
Under review as a conference paper at ICLR 2024

A APPENDIX

The appendix contains additional material that could not be incorporated into the main paper due to
page constraints. This includes detailed proofs of the theorems, supporting visual representations,
and supplementary experimental data. The formal proofs, accompanied by illustrative diagrams that
elucidate the basic concept behind each theorem, are discussed in sections B, C, and D. Section
E delivers in-depth experimental methodologies that underpin the primary paper and some minor
complementary experiments. These supplementary experiments comprise sensitivity analysis of the
hyperparameters and a showcase of how Optuna’s early stopping (pruning) algorithm has contributed
to minimizing training time.

B DETAILED PROOFS FOR THEOREM 1 AND ACCOMPANYING LEMMAS

Figure 3: Depictions related to Theorem 1. (a) In simplified terms, the value of gij(x(t))∗LS for
t ∈ [0, 1/2] is lower than or equal to gij(x(t))

∗, and the inverse holds true for t ∈ [1/2, 1]. This
particular pattern gives rise to tLS

α − tLS
β ≥ tα − tβ , resulting in increased boundary thickness. (b) A

simplified representation of how SPIDER’s monotonically decreasing smoothing function assures
increased boundary thickness. The yellow lines indicate the boundary thickness for SPIDER (on the
left) and SPIDER without the smoothing function (on the right), respectively.

B.1 PROOF ON THEOREM 1

Theorem 1. Given any isotropic pdf pϵ(z) := pγ(∥z∥)/Sn(∥z∥) with monotonically decreasing
function pγ(·) and a monotonically decreasing function s(·), the boundary thickness of f∗

LS is always
greater than or equal to f∗, i.e.

∀ − 1 ≤ α ≤ 0 < β ≤ 1, Θ(f∗, α, β, xi, xj) ≤ Θ(f∗
LS , α, β, xi, xj)

for datapoints (xi, yi), (xj , yj) satisfying yi ̸= yj in the dataset.

Proof. Let Elin denote the event that perturbed images xi + ϵi and xj + ϵj lies on segment x(t).
Given such event Elin, we can formulate the perturbed images as x′

i := xi + (xj − xi)ηi and
x′
j = xj +(xi −xj)ηj , where ηi and ηj are univariate random variables in [0, 1]. Since ϵi, ϵj ∼ pϵ(·)

where pϵ(·) is an isotropic decreasing function centered at origin, ηi, ηj ∼ pη(·) where pη(·) is
a 1D monotonically decreasing pdf defined in the domain [0, 1]. In addition, we assume that
∀t ∈ [0, 1], pη(t) > 0, i.e. the probabilities of perturbed images are nonzero at the segment
x(t)(t ∈ [0, 1]) to make the calculation of f∗ and f∗

LS possible. One justification for the assumption
is that for small h > 0, (1− h)pη(t) + h · Uniform(0, 1) ≈ pη(t) in practice.

Now, we are ready to calculate the expected labels on the line segment. Since the primary interest
here is boundary thickness which is parameterized by ∥xi − xj∥ and gij(x(t)), we take a closer look
at the ith and jth element of the one-hot encoded labels.

For any point x(t) and its corresponding label y = [y0 · · · yi · · · yj · · · yc] w.l.o.g.,

E[y | x(t), Elin]
∝ E[y | xi + (xj − xi)ηi = x(t)] · pη(t) + E[y | xj + (xi − xj)ηj = x(t)] · pη(1− t)

13

Under review as a conference paper at ICLR 2024

= [0 · · · 1 · · · 0 · · · 0] · pη(t) + [0 · · · 0 · · · 1 · · · 0]pη(1− t)

E[y | x(t), Elin] =
[
0 · · · pη(t)

pη(t) + pη(1− t)
· · · pη(1− t)

pη(t) + η(1− t)
· · · 0

]
, i.e. yi =

pη(t)

pη(t) + pη(1− t)
, yj =

pη(1− t)

pη(t) + pη(1− t)
, and 0 elsewhere.

Let f∗ : Rn → ∆c be any function satisfying f∗(x(t))i =
pη(t)

pη(t) + pη(1− t)
and f∗(x(t))j =

pη(1− t)

pη(t) + pη(1− t)
for all t ∈ [0, 1], where ∆c is a probability simplex in Rc. f∗ is an optimal

function that minimizes surrogate loss along the line segment x(t), t ∈ [0, 1].

Analogously, we can formulate perturbed images with smoothed labels given Elin as (xi + (xj −
xi)ηi, ỹi) and (xj + (xi − xj)ηj , ỹj). The expected label ỹ of a point x(t) on the line segment is

E[ỹ | x(t), Elin]
∝ E[ỹ | xi + (xj − xi)ηi = x(t)] · pη(t) + E[y | xj + (xi − xj)ηj = x(t)] · pη(1− t)

= [ri · · · s(∥(xj − xi)ηi∥) · · · ri · · · ri] · pη(t) + [rj · · · rj · · · s(∥(xj − xi)ηj∥) · · · rj] pη(1− t)(
ri :=

1− s(∥(xj − xi)ηi∥)
c− 1

, rj :=
1− s(∥(xi − xj)ηj∥)

c− 1

)
= [ri · · · s(∥(xj − xi)t∥) · · · ri · · · ri] · pη(t) + [rj · · · rj · · · s(∥(xj − xi)(1− t)∥) · · · rj] pη(1− t)

(∵ ηi = t and ηj = 1− t given events xi + (xj − xi)ηi = x(t) and xj + (xi − xj)ηj = x(t).)

For the sake of readibility, let di(t) := ∥(xj − xi)t∥ and dj(t) := ∥(xi − xj)(1− t)∥.

0 ≤ di(t), dj(t) ≤ ∥xj − xi∥ and di(t) + dj(t) = ∥xj − xi∥. We will simply denote di(t), dj(t) as
di, dj , and ri(t), rj(t) as ri, rj wherever not necessary.

The sum of the elements of the above vector is pη(t) + pη(1− t). Thus,

E[ỹ | x(t), Elin]

=

[
ripη(t) + rjpη(1− t)

pη(t) + pη(1− t)
· · · s(di)pη(t) + rjpη(1− t)

pη(t) + pη(1− t)

· · · ripη(t) + s(dj)pη(1− t)

pη(t) + pη(1− t)
· · · ripη(t) + rjpη(1− t)

pη(t) + pη(1− t)

]
Let f∗

LS : Rn → ∆c be any function satisfying

∀ t ∈ [0, 1], f∗
LS(x(t))k∈[c] =

s(di)pη(t) + rjpη(1− t)

pη(t) + pη(1− t)
if k = i,

ripη(t) + s(dj)pη(1− t)

pη(t) + pη(1− t)
if k = j,

ripη(t) + rjpη(1− t)

pη(t) + pη(1− t)
otherwise.

f∗
LS is an optimal function that minimizes surrogate loss along the segment x(t), t ∈ [0, 1].

We can now calculate the boundary thickness of f∗ and f∗
LS . To clearly distinguish gij(x(t)) for f∗

and f∗
LS , we use notations gij(x(t))∗ and gij(x(t))

∗
LS .

Θ(f∗, α, β, xi, xj) := ∥xi − xj∥
∫ 1

0
I{α < gij(x(t))

∗ < β}dt

Θ(f∗
LS , α, β, xi, xj) := ∥xi − xj∥

∫ 1

0
I{α < gij(x(t))

∗
LS < β}dt

14

Under review as a conference paper at ICLR 2024

gij(x(t))
∗ =

pη(t)

pη(t) + pη(1− t)
− pη(1− t)

pη(t) + pη(1− t)
=

pη(t)− pη(1− t)

pη(t) + pη(1− t)

gij(x(t))
∗
LS =

s(di)pη(t) + rjpη(1− t)

pη(t) + pη(1− t)
− ripη(t) + s(dj)pη(1− t)

pη(t) + pη(1− t)

=
(s(di)− ri)pη(t)− (s(dj)− rj)pη(1− t)

pη(t) + pη(1− t)

s(di)− ri = s(di)−
1− s(di)

c− 1
=

c · s(di)− 1

c− 1

Since 1/c ≤ s(di) ≤ 1, 0 ≤ c · s(di)− 1

c− 1
≤ 1, i.e. 0 ≤ s(di)− ri ≤ 1.

For the sake of simplicity, let γi(di) := s(di) − ri. ri(di) is a monotonically decreasing function
with respect to di (∵ s(·) and c · s(·)− 1 are monotonically decreasing functions.) Trivially, 0 ≤
γj(dj) ≤ 1 and γj(·) is a monotonically decreasing function.

Recap that gij(x(t))∗ =
pη(t)− pη(1− t)

pη(t) + pη(1− t)
. Let us rewrite gij(x(t))

∗
LS as:

gij(x(t))
∗
LS =

γi(di)pη(t)− γj(dj)pη(1− t)

pη(t) + pη(1− t)

One important thing to note here is that both gij(x(t))
∗ and gij(x(t))

∗
LS are monotonically decreasing

functions with respect to t that are symmetric to the point (1/2, 0).

Lemma 1. gij(x(t))
∗ and gij(x(t))

∗
LS are monotonically decreasing functions with respect to

t ∈ [0, 1] that are symmetric to the point (1/2, 0).

Another thing to note is that if we show 0 ≤ gij(x(t))
∗
LS ≤ gij(x(t))

∗ for t ∈ [0, 1/2] and
0 ≥ gij(x(t))

∗
LS ≥ gij(x(t))

∗ for t ∈ [1/2, 1], at the same time we are showing ∀ − 1 ≤ α ≤ 0 ≤
β ≤ 1,Θ(f∗

LS , α, β, xi, xj) ≥ Θ(f∗, α, β, xi, xj) considering Lemma 1 (Figure 3a.)

Lemma 2. 0 ≤ gij(x(t))
∗
LS ≤ gij(x(t))

∗ for t ∈ [0, 1/2] and 0 ≥ gij(x(t))
∗
LS ≥ gij(x(t))

∗ for
t ∈ [1/2, 1].

With Lemma 1 and Lemma 2, we can now finally derive that the boundary thickness of f∗
LS is greater

than or equal to f∗.

Let 0 ≤ tLS
β ≤ 1/2 ≤ tLS

α ≤ 1 be the values of t such that

(tLS
α , tLS

β) =

(
inf
t
gij(x(t))

∗
LS = α, sup

t
gij(x(t))

∗
LS = β

)
.

Since gij(x(t))
∗
LS is monotonically decreasing, the boundary thickness of f∗

LS is ∥xi −
xj∥

∫ 1

0
I{α < gij(x(t))

∗
LS < β}dt = ∥xi − xj∥ · (tLS

α − tLS
β).

Similarly, let 0 ≤ tβ ≤ 1/2 ≤ tα ≤ 1 be the values of t such that

(tα, tβ) =

(
inf
t
gij(x(t))

∗ = α, sup
t

gij(x(t))
∗
LS = β

)
.

The boundary thickness of f∗ is ∥xi − xj∥ · (tα − tβ).

We now show that tLS
β ≤ tβ using Lemma 1 and Lemma 2, with the definition of tLS

β and tβ . For the
sake of simplicity, let h∗(t) and h∗

LS(t) denote gij(x(t))
∗ and gij(x(t))

∗
LS respectively.

15

Under review as a conference paper at ICLR 2024

h∗
LS(t

LS
β) = β ≤ h∗(tLS

β) Def. of tLS
β , Lemma 2

h∗(tβ) = β ≥ h∗
LS(tβ) Def. of tβ , Lemma 2

h∗
LS(t

LS
β) ≥ h∗

LS(tβ) h∗
LS(t

LS
β) = β, β ≥ h∗

LS(tβ)

tLS
β ≤ tβ Lemma 1

Likewise, we can trivially derive tLS
α ≥ tα. Then, (tLS

α − tLS
β) ≥ (tα − tβ) , i.e.

∥xi − xj∥(tLS
α − tLS

β) ≥ ∥xi − xj∥(tα − tβ).

16

Under review as a conference paper at ICLR 2024

B.2 PROOF ON LEMMA 1

Lemma 1. gij(x(t))
∗ and gij(x(t))

∗
LS are monotonically decreasing functions with respect to

t ∈ [0, 1] that are symmetric to the point (1/2, 0).

Proof. We divide the proof into two parts. First we prove that gij(x(t))∗ and gij(x(t))
∗
LS are

symmetric to the point
(
1
2 , 0
)
, and then prove the functions are monotonically decreasing.

A function f being symmetric to a point
(
1
2 , 0
)

indicates that f
(
1
2 + x

)
= −f

(
1
2 − x

)
.

gij(x(t))
∗ =

pη(t)− pη(1− t)

pη(t) + pη(1− t)

gij(x
(
1
2 + t

)
)∗ =

pη(
1
2 + t)− pη(

1
2 − t)

pη(
1
2 + t) + pη(

1
2 − t)

= −
pη(

1
2 − t)− pη(

1
2 + t)

pη(
1
2 − t) + pη(

1
2 + t)

= −gij(x
(
1
2 − t

)
)

gij(x(t))
∗
LS =

(s(di(t))− ri(t))pη(t)− (s(dj(t))− rj(t))pη(1− t)

pη(t) + pη(1− t)
, where

ri(t) =
1− s(di(t))

c− 1
, rj(t) =

1− s(dj(t))

c− 1

di(t) = ∥(xj − xi)t∥, and dj(t) = ∥(xi − xj)(1− t)∥ = ∥(xj − xi)(1− t)∥.
We will unpack gij(x(t))

∗
LS .

gij(x(t))
∗
LS =

1

pη(t) + pη(1− t)
·
(
c · s(di(t))− 1

c− 1
· pη(t)−

c · s(dj(t))− 1

c− 1
· pη(1− t)

)
=

1

pη(t) + pη(1− t)
×(

c · s(∥(xj − xi)t∥)− 1

c− 1
· pη(t)−

c · s(∥(xj − xi)(1− t)∥)− 1

c− 1
· pη(1− t)

)
gij(x(

1
2 + t))∗LS

=
1

pη(
1
2 + t) + pη(

1
2 − t)

×

(
c · s(∥(xj − xi)(

1
2 + t)∥)− 1

c− 1
· pη(12 + t)−

c · s(∥(xj − xi)(
1
2 − t)∥)− 1

c− 1
· pη(12 − t)

)
= −gij(x(

1
2 − t))∗LS

Now, we prove gij(x(t))
∗ and gij(x(t))

∗
LS are monotonically decreasing.

gij(x(t))
∗ =

pη(t)− pη(1− t)

pη(t) + pη(1− t)

We show that gij(x(t))∗ is monotonically decreasing for all t ∈ [0, 1/2]. For the sake of simplicity,
we use p(·) to denote pη(·) here. ∀ 0 ≤ a ≤ b ≤ 1/2,

gij(x(a))
∗ − gij(x(b))

∗

=
p(a)− p(1− a)

p(a) + p(1− a)
− p(b)− p(1− b)

p(b) + p(1− b)

=
2p(a)p(1− b)− 2p(1− a)p(b)

(p(a) + p(1− a))(p(b) + p(1− b))

sign(gij(x(a))∗ − gij(x(b))
∗) = sign(p(a)p(1− b)− p(1− a)p(b)) (∵ p(·) : [0, 1] → R>0)

p(a)p(1− b)− p(1− a)p(b)

17

Under review as a conference paper at ICLR 2024

= p(1− a)p(b) ·
(
p(a)p(1− b)

p(1− a)p(b)
− 1

)
= p(1− a)p(b) ·

(
p(a)

p(1− a)
÷ p(b)

p(1− b)
− 1

)
Since p is monotonically decreasing, p(a) ≥ p(b) ≥ p(1− b) ≥ p(1− a) > 0.

p(a)

p(1− a)
≥ p(b)

p(1− a)
≥ p(b)

p(1− b)
→ p(a)

p(1− a)
− p(b)

p(1− b)
≥ 0.

p(a)

p(1− a)
÷ p(b)

p(1− b)
≥ 1

(
∵

p(t)

p(1− t)
> 0 ∀ t ∈ [0, 1].

)
Thus, p(a)p(1−b)−p(1−a)p(b) ≥ 0, which leads to gij(x(a))−gij(x(b)) ≥ 0 (∀0 ≤ a ≤ b ≤ 1/2.)

Since gij(x(t))
∗ is symmetric to the point

(
1
2 , 0
)
, gij(x(t))∗ is also monotonically decreasing in

t ∈
[
1
2 , 1
]
.

Likewise, let γi(di(t)) :=
c · s(di(t))− 1

c− 1
. ∀ t ∈ [0, 1], 0 ≤ γi(di(t)) ≤ 1 and γi(di(t)) is a

monotonically decreasing function.

gij(x(t))
∗
LS =

γi(di(t))pη(t)− γi(1− di(t))pη(1− t)

pη(t) + pη(1− t)

Analogously, we can derive that gij(x(t))∗LS is monotonically decreasing function with trivial
calculations.

18

Under review as a conference paper at ICLR 2024

B.3 PROOF ON LEMMA 2

Lemma 2. 0 ≤ gij(x(t))
∗
LS ≤ gij(x(t))

∗ for t ∈ [0, 1/2] and 0 ≥ gij(x(t))
∗
LS ≥ gij(x(t))

∗ for
t ∈ [1/2, 1].

Proof. gij(x(t))
∗ =

pη(t)− pη(1− t)

pη(t) + pη(1− t)
and

gij(x(t))
∗
LS =

1

pη(t) + pη(1− t)
·
(
c · s(di(t))− 1

c− 1
· pη(t)−

c · s(d− di(t))− 1

c− 1
· pη(1− t)

)
gij(x(t))

∗ − gij(x(t))
∗
LS

=
1

pη(t) + pη(1− t)
·
(
c− c · s(di(t))

c− 1
· pη(t)−

c− c · s(d− di(t))

c− 1
· pη(1− t)

)
pη(t) ∝ pϵ((xj − xi)t) =

pγ(∥(xj − xi)t∥)
Sn(∥(xj − xi)t)∥)

=
pγ(∥ϵi∥)
Sn(∥ϵi∥)

pη(1− t) ∝ pϵ((xi − xj)(1− t)) =
pγ(∥(xj − xi)(1− t)∥)
Sn(∥(xj − xi)(1− t))∥)

=
pγ(∥ϵj∥)
Sn(∥ϵj∥)

Case t ∈ [0, 1/2):

pη(t)

pη(t) + pη(1− t)
=

pγ(∥ϵi∥)
Sn(∥ϵi∥)

pγ(∥ϵi∥)
Sn(∥ϵi∥)

+
pγ(∥ϵj∥)
Sn(∥ϵj∥)

=
1

1 +
pγ(∥ϵj∥)
pγ(∥ϵi∥)

· Sn(∥ϵi∥)
Sn(∥ϵj∥)

≥ 1

1 +

(
∥ϵi∥
∥ϵj∥

)n−1

The last inequality comes from fact that pγ(·) is a monotonically decreasing function and ∥ϵi∥ =
∥(xj − xi)t∥ < d/2 < ∥(xi − xj)(1− t)∥ = ∥ϵj∥.

As n grows, (∥ϵi∥/∥ϵj∥)n−1 converges to 0 for any t ∈ [0, 1/2). In other terms, the high-
dimensionality of the input space essentially makes (|ϵi|/|ϵj |)n−1 to be practically zero. As an
example, in the CIFAR-10/100 benchmarks where the dimensionality n equals 32 · 32 · 3 = 3071,
t ∈ [0, 1/2− 10−3] gives (|ϵi|/|ϵj |)n−1

< 4.6× 10−6. Essentially, we can regard (|ϵi|/|ϵj |)n−1 as
virtually zero in real-world scenarios, unless we encounter the unlikely cases where t is extraordinarily
near to 1/2. Formally,

1 ≥ pη(t)

pη(t) + pη(1− t)
≥ 1

1 + (∥ϵi∥/∥ϵj∥)n−1 ≈ 1 −→ pη(t)

pη(t) + pη(1− t)
≈ 1.

Accordingly,
pη(1− t)

pη(t) + pη(1− t)
≈ 0.

gij(x(t))
∗ − gij(x(t))

∗
LS

=
1

pη(t) + pη(1− t)
·
(
c · s(di(t))− 1

c− 1
· pη(t)−

c · s(d− di(t))− 1

c− 1
· pη(1− t)

)
≈ c · s(di(t))− 1

c− 1
≥ 0 (∵ 1/c ≤ s(di(t)) ≤ 1)

gij(x(0))
∗
LS =

pη(0)− pη(1)

pη(0) + pη(1)
≥ 0.

Using Lemma 1 and gij(x(0))
∗
LS ≥ 0, we have gij(x(t))

∗
LS ≥ 0 for t ∈ [0, 1/2).

Case t ∈ (1/2, 1]:

Using Lemma 1 and 0 ≤ gij(x(t))
∗
LS ≤ gij(x(t))

∗ for t ∈ [0, 1/2), 0 ≥ gij(x(t))
∗
LS ≥ gij(x(t))

∗

for t ∈ (1/2, 1].

19

Under review as a conference paper at ICLR 2024

Case t = 1/2:

Using Lemma 1, gij(x(1/2))∗LS = gij(x(1/2))
∗ = 0.

20

Under review as a conference paper at ICLR 2024

Figure 4: Illustrations of theorems on perturbation conversions. (a) The parameter perturbation region
{∥∆∥ ≤ γ} can be connected to an ellipsoidal perturbation region Rδ (Theorem 2.) (b) The input
perturbation region {∥δ∥ ≤ γ} can be connected to parameter perturbation region R∆. R∆ has the
subset Rsub := {∥∆∥ ≤ (λmin/∥xmax∥)2} (Theorem 3) and the superset Rsup := {∥∆∥ ≤ ρ2}
(Theorem 4.)

C CONVERTING PERTURBATIONS IN PARAMETER SPACE TO INPUT SPACE

Given weights W ∈ Rm×n, b ∈ Rm, input x ∈ Rn, and parameter perturbation region ∥∆∥ ≤ γ, we
want to find the region Rδ so that ∀ ∥∆∥ ≤ γ,∃ δ ∈ Rδ s.t. σ(W (x+ δ)+ b) = σ((W +∆)x+ b)
and ∀ δ ∈ Rδ,∃ ∥∆∥ ≤ γ s.t. σ(W (x+ δ) + b) = σ((W +∆)x+ b). In other words, we want to
find the region Rδ so that for every element e1 in region {∆ ∈ Rm×n | ∥∆∥ ≤ γ} there exists an
element e2 in region Rδ satisfying the equation and vice versa.

Since σ(·) : Rm → (0, 1)m is a bijective function, σ(W (x + δ) + b) = σ((W + ∆)x + b)
⇐⇒ W (x+ δ) + b = (W +∆)x+ b. This equality can be reduced to Wδ = ∆x.

We will first examine the range of ∆x in the output space, given ∥∆∥ ≤ γ. ∆x can be written in
several ways:

∆x =

[
c1 c2 · · · cn

]
x1

x2

...
xn

 =

c11 c12 . . . c1n
c21 c22 · · · c2n

...
...

...
cm1 cm2 . . . cmn

x1

x2

...
xn

= c1x1 + c2x2 + · · ·+ cnxn =

 c11c21
. . .
cm1

x1 +

 c12c22
. . .
cm2

x2 + · · ·+

 c1nc2n
. . .
cmn

xn

, where ci is the ith column vector and cij is an element in ith row, jth column of ∆.

Next, we will rewrite ∥∆∥ ≤ γ as the following constraints:

∥∆∥ ≤ γ

⇐⇒
m∑
i=1

n∑
j=1

c2ij ≤ γ2

⇐⇒
n∑

j=1

∥cj∥2 ≤ γ2
j subject to γ2

1 + γ2
2 + · · ·+ γ2

n = γ2.

When we reexamine the above formulas in Rm, finding the range of ∆x can be regarded as finding
the range of linear combination of column vectors in Rm such that each column vector ci is restricted
to ∥ci∥ ≤ γi.

Given two vectors v1 and v2 s.t. ∥v1∥ ≤ γ1 and ∥v2∥ ≤ γ2, ∥v1 + v2∥ ≤ γ1 + γ2 . Trivially, for any
α ∈ R, ∥α · v1∥ ≤ |α|γ1. That is, the range of linear combination ∆x = c1x1 + c2x2 + · · ·+ cnxn

is also a ball, i.e. ∥∆x∥ ≤
∑n

i=1 |xi|γi subject to
∑n

i=1 γ
2
i = γ2.

21

Under review as a conference paper at ICLR 2024

Finding the range of ∥∆x∥ is now equivalent to finding the maximum radius of
∑n

i=1 |xi|γi with
the constraint

∑n
i=1 γ

2
i = γ2. Using Lagrange multipliers method, let r := [γ1, γ2, · · · , γn],

f(r) :=
∑n

i=1 |xi|γi, g(r) :=
∑n

i=1 γ
2
i − γ2, and L(r, λ) := f(r)− λ(g(r)).

∂L

∂γi
= |xi| − 2λγi = 0 ⇐⇒ γi =

|xi|
2λ

Substituting the above equality to g(r) = 0,

n∑
i=1

x2
i

4λ2
− γ2 = 0 ⇐⇒ λ =

√∑
xi

2

2γ

γi =
|xi|
2λ

=
|xi|γ√∑

xi
2

f(r) =
n∑

i=1

xi
2γ√∑
xi

2
=

∑n
i=1 x

2
i√∑n

i=1 x
2
i

γ = ∥x∥ · γ

Therefore, ∥∆x∥ ≤ ∥x∥γ.

We now consider the LHS of equation Wδ = ∆x. Let W = UΣV ⊤ be the SVD Decomposition
of W ∈ Rm×n. Multiplying U⊤ to both sides of the equation, ΣV ⊤δ = U⊤∆x. The inequality
induced by L2 norm, i.e. ball, does not change when we multiply any orthogonal matrix. Thus,
∥U⊤∆x∥ ≤ ∥x∥γ.

Let δ′ := V ⊤δ = [δ′1, · · · , δ′n]⊤.

ΣV ⊤δ = Σδ′ =

σ1 0 · · · 0
. . .

...
...

σm 0 · · · 0

δ′1
...
δ′m

δ′m+1
...
δn

=

 σ1δ
′
1

...
σmδ′m

Since ∥U⊤∆x∥ ≤ ∥x∥γ and Σδ′ = U⊤∆x, ∥Σδ′∥ ≤ ∥x∥γ, i.e.

σ2
1δ

′2
1 + · · ·+ σ2

mδ′2m + 0 · (σ2
m+1δ

′2
m+1 + · · ·+ σ2

nδ
′2
n) ≤ ∥x∥2γ2

However since 0 · (σ2
m+1δ

′2
m+1 + · · · + σ2

nδ
′2
n) = 0 holds for any δ, i.e. the general solution to

Wa = Wb where a ̸= b, we need not contain it in our perturbation region Rδ which is induced
by ∥∆∥ ≤ γ. Then, the above inequality represents a m-dim region bounded by a m-dim ellipsoid
whose principal semi-axes have lengths (σ1∥x∥γ)−1, · · · , (σn∥x∥γ)−1 with respect to δ′ ∈ Rn.
Subsequently, the region of interest Rδ ∈ Rn is an rotated m-dim ellipsoid whose principal semi-axes
have lengths (σ1∥x∥γ)−1, · · · , (σn∥x∥γ)−1 with respect to δ ∈ Rn.

22

Under review as a conference paper at ICLR 2024

D CONVERTING PERTURBATIONS IN INPUT SPACE TO PARAMETER SPACE

Given weights W ∈ Rm×n, input x ∈ Rn, and parameter perturbation region ∥δ∥ ≤ γ, we want
to find the region R∆ so that ∀ ∥δ∥ ≤ γ,∃ ∆ ∈ R∆ s.t. Wδ = ∆x and ∀ ∆ ∈ R∆,∃ ∥δ∥ ≤
γ s.t. Wδ = ∆x.

Using SVD decomposition, W = UΣV ⊤, where Σ is a diagonal matrix with entries σ1, · · · , σn.

Wδ = UΣV ⊤δ = UΣδ′, where δ′ := V ⊤δ. Since rotating or reflecting does not change the region
of a ball, ∥δ∥ ≤ γ gives ∥δ′∥ ≤ γ, i.e. δ′21 + · · · δ′2n ≤ γ2.

Let δ′′ := [δ′′1 , · · · , δ′′m] = Σδ′ = [σ1δ
′
1, · · · , σmδ′m]. ∀i ∈ [m], σ−1

i δ′′i = δ′i. Then,

δ′′21
σ2
1

+ · · ·+ δ′′2m
σ2
m

≤ γ2 −
(
δ′2m+1 + · · · δ′2n

)
(1)

The maximum value of RHS in eq. 1 is γ2, when
(
δ′2m+1 + · · · δ′2n

)
= 0. This indicates that δ′′ resides

within an ellipsoid with with principle semi-axes of lengths λi := σiγ, i ∈ [m]. Thus, Uδ′′ = Wδ is
a region bounded by an rotated ellipsoid.

Now, we will examine the region R∆ such that ∆x (∆ ∈ R∆) forms a rotated ellipsoid with principle
semi-axes of lengths λi. Unlike the case of converting parameter space’s perturbation region to input
space’s in Appendix B, R∆ need not be in a form of ellipsoid. Instead, we provide a superset Rsup

and a subset Rsub of R∆ in the form of a ball such that Rsub ⊆ R∆ ⊆ Rsup.

Let W be deomposed into UΣV ⊤ using SVD decomposition. For now, we will consider the special
case of W where U = I , i.e. the region of Wδ is bounded by an ellipsoid alligned with standard
basis. Afterwards, we will consider the general case of W , i.e. the region of Wδ is bounded by a
rotated ellipsoid.

Let dij denote the ith row, jth column element of ∆ ∈ Rm×n and xi the ith element of x ∈ Rn.
Since the range of ∆x is an ellipsoid, ∆x must satisfy the ellipsoid inequality

(x1d11 + x2d12 + · · ·+ xnd1n)
2

λ2
1

+ · · ·+ (x1dm1 + x2dm2 + · · ·+ xnd1n)
2

λ2
m

≤ 1

Let ri denote the ith row vector of ∆, and let X denote xx⊤. The above inequality can be rewritten
as:

r⊤1 Xr1
λ2
1

+
r⊤2 Xr2
λ2
2

+ · · ·+ r⊤mXrm
λ2
m

≤ 1 (2)

Since we are interested in finding the region of ∆ in Rm×n space, we may think of it as a vector
d = [r⊤1 , r

⊤
2 , · · · , r⊤m] in R(m×n) rather than as a matrix. Then, inequation 2 can be rewritten as:

d⊤Xλd ≤ 1, where Xλ :=

X/λ2
1

X/λ2
2

· · ·
X/λ2

m

 ∈ R(m×n)2

One property of Xλ is that it is a rank m matrix with singular values ∥x∥2/λ2
1, · · · , ∥x∥2/λ2

m,
regarding that X/λ2

i is a rank 1 matrix with singular value ∥x∥2/λ2
i . Another property is that Xλ is a

positive-semidefinite matrix (∵ ∀i ∈ [m], ∥x∥2/λ2
i ≥ 0.)

When we think of a single input x, the area of d satisfying d⊤Xλd ≤ 1 is not bounded. However,
when we consider the constraint over multiple values of input datapoints {x1, x2, · · · , xN}(N ≫ n)
that spans Rn, the area becomes bounded. One justification of the multiple constraints is that when
we consider x a uniform random variable over the input datapoints, the region of d that satisfies all the
possible constraint is ∪N

i=1d
⊤X

(i)
λ d ≤ 1, where X(i)

λ denotes Xλ for x = xi. Another justification is

23

Under review as a conference paper at ICLR 2024

that when we reach a local plateau in training parameter W , there is little or no change in the value of
W .

The following lemma and theorems provide a subset Rsub and superset Rsup of R∆ in the form of
balls in the parameter space.

Lemma 3. Let R be the region of x ∈ Rn satisfying the inequality x⊤Ax ≤ 1, where A is a non-zero
positive semi-definite matrix having σmax as the maximum nonzero singular value. Let R′ be the
region of x ∈ Rn satisfying the ineqaulity x⊤x ≤ σ−1

max. R ⊆ R′.

Proof. We handle two cases where rank(A) = m and rank(A) < m.

Case rank(A) = m:

Using SVD Decomposition, A = UΣU⊤, where Σ =

σ1

. . .
σn

x⊤Ax = x⊤UΣU⊤x = x′⊤Σx′ ≤ 1, where x′ := U⊤x

Let x′ be represented as x′ = [x′
1, · · · , x′

n].

The constraint induced by R can be rewritten as:

x′⊤Σx′ = σ1x
′2
1 + · · ·+ σnx

′2
n ≤ 1, where Σ = U⊤AU

Let x ∈ Rn be some vector satisfyig x⊤x ≤ σmax. Since U is an orthogonal matrix and x⊤x ≤ σ−1
max

is an equidistant ball that is invariant under rotations and reflections, the constraint induced by R′ can
be rewritten as x′⊤x′ ≤ σ−1

max, where x′ = U⊤x.

To prove x ∈ R′ implies x ∈ R, we will show x′⊤x′ ≤ σ−1
max implies x′⊤Σx′ ≤ 1.

x′⊤x′ ≤ σ−1
max ⇐⇒ σmaxx

′⊤x′ ≤ 1

Let ϵi := σmax − σi. Then, ∀i ∈ [n], ϵi ≥ 0.

σmaxx
′⊤x′ −

n∑
i=1

ϵ(x′
i)

2 ≤ 1−
n∑

i=1

ϵi(x
′
i)

2
(
∵ σmaxx

′⊤x′ ≤ 1
)

≤ 1
(
∵ ∀i ∈ [n], ϵi(x

′
i)

2 ≥ 0
)

Case rank(A) < m:

Let rank(A) = k < m. A can be represented as UΣU⊤ using SVD decomposition, where Σ is a
diagonal matrix whose first k elements are non-zero singular values σ1, · · · , σk.

x⊤Ax = x⊤UΣU⊤x = x′Σx′ ≤ 1, where Σ = U⊤AU and x′ := U⊤x

Let x′ be represented as [x′
1, · · · , x′

n]. The constrained induced by R can be rewritten as:

x′⊤Σx′ = σ1x
′2
1 + · · ·+ σkx

′2
k ≤ 1

Let x ∈ Rn be any vector satisfying x⊤x ≤ σ−1
max. Since ball is equidistant, x⊤x ≤ σ−1

max ⇐⇒
x′′⊤x′ ≤ σ−1

max, where x′ = U⊤x.

To prove x ∈ R′ implies x ∈ R, we will show x′⊤x′ ≤ σ−1
max implies x′Σx′ ≤ 1.

x′⊤x′ ≤ σ−1
max ⇐⇒ σmaxx

′⊤x′ ≤ 1 ⇐⇒
n∑

i=1

σmax(x
′
i)

2 ≤ 1

24

Under review as a conference paper at ICLR 2024

Let ϵi := σmax − σi. Then, ∀i ∈ [n], ϵi ≥ 0.

k∑
i=1

(σmax − ϵi)x
′2
i ≤ σmaxx

⊤x−
k∑

i=1

ϵi(x
′
i)

2 (∵
n∑

i=k+1

σmaxx
2
i ≥ 0)

≤ 1−
k∑

i=1

ϵi(x
′
i)

2
(
∵ σmaxx

′⊤x′ ≤ 1
)

≤ 1
(
∵ ∀i ∈ [k], ϵi(x

′
i)

2 ≥ 0
)

Since
k∑

i=1

(σmax − ϵi)x
′2
i = x′⊤Σx′, x′⊤Σx′ ≤ 1.

Theorem 3. Given W ∈ Rm×n, D = {x1, · · · , xN}(xi ∈ Rn/{0} for i ∈ [N]), and input pertur-
bation region {δ ∈ Rn | ∥δ∥ ≤ γ}, let xmax := argmaxxi

∥xi∥ and λmin := min{λ1, · · · , λm}.
Then, {∆ ∈ Rm×n | ∥∆∥ ≤ (∥xmax∥2/λ2

min)
−1} is the subset of R∆.

Proof. We will rewrite theorem 3 as the following statement:

Given a set of datapoints D = {x1, x2, · · · , xN}(xi ∈ Rn/{0}, i ∈ [N]), let R be the region
of d ∈ Rm×n satisfying the inequality d⊤Xλd ≤ 1 for all x ∈ D. Let R′ be the region of
d ∈ Rm×n satisfying d⊤d ≤ (∥xmax∥2/λ2

min)
−1, where xmax := argmaxxi

∥xi∥ and λmin :=
min{λ1, · · · , λm}. R′ ⊆ R.

Remark that X(i)
λ =

x
⊤
i xi/λ

2
1

x⊤
i xi/λ

2
2

· · ·
x⊤
i xi/λ

2
m

. X
(i)
λ is a rank m matrix with

singular values ∥xi∥2/λ2
1, · · · , ∥xi∥2/λ2

m.

Let Ri denote the region of d ∈ Rn satisfying d⊤X
(i)
λ d ≤ 1, and let R′

i denote the region d⊤d ≤(
∥xi∥2

λ2
min

)−1

.
∥xi∥2

λ2
min

being the largest singular value of X(i)
λ , R′

i ⊆ Ri by Lemma 1. Since this

holds for all i ∈ [N],
N⋃
i=1

R′
i ⊆

N⋃
i=1

Ri.
N⋃
i=1

Ri = R, and
N⋃
i=1

R′
i = R′ is a ball with smallest radius,

i.e. d⊤d ≤

(
∥xmax∥2

λ2
min)

−1

)
.

Theorem 4. Given W ∈ Rm×n, D = {x1, · · · , xN}(xi ∈ Rn/{0} for i ∈ [N]), and input
perturbation region {δ ∈ Rn | ∥δ∥ ≤ γ}, let Ri := {d ∈ Rm×n | d⊤X(i)

λ d ≤ 1} and Γ := {Ri |
i ∈ [N]}.Then, {argminR1,··· ,Rn∈Γ maxρ∈∪i∈[n]Ri

∥ρ∥2} is the superset of R∆.

Proof. Let R∗
1, · · · , R∗

n denote the elements of Γ satisfying argminR1,··· ,Rn∈Γ maxρ∈∪Ri
∥ρ∥2.

R =
N⋃
i=1

Ri ⊆
n⋃

i=1

R∗
i ⊆ maxρ∈∪Ri ∥ρ∥2.

We have so far addressed the case where U = I for W = UΣV ⊤ in the equation Wδ = ∆x. Now,
let us consider the general case of full rank matrix W .

∆ ∈ Rm×n can be represented as either column vectors [c1, c2, · · · , cn] or row vectors
[r1, r2, · · · , rm]⊤. The equation Wδ = ∆x can be rewritten as:

ΣV ⊤δ = U⊤∆x = U⊤[c1, c2, · · · , cn]x = [U⊤c1, U
⊤c2, · · · , U⊤cn]x

25

Under review as a conference paper at ICLR 2024

Let ∆′ := U⊤∆ = [c′1, c
′
2, · · · , c′n] = [r′1, r

′
2, · · · , r′m]⊤, and let d′ be the flattened vector represen-

tation [r′⊤1 , r′⊤2 , · · · , r′⊤m] of ∆′. Then, finding R∆ is equivalent to finding the region of ∆′ satisfying
d′⊤Xλd

′ ≤ 1 and multiplying U to ∆′.

The relationship between ∆′ and ∆ can be expressed as:

Udiag

c′1
c′2
...
c′n

 =

c1
c2
...
cn

 , where Udiag :=

U

U
. . .

U

 ∈ R(m×n)2

Udiag is an orthogonal matrix since U is an orthogonal matrix. Furthermore, any permutation π that
permutes the row vectors of Udiag also results in another orthogonal matrix Uπ

diag . Then for some π,
Uπ
diag[r

′⊤
1 , r′⊤2 , · · · , r′⊤m]⊤ = [r⊤1 , r

⊤
2 , · · · , r⊤m]⊤, i.e. Uπ

diagd
′ = d. Since the region of a ball is not

affected by rotations or reflections, the superset and the subset obtained in Theorem 1 and 2 are not
affected. In other words,

R∆ = {d ∈ Rm×n | ∀i ∈ [n], d⊤X
(i)
λ d ≤ 1}

Rsub = {d ∈ Rm×n | d⊤d ≤
(
∥xmax∥2

λ2
min

)−1

}

Rsup = {d ∈ Rm×n | argmin
R1,··· ,Rn∈Γ

max
ρ∈∪Ri

∥ρ∥2}

satisfies Rsub ⊆ R∆ ⊆ Rsup.

Lastly, we provide the implications of our theorem:

Definition 3. (b-flat local minima) Given any real-valued loss function L and dataset D =
{(x1, y1), (x2, y2), · · · , (xN , yN)}, a model parameter θ is said to have b-flat minima if the fol-
lowing conditions hold:

i) ∀∥ϵ∥ ≤ b,E(x,y)∼D[L(f(x; θ), y)] = E(x,y)∼D[L(f(x; θ + ϵ), y)]

ii) ∀∥ϵ∥ > b,E(x,y)∼D[L(f(x; θ), y)] < E(x,y)∼D[L(f(x; θ + ϵ), y)]

Given any real-valued loss L and dataset D, let θ∗ denote any optimal parameter that minimizes loss
w.r.t. dataset, i.e. θ∗ := argminθ E(x,y)∼D[L(f(x; θ), y)]. Analogously, let θ∗γ denote any optimal
parameter such that ∀∥δ∥ ≤ γ, θ∗γ := argminθ E(x,y)∼D[L(f(x+ δ; θ), y)].

The following holds for any linear classifier f : x 7→ σ(Wx+ b):
Proposition 1. θ∗ can have 0-flat minima.

Proof. There exists θ∗ such that ∀(x, y) ∈ D, θ∗ := argminθ E(x,y)∼D[L(f(x; θ), y)] and ∀δ ∈
Rm/{0}, L(f(x+ δ; θ), y) > L(f(x; θ), y).

Corollary 1. θ∗γ has b-flat minima with b ≥ (∥xmax∥2/λ2
min)

−1.

Proof. For θ∗γ to be an optimal parameter, ∀(x, y) ∈ D, ∥δ∥ ≤ γ, L(f(x + δ; θ∗γ), y) =
L(f(x; θ∗γ), y) = minθ L(f(x; θ), y). Using results from Theorem 3, ∀(x, y) ∈ D, ∥∆∥ ≤
(∥xmax∥2/λ2

min)
−1, L(f(x; θ∗γ +∆), y) = L(f(x; θ∗γ), y) = minθ L(f(x; θ), y).

The proposition and the collorary implies that exploiting perturbation-based algorithm will provide
higher lower bound of b ((∥xmax∥2/λ2

min)
−1 > 0) for the b-flat minima of the optimal parameter.

26

Under review as a conference paper at ICLR 2024

E ADDITIONAL EXPERIMENTAL DETAILS

In this section, we provide an in-depth discussion on the experiments conducted in the main paper,
as well as present additional experimental findings related to SPIDER including hyperparameter
sensitivity analysis.

E.1 EXPERIMENTAL DETAILS

In our experiments, the hardware resources employed differ based on the complexity of the tasks. All
the tasks in the main paper related to CIFAR-10/100, and Tiny-ImageNet has been handled using 8
NVIDIA RTX A5000 GPUs. While a single A5000 GPU could have sufficed for the evaluation, the
multi-GPU setup have been opted for to facilitate the extensive evaluations for each baseline methods.
ImageNet training experiment has been carried out utilizing a single A100 GPU, owing to its superior
computational capacity.

E.1.1 MAIN TABLE

Robustness Against General Corruptions

For CIFAR-10/100 experiments, we use WRN-40-2 architecture exploited in (Hendrycks et al.,
2021b). For Tiny-ImageNet and ImageNet experiment, we use ResNet18 (He et al., 2015) as our
backbone. SGD with momentum value of 0.9 has been used in all our experiments. Cosine learning
rate decay scheduling (Loshchilov & Hutter, 2017) with initial learning rate of 0.1, 0.01, and 0.01
has been used respectively for CIFAR-10/100, Tiny-ImageNet, and ImageNet experiments to train a
model until convergence. Models have been trained for 400, 100, and 90 epochs for CIFAR-10/100,
Tiny-ImageNet, and ImageNet benchmarks respectively.

The search space for hyperparameters (τ , ξ) introduced by SPIDER instantiation are as follows. For
τ , the range was set to [0.0, 20.0] for CIFAR-10/100 and [0.0, 30.0] for Tiny-ImageNet. ξ was tested
within the range of [0, 1− c−1], with c representing the number of classes in the given dataset. The
rescaling and clipping algorithm by Rauber (Rauber & Bethge, 2020) was utilized to keep perturbed
data points within a valid domain (i.e. [0, 1]m).

Evaluation of Robustness to Common Data Corruptions

Benchmark Statistics: CIFAR-10/100-C, Tiny-ImageNet-C, and ImageNet (Deng et al., 2009)
datasets contain 15 distinct corruption types: brightness changes, contrast alterations, defocus blur,
elastic transformations, fog addition, frost addition, Gaussian blur, glass distortion, impulse noise,
jpeg compression, motion blur, pixelation, shot noise, snow addition, and zoom blur with 5 different
severity levels per each corruption. mCE calculates the average error of a model across all the distinct
corruptions and severity levels. For ImageNet, we report mCE with normalization suggested as in
Hendrycks & Dietterich (2019).

Evaluation Process: During training and validation, a model is trained and validated on the uncor-
rupted training and validation data. The validation data has been constructed using 20% of the training
data. The model achieving the best validation accuracy is chosen and evaluated on a corrupted dataset,
where the corruption types were not encountered either at the training or the validation stage. To
reduce the discrepancy between the clean, non-augmented dataset and the corrupted dataset, we
augment the clean validation data of CIFAR, Tiny-ImageNet, and ImageNet datasets using augmenta-
tions from (Mintun et al., 2021) during the validation phase. These augmentations are distinct from
the corruptions used in the common corruption benchmarks (CIFAR/100-C, Tiny-ImageNet-C, and
ImageNet-C). In short, we train a model using SPIDER on clean data, select the models with the
highest accuracy on the augmented validation data (using functions from (Mintun et al., 2021)), and
then assess these models’ robustness on common corruption benchmarks.

Evaluation of Robustness to Adversarial Attacks

To assess the model’s robustness against adversarial attacks, we use untargeted PGD attacks based
on L2 and L∞ norms. We have chosen to use the absolute value α as the coefficient of gradient
ascent for clarity, instead of using a relative step size with respect to ϵ. For L2 attacks, PGD-20
attack with (ϵ, α) = (0.5, 1/800) has been used. For L∞ attacks, we have used PGD-7 attack
with (ϵ, α) = (8/255, 2/255) for CIFAR-10/100, PGD-3 attack with (ϵ, α) = (3/255, 1/255) for

27

Under review as a conference paper at ICLR 2024

the Tiny-ImageNet experiment, and PGD-2 L∞ attack with (ϵ, α) = (1/255, 1/510) for ImageNet
experiment. Essentially, more intense attacks have been applied to simpler datasets, while milder
attacks have been used for more complex datasets, with the CIFAR experiments’ attack configurations
borrowed from the (Yang et al., 2020). We then evaluate the adversarial robustness of models trained
following the common corruption evaluation protocol detailed above. The key interest here is not to
show that SPIDER is setting new records for robustness, but to demonstrate that SPIDER enhances
both common corruption robustness and adversarial robustness compared to previous augmentation
methods that had negligible impact on adversarial robustness.

E.1.2 BOUNDARY THICKNESS

Our approach adheres closely to the original paper that introduced the boundary thickness metric
(Yang et al., 2020). For each data point xi in the dataset, labeled with one-hot encoded label i,
we generate a corresponding adversarial instance xj . This is achieved by conducting an attack
on xi targeting a randomly selected class j that differs from i. We use an L2 PGD-20 untargeted
attack with parameters ϵ = 5.0 and α = 1.0 to produce these adversarial instances. The integral∫ 1

0
I{α < gijx(t) < β}dt is approximated by dividing the segment into 128 data points and

determining the fraction of points that fall within the interval from α to β. For the purpose of
measuring the mean and standard deviations of the boundary thickness, we generated 1600 data
points, constructed from 50 batches of 32 images each, along with their adversarial counterparts.
The data in Table 1 was calculated using baseline methods and SPIDER in combination with these
baselines, using the weights obtained from the main experiment. Table 2 was calculated training the
models that had identical configurations as the previous models, except with the smoothing function
removed.

E.1.3 FLATNESS

Flatness is evaluated by sampling parameter fluctuations of growing radii and calculating the average
loss on the model with the adjusted parameter. To elaborate, for every radius value, three independent
and identical models, trained using either standalone baseline augmentation methods or a combination
of SPIDER with the baselines, are utilized for flatness computation. For every model, 50 independent
parameter perturbations are sampled and implemented (yielding a total of 150 disturbed weight
samples) to determine the average loss related to the respective radius.

E.1.4 ABLATION TABLE

The Baseline and SPIDER columns have statistics from the main table. The hyperparameter value (τ)
of the removal of smoothing function (No LS) have been found following the same hyperparameter
search space used in main table (Appendix E.1.1.) For standard label smoothing (STD LS), the degree
of smoothing has been set as hyperparameter value and optimized using TPE sampler from Optuna
library.

E.2 ADDITIONAL EXPERIMENT

E.2.1 HYPERPARAMETER SENSITIVITY

Analysis of Figure 5: The depicted charts illustrate the effect of perturbation sensitivity on the
performance of the model trained with SPIDER augmentation solely. We gauged this sensitivity by
keeping the shape of the exponential smoothing function constant - specifically, we set s(τ) = 0.5
for the CIFAR-10/100 experiments, and observed the performance as the radius τ grew. As expected,
an overly large perturbation radius risks pushing datapoints into the submanifolds of different labels,
which degrades clean accuracy. Conversely, an excessively small perturbation radius fails to provide
sufficient robustness enhancement, as evidenced by the elevated mCE and augmented clean error
values for smaller radii. As the radius increases, there is an initial decrease in mCE, indicating
increased robustness against corruptions. However, the trend begins to reverse for larger radii, with
an accompanying rise in clean and augmented clean error. This pattern underscores the necessity of
an appropriate balance in perturbation size to maintain performance across both clean and corrupted
conditions. Despite these variations, the mean corruption error and augmented clean error consistently

28

Under review as a conference paper at ICLR 2024

Figure 5: Sensitivity to increasing perturbations for CIFAR-10 and CIFAR-100. The plots depict the
relationships between the radius of perturbation and the mean corruption error (mCE), augmented
clean error (aug clean err), and clean error (clean err) for the CIFAR-10 (left) and CIFAR-100 (right)
datasets, with ξ = 0.4 and 0.49 respectively. Each point represents the error rate obtained with a
different radius of parameter perturbation.

stay beneath the baseline’s performance, thereby suggesting that SPIDER improves model robustness
compared to the baseline approach.

Table 7: Comparison of training times and performance between baselines with the addition of
SPIDER. The use of Optuna’s automated hyperparameter search algorithm with pruning alleviates
the added training cost.

Baselines no aug. AugMix DeepAug. PixMix
Pruned Training Duration(hour) 14.84 14.06 39.51 27.98
Predicted Full Training Duration (hour) 58.15 71.99 171.54 140.90
Speed Gain (x Faster) 3.92 5.12 4.34 5.04
Equivalent Non-Pruned Trials 7.65 5.86 6.91 5.96
Best Trial Index out of 30 2 3 2 5

Analysis of Table 7: The table compares the impact of incorporating SPIDER into various baseline
augmentation methods in terms of training duration and performance. As the introduction of SPIDER
brings additional hyperparameters for shaping the perturbation and smoothing functions, there is a
potential for an increase in training time due to the associated hyperparameter search. To mitigate
this, we have implemented Optuna’s automated hyperparameter searching algorithm with an early
stopping feature, also known as ’pruning’. The results show that the pruned training duration for
each augmentation method (no augmentation, AugMix, DeepAugment, and PixMix) is significantly
less than the predicted full training duration, indicating a substantial speed gain. The number of
equivalent non-pruned trials ranges from approximately 5.86 to 7.65, implying that the use of pruning
enables the same level of hyperparameter exploration to be achieved in a fraction of the time. The
best trial index out of 30 shows that successful models can be identified relatively early in the process,
further emphasizing the efficiency of the combined use of SPIDER with automated hyperparameter
search and pruning. This approach, therefore, effectively alleviates the potentially increased training
cost associated with the introduction of SPIDER’s additional hyperparameters.

E.2.2 VARYING BACKBONE NETWORKS

SPIDER demonstrates substantial improvement in robustness against common corruptions and
adversarial attacks across various neural network architectures. This supports previous research, which
found that augmentation techniques enhancing robustness retain their effectiveness and influence on
model resilience, regardless of differences in the underlying network structures (Hendrycks et al.,
2021b;a).

29

Under review as a conference paper at ICLR 2024

Table 8: Evaluation of robustness over different backbone networks on CIFAR-100 benchmark.

Backbone Method mCE ↓ L2 (PGD) ↓ L∞ (PGD) ↓
original +SPIDER original +SPIDER original +SPIDER

DenseNet

no aug. 57.67 ± 0.38 45.73 ± 0.56 99.44 ± 0.08 66.46 ± 0.38 100.00 ± 0.00 99.52 ± 0.06

AugMix 41.79 ± 0.46 36.72 ± 0.15 96.94 ± 0.21 62.72 ± 0.43 99.98 ± 0.02 99.21 ± 0.09

DeepAug. 44.92 ± 0.31 37.76 ± 0.29 97.37 ± 0.19 74.77 ± 0.26 89.05 ± 0.40 99.86 ± 0.01

PixMix 35.71 ± 0.17 35.40 ± 0.07 99.97 ± 0.01 62.43 ± 0.19 99.99 ± 0.01 99.40 ± 0.05

WRN-40-1

no aug. 57.07 ± 0.48 43.56 ± 0.21 99.15 ± 0.06 77.74 ± 0.55 99.99 ± 0.01 99.61 ± 0.03

AugMix 43.82 ± 0.27 35.92 ± 0.06 97.38 ± 0.09 86.91 ± 0.12 99.99 ± 0.01 99.26 ± 0.13

DeepAug. 44.38 ± 0.33 36.36 ± 0.13 96.10 ± 0.21 79.34 ± 0.52 99.98 ± 0.01 99.60 ± 0.06

PixMix 37.76 ± 0.29 37.48 ± 0.06 92.69 ± 0.35 87.86 ± 0.39 99.95 ± 0.01 99.90 ± 0.03

AllConvNet

no aug. 56.71 ± 0.11 43.35 ± 0.22 92.40 ± 0.15 66.50 ± 0.33 99.98 ± 0.01 99.50 ± 0.08

AugMix 42.52 ± 0.43 35.92 ± 0.06 85.49 ± 0.42 62.83 ± 0.35 99.93 ± 0.02 99.84 ± 0.01

DeepAug. 42.39 ± 0.18 36.39 ± 0.35 88.66 ± 0.31 74.84 ± 0.24 99.87 ± 0.02 99.86 ± 0.03

PixMix 35.77 ± 0.01 33.84 ± 0.16 73.69 ± 0.28 62.37 ± 0.24 99.74 ± 0.01 99.39 ± 0.04

E.2.3 VARYING REGULARIZATION METHODS

Table 9: Evaluation of robustness over different regularizations on CIFAR-100 benchmark with
DenseNet backbone.

Regularization Values mCE ↓ L2 (PGD) L∞ (PGD) ↓ Clean Acc. ↑

Learning Rate
3e-03 53.38 ± 0.53 99.64 ± 0.10 99.99 ± 0.02 60.84 ± 0.31

1e-02 46.99 ± 0.20 99.41 ± 0.10 99.99 ± 0.01 70.59 ± 1.82

3e-02 43.81 ± 0.71 99.51 ± 0.10 99.99 ± 0.01 72.55 ± 0.52

Weight Decay(L2) 0.0 44.98 ± 0.24 89.60 ± 0.40 99.83 ± 0.02 70.07 ± 0.11

1e-4 43.49 ± 0.20 98.96 ± 0.08 99.99 ± 0.01 72.85 ± 0.35

L1

5e-7 42.51 ± 0.12 99.48 ± 0.09 99.99 ± 0.01 74.35 ± 0.10

2e-6 43.35 ± 0.07 99.99 ± 0.01 99.57 ± 0.13 73.91 ± 0.15

5e-6 43.23 ± 0.30 99.63 ± 0.07 99.99 ± 0.01 73.61 ± 0.22

SPIDER (w/ best config) - 36.90 81.80 99.95 84.65

Effective regularization techniques significantly enhance the robustness of models. The application
of SPIDER, in conjunction with optimal regularization methods, notably amplifies this robustness
across all measured metrics.

Additionally, it is worth noting that SPIDER, when optimally configured, not only strengthens the
model’s robustness against adversarial attacks but also tends to improve overall model accuracy. This
dual benefit underscores SPIDER’s effectiveness in balancing robustness with high performance in
various challenging scenarios.

30

