA EXCLUSIONS

Participants Participants were recruited on the online study platform Prolific. Recruitment was
restricted to US-based participants using Prolific’s standard sampling. Participant age ranged from
19 to 84 years (mean: 37.9; median: 36; 3 participants didn’t report their age). 96% of participants
indicated that English is among their native languages (4 participants chose not to answer). We
didn’t collect gender information since collecting a variety of personal information can lead to
compromising participant identity, and gender isn’t central to our study setup. The study ran under
an IRB protocol. In Appendix I, we discuss how our participant pool and individual variation pose
important limitations for the applicability of this work to immediate downstream application.
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Exclusions Participants were excluded based on their response to the Added info question in the
case where the caption and description are identical. The question asks how much information the
description adds that’s not present elsewhere. We excluded participants who gave a rating of 3 or
higher either before or after seeing the image. Based on this attention check, we excluded the work
of 190 out of 358 unique participants (53%), which is in line with recent estimates on the proportion
of low-quality work on Prolific (Douglas et al., 2023).

B ADDITIONAL DATASET PROPERTIES

The overall quality ratings are significantly correlated with the length of the descriptions (r = 0.27,
p < 0.001), which is at odds with previous work that only found length correlations for blind and low
vision participants (Kreiss et al., 2022a). The conflicting results could be due to the high statistical
power in our dataset (with 768 as opposed to about 200 annotations).

The overall quality ratings confirm the assumption made in prior work and accessibility guides that
descriptions are considered less useful when they are an exact duplicate of the caption (Welch two
sample t-test: t = —6.24, df = 279.01, p < 0.001). Our results provide empirical evidence to the
normative arguments that alt descriptions should complement the textually available information
instead of repeating it, and emphasizes the importance of considering the textual context the image is
in for naturalistic description evaluation.

For 25 images (12% of all images) at least one annotator reported that the description contains
potentially wrong information. For 6 of those images (3% of all images), more than half of the
annotators reported potentially wrong information. Participants note potential mistakes in the image-
text alignment (“The aircraft can be seen in the bottom left, not the bottom right of the image.”, or
“This is not a statue”), misspellings (“‘Photo’ is spelled incorrectly”), and contextual misalignment of
the image/description and the rest of the article (“The image isn’t relevant to the article; it shows Cuba
and the surrounding area.”). Images with potentially faulty descriptions are rated lower on average
in the post-image but not pre-image condition (Welch two sample t-test: t = —5.48, df = 135.37,
p < 0.001), suggesting that most of those judgments are based on image-text alignment issues that
can only be verified based on the image.

C CROSS-METRIC CORRELATIONS

Figure A.5 shows the correlations between all metrics, and supports a clustering of metrics based
on how scores were obtained. Similarity-based metrics and likelihood-based metrics correlate
highly amongst each other respectively (r = [0.33,0.87]), but show much less correlation across
(r = [0.05,0.42], marked in yellow).

D BEST PERFORMING MODEL SPECIFICATIONS

We selected the models that had the highest correlation with the human judgments based on the
overall description quality ratings participants provided after the image was revealed. Those were the
following model variants which are presented and further analyzed in the paper.

D.1 LIKELIHOOD-BASED METRICS

Flamingo For our Flamingo model, we use OpenFlamingo v2’s 9 billion parameter model, combining
a 7 billion parameter text model (MosaicML’s MPT-7B) and CLIP ViT L/14 (large with a patch size
of 14 pixels) encoder using cross-attention (Awadalla et al., 2023).

Frozen For our Frozen evaluations, we use GPT-2 large as the language model (700 million pa-
rameters) combined with the EVA-02 image encoder model based on CLIP (Fang et al., 2023). In
particular, we use the “enormous” EVA model size (4.4 billion parameters) with a patch size of 14
pixels, which was pretrained on the LAION2b dataset (Schuhmann et al., 2022), through OpenCLIP
(Ilharco et al., 2021).

BLIP For BLIP and InstructBLIP, we use the corresponding BLIP-2 variants with Flan-T5 XXL as a
base model (which has 11 billion parameters) (Li et al., 2023).
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was revealed. For the last two cases, ratings increased after the image was revealed.

Figure A.4: Examples from the human-annotated dataset.
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Figure A.5: Correlations between metrics ordered by the largest eigenvalues of the correlation
matrix. Correlations within similarity-based and likelihood-based metrics respectively are higher
than correlations between these categories (marked in yellow).

D.2 SIMILARITY-BASED METRICS

Original CLIPScore For the original CLIPScore, we use CLIP ViT B/32 (base with a patch size of
32 pixels) as is done in their original paper (Hessel et al., 2021).

CLIP For the selected contextual CLIP-based metric, we use a CLIP-based ViT B/16 (base with a
patch size of 32 pixels), trained on the LAION-400M dataset for 32 epochs, from OpenCLIP (Ilharco
et al., 2021).

BLIP For BLIP, we use the BLIP-2 *feature extractor’ for our similarity-based metrics, based on
CLIP ViT-G (giant with a patch size of 14 pixels) (Li et al., 2023).

E DETAILED CORRELATION RESULTS

Table A.1 lists the Pearson correlation values presented in Figure 2.

F QUALITATIVE ANALYSIS: PRE- VS. POST-IMAGE CORRELATIONS

A qualitative follow-up analysis reveals that the difference in pre- vs. post-image rating correlations is
primarily due to the descriptions that participants indicated to contain potentially wrong information.
In other words, because the metrics always have access to the images, they penalize incorrect
descriptions, while participants cannot know descriptions are incorrect before they’ve seen the
images. Excluding those descriptions, the similarity-based metric correlations rise close to post-
image correlation rates. CLIPScore reduces the correlation difference from 0.17 to 0.03, CLIP
reduces it from 0.17 to 0.09, and BLIP-2 reduces it from 0.13 to 0.05. These results indicate that
much of the difference in pre- and post-image correlation is driven by image—text incongruencies
sighted users assess only when viewing the image.

G DATA AUGMENTATIONS: AVERAGE SCORE ANALYSIS

Figure A.6 shows the average description score for each augmented dataset assigned by the different
models. The original dataset is presented in black and is the average score that all data augmentations
are compared against. Given the nature of the augmentations, a well-calibrated metric should assign
a lower average score throughout. The cases where this is successful are marked in green. If the
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Question Metric Variant Rating

Overall Orig. CLIPScore (Sim) pre-image: 0.11; post-image: 0.28
Overall CLIP (Sim) pre-image: 0.18; post-image: 0.35
Overall BLIP-2 (Sim) pre-image: 0.23; post-image: 0.36
Overall InstructBLIP (LogL) pre-image: 0.22; post-image: 0.20
Overall Flamingo (LogL) pre-image: 0.36; post-image: 0.39
Overall Frozen (LogL) pre-image: 0.43; post-image: 0.39
Overall BLIP-2 (LogL) pre-image: 0.42; post-image: 0.40
Imaginability  Orig. CLIPScore (Sim) pre-image: 0.12

Imaginability ~CLIP (Sim) pre-image: 0.16

Imaginability ~BLIP-2 (Sim) pre-image: 0.30

Imaginability InstructBLIP (LogL) pre-image: 0.23

Imaginability Flamingo (LogL) pre-image: 0.37

Imaginability Frozen (LogL) pre-image: 0.42

Imaginability BLIP-2 (LogL) pre-image: 0.37

Relevance Orig. CLIPScore (Sim) pre-image: 0.17; post-image: 0.33
Relevance CLIP (Sim) pre-image: 0.19; post-image: 0.36
Relevance BLIP-2 (Sim) pre-image: 0.23; post-image: 0.37
Relevance InstructBLIP (LogL) pre-image: 0.29; post-image: 0.24
Relevance Flamingo (LogL) pre-image: 0.34; post-image: 0.36
Relevance Frozen (LogL) pre-image: 0.40; post-image: 0.33
Relevance BLIP-2 (LogL) pre-image: 0.35; post-image: 0.29
Irrelevance Orig. CLIPScore (Sim) pre-image: 0.05; post-image: 0.01
Irrelevance CLIP (Sim) pre-image: 0.00; post-image: -0.03
Irrelevance BLIP-2 (Sim) pre-image: 0.04; post-image: 0.02
Irrelevance InstructBLIP (LogL) pre-image: -0.01; post-image: -0.09
Irrelevance Flamingo (LogL) pre-image: -0.09; post-image: -0.08
Irrelevance Frozen (LogL) pre-image: -0.12; post-image: -0.15
Irrelevance BLIP-2 (LogL) pre-image: -0.25; post-image: -0.18

Table A.1: Pearson correlations of metric predictions with human judgments. This supplements
Figure 2.

augmentation has no or barely any effect on the average score (with overlapping confidence intervals),
it is marked in light pink. In these cases, the metrics appear insensitive to the manipulation. The most
problematic cases are marked in dark pink. Here, the metric considers the augmented data to be of
higher quality than the ground truth. We now turn to the central qualitative observations. Metrics are
sorted according to their correlational performance with the human judgments in Figure 2.

No metric passes all data augmentations. The degree of unexpected behavior increases with models
that show higher out-of-the-box correlations with human ratings. While CLIP scores in 8 out of 10
augmentations on average penalize the augmented data, BLIP-2 never assigns lower average scores
in any data augmentation.

For similarity-based metrics, the shuffled descriptions augmentation stands out, as the average
assigned scores are much lower than for any other augmentation. This is perhaps unsurprising given
the contrastive learning objective underlying the scores and further evidence that similarity-based
metrics are sensitive to image-text mismatches.

Surprisingly, all likelihood-based metrics assign a higher average score in at least one data augmenta-
tion. Specifically, they all tend to fail when additional information is added that’s either unrelated
to the image (GPT-2 continuation long and irrelevant final sentence) or an exact repetition of the
description (exact repetition). Taken together with the strict dispreference for descriptions where the
words are shuffled (shuffled words), this suggests that the language model plays an elevated role over
the vision model for the likelihood-based metric scores. This is in line with the prior observation that
language models trained for description generation exhibit strong language priors (Rohrbach et al.,
2018). In further support of this hypothesis is the fact that these metrics are fairly insensitive to the
Frankenstein images augmentation that introduces an image-internal incongruency that should lead
to worse image-text alignment since there is insufficient detail. Note, however, that this insensitivity
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Figure A.6: Most correlated metrics’ average score for each data augmentation. Data augmentations
resulting in a lower average score are presented in green, unchanged scores are presented in light
pink and data augmentations counter-intuitively resulting in better scores are presented in dark pink.
Error bars indicate 95% bootstrapped confidence intervals computed over all assigned scores.

is only borne out for image-independent or redundant information. Descriptions containing false
information are generally dispreferred (see shuffled descriptions and proper name replacement),
suggesting at least some image-text coordination.

Remarkably, the increase in average score in the likelihood-based models is often quite large compared
to the lower scores assigned in other augmentations. In Frozen, while shuffling the descriptions only
results in a minor decrease in average scores (shuffled descriptions), simply repeating the description
twice results, on average, in a 3 times higher score. This suggests there is significant variation in
sensitivity to different data augmentations.

H MODEL DETAILS

H.1 LIKELIHOOD-BASED PROMPT

We use the following prompts for evaluating the likelihood of text with the language models. The
default arguments used are included, where ‘reduce’ controls whether to average the likelihood over
the tokens, and ‘diff” whether to calculate the log-likelihood of just the target. The score functions are
used to evaluate the likelihood of the text. We ultimately use text_if_good with reduce but without
diff.

I def text_if_good(self, image_name, diff=
— False, return_tensor=False):

base_text "

if context

text, context, reduce=True,

is not None:

4 base_text += f'[Context: {context}] '
5 base_text += 'High quality, accessible, image description:'
6 target_text = text
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7 score = self.score_fn(image_name, base_text, target_text, reduce=
— reduce, diff=diff, return_tensor=return_tensor)
8 return score

10 def good_if_text(self, image_name, text, context, reduce=True, diff=

— False, return_tensor=False):

I base_text = ""

12 if context is not None:

13 base_text += f'[Context: {context}] Look at the context, photo,
— and description and rate the description from 1-5 based on
— whether it is a high quality, accessible, image description.
— Description:'

14 else:

15 base_text += 'Look at the photo and description and rate the
<~ description from 1-5 based on whether it is a high quality,
— accessible, image description. Description:'

16 target_text = '5'

17 score = self.score_fn(image_name, base_text, target_text, reduces=
— reduce, diff=diff)

18 return score

H.2 FROZEN INTUITION

For the Frozen baseline, we match the tokens in the language model’s embeddings to their cor-
responding words in the multi-modal model’s embedding space, and create a new token cor-
responding to the linear combination of the tokens in the multimodal space for a new image.
For example, consider an image of a “pluot” that is represented in the multimodal model’s em-
bedding space as a linear combination of its embeddings for the words plum and apricot: i.e.,
encode_image(pluot_image) = « * encode_text(plum) + B * encode_text(apricot). Then, a
new token would be created in the language model’s vocabulary corresponding to the same linear
combination of the language model embeddings for plum and apricot: new_token(pluot_image) =
a x embed_token(plum) 4+ 8 * embed_token(apricot). Then, the image can be passed into the
language model as if it is a token.

I LIMITATIONS

The aim of ContextRefis to test metric alignment with people’s intuitions on accessibility description
quality. To get initial traction on this task, we largely abstract away from individual participant
variation and focus on the average ratings across participants. We do that by obtaining multiple
ratings for each individual description which reduces the effects of outliers and instead reflects
general preference patterns in the recruited population. Our approach therefore has two fundamental
constraints.

Firstly, our empirical data might reflect population-level biases based on shared experiences in our
participant population. Our participant population is US-based, and due to the recruitment medium
primarily consists of tech-savvy, young, and non-blind adults. Prior work has shown that depending
on for example the cultural background, referential preferences change, leading to model behavior
such as only accurately recognizing Western wedding dresses (Shankar et al., 2017). These referential
choices are important for building appropriate and equitable systems, but don’t necessarily fall out
this framework.

Secondly, we largely abstract away from the individual variation within our dataset. Individual
preference variation is an important component of current image description research and is still
underexplored. One such example is description length. A variety of papers have found conflicting
evidence on whether shorter or longer descriptions are generally preferred (Slatin & Rush, 2003;
Petrie et al., 2005; Rodriguez Vazquez et al., 2014). We therefore chose to set up this study based on
a goal-oriented framing (consider the purpose and choose your responses accordingly) as opposed
to explicit training and instructions. We thereby focus on investigating communicatively motivated
intuitions, instead of alignment to prescriptive practices. However, we encourage work that builds on
ContextRefto adjust the experimental design according to potentially distinct downstream needs, and
the framework easily extends to instruction-centric experiment design.
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J  EXTENDED RELATED WORKS

J.1 REFERENCELESS METRICS

Metrics for evaluating image description quality can be reference-based or referenceless. Reference-
based metrics originated in Machine Translation and assign a quality score based on the correspon-
dence of a proposed description to multiple ground-truth references (Papineni et al., 2002). These
metrics tend to be image- and context-independent since the ground-truth references are assumed
to capture all relevant information. However, these metrics often require that there are multiple
high-quality ground-truth references to be useful (Anderson et al., 2016), which severely limits their
application.

Recently, a number of referenceless evaluation metrics have been proposed, which assign a quality
score for a description without requiring ground-truth references. Instead, text quality is evaluated by
considering either its connection to the image content (Hessel et al., 2021; Lee et al., 2021a;b; Scott
et al., 2023) or its quality as standalone text (Feinglass & Yang, 2021). CLIPScore (Hessel et al.,
2021) and UMIC (Lee et al., 2021b) define it as a classification problem where a model is trained
contrastively to distinguish compatible and incompatible image—text pairs. QACE (Lee et al., 2021a)
returns a high score when a model returns similar answers to questions based on the image and text.
The metric proposed by Scott et al. (2023) is based on training a model on quality ratings that people
assigned to image—text pairs and is grounded in a gamified experimental design setup that reduces
interannotator variation. Finally, SPURTS is the referenceless subpart of SMURF (Feinglass & Yang,
2021), and the only referenceless metric listed here, which is image-independent.

In this paper, we explore the general benefit of large pretrained Vision-Language models for the
task of referenceless image description evaluation. We investigate a wide range of models and ways
to obtain a quality score. We further introduce a pipeline that highlights the limitation of simply
relying on correlations with human ratings and uncovers fundamental shortcomings for current
state-of-the-art models when used without fine-tuning. Our work proposes a benchmark and pipeline
to help referenceless metric development and assessment, which is (in contrast to all prior efforts)
grounded in the context where the image appears.

J.2 IMAGE DESCRIPTION EVALUATION

Even just defining what makes an image description good and useful is challenging. Bernardi et al.
(2016) provide an overview of the various dimensions prior research explored for determining quality,
including the accuracy of a description (Li et al., 2011; Mitchell et al., 2012; Kuznetsova et al.,
2012; Elliott & Keller, 2013; Hodosh & Hockenmaier, 2013; Yatskar et al., 2014; Jiang et al., 2019),
whether it’s grammatical (Yang et al., 2011; Mitchell et al., 2012; Kuznetsova et al., 2012; Elliott &
Keller, 2013), creative (Li et al., 2011), or human-like (Mitchell et al., 2012). More recently, Kasai
et al. (2022) introduced THumB, a rubric-based human evaluation framework for image-based text
generation models. Participants rate image-based texts along two dimensions in a tradeoff between
the accuracy of the information and whether all salient content is mentioned.

In this work, we build on the annotation pipeline introduced in Kreiss et al. (2022a), which has a
rubric-based annotation design specifically focused on capturing the dimensions relevant for nonvisual
accessibility (e.g., whether all relevant information are mentioned). Based on prior work specifically
on model-generated errors (Kasai et al., 2022; Elliott & Keller, 2013), we supplement this annotation
by introducing data augmentations that specifically pick up on common model-made mistakes, like
truthfulness or ungrammaticality.
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