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A Proofs

A.1 Proof of Lemma 4.1

Proof. Letf = [Q; g|a and f= [Q; q] 3. We can decompose the squared error

If —£)* = |[Q: gl — [Q; 4B
= IQ; g +gLla—[Q;q +a.]B?
=Q;g|la+ gL — [Q;qy]B+ Bar?
= Qs gyl — [Q; 1B + [levegL — Bean |)?

where the last step follows from the Pythagorean theorem and the fact that o, g — 8;q_ is an element
from the orthogonal complement of range[Q; g ] = range[Q; g] = range Q. The equality of these
ranges also implies that 31, ..., 5;_1 can, for all choices of /3;, be chosen such that the left term of
the error decomposition is 0. Setting v = (3 /c, it follows that
in ||f — f||> = mi — Bhy|]?
;Iarélng* | I ggRg lorg L — Beh ||
= min o7 [lgs —ya.|?
YER?
= min of (lg.|* — 2valgs ++*laL]?)
YER®
and plugging in the minimizing v = q% g, /||q.|?
=a*(lgoll - (gfa)®/llacl?) ,
from which, noting that g¥ q, = g7 q, the claim follows. O

A.2 Proof of Lemma 4.2

Proof. After the weight correction step 3 is a stationary point of R(Q(+)), i.e., we have for all j € [¢]
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A.3 Proof of Theorem 4.3

The condition of Theorem 4.3 states that:

Let Q € R™*(!=1 be the selected query matrix, g the corresponding gradient vector after a full
weight correction, and gq* be a maximizer of the orthogonal gradient boosting objective function
defined by

lg”ql

0bj,en(q) = Tl +e

where q is the projection of ¢ onto the orthogonal complement of range Q.

A.3.1 Property a

Proposition A.1. Fore — 0, [qy,...,q:—1,q*] is the best approximation to [q1,...,q:—1, ]

l97q]
Nlaell

4.1, g* minimises the minimum dlstance from all

Proof. 1f € — 0, then obj,,(q) — If q* is a maximizer of obj,, then as shown in Lemma

f € span{qi, -, qi-1,8}
to the subspace of

span{qy,--- ,qi—1,9"}.

Therefore, the subspace spanned by [q1, -+ ,q:—1,q"] is the best approximation to the subspace
spanned by [q1, - ,q¢t—1, &]. O

A.3.2 Property b

Proposition A.2. For e — oo, q* is also a maximizer of obj,, and any maximizer of obj,, is also a
maximizer of objgy,.

Proof. Let ¢ and g5 be any two queries and denote by ob jg;)b(q) the obj,,},-value of ¢ for a specific

€. Then

hm € (ObJ b(lh) - Obj(();)b(qQ>>

_ 1 ( 197 q 197 qz| >
= 11m € —
oo \lail[+€  [laz|l +e

_ ( 197 qu| |97 | )
= 11m

oo \[lafll/e+1  agl/e+1
=lg"a1| — 9" a2

:Objgs((h) - Objgs(QQ)

Thus for large enough ¢, the signs of obJOgb(ql) - ObJOgb(QQ) and obj,(q1) — obj,(q2) agree.
Therefore, a query g is a obj,,-maximizer, i.e., 0bj,,(q) > obj,(q') forall ¢’ € Q, if and only if ¢
is a 0bj,gp,-maximizer, i.e., 0bj,a,(¢) > 0bj,ap,(¢") forall ¢ € Q. O

A.3.3 Propertyc

[ay |l
ol

Proposition A.3. For ¢ = 0 and ||q_ || > 0, the ratio (Jj"%&q))) isequal to 1 + (‘

2.



33 Proof. If e = 0 and ||g. || > 0O, then

, ig”ql?
<0bJogb(‘1)> _ lac]? _ lal?
objg,(q) igTal*>  llavl®
llall
_ Nyl + e |
lal?
2
:H(Iml)
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35 A.3.4 Propertyd
36 Proposition A.4. The objective value obj,,(¢) is upper bounded by ||g||.

37 Proof. If we divide the numerator and denominator of obj,,(q) with [|q,ot||, then we can get

: 8" ql
ob =
Jogb(q) ||qLH te
lg"a.l
el
€
14—
|
T
s according to the Cauchy—Schwarz inequality, & al < lellla. ] = ||g]|, so,
|l llall
< el
O Jogb(q) — €
14
|
39 as ||q. || is upper bounded by the number of data points n,
< el
0 Jogb(q) — €
+ —
n
objogn(a) < [gl-
40 O

41 A4 Proof of Theorem 4.4
42 Proof. To see the claim, we first rewrite the objective value for the i-th prefix as
gTq® B gTq®
lall+¢  lla®|—fa]’[|+e¢

43 The value of ||q(*|| is trivially given as v/7, and g”'q’ can be easily computed for all i € [I] in time
44 O(n) via cumulative summation. Finally we can reduce the problem of computing the (squared)
45 norms of the [ projected prefixes to computing the ¢ (squared) norms of the prefixes on the subspaces
46 given by the individual orthonormal basis vectors via

t 2 t
12 =3 owofa®| =3 [orofq”? .
k=1 k=1

laf



47 Each of these ¢ sequences of (squared) norms can be computed in time O(n) by rewriting

48 where the last equality shows how an O(n)-computation is achieved via cumulative summation of
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the k-th basis vector elements in the order given by o. OJ

B Greedy approximation to bounding function
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Figure 4: The number of instances of ratios between the best objective values obtained from the
greedy search and the true optimal objective value. The upper figures are in linear scales and the
lower figures are in log scales. The total variation distances for these three values of € are 0.394,

0.377 and 0.227.

The branch-and-bound search described in Section 3.3 requires an efficient way of calculating the

value of bnd(q) = max{obj(q’) : @' < q,q" € {0,1}"}. It is too expensive to enumerate all
possible q's as there are 2™ cases in the worst case. One solution to this problem is that we can relax
the constraint ¢’ € {0,1}" to @’ € [0, 1]™ and it can be solved by quadratic programming. However,
this relaxation is too loose and inefficient. Instead, we consider relaxing the admission constraint and

solve the problem using greedy algorithms.

A full greedy approach can be used to approximate the maximum objective value of the subset of
data points selected by q, which is the bounding value bnd(q). Given a query q'*~1) < q, we need
to find the data point selected by q which maximise the objective function, and use it with ¢’*~1) to
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form a ' (¢).

T (~/(t—1) +e;
iit) = arg max g (q )

i€l(q)—I(g'®=D) H(q/(t_l) + ei)J_H +e
where I(q) = {i : q(2;) = 1,1 <i<n},0<t < |I(q)], ¢'® =0and ¢® = q'*~V + €.

We use the maximum value of obj(q’®)) as the bounding value for query q. The computation time
complexity level of this approach is O(n?) for each query, which is not as efficient as the presorting
greedy approach described in Section 4.3.

The presorting greedy approach of solving the prefix optimization problem described in Section 4.3
leads to another approximation to the optimal objective function value for the queries which cover
subsets of data points covered by q. As proved in Theorem 4.4, this approach has a time complexity
of O(tn).

We test 2000 instances for different initial queries and initial gradient values to see the difference
between the approximation of bnd(q) obtained by the full greedy approach, the pre-sorting greedy
approach, and the actual optimal objective values (obtained by a brute-force approach). We choose
three different values of e: 0.001, 0.1 and 1.

Figure |4| compares the ratio between the approximations to bnd(q) obtained by the two greedy
approaches and the true optimal objective value. The Y axis of Figure ] represents the percentage of
instances of different ratios.

According to the comparison, the full greedy approach can approximate the true bounding function
better than the presorting greedy approach. For smaller € values (¢ = 0.001), there are 90% instances
whose approximation values are more than 90% of the true bounding function values, while 96% of
instances approximate more than 90% of the value of bnd(q) using the full greedy approach. For
e = 0.1, both algorithms have slight better (both 1% promotion) approximation than ¢ = 0.001.
It can be observed that for e = 1, both algorithms have more instances where the approximations
are closed to the true bounding values. However, if the value of ¢ is too large, then the calculated
objective values cannot be accurate according to Theorem 4.3. Comparing the statistical distances of
these two greedy approaches, it is reasonable to use the presorting greedy approach to approximate
the bounding values.

To approximate the true bounding function more efficiently and more accurate, we adopt the presorting
greedy approach in this research.

C Experiments configurations

The experiments are conducted on a computer with CPU ‘Intel(R) Core(TM) i5-10300H CPU @
2.50GHz’ and memory of 24G.

D Comparison of scores

Table [2] shows the comparison of the area under the score / cognitive complexity curve of SIRUS,
Gradient Sum, Gradient boosting, XGBoost and FCOGB for benchmark datasets of classification,
regression and Poisson regression problems. All the experiments have the same configurations as
discussed in Section 5.



Table 2: Comparison of the area under the score / cognitive complexity curve of SIRUS, Gradi-
ent Sum(GS), Gradient boosting (GB), XGBoost (XGB) and FCOGB for benchmark datasets of
classification (upper), regression (middle) and Poisson regression problems (lower).

Training Scores / CC AUC Testing Scores / CC AUC

Dataset d n GIRUS GS GB XGBFCOGB SIRUS GS GB XGB FCOGB
fitanic 7 1043 783 858 .846 856 .866 803 .826 .805 800 816
tic-tac-toe 27 958 677 .783.878 .888 .897  .669 .729 822 856 .867
iris 4 150 854 962.960 952 .964 781 .941.909 925 913
breast 30 569 930 .965.961 964 960 .890 .964 935 946 951
wine 13 178 929 .975.954 966 974 912 962.905 931 .976
ibm hr 32 1470 700 426 .628 690 .31  .696 417 .591 .634 .679
telco churn 18 7043 756 .796.790 .787 798 776 .808.794 795 798
gender 20 3168 .925 243 288 288 202 .926 .240.285 285 200
banknote 4 1372 .874 968 .965.969 967 .870 .967.965 967 .967
liver 6 345 701 812.792 807 812 .699 687 .650 622 576
magic 1019020 .602 778 .805 806 .806 .605 .788 812 .814 813
adult 1130162 726 .731.838 842 .847 722 725.828 832 .837
digits5 64 3915 423 465.732 741 .828 360 .451.715.728 197

insurance 6 1338 .706 .682.794 795 .824  .633 .683.782 .770 .791
friedmanl 10 2000 .637 .458.556 .579 .605 .633 .409 .431 430 .458
friedman2 4 10000 .523 .721.867 .873 .894 536 .721.868 .873 .893
friedman3 4 5000 .590 .539.616 .630 .657 .547 .528.563 .552 .571

wage 5 1379 217 .308.334 358 .383  .182 .244.207 .200 .180
demographics 13 6876 .367 .103.168 .187 .203  .389 .102.160 .174 .187
gdp 1 35 .663 .469 .444 480 513 .616 .434 .403 437 .461

used cars 4 1770 .679 .766.820 .823 .848 .654 .753.810 .810 .834
diabetes 10 442 448 .386.478 491 .520 .377 .324.348 318 .270
boston 13 506 .642 .493.595 .616 .642 .590 .441.425 430 .426
happiness 8 315 .077 .789.804 .802 .838 .032 .675.541 .524 572
life expect. 21 1649 .662 .622.671 .685 .717  .641 .558 .603 .606 .613
mobile prices 20 2000 .696 .618.720 .723 .726 .711 .596 .684 .671 .676
suiciderate 5 27820 .287 .125.147 .153 203 .289 .127.149 .154 204
videogame 6 16327 .015 .001.001 .001 .001 .016 .001.001 .001 .001
red wine 11 1599 251 .242 285 .304 .317 .177 .248 .243 237 .262
covid vic 4 8 NA .678.845 NA 827 NA .691.865 NA .835

covid 2 225 NA 412476 NA 514 NA .203.205 NA .200
bicycle 4 122 NA .707.778 789 810 NA .623.596 .630 .591
ships 4 34 NA 866.925 NA 946 NA .484.514 NA NA

smoking 2 36 NA .677.943 829 957 NA .607.756 .591 .801
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