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APPENDIX

A MDPS WITH DELAY: A DEGRADATION EXAMPLE

A.1 PROOF OF PROPOSITION 3.1

Without loss of generality, assume p P r0.5, 1s. It is easy to see than in our 2-state MDP, the optimal
policy selects a0 if the most likely state of the system is s0, and a1 if it is s1. Since p • 0.5, the
most-likely state of the system when observing s0 is s0 if m is even, and s1 if m is odd. The same
logic holds when observing s1. Therefore, if m is even, ⇡˚ps0q “ a0,⇡

˚ps1q “ a1. Otherwise,
⇡

˚ps0q “ a1,⇡
˚ps1q “ a0. Note that re-iterating the rest of the proof with a randomized policy (of

the form ⇡pa|sq P p0, 1q, @a P ta0, a1u, @s P ts0, s1u) yields sub-optimal return. Hence, in this
example it is enough to consider deterministic policies.

The expected reward at time t ` m with action ⇡
˚pstq selected at st is

R
˚
t`mpstq : “ Est`m|strrpst`m,⇡

˚pstqqs
“ rps0,⇡˚pstqqPpst`m “ s0|stq ` rps1,⇡˚pstqqPpst`m “ s1|stq.

(2)

From here on, we inspect the case where st “ s0 for brevity. By symmetry, identical arguments apply
if st “ s1. If m is even, rps0,⇡˚ps0qq “ 1 and rps1,⇡˚ps0qq “ 0. If m is odd, rps0,⇡˚ps0qq “ 0
and rps1,⇡˚ps0qq “ 1. Thus, using (2),

R
˚
t`mps0q “

"
Ppst`m “ s0|st “ s0q if m is even,
Ppst`m “ s1|st “ s0q if m is odd.

(3)

Note that, by construction, the transition probabilities are independent of the actions. Specifically, if
m is even,

Ppst`m “ s0|st “ s0q “
mÿ

k even

ˆ
m

k

˙
p
kp1 ´ pqm´k

, (4)

since we count the possibilities of an even number of jumps between the two states. Similarly, if m is
odd,

Ppst`m “ s1|st “ s0q “
mÿ

k odd

ˆ
m

k

˙
p
kp1 ´ pqm´k

. (5)

Also note that the same applies for st “ s1, i.e.,
R

˚
t`mps0q “ R

˚
t`mps1q @t, (6)

and that these probabilities are independent of t, i.e.,
R

˚
t`mps0q “ R

˚
t`m`kps0q @k P N. (7)

Next, we compute the optimal return starting from s0 :

v
˚
mps0q : “ E⇡˚

« 8ÿ

t“0

�
t
rpst`m,⇡

˚pstqq|st“0 “ s0

�

“ R
˚
mps0q ` �

“
Ppst“1 “ s0qR˚

m`1ps0q ` Ppst“1 “ s1qqR˚
m`1ps1q

‰

` �
2

`
Ppst“2 “ s0qR˚

m`2ps0q ` Ppst“2 “ s1qqR˚
m`2ps1q

˘
` . . .

“ R
˚
mps0q ` �R

˚
m`1ps0q pPpst“1 “ s0q ` Ppst“1 “ s1qqq

` �
2
R

˚
m`2ps0q pPpst“2 “ s0q ` Ppst“2 “ s1qqq ` . . .

“ 1

1 ´ �
R

˚
mps0q, (8)

where in the second relation we used (6), and in the last relation (7) as well as Ppst “ s0q “
1 ´ Ppst “ s1q @t.
Plugging (4) and (5) into (3), together with (7), (8) and (6) gives the optimal return

v
˚
mps0q “ v

˚
mps1q “

#
1

1´�

∞m
k even

`
m
k

˘
p
kp1 ´ pqm´k

, if m is even,
1

1´�

∞m
k odd

`
m
k

˘
p
kp1 ´ pqm´k

, if m is odd.
(9)
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This concludes the first part of the proof.

In the second part, we shall now derive a simpler expression for (9) which can then be analyzed to
determine monotonicity w.r.t. m and p. Observe that

p1 ´ 2pqm “ p´p ` 1 ´ pqm “
mÿ

k

ˆ
m

k

˙
p´pqkp1 ´ pqm´k

“
mÿ

k even

ˆ
m

k

˙
p
kp1 ´ pqm´k ´

mÿ

k odd

ˆ
m

k

˙
p
kp1 ´ pqm´k

.

Since
mÿ

k even

ˆ
m

k

˙
p
kp1 ´ pqm´k `

mÿ

k odd

ˆ
m

k

˙
p
kp1 ´ pqm´k “ 1,

we have that
mÿ

k even

ˆ
m

k

˙
p
kp1 ´ pqm´k “ 1

2
p1 ` p1 ´ 2pqmq , (10)

mÿ

k odd

ˆ
m

k

˙
p
kp1 ´ pqm´k “ 1

2
p1 ´ p1 ´ 2pqmq . (11)

Denote a :“ ´p1 ´ 2pq, remember that 0 § a § 1, and let m “ 2n (resp. m “ 2n ` 1) with n P N
when m is even (resp. odd). Then

1

2
p1 ` p1 ´ 2pqmq “ 1

2

`
1 ` pa2qn

˘
(12)

and
1

2
p1 ´ p1 ´ 2pqmq “ 1

2

`
1 ` apa2qn

˘
. (13)

Both (12) and (13) obviously monotonically decrease with n, so the even and odd subsequences are
monotone. Also, since a § 1, (13) § (12), which gives that the whole sequence itself is monotone in
m. Lastly, as p increases a increases. This obviously causes both (12) and (13) to increase as well.

B THE STANDARD APPROACH: AUGMENTATION

B.1 THE AUGMENTED MDP

Let the augmented state space Xm :“ S ˆA
m
. Then, xt :“ pst, a´1

t , ¨ ¨ ¨ , a´m
t q P Xm is an

extended state, where a
´i
t is the i-th pending action at time t. It means that in the following step,

t ` 1, action a
´m
t will be executed independently of the present action selection. Accordingly, a new

transition function for Xm is induced by the original transition matrix P and m-step delay. More
explicitly, for px, a, x1q P Xm ˆAˆXm we have

F px1|x, aq “
"
P peJ

1 x
1|eJ

1 x, e
J
m`1xq if eJ

2 x
1 “ a and e

J
i`1x

1 “ e
J
i x @i P r2 : ms,

0 otherwise,
(14)

where ei P t0, 1um`1 is the elementary vector with 1 only in its i-th coordinate.3 Similarly, the
reward function on the augmented state-space is:

gpx, aq “ rpeJ
1 x, e

J
m`1xq. (15)

Note that g does not depend on the newly decided action a P A, but rather on the first and last
coordinates of the current state x P Xm. This leads us to the following definition.

3Throughout this work, we assume without loss of generality that s P S is a scalar, to simplify notation of
inner products with ei. This assumption is non-limiting since any multi-dimensional state space can be easily
transformed to single-dimensional via enumeration as it is finite.
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B.2 mA-PI ALGORITHM

Let the set of greedy policies w.r.t. v P R|Xm|: Ḡpvq :“ t⇡̄ P ⇧̄m : T̄ ⇡̄
v “ T̄ vu.

Algorithm 1 mA-PI

1: Initialize: ⇡̄0 P ⇧̄m, k “ 0
2: while ⇡̄k is changing do
3: vk – v

⇡̄k

4: ⇡̄k`1 – any element of Ḡpvkq
5: k – k ` 1
6: Return: ⇡̄k, vk

B.3 CONVERGENCE OF mA-PI

Convergence of mA-PI directly follows from the improvement property of greedy policies, which we
prove below.
Proposition (mA Evaluation and Improvement). (i) For any x P Xm and ⇡̄ P ⇧̄m, the augmented
value function v

⇡̄ satisfies the Bellman recursion v
⇡̄pxq “ T̄

⇡̄
v
⇡̄pxq.

(ii) The optimal augmented value v̄
˚ is the unique fixed point of T̄ . Furthermore, if ⇡̄˚ is preserving,

i. e., ⇡̄˚ P argmax⇡̄ tg⇡̄ ` �F
⇡̄
v̄

˚u, then ⇡̄
˚ is optimal and thus, v̄˚ “ v̄

⇡̄˚
.

Proof. Using standard Bellman recursion on the augmented MDP, we can write

v
⇡̄pxq “ E⇡̄

« 8ÿ

t“0

�
t
gpxt, atq|x0 “ x

�

“ E⇡̄

«
gpx0, a0q `

8ÿ

t“1

�
t
gpxt, atq|x0 “ x

�

“ gpeJ
1 x, e

J
m`1xq ` �E⇡̄

« 8ÿ

t“0

�
t
gpxt`1, at`1q|x0 “ x

�

“ gpeJ
1 x, e

J
m`1xq ` �

ÿ

px1,aqPXm ˆ A
⇡̄pa|xqF px1|x, aqv⇡̄px1q

“ T̄
⇡̄
v
⇡̄pxq

which ends the proof of Claim (i).

Note that by definition of g and F as in Equations (15) and (14) respectively, the sum can be
reformulated as follows:

v
⇡̄pxq “ rpeJ

1 x, e
J
m`1xq ` �

ÿ

px1,aqPXm ˆ A:
eJ
i`1x

1“eJ
i x for iPr2:ms;

eJ
2 x1“a

⇡̄pa|xqP peJ
1 x

1|eJ
1 x, e

J
m`1xqv⇡̄px1q

“ rpeJ
1 x, e

J
m`1xq ` �

ÿ

ps1,aqPS ˆ A
⇡̄pa|xqP ps1|eJ

1 x, e
J
m`1xqv⇡̄ps1

, a, e
J
2 x, ¨ ¨ ¨ , eJ

mxq

Claim (ii) relies on classical theory of discounted MDPs, applied to the augmented MDP (Puterman,
2014).

B.4 PROOF OF THEOREM 4.1

First, we give a general lower bound to the classic PI algorithm by Howard (Howard, 1960) for
non-delayed MDPs, that immediately confirms the exponential complexity of mA-PI.
Proposition (Lower Bound for Howard’s PI). The number of iterations required for Howard’s PI to
converge in standard MDP pS,A, P, r, �q is ⌦p|S |q.

14
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Figure 11: MDP example: the transitions are deterministic and the rewards are 0 everywhere except
for rpsn, uq “ 1 ´ �.

Proof. To prove the lower bound, we construct an example infinite-horizon MDP in which Howard’s
PI updates exactly one state at each iteration, and the number of updates is |S | ´ 1.

The example MDP is given in Fig. 11. It contains a row of n ` 1 states ps0, s1, . . . , snq, and a single
absorbing state sn`1. The transitions are deterministic. From each state except for sn`1 there are
two actions, u and d, which respectively lead to the next state in the sequence or to sn`1. The last
state in the row, sn, leads to itself or sn`1 by respectively taking actions u or d. Any action leads
sn`1 to itself. The rewards are 0 everywhere except for rpsn, uq :“ 1 ´ �. We denote by pvt,⇡t`1q
the value-policy pair at iteration t of Howard’s PI. We shall now describe the convergence process to
the optimal policy, which is obviously ⇡

˚psq “ u @s P S ztsn`1u.

Initialization: Set ⇡0psq “ d @s P S ztsn`1u.
Iteration 0: Clearly, v0 “ 0. Then, for all s P S ztsn, sn`1u, ⇡1psq “ argmaxatrps, aq `
�v0ps1qu “ argmaxat0, 0u “ d

4. Also, ⇡1psnq “ u since 1 ´ � ° 0.

Iteration t pt “ 1, . . . , nq: We have

vtpsiq “ 0 for i P t0, . . . , n ´ tu
and

vtpsiq “ �
n´i 1 ´ �

1 ´ �
“ �

n´i for i P tn ´ t ` 1, . . . , nu.

The policy output is thus
⇡t`1psiq “ d for i P t0, . . . n ´ t ´ 1u

and
⇡t`1psiq “ u for i P tn ´ t, . . . nu.

To summarize, at each iteration a single state updates its action to the optimal one such that at
iteration t, the policy stabilizes on ⇡psq “ u for all s P tsn´t, . . . , snu. Therefore, the total number
of iterations until convergence is n ` 1 “ |S | ´ 1.

The exponential complexity of mA-PI follows, as stated in Thm. 4.1 that we recall below:
Proposition (Lower Bound for mA-PI). The number of iterations required for mA-PI to converge in
m-EDMDP Mm is ⌦p|Xm |q “ ⌦p|S ||A |mq.

4The policy improvement step needs to choose between two actions that both yield values 0. Without loss of
generality, in such case, it simply chooses according to the lowest index, giving d here.
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B.5 PROOF OF THEOREM 4.2

Theorem (mA-PI Convergence). The mA-PI algorithm as given in Alg.1 converges to the optimal
value-policy pair pv̄˚

, ⇡̄
˚q in at most

|S||A|
mp|A| ´ 1q

S
log

ˆ
1

�

˙´1

log

ˆ
1

1 ´ �

˙W

iterations.

Proof. The proof proceeds in three steps which follow the same lines as in (Scherrer et al., 2016)
except that here, we adapt that method to the augmented MDP Mm with its corresponding Bellman
operators T̄ ⇡̄ and T̄ instead. For completeness, we recall these three steps whose proofs can be found
in (Scherrer et al., 2016).

Given policy ⇡̄t output at iteration t, define the advantage of ⇡̄1 w.r.t. ⇡̄ as:

a
⇡̄1
⇡̄ :“ T̄

⇡̄1
v
⇡̄ ´ v

⇡̄

and the maximal advantage w.r.t. ⇡̄ as

a⇡̄ :“ max
⇡̄1P⇧̄m

a
⇡̄1
⇡̄ “ max

⇡̄1P⇧̄m

T̄
⇡̄1
v
⇡̄ ´ v

⇡̄ “ T̄ v
⇡̄ ´ v

⇡̄
.

Step 1 (Scherrer et al., 2016)[Lemma 10]. For all augmented policies ⇡̄, ⇡̄
1 P ⇧̄m, v⇡̄

1 ´ v
⇡̄ “

pĪ ´ �F
⇡̄1 q´1

a
⇡̄1
⇡̄ “ pĪ ´ �F

⇡̄q´1p´a
⇡̄
⇡̄1 q, with Ī being the identity matrix in R| Xm |ˆ| A |.

Step 2 (Scherrer et al., 2016)[Lemma 2]. Define as v̄˚ “ v
⇡̄˚

the optimal value function of the
augmented MDP Mm as defined in Def. 4.1. Then, the sequence pkv̄˚ ´ v

⇡̄tk8qt•0 built by the
mA-PI algorithm as given in Alg.1 is a �-contraction w.r.t. the max-norm.

Step 3 (Scherrer et al., 2016)[Section 7]. Let x0 P Xm be such that ´a
⇡̄0

⇡̄˚ px0q “ ka
⇡̄0

⇡̄˚k8. Then,
for all t • 0 we have

´a
⇡̄t

⇡̄˚ px0q § ka
⇡̄t

⇡̄˚k8 § �
t

1 ´ �
ka

⇡̄0

⇡̄˚k8 “ �
t

1 ´ �
p´a

⇡̄0

⇡̄˚ px0qq.

From there it results that ⇡̄tpx0q must be different from ⇡̄0px0q whenever �t

1´� † 1, that is, for all
iterations

t °
R
logp1{p1 ´ �qq

logp1{�q

V
“: t˚

.

Therefore, one sub-optimal action is eliminated in favor of a better one within t
˚ iterations. There are

at most |Xm|p|A| ´ 1q of them, which ends the proof.

C EXECUTION-DELAY MDP: A NEW FORMULATION

Let µ be the initial state distribution. Then policy ⇡ P ⇧HR induces a probability measure on
p⌦,Bp⌦qq denoted by P⇡

m and defined through the following:
P⇡
mps̃0 “ s0q “ µps0q; (16)

P⇡
mpãt “ a|h̃t “ htq “ �ātpaq, @t † m; (17)

P⇡
mpãt “ a|h̃t´m “ ht´mq “ qdt´mpht´mqpaq, @t • m; (18)

P⇡
mps̃t`1 “ s|h̃t “ pht´1, at´1, stq, ãt “ atq “ P ps|st, atq. (19)

C.1 PROOF OF PROPOSITION 5.1

Proof. We first state the following, which holds by definition of conditional probability. For all
measurable sets A1, ¨ ¨ ¨ , An P Bp⌦q, we have

P⇡
mpXn

i“1Aiq “
˜

n´1π

i“1

P⇡
mpAi| Xn

j“i`1 Ajq
¸
P⇡
mpAnq. (20)
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Applying (20) to n “ 2t ` 1 on the following events:

A2t`1 :“ ts̃0 “ s0u
A2t :“ tã0 “ a0u

...
A2 :“ tãt´1 “ at´1u
A1 :“ ts̃t “ stu,

we obtain that

P⇡
mps̃0 “ s0, ã0 “ a0, ¨ ¨ ¨ , ãt´1 “ at´1, s̃t “ stq

“ P⇡
mps̃0 “ s0q

t´1π

i“0

P⇡
mpãi “ ai|s̃0 “ s0, ã0 “ a0, ¨ ¨ ¨ , s̃i “ siqP⇡

mps̃i`1 “ si`1|s̃0 “ s0, ã0 “ a0, ¨ ¨ ¨ , ãi “ aiq

“ P⇡
mps̃0 “ s0q

t´1π

i“0

P⇡
mpãi “ ai|h̃i “ hiqP⇡

mps̃i`1 “ si`1|h̃i “ phi´1, ai´1, siq, ãi “ aiq

If t § m, then 0 § i † m and by Eqs. (16), (17) and (19),

P⇡
mps̃0 “ s0, ã0 “ a0, ¨ ¨ ¨ , ãt´1 “ at´1, s̃t “ stq “ µps0q

˜
t´1π

i“0

�āipaiqP psi`1|si, aiq
¸
.

Otherwise, by Eq. (18),

P⇡
mps̃0 “ s0, ã0 “ a0, ¨ ¨ ¨ , ãt´1 “ at´1, s̃t “ stq

“ P⇡
mps̃0 “ s0q

m´1π

i“0

P⇡
mpãi “ ai|h̃i “ hiqP⇡

mps̃i`1 “ si`1|h̃i “ phi´1, ai´1, siq, ãi “ aiq

t´1π

k“m

P⇡
mpãk “ ak|h̃k “ hkqP⇡

mps̃k`1 “ sk`1|h̃k “ phk´1, ak´1, skq, ãk “ akq

“ µps0q
˜

m´1π

i“0

�āipaiqP psi`1|si, aiq
¸ ˜

t´1π

k“m

qdk´mphk´mqpakqP psk`1|sk, akq
¸
,

which concludes the proof.

C.2 REMARK REGARDING THE MARKOV PROPERTY

For T ° t • m, the conditional probability can be evaluated through:

P⇡
mpãt “ at, s̃t`1 “ st`1, ¨ ¨ ¨ , ãT´1 “ aT´1, s̃T “ sT |s̃0 “ s0, ã0 “ a0, ¨ ¨ ¨ , ãt´1 “ at´1, s̃t “ stq

“ P⇡
mps̃0 “ s0, ã0 “ a0, ¨ ¨ ¨ , ãT´1 “ aT´1, s̃T “ sT q
P⇡
mps̃0 “ s0, ã0 “ a0, ¨ ¨ ¨ , ãt´1 “ at´1, s̃t “ stq

“ qdt´mpht´mqpatqP pst`1|st, atq ¨ ¨ ¨ qdT´m´1phT´m´1qpaT´1qP psT |sT´1, aT´1q.

For a stationary policy ⇡ :“ pd, d, ¨ ¨ ¨ q P ⇧SR, this simplifies to

P⇡
mpãt “ at, s̃t`1 “ st`1, ¨ ¨ ¨ , ãT´1 “ aT´1, s̃T “ sT |s̃0 “ s0, ã0 “ a0, ¨ ¨ ¨ , ãt´1 “ at´1, s̃t “ stq

“ qdpst´mqpatqP pst`1|st, atq ¨ ¨ ¨ qdpsT´m´1qpaT´1qP psT |sT´1, aT´1q.

Observing that the resulting conditional probability is a function of past observations when m ° 0,
we conclude that even under a stationary policy, the induced stochastic process is not a Markov chain.
This is different from the standard MDP setting in which any Markov policy induces a discrete time
Markov chain (Puterman, 2014)[Sec. 2.1.6].
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C.3 PROOF OF THEOREM 5.1

We first prove the following lemma, which will be used in the theorem’s proof.
Lemma C.1. For all m ° 0, t • 0,

P⇡
mps̃t`1 “ s

1|ãt`1 “ a
1
, s̃t “ s, ãt “ aq “ P⇡

mps̃t`1 “ s
1|s̃t “ s, ãt “ aq (21)

Proof. First, note that for all delay value m ° 0, ãt`1 only depends on the history up to t ´ m ` 1,
which is ht´m`1 “ pht´m, at´m, st´m`1q, as Eq. (18) suggests. Thus, since t ´ m ` 1 † t ` 1,
we have that ãt`1 is independent of s̃t`1. Using Bayes rule, it follows that

P⇡
mps̃t`1 “ s

1|ãt`1 “ a
1
, s̃t “ s, ãt “ aq

“ P⇡
mpãt`1 “ a

1|s̃t`1 “ s
1
, s̃t “ s, ãt “ aqP⇡

mps̃t`1 “ s
1|s̃t “ s, ãt “ aq

P⇡
mpãt`1 “ a1|s̃t “ s, ãt “ aq

“ P⇡
mpãt`1 “ a

1|s̃t “ s, ãt “ aqP⇡
mps̃t`1 “ s

1|s̃t “ s, ãt “ aq
P⇡
mpãt`1 “ a1|s̃t “ s, ãt “ aq

“ P⇡
mps̃t`1 “ s

1|s̃t “ s, ãt “ aq.

Theorem. Let ⇡ :“ pd0, d1, ¨ ¨ ¨ q P ⇧HR be a history dependent policy. For all s0 P S , there exists a
Markov policy ⇡

1 :“ pd1
0, d

1
1, ¨ ¨ ¨ q P ⇧MR that yields the same process distribution as ⇡, i. e., for all

a P A, s
1 P S, t • m,

P⇡1
mps̃t´m “ s

1
, ãt “ a|s̃0 “ s0q “ P⇡

mps̃t´m “ s
1
, ãt “ a|s̃0 “ s0q. (22)

Proof. When m “ 0, the result holds true by standard RL theory (Puterman, 2014)[Thm 5.5.1]. Thus,
assume that m ° 0. Fix s P S . Let ⇡1 :“ pd1

0, d
1
1, ¨ ¨ ¨ q with d

1
0 : tsu Ñ �A defined as

qd1
0psqpaq :“ P⇡

mpãm “ a|s̃0 “ sq (23)
and for all t ° m,

qd1
t´mps1qpaq :“ P⇡

mpãt “ a|s̃t´m “ s
1
, s̃0 “ sq, @s1 P S, a P A . (24)

For the policy ⇡
1 defined as in Eqs. (23)-(24), we prove Eq. (22) by induction on t • m. By

construction of ⇡1, the induction base is satisfied at t “ m. By construction of ⇡1 again, for all t ° m

we have
P⇡1
mpãt “ a|s̃t´m “ s

1
, s̃0 “ sq “ P⇡1

mpãt “ a|s̃t´m “ s
1q

“ qd1
t´mps1qpaq

“ P⇡
mpãt “ a|s̃t´m “ s

1
, s̃0 “ sq. (25)

Assume that Eq. (22) holds up until t “ n ´ 1. Further let the Euclidean division n ´ 1 “ km ` r of
n ´ 1 by m, so that k, r P N with 0 § r † m. Then, we can write

P⇡
mps̃n “ s1|s̃0 “ sq

“
ÿ

skm`rPS,

akm`rPA

P⇡
mps̃n “ s1, s̃km`r “ skm`r, ãkm`r “ akm`r|s̃0 “ sq

“
ÿ

skm`rPS,

akm`rPA

P⇡
mps̃n “ s1|ãkm`r “ akm`r, s̃km`r “ skm`r, s̃0 “ sq

P⇡
mpãkm`r “ akm`r|s̃km`r “ skm`r, s̃0 “ sqP⇡

mps̃km`r “ skm`r|s̃0 “ sq
“

ÿ

skm`rPS,

akm`rPA

P ps1|skm`r, akm`rqP⇡
mpãkm`r “ akm`r|s̃km`r “ skm`r, s̃0 “ sqP⇡

mps̃km`r “ skm`r|s̃0 “ sq.

By Eq. (18), ãkm`r only depends on history up to pk ´ 1qm ` r. Thus, P⇡
mpãkm`r “

akm`r|s̃km`r “ skm`r, s̃0 “ sq “ P⇡
mpãkm`r “ akm`r|s̃0 “ sq and

P⇡
mps̃n “ s

1|s̃0 “ sq
“

ÿ

skm`rPS,
akm`rPA

P ps1|skm`r, akm`rqP⇡
mpãkm`r “ akm`r|s̃0 “ sqP⇡

mps̃km`r “ skm`r|s̃0 “ sq.
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Since km ` r “ n ´ 1, by the induction hypothesis we can rewrite

P⇡
mpãkm`r “ akm`r|s̃0 “ sq “

ÿ

spk´1qm`rPS
P⇡
mpãkm`r “ akm`r, s̃pk´1qm`r “ spk´1qm`r|s̃0 “ sq

“
ÿ

spk´1qm`rPS
P⇡1
mpãkm`r “ akm`r, s̃pk´1qm`r “ spk´1qm`r|s̃0 “ sq

“ P⇡1
mpãkm`r “ akm`r|s̃0 “ sq,

so that

P⇡
mps̃n “ s

1|s̃0 “ sq
“

ÿ

skm`rPS,
akm`rPA

P ps1|skm`r, akm`rqP⇡1
mpãkm`r “ akm`r|s̃0 “ sqP⇡

mps̃km`r “ skm`r|s̃0 “ sq.
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We now study the last term in the above equation, P⇡
mps̃km`r “ skm`r|s̃0q. We have

P⇡
mps̃km`r “ skm`r|s̃0 “ sq

“
ÿ

skm`r´1,¨¨¨ ,skmPS
akm`r´1,¨¨¨ ,akmPA

P⇡
mps̃km`r “ skm`r, s̃km`r´1 “ skm`r´1, ãkm`r´1 “ akm`r´1, ¨ ¨ ¨ , s̃km “ skm, ãkm “ akm|s̃0 “ sq

“
ÿ

skm`r´1,¨¨¨ ,skmPS
akm`r´1,¨¨¨ ,akmPA

P⇡
mps̃km`r “ skm`r|s̃km`r´1 “ skm`r´1, ãkm`r´1 “ akm`r´1, ¨ ¨ ¨ , s̃km “ skm, ãkm “ akm, s̃0 “ sq

P⇡
mps̃km`r´1 “ skm`r´1, ãkm`r´1 “ akm`r´1, ¨ ¨ ¨ , s̃km “ skm, ãkm “ akm|s̃0 “ sq

“
ÿ

skm`r´1,¨¨¨ ,skmPS
akm`r´1,¨¨¨ ,akmPA

P pskm`r|skm`r´1, akm`r´1q

P⇡
mps̃km`r´1 “ skm`r´1, ãkm`r´1 “ akm`r´1, ¨ ¨ ¨ , s̃km “ skm, ãkm “ akm|s̃0 “ sq

“
ÿ

skm`r´1,¨¨¨ ,skmPS
akm`r´1,¨¨¨ ,akmPA

P pskm`r|skm`r´1, akm`r´1q

P⇡
mps̃km`r´1 “ skm`r´1|ãkm`r´1 “ akm`r´1, s̃km`r´2 “ skm`r´2, ãkm`r´2 “ akm`r´2, ¨ ¨ ¨ , s̃km “ skm, ãkm “ akm, s̃0 “ sq

P⇡
mpãkm`r´1 “ akm`r´1, s̃km`r´2 “ skm`r´2, ãkm`r´2 “ akm`r´2, ¨ ¨ ¨ , s̃km “ skm, ãkm “ akm|s̃0 “ sq

Lemma C.1“
ÿ

skm`r´1,¨¨¨ ,skmPS
akm`r´1,¨¨¨ ,akmPA

P pskm`r|skm`r´1, akm`r´1q

P⇡
mps̃km`r´1 “ skm`r´1|s̃km`r´2 “ skm`r´2, ãkm`r´2 “ akm`r´2, ¨ ¨ ¨ , s̃km “ skm, ãkm “ akm, s̃0 “ sq

P⇡
mpãkm`r´1 “ akm`r´1, s̃km`r´2 “ skm`r´2, ãkm`r´2 “ akm`r´2, ¨ ¨ ¨ , s̃km “ skm, ãkm “ akm|s̃0 “ sq

“
ÿ

skm`r´1,¨¨¨ ,skmPS
akm`r´1,¨¨¨ ,akmPA

P pskm`r|skm`r´1, akm`r´1qP pskm`r´1|skm`r´2, akm`r´2q

P⇡
mpãkm`r´1 “ akm`r´1, s̃km`r´2 “ skm`r´2, ãkm`r´2 “ akm`r´2, ¨ ¨ ¨ , s̃km “ skm, ãkm “ akm|s̃0 “ sq

“
ÿ

skm`r´1,¨¨¨ ,skmPS
akm`r´1,¨¨¨ ,akmPA

P pskm`r|skm`r´1, akm`r´1qP pskm`r´1|skm`r´2, akm`r´2q

P⇡
mpãkm`r´1 “ akm`r´1|s̃km`r´2 “ skm`r´2, ãkm`r´2 “ akm`r´2 ¨ ¨ ¨ , s̃km “ skm, ãkm “ akm|s̃0 “ sq

P⇡
mps̃km`r´2 “ skm`r´2, ãkm`r´2 “ akm`r´2 ¨ ¨ ¨ , s̃km “ skm, ãkm “ akm|s̃0 “ sq

“
...

“
ÿ

skm`r´1,¨¨¨ ,skmPS
akm`r´1,¨¨¨ ,akmPA

ˆ rπ

i“1

P pskm`i|skm`i´1, akm`i´1q
˙

ˆ r´1π

j“1

P⇡
mpãkm`j “ akm`j |s̃km`j´1 “ skm`j´1, ãkm`j´1 “ akm`j´1, ¨ ¨ ¨ , s̃km “ skm, ãkm “ akm, s̃0 “ sq

˙

P⇡
mps̃km “ skm|ãkm “ akm, s̃0 “ sqP⇡

mpãkm “ akm|s̃0 “ sq

p1q“
ÿ

skm`r´1,¨¨¨ ,skmPS
akm`r´1,¨¨¨ ,akmPA

ˆ rπ

i“1

P pskm`i|skm`i´1, akm`i´1q
˙ˆ r´1π

j“1

P⇡
mpãkm`j “ akm`j |s̃0 “ sq

˙

P⇡
mps̃km “ skm|ãkm “ akm, s̃0 “ sqP⇡

mpãkm “ akm|s̃0 “ sq

“
ÿ

skm`r´1,¨¨¨ ,skmPS
akm`r´1,¨¨¨ ,akmPA

ˆ rπ

i“1

P pskm`i|skm`i´1, akm`i´1qP⇡
mpãkm`i´1 “ akm`i´1|s̃0 “ sq

˙

P⇡
mps̃km “ skm|ãkm “ akm, s̃0 “ sq

“
ÿ

skm`r´1,¨¨¨ ,skmPS
akm`r´1,¨¨¨ ,akmPA

ˆ rπ

i“1

P pskm`i|skm`i´1, akm`i´1q

ˆ ÿ

s1
pk´1qm`i´1

PS

P⇡
mpãkm`i´1 “ akm`i´1, s̃pk´1qm`i´1 “ s1

pk´1qm`i´1|s̃0 “ sq
˙˙

P⇡
mps̃km “ skm|ãkm “ akm, s̃0 “ sq
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p2q“
ÿ

skm`r´1,¨¨¨ ,skmPS
akm`r´1,¨¨¨ ,akmPA

ˆ rπ

i“1

P pskm`i|skm`i´1, akm`i´1q

ˆ ÿ

s1
pk´1qm`i´1

PS

P⇡1
m pãkm`i´1 “ akm`i´1, s̃pk´1qm`i´1 “ s1

pk´1qm`i´1|s̃0 “ sq
˙˙

P⇡
mps̃km “ skm|ãkm “ akm, s̃0 “ sq

“
ÿ

skm`r´1,¨¨¨ ,skmPS
akm`r´1,¨¨¨ ,akmPA

ˆ rπ

i“1

P pskm`i|skm`i´1, akm`i´1qP⇡1
m pãkm`i´1 “ akm`i´1|s̃0 “ sq

˙

P⇡
mps̃km “ skm|ãkm “ akm, s̃0 “ sq

p3q“
ÿ

skm`r´1,¨¨¨ ,skmPS
akm`r´1,¨¨¨ ,akmPA

ˆ rπ

i“1

P pskm`i|skm`i´1, akm`i´1qP⇡1
m pãkm`i´1 “ akm`i´1|s̃0 “ sq

˙

P⇡
mps̃km “ skm|s̃0 “ sq.

In p1q, we use Eq. (18) to establish that ãkm`j only depends on history up to pk ´ 1qm ` j. Since
m ´ 1 ° r ´ 1 • j • 1, we have km ° pk ´ 1qm ` j, and

P⇡
mpãkm`j “ akm`j |s̃km`j´1 “ skm`j´1, ãkm`j´1 “ akm`j´1, ¨ ¨ ¨ , s̃km “ skm, ãkm “ akm, s̃0 “ sq

“ P⇡
mpãkm`j “ akm`j |s̃0 “ sq.

In p2q, we use the induction hypothesis. In p3q we use Bayes rule and Eq. (18) again to obtain:

P⇡
mps̃km “ skm|ãkm “ akm, s̃0 “ sq “ P⇡

mpãkm “ akm|s̃km “ skm, s̃0 “ sqP⇡
mps̃km “ skm|s̃0 “ sq

P⇡
mpãkm “ akm|s̃0 “ sq

“ P⇡
mpãkm “ akm|s̃0 “ sqP⇡

mps̃km “ skm|s̃0 “ sq
P⇡
mpãkm “ akm|s̃0 “ sq

“ P⇡
mps̃km “ skm|s̃0 “ sq.

Thus, it results that

P⇡
mps̃n “ s

1|s̃0 “ sq
“

ÿ

skm`rPS,
akm`rPA

P ps1|skm`r, akm`rqP⇡1
mpãkm`r “ akm`r|s̃0 “ sq

ÿ

skm`r´1,¨¨¨ ,skmPS
akm`r´1,¨¨¨ ,akmPA

ˆ rπ

i“1

P pskm`i|skm`i´1, akm`i´1qP⇡1
mpãkm`i´1 “ akm`i´1|s̃0 “ sq

˙

P⇡
mps̃km “ skm|s̃0 “ sq

“
ÿ

skm`r,¨¨¨ ,skmPS
akm`r,¨¨¨ ,akmPA

ˆ r`1π

i“1

P pskm`i|skm`i´1, akm`i´1qP⇡1
mpãkm`i´1 “ akm`i´1|s̃0 “ sq

˙

P⇡
mps̃km “ skm|s̃0 “ sq,

where we used the convention skm`r`1 “ sn “ s
1. We similarly use backward induction until the

remaining term that depends on ⇡ becomes

P⇡
mps̃m “ sm|s̃0 “ sq

“
ÿ

sm´1,¨¨¨ ,s1PS
am´1,¨¨¨ ,a0PA

P⇡
mps̃m “ sm, s̃m´1 “ sm´1, ãm´1 “ am´1, ¨ ¨ ¨ , s̃1 “ s1, ã1 “ a1, ã0 “ a0|s̃0 “ sq

“
ÿ

sm´1,¨¨¨ ,s1PS
am´1,¨¨¨ ,a0PA

1

P⇡
mps̃0 “ sqP

⇡
mps̃m “ sm, s̃m´1 “ sm´1, ãm´1 “ am´1, ¨ ¨ ¨ , s̃1 “ s1, ã1 “ a1, ã0 “ a0, s̃0 “ sq

p4q“
ÿ

sm´1,¨¨¨ ,s1PS
am´1,¨¨¨ ,a0PA

1

µpsqµpsq
˜

m´1π

i“0

P psi`1|si, aiq�āipaiq
¸

“
ÿ

sm´1,¨¨¨ ,s1PS
am´1,¨¨¨ ,a0PA

˜
m´1π

i“0

P psi`1|si, aiq�āipaiq
¸
,
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where p4q results from Prop. 5.1. Since the obtained quantity is independent of ⇡, we have

P⇡
mps̃m “ sm|s̃0 “ sq “ P⇡1

mps̃m “ sm|s̃0 “ sq.
Thus, if we decompose P⇡1

mps̃n “ s
1|s̃0 “ sq according to the exact same derivation as we did for

P⇡
mps̃n “ s

1|s̃0 “ sq, we obtain that at t “ n,

P⇡
mps̃n “ s

1|s̃0 “ sq “ P⇡1
mps̃n “ s

1|s̃0 “ sq. (26)

As a result, at t “ n we have

P⇡1
mps̃n´m “ s

1
, ãn “ a|s̃0 “ sq“P⇡1

mpãn “ a|s̃n´m “ s
1
, s̃0 “ sqP⇡1

mps̃n´m “ s
1|s̃0 “ sq

paq“ P⇡1
mpãn “ a|s̃n´m “ s

1
, s̃0 “ sqP⇡

mps̃n´m “ s
1|s̃0 “ sq

pbq“ P⇡
mpãn “ a|s̃n´m “ s

1
, s̃0 “ sqP⇡

mps̃n´m “ s
1|s̃0 “ sq

pcq“ P⇡
mps̃n´m “ s

1
, ãn “ a|s̃0 “ sq,

where pbq follows from Eq. (26); pcq from Eq. (25). Finally, assuming it is satisfied at t “ n ´ 1, the
induction step is proved for t “ n, which ends the proof.

C.4 DEGRADATION DUE TO STATIONARITY

Prop. 5.2 follows from computing the optimal return on an execution-delay MDP (EDMDP) using
simulation. Specifically, we use Example 3.1 which we analytically studied in Sec. 3. We exhaustively
search over the deterministic policy spaces ⇧SD and ⇧MD to find the optimum. We stress that limiting
our search to deterministic policies is sufficient for this MDP. Indeed, as shown in Appx. A.1, optimal
return is attained for a deterministic policy when maximizing over ⇧SR. Regarding the non-stationary
Markov policy space ⇧MR, as we have proved in Thm. 5.2, there exists an optimal deterministic
policy in ⇧MD. We show with this experiment that this optimal Markov deterministic policy attains
better return than any stationary policy. We set p “ 0.8. Since the search-space of non-stationary
policies is exponential in the simulation horizon (T “ 10 here), we choose � “ 0.5 to have low
approximation error.

Policy-Type m “ 0 m “ 1 m “ 2 m “ 3 m “ 4 m “ 5

Stationary (theoretical) 2 1.6 1.36 1.216 1.129 1.077

Stationary 1.99 ˘ 0.01 1.59 ˘ 0.03 1.32 ˘ 0.05 1.22 ˘ 0.08 1.11 ˘ 0.09 1.02 ˘ 0.13

Non-stationary Markov 1.99 ˘ 0.01 1.82 ˘ 0.05 1.67 ˘ 0.08 1.59 ˘ 0.12 1.46 ˘ 0.15 1.38 ˘ 0.2

Table 1: Optimal return for different delay values and policy types.

The results are summarized in Table 1. Apart from demonstrating sub-optimality of the stationary
policy, they also confirm that our theoretical return for the stationary policy 1`p2p´1qm

2p1´�q from Prop. 3.1
matches closely with simulation.

C.5 THE DELAYED VALUE FUNCTION

Given a random variable W over p⌦,Bp⌦q,P⇡
mq, its expectation is E⇡

mrW s “ ∞
!P⌦ W p!qP⇡

mp!q,
where ! “ ps0, a0, s1, ¨ ¨ ¨ q is a sample path. A typical W to consider is the discounted sum of
rewards W ps0, a0, s1, ¨ ¨ ¨ q :“ ∞8

t“0 �
t
rpst, atq. Thus, the expectation conditioned on initial state s0

is given by E⇡
mrW |s0s “ ∞

!P⌦ W ps0, a0, ¨ ¨ ¨ qP⇡
mps0, a0, s1, ¨ ¨ ¨ |s0q. Let the delayed value function

v
µ0:µm´1,⇡
m ps0q :“ E⇡

m

« 8ÿ

t“m

�
t´m

rps̃t, ãtq
ˇ̌
ˇ̌s̃0 “ s0

�
, (27)

where µ0 : µm´1 :“ pµ0, ¨ ¨ ¨ , µm´1q denotes some fixed queue of action distributions according
to which the initial m actions should be executed. Note that the definition of W does not change
w.r.t. the delay value m: it always denotes the discounted sum of rewards. However, its distribution
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does depend on the delay value m through the process distribution P⇡
m and, as a result, so does its

expectation E⇡
mrW |s0s.

Consider a Markov policy ⇡ :“ pdkqk•0 P ⇧MR. For all s, s1 P S, k P N and u P �A, let
Pups, s1q :“ ∞

aPA upaqP ps1|s, aq and Rdkps1
, sq :“ ∞

aPA qdkpsqpaqrps1
, aq. We then have the

following result.

Theorem C.1. For a Markov policy ⇡ P ⇧MR given by ⇡ :“ pd0, d1, ¨ ¨ ¨ q, the delayed value function
satisfies the following relation:

v
µ0:µm´1,⇡
m ps0q “

`
Pµ0 ¨ ¨ ¨Pµm´1Rd0

˘
ps0, s0q ` �

ÿ

s1,¨¨¨ ,smPS

˜
m´1π

k“0

Pµkpsk, sk`1q
¸
v
d0ps0q:dm´1psm´1q,⇡m:
m psmq,

where ⇡m: :“ pdm, dm`1, ¨ ¨ ¨ q denotes the policy ⇡ starting from its m ` 1-th decision rule.

In addition, this relation becomes a recursion when the policy is m-periodic. Its proof is omitted
since the result immediately follows from Thm. C.1.

Corollary C.1. For an m-periodic Markov policy ⇡ P ⇧MR given by
⇡ :“ pd0, ¨ ¨ ¨ , dm´1, d0, ¨ ¨ ¨ , dm´1, ¨ ¨ ¨ q, the delayed value function satisfies the following
recursion:

v
µ0:µm´1,⇡
m ps0q “

`
Pµ0 ¨ ¨ ¨Pµm´1Rd0

˘
ps0, s0q ` �

ÿ

s1,¨¨¨ ,smPS

˜
m´1π

k“0

Pµkpsk, sk`1q
¸
v
d0ps0q:dm´1psm´1q,⇡
m psmq.

Proof of Theorem C.1. By definition of the delayed value function we have:

v
µ0:µm´1,⇡
m ps0q “ E⇡

m

« 8ÿ

t“m

�
t´m

rps̃t, ãtq
ˇ̌
ˇ̌s̃0 “ s0

�

p1q“
8ÿ

t“m

�
t´mE⇡

m

„
rps̃t, ãtq

ˇ̌
ˇ̌s̃0 “ s0

⇢

p2q“
8ÿ

t“m

�
t´m

ÿ

s1,¨¨¨ ,stPS
a0,¨¨¨ ,atPA

rpst, atqP⇡
mpã0 “ a0, s̃1 “ s1, ¨ ¨ ¨ , ãt´1 “ at´1, s̃t “ st, ãt “ at|s̃0 “ s0q,

where p1q results from the dominated convergence theorem and p2q by the definition of expectation.
Using Prop. 5.1 and the fact that ⇡ is a Markov policy, we can write the probability of a sample path
conditioned on the initial state as:

P⇡
mpã0 “ a0, s̃1 “ s1, ¨ ¨ ¨ , ãt´1 “ at´1, s̃t “ st, ãt “ at|s̃0 “ sq

“
˜

m´1π

k“0

µkpakqP psk`1|sk, akq
¸ ˜

t´1π

k“m

qdk´mpsk´mqpakqP psk`1|sk, akq
¸
qdt´mpst´mqpatq,

so that:

v
µ0:µm´1,⇡
m ps0q “

8ÿ

t“m

�
t´m

ÿ

s1,¨¨¨ ,stPS
a0,¨¨¨ ,atPA

rpst, atq
˜

m´1π

k“0

µkpakqP psk`1|sk, akq
¸

¨
˜

t´1π

k“m

qdk´mpsk´mqpakqP psk`1|sk, akq
¸
qdt´mpst´mqpatq.
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Then, we can rewrite the delayed value function as:
v
µ0:µm´1,⇡
m ps0q

“
8ÿ

t“m

�
t´m

ÿ

s1,¨¨¨ ,stPS
a0,¨¨¨ ,at´1PA

Rdt´mpst, st´mq ¨
˜

m´1π

k“0

µkpakqPakpsk, sk`1q
¸ ˜

t´1π

k“m

qdk´mpsk´mqpakqPakpsk, sk`1q
¸
.

“
8ÿ

t“m

�
t´m

ÿ

s1,¨¨¨ ,stPS
am,¨¨¨ ,at´2PA

Rdt´mpst, st´mq ¨
˜

m´1π

k“0

µkpakqPakpsk, sk`1q
¸ ˜

t´2π

k“m

qdk´mpsk´mqpakqPakpsk, sk`1q
¸

¨

ÿ

at´1PA
qdt´1´mpst´1´mqpat´1qPat´1pst´1, stq

“
8ÿ

t“m

�
t´m

ÿ

s1,¨¨¨ ,stPS
am,¨¨¨ ,at´2PA

Rdt´mpst, st´mq ¨
˜

m´1π

k“0

µkpakqPakpsk, sk`1q
¸ ˜

t´2π

k“m

qdk´mpsk´mqpakqPakpsk, sk`1q
¸

¨

Pdt´1´mpst´1´mqpst´1, stq
...

“
8ÿ

t“m

�
t´m

ÿ

s1,¨¨¨ ,stPS
Rdt´mpst, st´mq ¨

˜
m´1π

k“0

Pµkpsk, sk`1q
¸ ˜

t´1π

k“m

Pdk´mpsk´mqpsk, sk`1q
¸
,

and the following can be derived:

v
µ0:µm´1,⇡
m ps0q “

8ÿ

t“m

�
t´m

ÿ

s1,¨¨¨ ,st
Rdt´mpst, st´mq

˜
m´1π

k“0

Pµkpsk, sk`1q
¸ ˜

t´1π

k“m

Pdk´mpsk´mqpsk, sk`1q
¸

“
ÿ

s1,¨¨¨ ,sm
Rd0psm, s0q

˜
m´1π

k“0

Pµkpsk, sk`1q
¸

` fps0q

“
ÿ

sm

`
Pµ0 ¨ ¨ ¨Pµm´1

˘
ps0, smqRd0psm, s0q ` fps0q

“
`
Pµ0 ¨ ¨ ¨Pµm´1Rd0

˘
ps0, s0q ` fps0q

“
`
Pµ0 ¨ ¨ ¨Pµm´1Rd0

˘
ps0, s0q ` fps0q, (28)

where

fps0q : “
8ÿ

t“m`1

�
t´m

ÿ

s1,¨¨¨ ,st
Rdt´mpst, st´mq

˜
m´1π

k“0

Pµkpsk, sk`1q
¸ ˜

t´1π

k“m

Pdk´mpsk´mqpsk, sk`1q
¸

“
8ÿ

t“m`1

�
t´m

ÿ

s1,¨¨¨ ,sm

ÿ

sm`1,¨¨¨ ,st
Rdt´mpst, st´mq

˜
m´1π

k“0

Pµkpsk, sk`1q
¸

¨
˜

t´1π

k“m

Pdk´mpsk´mqpsk, sk`1q
¸

“
8ÿ

t“m`1

�
t´m

ÿ

s1,¨¨¨ ,sm

˜
m´1π

k“0

Pµkpsk, sk`1q
¸

ÿ

sm`1,¨¨¨ ,st
Rdt´mpst, st´mq

˜
t´1π

k“m

Pdk´mpsk´mqpsk, sk`1q
¸
.

(29)
In fact, the last part of the sum corresponds to the following expectation:

ÿ

sm`1,¨¨¨ ,st
Rdt´mpst, st´mq

˜
t´1π

k“m

Pdk´mpsk´mqpsk, sk`1q
¸

“ E⇡
m rrps̃t, ãtq|s̃0 “ s0, s̃1 “ s1, ¨ ¨ ¨ , s̃m “ sms ,

so

fps0q “
8ÿ

t“m`1

�
t´m

ÿ

s1,¨¨¨ ,sm

˜
m´1π

k“0

Pµkpsk, sk`1q
¸
E⇡
m rrps̃t, ãtq|s̃0 “ s0, s̃1 “ s1, ¨ ¨ ¨ , s̃m “ sms
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and

v
µ0:µm´1,⇡
m ps0q “

`
Pµ0 ¨ ¨ ¨Pµm´1Rd0

˘
ps0, s0q

`
8ÿ

t“m`1

�
t´m

ÿ

s1,¨¨¨ ,sm

˜
m´1π

k“0

Pµkpsk, sk`1q
¸
E⇡
m rrps̃t, ãtq|s̃0 “ s0, s̃1 “ s1, ¨ ¨ ¨ , s̃m “ sms

“
`
Pµ0 ¨ ¨ ¨Pµm´1R

⇡0
˘

ps0, s0q

` �

ÿ

s1,¨¨¨ ,sm

˜
m´1π

k“0

Pµkpsk, sk`1q
¸
E⇡
m

« 8ÿ

t“m`1

�
t´m´1

rps̃t, ãtq|s̃0 “ s0, s̃1 “ s1, ¨ ¨ ¨ , s̃m “ sm

�

Finally, fixing initial states s0, ¨ ¨ ¨ , sm´1 implies fixing a queue of m action distributions
d0psq, ¨ ¨ ¨ , dm´1psm´1q. Therefore, denoting by ⇡m: :“ pdm, dm`1, ¨ ¨ ¨ q the original policy ⇡

starting from its m ` 1-th decision rule, we have

E⇡
m

« 8ÿ

t“m`1

�
t´m´1

rps̃t, ãtq|s̃0 “ s0, s̃1 “ s1, ¨ ¨ ¨ , s̃m “ sm

�
“ v

d0ps0q:dm´1psm´1q,⇡m:
m psmq,

and

v
µ0:µm´1,⇡
m ps0q

“
`
Pµ0 ¨ ¨ ¨Pµm´1R

⇡0
˘

ps0, s0q ` �

ÿ

s1,¨¨¨ ,sm

˜
m´1π

k“0

Pµkpsk, sk`1q
¸
v
d0ps0q:dm´1psm´1q,⇡m:
m psmq,

which concludes the proof.

C.6 PROOF OF THEOREM 5.2

Theorem. For any action distribution queue µ0 : µm´1 :“ pµ0, . . . , µm´1q and s0 P S,

max
⇡P⇧MD

v
µ0:µm´1,⇡
m “ max

⇡P⇧MR
v
µ0:µm´1,⇡
m . (30)

Proof. First, since ⇧MD Ä ⇧MR
, the RHS of (30) must be at least as great as the LHS. We now

establish the reverse inequality. Recall from Eqs.(28)-(29)[Proof of Thm. C.1] that

v
µ0:µm´1,⇡
m ps0q “

`
Pµ0 ¨ ¨ ¨Pµm´1Rd0

˘
ps0, s0q

`
8ÿ

t“m`1

�
t´m

ÿ

s1,¨¨¨ ,stPS
Rdt´mpst, st´mq ¨

˜
m´1π

k“0

Pµkpsk, sk`1q
¸ ˜

t´1π

k“m

Pdk´mpsk´mqpsk, sk`1q
¸
.

(31)

We shall now rewrite the value in two forms, to respectively show its dependence on d0ps0q, and
dipsiq for i • 1. For each of these two forms, we will prove a deterministic decision is at least as
good as a random one in terms of value.

We begin with rewriting the first term in (31) as
`
Pµ0 ¨ ¨ ¨Pµm´1Rd0

˘
ps0, s0q “ p

`
Pµ0 ¨ ¨ ¨Pµm´1qRd0

˘
ps0, s0q

“
ÿ

smPS
pPµ0 ¨ ¨ ¨Pµm´1qps0, smqRd0psm, s0q

“
ÿ

smPS
pPµ0 ¨ ¨ ¨Pµm´1qps0, smq

˜
ÿ

a0PA
qd0ps0qpa0qrpsm, a0q

¸

“
ÿ

a0PA
qd0ps0qpa0q

ÿ

smPS
pPµ0 ¨ ¨ ¨Pµm´1qps0, smqrpsm, a0q

“
ÿ

a0PA
qd0ps0qpa0qpPµ0 ¨ ¨ ¨Pµm´1ra0qps0q,
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where for all a P A, ra :“ prps, aqqsPS P RS is the reward vector corresponding to a given action.
Next, we rewrite the second term in (31) as

8ÿ

t“m`1

�
t´m

ÿ

s1,¨¨¨ ,stPS
Rdt´mpst, st´mq

˜
m´1π

k“0

Pµkpsk, sk`1q
¸ ˜

t´1π

k“m

Pdk´mpsk´mqpsk, sk`1q
¸

“
8ÿ

t“m`1

�
t´m

ÿ

s1,¨¨¨ ,stPS
Rdt´mpst, st´mq

˜
m´1π

k“0

Pµkpsk, sk`1q
¸

Pd0ps0qpsm, sm`1q
˜

t´1π

k“m`1

Pdk´mpsk´mqpsk, sk`1q
¸

“
8ÿ

t“m`1

�
t´m

ÿ

s1,¨¨¨ ,stPS
Rdt´mpst, st´mq

˜
m´1π

k“0

Pµkpsk, sk`1q
¸

˜
ÿ

a0PA
qd0ps0qpa0qP psm`1|sm, a0q

¸ ˜
t´1π

k“m`1

Pdk´mpsk´mqpsk, sk`1q
¸

“
ÿ

a0PA
qd0ps0qpa0q

« 8ÿ

t“m`1

�
t´m

ÿ

s1,¨¨¨ ,stPS
Rdt´mpst, st´mq

˜
m´1π

k“0

Pµkpsk, sk`1q
¸

P psm`1|sm, a0q
˜

t´1π

k“m`1

Pdk´mpsk´mqpsk, sk`1q
¸�

Putting the two expressions together gives

v
µ0:µm´1,⇡
m ps0q “

ÿ

a0PA
qd0ps0qpa0q

«
pPµ0 ¨ ¨ ¨Pµm´1ra0qps0q `

8ÿ

t“m`1

�
t´m

ÿ

s1,¨¨¨ ,stPS
Rdt´mpst, st´mq

˜
m´1π

k“0

Pµkpsk, sk`1q
¸
P psm`1|sm, a0q

˜
t´1π

k“m`1

Pdk´mpsk´mqpsk, sk`1q
¸�

p1q
§ max

a0PA

#
pPµ0 ¨ ¨ ¨Pµm´1ra0qps0q `

8ÿ

t“m`1

�
t´m

ÿ

s1,¨¨¨ ,stPS
Rdt´mpst, st´mq

˜
m´1π

k“0

Pµkpsk, sk`1q
¸
P psm`1|sm, a0q

˜
t´1π

k“m`1

Pdk´mpsk´mqpsk, sk`1q
¸+

p2q
:“ v

µ0:µm´1,⇡
0
D

m ps0q,

where p1q holds by applying (Puterman, 2014)[Lemma 4.3.1], and p2q by defining policy ⇡
0
D :“

pdD
0 , d1, d2 ¨ ¨ ¨ q P ⇧MR such that the first decision rule is deterministic dD

0 :“ �a˚
0

with a
˚
0 the argmax

of p1q, while pd1, d2, ¨ ¨ ¨ q are the same as in the original policy ⇡ P ⇧MR.
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We now continue to showing the dependence of the value on dipsiq for i • 1, by continuing with the
second term in (31):

8ÿ

t“m`1

�
t´m

ÿ

s1,¨¨¨ ,stPS
Rdt´mpst, st´mq

˜
m´1π

k“0

Pµkpsk, sk`1q
¸
P psm`1|sm, a

˚
0 q

˜
t´1π

k“m`1

Pdk´mpsk´mqpsk, sk`1q
¸

“ �

ÿ

s1,¨¨¨ ,sm`1PS
Rd1psm`1, s1q

˜
m´1π

k“0

Pµkpsk, sk`1q
¸
P psm`1|sm, a

˚
0 q

`
8ÿ

t“m`2

�
t´m

ÿ

s1,¨¨¨ ,stPS
Rdt´mpst, st´mq

˜
m´1π

k“0

Pµkpsk, sk`1q
¸
P psm`1|sm, a

˚
0 q

Pd1ps1qpsm`1, sm`2q
˜

t´1π

k“m`2

Pdk´mpsk´mqpsk, sk`1q
¸

“
ÿ

a1PA
qd1ps1qpa1q

»

–�

ÿ

s1,¨¨¨ ,sm`1PS
rpsm`1, a1q

˜
m´1π

k“0

Pµkpsk, sk`1q
¸
P psm`1|sm, a

˚
0 q

`
8ÿ

t“m`2

�
t´m

ÿ

s1,¨¨¨ ,stPS
Rdt´mpst, st´mq

˜
m´1π

k“0

Pµkpsk, sk`1q
¸
P psm`1|sm, a

˚
0 q

P psm`2|sm`1, a1q
˜

t´1π

k“m`2

Pdk´mpsk´mqpsk, sk`1q
¸�

§ max
a1PA

$
&

%�

ÿ

s1,¨¨¨ ,sm`1PS
rpsm`1, a1q

˜
m´1π

k“0

Pµkpsk, sk`1q
¸
P psm`1|sm, a

˚
0 q

`
8ÿ

t“m`2

�
t´m

ÿ

s1,¨¨¨ ,stPS
Rdt´mpst, st´mq

˜
m´1π

k“0

Pµkpsk, sk`1q
¸
P psm`1|sm, a

˚
0 q

P psm`2|sm`1, a1q
˜

t´1π

k“m`2

Pdk´mpsk´mqpsk, sk`1q
¸+

...

§
8ÿ

t“m`1

�
t´m

ÿ

s1,¨¨¨ ,stPS
rpst, a˚

t´mq
˜

m´1π

k“0

Pµkpsk, sk`1q
¸ ˜

t´1π

k“m`1

P psk`1|sk, a˚
k´mq

¸
.

Let the deterministic decision rule dD
i :“ �a˚

i
with a

˚
i being the optimal action per each maximization

above for every i • 1, and the resulting deterministic policy ⇡D :“ pdD
0 , d

D
1 , ¨ ¨ ¨ q. Then,

v
µ0:µm´1,⇡
m ps0q § v

µ0:µm´1,⇡D
m ps0q,

i.e.,

max
⇡P⇧MR

v
µ0:µm´1,⇡
m ps0q § max

⇡P⇧MD
v
µ0:µm´1,⇡
m ps0q.

D EXPERIMENTS

D.1 NUMERICAL SUMMARY OF ATARI RESULTS
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Environment

m “ 5 m “ 15 m “ 25

Del. Aug. Obl. Del. Aug. Obl. Del. Aug. Obl.

Tabular
Maze 0.50 ˘ 0.49 0.18 ˘ 0.54 ´0.61 ˘ 0.26 ´0.25 ˘ 0.43 ´1 ˘ 0 ´0.76 ˘ 0.16 ´0.45 ˘ 0.36 N/A ´0.71 ˘ 0.19

Noisy Maze 0.40 ˘ 0.44 ´0.29 ˘ 0.45 ´0.64 ˘ 0.21 ´0.50 ˘ 0.26 ´1 ˘ 0 ´0.78 ˘ 0.15 ´0.49 ˘ 0.34 N/A ´0.99 ˘ 0

Physical

Cartpole 489 ˘ 11 453 ˘ 16 27 ˘ 4 414 ˘ 14 192 ˘ 15 30 ˘ 3 324 ˘ 7 41 ˘ 2 41 ˘ 3

Noisy Cartpole 435 ˘ 8 379 ˘ 17 26 ˘ 3 251 ˘ 22 129 ˘ 24 30 ˘ 3 60 ˘ 7 36 ˘ 3 40 ˘ 3

Acrobot ´131 ˘ 32 ´463 ˘ 18 ´467 ˘ 47 ´211 ˘ 53 ´481 ˘ 21 ´467 ˘ 34 ´351 ˘ 57 ´493 ˘ 5 ´465 ˘ 20

Noisy Acrobot ´134 ˘ 37 ´491 ˘ 2 ´445 ˘ 11 ´329 ˘ 24 ´425 ˘ 41 ´399 ˘ 41 ´361 ˘ 62 ´471 ˘ 12 ´438 ˘ 39

Atari

Enduro 16 ˘ 6 29 ˘ 4 33 ˘ 2 1.4 ˘ 0.4 0.6 ˘ 0.7 0.5 ˘ 0.2 1.1 ˘ 0.6 0.2 ˘ 0.1 0.2 ˘ 0.4

MsPacman 1354 ˘ 86 1083 ˘ 60 1319 ˘ 35 1034 ˘ 124 691 ˘ 272 701 ˘ 123 959 ˘ 77 450 ˘ 84 612 ˘ 23

NameThisGame 2476 ˘ 96 2278 ˘ 167 2153 ˘ 152 2122 ˘ 132 1573 ˘ 43 2013 ˘ 300 1887 ˘ 204 1510 ˘ 210 1775 ˘ 96

Qbert 367 ˘ 19 372 ˘ 177 402 ˘ 152 304 ˘ 15 245 ˘ 29 254 ˘ 34 253 ˘ 29 154 ˘ 77 200 ˘ 74

RoadRunner 2975 ˘ 237 1790 ˘ 255 1152 ˘ 430 1294 ˘ 472 1153 ˘ 119 360 ˘ 204 1056 ˘ 698 668 ˘ 268 485 ˘ 451

StarGunner 902 ˘ 74 838 ˘ 104 919 ˘ 44 801 ˘ 38 622 ˘ 68 643 ˘ 50 712 ˘ 49 649 ˘ 47 635 ˘ 20

TimePilot 1941 ˘ 133 1844 ˘ 599 1616 ˘ 474 2695 ˘ 418 2049 ˘ 665 2341 ˘ 72 2690 ˘ 201 2671 ˘ 127 1980 ˘ 623

Zaxxon 1418 ˘ 148 431 ˘ 77 605 ˘ 66 461 ˘ 185 97 ˘ 65 225 ˘ 19 130 ˘ 42 72 ˘ 22 67 ˘ 35

Table 2: Experiment summary: episodic return mean and std for all domains. Delayed-Q outperforms
the alternatives in 39 of 42 experiments.

D.2 COMPARISON TO RNN-BASED POLICY

In one environment, we compared Delayed-Q with a fourth algorithm which uses an RNN-based
policy that is unaware of the delay value. Specifically, we tested A2C, which managed to converge
on Atari’s Frostbite. As can be seen in Fig. 12, using a recurrent policy does not improve upon
Augmented-Q or Oblivious-Q. This result is not surprising though: as stated in Thm. 5.1, the sequence
of states st´m, st´m´1, . . . does not aid the policy any further than only using st´m. An additional
deficiency of RNN-policies that are oblivious to the delay value is that, similarly to Oblivious-Q, they
target the wrong Q-value without accounting for delayed execution. Notice that this is not the case in
both Augmented-Q and Delayed-Q.

Figure 12: Comparison to RNN-based policy on Atari “Frostbite”.
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