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A Proofs1

A.1 Proof of Lemma 4.12

Proof. Let f = [Q;g]α and f̃ = [Q; q]β. We can decompose the squared error3

∥f − f̃∥2 = ∥[Q;g]α− [Q;q]β∥2

= ∥[Q;g∥ + g⊥]α− [Q;q∥ + q⊥]β∥2

= ∥[Q;g∥]α+ αtg⊥ − [Q;q∥]β + βtq⊥∥2

= ∥[Q;g∥]α− [Q;q∥]β∥2 + ∥αtg⊥ − βtq⊥∥2

where the last step follows from the Pythagorean theorem and the fact that αtg⊥−βtq⊥ is an element4

from the orthogonal complement of range[Q;g∥] = range[Q; g∥] = rangeQ. The equality of these5

ranges also implies that β1, . . . , βt−1 can, for all choices of βt, be chosen such that the left term of6

the error decomposition is 0. Setting γ = βt/αt, it follows that7

min
β∈Rt

∥f − f̃∥2 = min
β∈Rt

∥αtg⊥ − βth⊥∥2

= min
γ∈Rt

α2
t ∥g⊥ − γq⊥∥2

= min
γ∈Rt

α2
t (∥g⊥∥2 − 2γqT

⊥g⊥ + γ2∥q⊥∥2)

and plugging in the minimizing γ = qT
⊥g⊥/∥q⊥∥28

= α2(∥g⊥∥ − (gT
⊥q⊥)

2/∥q⊥∥2) ,

from which, noting that gT
⊥q⊥ = gT

⊥q, the claim follows.9

A.2 Proof of Lemma 4.210

Proof. After the weight correction step β is a stationary point of R(Q(·)), i.e., we have for all j ∈ [t]11

0 =
∂R(Qβ)

∂βj
=

n∑
i=1

∂ l(q̃T
i β, yi)

∂βj
=

n∑
i=1

qij
∂ l(q̃T

i β, yi)

∂ q̃T
i β︸ ︷︷ ︸

gi

= qT
j g .
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A.3 Proof of Theorem 4.313

The condition of Theorem 4.3 states that:14

Let Q ∈ Rn×(t−1) be the selected query matrix, g the corresponding gradient vector after a full15

weight correction, and q∗ be a maximizer of the orthogonal gradient boosting objective function16

defined by17

objogb(q) =
|gTq|

∥q⊥∥+ ϵ

where q⊥ is the projection of q onto the orthogonal complement of rangeQ.18

A.3.1 Property a19

Proposition A.1. For ϵ → 0, [q1, . . . ,qt−1,q
∗] is the best approximation to [q1, . . . ,qt−1,g].20

Proof. If ϵ → 0, then objogb(q) →
|gT q|
∥q⊥∥

. If q∗ is a maximizer of objogb, then as shown in Lemma

4.1, q∗ minimises the minimum distance from all

f ∈ span{q1, · · · ,qt−1,g}

to the subspace of

span{q1, · · · ,qt−1,q
∗}.

Therefore, the subspace spanned by [q1, · · · ,qt−1,q
∗] is the best approximation to the subspace21

spanned by [q1, · · · ,qt−1,g].22

A.3.2 Property b23

Proposition A.2. For ϵ → ∞, q∗ is also a maximizer of objgs and any maximizer of objgs is also a24

maximizer of objogb.25

Proof. Let q1 and q2 be any two queries and denote by obj
(ϵ)
ogb(q) the objogb-value of q for a specific26

ϵ. Then27

lim
ϵ→∞

ϵ
(
obj

(ϵ)
ogb(q1)− obj

(ϵ)
ogb(q2)

)
= lim

ϵ→∞
ϵ

(
|gTq1|

∥q⊥
1 ∥+ ϵ

− |gTq2|
∥q⊥

2 ∥+ ϵ

)
= lim

ϵ→∞

(
|gTq1|

∥q⊥
1 ∥/ϵ+ 1

− |gTq2|
∥q⊥

2 ∥/ϵ+ 1

)
=|gTq1| − |gTq2|
=objgs(q1)− objgs(q2)

Thus for large enough ϵ, the signs of obj(ϵ)ogb(q1) − obj
(ϵ)
ogb(q2) and objgs(q1) − objgs(q2) agree.28

Therefore, a query q is a objgs-maximizer, i.e., objgs(q) ≥ objgs(q
′) for all q′ ∈ Q, if and only if q29

is a objogb-maximizer, i.e., objogb(q) ≥ objogb(q
′) for all q′ ∈ Q.30

A.3.3 Property c31

Proposition A.3. For ϵ = 0 and ∥q⊥∥ > 0, the ratio (
objogb(q)

objgb(q)
)2 is equal to 1 + (

∥q∥∥
∥q⊥∥ )

2.32
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Proof. If ϵ = 0 and ∥q⊥∥ > 0, then33

(
objogb(q)

objgb(q)

)2

=

|gTq|2

∥q⊥∥2
|gTq|2

∥q∥2

=
∥q∥2

∥q⊥∥2

=
∥q∥∥2 + ∥q⊥∥2

∥q⊥∥2

= 1 +

( ∥q∥∥
∥q⊥∥

)2

34

A.3.4 Property d35

Proposition A.4. The objective value objogb(q) is upper bounded by ∥g∥.36

Proof. If we divide the numerator and denominator of objogb(q) with ∥qbot∥, then we can get37

objogb(q) =
|gTq|

∥q⊥∥+ ϵ

=

|gTq⊥|
∥q⊥∥

1 +
ϵ

∥q⊥∥

according to the Cauchy–Schwarz inequality,
|gTq|
∥q⊥∥

≤
∥g∥∥q⊥∥
∥q⊥∥

= ∥g∥, so,38

objogb(q) ≤
∥g∥

1 +
ϵ

∥q⊥∥
as ∥q⊥∥ is upper bounded by the number of data points n,39

objogb(q) ≤
∥g∥

1 +
ϵ

n
objogb(q) ≤ ∥g∥.

40

A.4 Proof of Theorem 4.441

Proof. To see the claim, we first rewrite the objective value for the i-th prefix as42

gTq(i)

∥q(i)
⊥ ∥+ ϵ

=
gTq(i)

∥q(i)∥ − ∥q(i)
∥ ∥+ ϵ

.

The value of ∥q(i)∥ is trivially given as
√
i, and gTqi can be easily computed for all i ∈ [l] in time43

O(n) via cumulative summation. Finally we can reduce the problem of computing the (squared)44

norms of the l projected prefixes to computing the t (squared) norms of the prefixes on the subspaces45

given by the individual orthonormal basis vectors via46

∥q(i)
∥ ∥2 =

∥∥∥∥∥
t∑

k=1

oko
T
k q

(i)

∥∥∥∥∥
2

=

t∑
k=1

∥oko
T
k q

(i)∥2 .
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Each of these t sequences of (squared) norms can be computed in time O(n) by rewriting47

∥oko
T
k q

(i)∥ =

∥∥∥∥∥∥oko
T
k

 i∑
j=1

eσ(j)

∥∥∥∥∥∥
= ∥ok∥

i∑
j=1

oT
k eσ(j)

=

i∑
j=1

ok,σ(j)

where the last equality shows how an O(n)-computation is achieved via cumulative summation of48

the k-th basis vector elements in the order given by σ.49

B Greedy approximation to bounding function50
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Figure 4: The number of instances of ratios between the best objective values obtained from the
greedy search and the true optimal objective value. The upper figures are in linear scales and the
lower figures are in log scales. The total variation distances for these three values of ϵ are 0.394,
0.377 and 0.227.

The branch-and-bound search described in Section 3.3 requires an efficient way of calculating the51

value of bnd(q) = max{obj(q′) : q′ ≤ q,q′ ∈ {0, 1}n}. It is too expensive to enumerate all52

possible q′s as there are 2n cases in the worst case. One solution to this problem is that we can relax53

the constraint q′ ∈ {0, 1}n to q′ ∈ [0, 1]n and it can be solved by quadratic programming. However,54

this relaxation is too loose and inefficient. Instead, we consider relaxing the admission constraint and55

solve the problem using greedy algorithms.56

A full greedy approach can be used to approximate the maximum objective value of the subset of57

data points selected by q, which is the bounding value bnd(q). Given a query q′(t−1) ≤ q, we need58

to find the data point selected by q which maximise the objective function, and use it with q′(t−1) to59
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form a q′(t).60

i
(t)
∗ = argmax

i∈I(q)−I(q′(t−1))

gT
(
q′(t−1) + ei

)
∥
(
q′(t−1) + ei

)
⊥∥+ ϵ

.

where I(q) = {i : q(xi) = 1, 1 ≤ i ≤ n}, 0 ≤ t ≤ |I(q)|, q′(0) = 0 and q′(t) = q′(t−1) + e
i
(t)
∗

.61

We use the maximum value of obj(q′(t)) as the bounding value for query q. The computation time62

complexity level of this approach is O(n2) for each query, which is not as efficient as the presorting63

greedy approach described in Section 4.3.64

The presorting greedy approach of solving the prefix optimization problem described in Section 4.365

leads to another approximation to the optimal objective function value for the queries which cover66

subsets of data points covered by q. As proved in Theorem 4.4, this approach has a time complexity67

of O(tn).68

We test 2000 instances for different initial queries and initial gradient values to see the difference69

between the approximation of bnd(q) obtained by the full greedy approach, the pre-sorting greedy70

approach, and the actual optimal objective values (obtained by a brute-force approach). We choose71

three different values of ϵ: 0.001, 0.1 and 1.72

Figure 4 compares the ratio between the approximations to bnd(q) obtained by the two greedy73

approaches and the true optimal objective value. The Y axis of Figure 4 represents the percentage of74

instances of different ratios.75

According to the comparison, the full greedy approach can approximate the true bounding function76

better than the presorting greedy approach. For smaller ϵ values (ϵ = 0.001), there are 90% instances77

whose approximation values are more than 90% of the true bounding function values, while 96% of78

instances approximate more than 90% of the value of bnd(q) using the full greedy approach. For79

ϵ = 0.1, both algorithms have slight better (both 1% promotion) approximation than ϵ = 0.001.80

It can be observed that for ϵ = 1, both algorithms have more instances where the approximations81

are closed to the true bounding values. However, if the value of ϵ is too large, then the calculated82

objective values cannot be accurate according to Theorem 4.3. Comparing the statistical distances of83

these two greedy approaches, it is reasonable to use the presorting greedy approach to approximate84

the bounding values.85

To approximate the true bounding function more efficiently and more accurate, we adopt the presorting86

greedy approach in this research.87

C Experiments configurations88

The experiments are conducted on a computer with CPU ‘Intel(R) Core(TM) i5-10300H CPU @89

2.50GHz’ and memory of 24G.90

D Comparison of scores91

Table 2 shows the comparison of the area under the score / cognitive complexity curve of SIRUS,92

Gradient Sum, Gradient boosting, XGBoost and FCOGB for benchmark datasets of classification,93

regression and Poisson regression problems. All the experiments have the same configurations as94

discussed in Section 5.95
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Table 2: Comparison of the area under the score / cognitive complexity curve of SIRUS, Gradi-
ent Sum(GS), Gradient boosting (GB), XGBoost (XGB) and FCOGB for benchmark datasets of
classification (upper), regression (middle) and Poisson regression problems (lower).

Training Scores / CC AUC Testing Scores / CC AUCDataset d n SIRUS GS GB XGB FCOGB SIRUS GS GB XGB FCOGB
titanic 7 1043 .783 .858 .846 .856 .866 .803 .826 .805 .800 .816
tic-tac-toe 27 958 .677 .783 .878 .888 .897 .669 .729 .822 .856 .867
iris 4 150 .854 .962 .960 .952 .964 .781 .941 .909 .925 .913
breast 30 569 .930 .965 .961 .964 .960 .890 .964 .935 .946 .951
wine 13 178 .929 .975 .954 .966 .974 .912 .962 .905 .931 .976
ibm hr 32 1470 .700 .426 .628 .690 .731 .696 .417 .591 .634 .679
telco churn 18 7043 .756 .796 .790 .787 .798 .776 .808 .794 .795 .798
gender 20 3168 .925 .243 .288 .288 .202 .926 .240 .285 .285 .200
banknote 4 1372 .874 .968 .965 .969 .967 .870 .967 .965 .967 .967
liver 6 345 .701 .812 .792 .807 .812 .699 .687 .650 .622 .576
magic 10 19020 .602 .778 .805 .806 .806 .605 .788 .812 .814 .813
adult 11 30162 .726 .731 .838 .842 .847 .722 .725 .828 .832 .837
digits5 64 3915 .423 .465 .732 .741 .828 .360 .451 .715 .728 .797
insurance 6 1338 .706 .682 .794 .795 .824 .633 .683 .782 .770 .791
friedman1 10 2000 .637 .458 .556 .579 .605 .633 .409 .431 .430 .458
friedman2 4 10000 .523 .721 .867 .873 .894 .536 .721 .868 .873 .893
friedman3 4 5000 .590 .539 .616 .630 .657 .547 .528 .563 .552 .571
wage 5 1379 .217 .308 .334 .358 .383 .182 .244 .207 .200 .180
demographics 13 6876 .367 .103 .168 .187 .203 .389 .102 .160 .174 .187
gdp 1 35 .663 .469 .444 .480 .513 .616 .434 .403 .437 .461
used cars 4 1770 .679 .766 .820 .823 .848 .654 .753 .810 .810 .834
diabetes 10 442 .448 .386 .478 .491 .520 .377 .324 .348 .318 .270
boston 13 506 .642 .493 .595 .616 .642 .590 .441 .425 .430 .426
happiness 8 315 .077 .789 .804 .802 .838 .032 .675 .541 .524 .572
life expect. 21 1649 .662 .622 .671 .685 .717 .641 .558 .603 .606 .613
mobile prices 20 2000 .696 .618 .720 .723 .726 .711 .596 .684 .671 .676
suicide rate 5 27820 .287 .125 .147 .153 .203 .289 .127 .149 .154 .204
videogame 6 16327 .015 .001 .001 .001 .001 .016 .001 .001 .001 .001
red wine 11 1599 .251 .242 .285 .304 .317 .177 .248 .243 .237 .262
covid vic 4 85 NA .678 .845 NA .827 NA .691 .865 NA .835
covid 2 225 NA .412 .476 NA .514 NA .203 .205 NA .200
bicycle 4 122 NA .707 .778 .789 .810 NA .623 .596 .630 .591
ships 4 34 NA .866 .925 NA .946 NA .484 .514 NA NA
smoking 2 36 NA .677 .943 .829 .957 NA .607 .756 .591 .801
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