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1 Supplementary Note

1.1 MAP-EM Inference of SMM Parameters
We first list the mathematical notations used in the inference below:

N: the number of images.
K: the number of gene clusters (components in the SMM).
D: the dimension of embeddings.
Z ∈ RN×D: the JLRCA-generated image embeddings.
ϕk(µk,Σk, vk): the pdf of the k-th SMM component.
Π = {πk,∀k ∈ [1,K]}: the weights of SMM components.
Θ = {θk : µk,Σk, vk, πk,∀k ∈ [1,K]}: parameters of the SMM components.
ξi ∈ [1,K]: the SMM component membership of zi.

We re-write the Student’s t distribution of the k-th component of the SMM as a Gaussian scale mixture:

ϕ(zi|µk,Σk, vk) =

∫
N

(
zi

∣∣∣∣µk,
Σk

ζi,k

)
Γ

(
ζi,k

∣∣∣∣vk2 ,
vk
2

)
dζi,k (1)

Therefore, under the EM framework, all hidden variables are H = {hi : ξi, ζi,k,∀i ∈ [1, N ],∀k ∈ [1,K]}. The complete
data log likelihood is:

ℓc(Θ) = (Z, H|Θ) =
∑
i

∑
k

l (ξi = k) (logπk + logf(zi, ζi,k|µk,Σk, vk)) (2)

log f(zi, ζi,k|µk,Σk, vk) ∝ log Γ
(
ζi,k|

vk
2
,
vk
2

)
+

D

2
log ζi,k −

1

2
log |Σk| −

1

2
ζi,kσi,k (3)

σi,k = (zi − µk)
TΣ−1

k (zi − µk) (4)

E step. In the t-th iteration, we have the auxiliary function Q as:

Q
(
Θ,Θ(t−1)

)
= E(ℓc(Θ)

∣∣Θ(t−1)
)

=
∑
i

∑
k

p
(
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∣∣zi,Θ(t−1)
)(

log π
(t−1)
k + E

( (
zi, ζi,k

∣∣µ(t−1)
k ,Σ

(t−1)
k , v

(t−1)
k

)))
(5)

The expected sufficient statistic (ESS) are:

ξi,k
(t)

= p
(
ξi = k

∣∣zi,Θ(t−1)
)
=

π
(t−1)
k ϕ

(
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k
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(
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) (6)
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Then the complete data log likelihood of zi becomes:

E (log f(zi, ζi,k|µk,Σk, νk)) ∝ G(zi, µk,Σk)
(t) + F (ζi,k, νk)

(t) (8)

G(zi, µk,Σk)
(t) = −1

2
log |Σk| −

ζi,k
(t)

2
σi,k (9)

F (ζi,k, vk)
(t) =

vk log(vk/2)

2
− Γ

(vk
2

)
+

vk
2

(
log ζi,k

(t) − ζi,k
(t)
)

(10)

M step. In the t-th iteration, we maximize Q with respect to ∀θk ∈ Θ. Rather than achieving the MLE, we introduce a
prior distribution on θk and solve for MAP of θk to alleviate model overfitting. Specifically, we introduce a conjugate prior
on Π as a Dirichlet distribution:

Dir(Π|α0) ≡ 1

B(α0)

∏
k

π
α0

k−1
k (11)

a conjugate prior on {µk,Σk} as a normal-inverse Wishart (NIW) distribution:

NIW(µk,Σk|m0, κ0, S0, ρ0)

∝ |Σk|−
1
2 exp

(
−κ0

2
(µk −m0)

T
Σ

(−1)
k (µk −m0)

)
× |Σk|−

(ρ0+D+1)
2 exp

(
−1

2
tr(S0Σ

−1
k )

) (12)

Here, we have weaker priors as α0 = 1⃗, ρ0 = D + 2, S0 = K− 1
D diag

(
(Z− 1

NΩZ)T (Z − 1
NΩZ)

)
,Ω = 1⃗T × 1⃗, κ0 =

0,m0 = Σizi

N . The posterior distribution of Π and {µk,Σk} are:

p(Π|X) ∼ Dir(Π|αN) ≡ 1

B(αN)

∏
k

π
αN

k −1
k

αN
k = α0

k +
∑
i

ξi,k
(t)
,∀k ∈ [1,K]

p(µk,Σk|X) ∼ NIW (µk,Σk|mN , κN , SN , ρN )

κN = κ0 + ωk
(t) = ωk

(t)
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(t)
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(t)
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=
∑
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(t)
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ωk

(t)z
(t)
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= z

(t)
k
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(t)
k =

∑
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(t)zi
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∑
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(13)
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Then we have the MAP estimates of πk and {µk,Σk} as π(t)
k and µ

(t)
k , Σ(t)

k :

π
(t)
k =

αN
k − 1∑

k′ αN
k′ −K

µ
(t)
k = mN = z

(t)
k

SN = S0 +
∑
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[
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]
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S
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Σ
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(14)

Then we have:

Σ
(t)
k (i, j) =

{
βΣ0(i, j) + (1− β)Σ

(t)
mle,k(i, j), if i = j

(1− β)Σ
(t)
mle,k(i, j), otherwise

(15)

The off-diagonal entries in Σ
(t)
k are shrunk toward 0 to promote its sparsity, thereby reducing the computational load and

possibility of overfitting. v(t)k can be derived by maximizing Σi

(
ξi,k

(t) · F
(
ζ
(t)
i,k , v

(t)
k

))
. However, there is no closed-form

solution, so we apply the generalized EM (GEM) to approximate the solution as follows:

ζ
(t)
i,k ∼ Γ

(
v
(t−1)
k +D

2
,
v
(t−1)
k + σ

(t−1)
i,k

2

)

=⇒ log ζi,k
(t)

= E
(
log ζ

(t)
i,k

)
= Ψ

(
v
(t−1)
k +D

2

)
− log

(
v
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k + σ

(t−1)
i,k

2

) (16)

Here, Ψ(x) ≡ d
dxΓ(x) is the digamma function. Then we have:

d

dv
(t)
k

∑
i

(
ξi,k

(t) · F (ζ
(t)
i,k , v

(t)
k )
)
=
∑
i

ξi,k
(t)

(
1

2
log

(
ν
(t)
k

2

)
+

1

2
− 1

2
Ψ

(
ν
(t)
k

2

)
+

1

2

(
log ζi,k

(t) − ζi,k
(t)
))

(17)

Then v
(t)
k ← v

(t)
k − λ · d

dv
(t)
k

F
(
ζ
(t)
i,k , v

(t)
k

)
is repeated for several times to achieve a “partial” improvement to v

(t)
k , which still

guarantees the convergence to a local optimum. Next, the EM algorithm continues to E step of the (t + 1)−th iteration to

update H(t+1) = [h
(t+1)
ik : ξi,k

(t+1)
, ζi,k

(t+1)
,∀i ∈ [1, N ],∀k ∈ [1,K]} until either convergence is achieved or a prespecified

number of iterations is reached. Finally, the score and soft assignment of zi to the k-th component can be calculated by plugin
θk as:

qi,k = πkϕ(zi|µk,Σk, vk) (18)

qi,k =
qi,k∑
j qi,j

,∀i ∈ [1, N ],∀k ∈ [1,K] (19)

1.2 Deriving the Seeding Similarity Matrix
During the training of the model, an initial gene-gene similarity matrix is incorporated into the loss function L1 as a reg-
ularization term to inform the training phase of the model. We leverage multiple image recognition operators to extract
feature descriptors from images of gene spatial expression maps, based on which the seeding gene-gene similarity matrix is
calculated. Specifically, on the gray-scale level of the image, we utilize Sober operator to extract gradient magnitude and ori-
entation descriptors, Laplacian operator to extract gradient divergence descriptor and Canny operators to extract the gradient
continuity descriptor. Meanwhile, three average and standard deviation pooling filters of different sizes are used to extract
patch brightness descriptors. The normalized spatial expression matrix of gene u is denoted as Xu ∈ RNx×Ny , where Nx and
Ny denote the number of spatial spots along the horizontal and vertical directions of the spatial map Out-of-tissue spatial spots
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are all padded with 0s. Xu is smoothened with a convolutional Gaussian kernel H ∈ Rd×d, obtaining a denoised expression
matrix X̃u :

Hi,j =
1

2πσ2
exp

(
− (i− (k − 1)/2)2 + (j − (k − 1)/2)2

2σ2

)
, 1 ≤ i, j ≤ d (20)

X̃u
i,j = sum(H ⊙Xu

s(k),t(k)); (21)

Next, Sober, Laplacian and Canny operators are applied on X̃u to generate matrices of corresponding descriptors. For a
specific gene u, let Gu and Θu denote the matrices of gradient magnitude and orientation descriptors, Lu the matrix of gradient
divergence descriptor, and Cu the matrix of gradient continuity descriptor. The pooling filters are applied by segmenting X̃u

into small patches containing k × k spots,where k ∈ {1, 3, 5}, from which three patch brightness mean matrices Au(k) and
two variance matrices Su(k) (eligible only for k = 3, 5) are calculated:

Ai,j(k) = avg
(
Xu

s(k),t(k)

)
(22)

Sui,j(k) = std
(
Xu

s(k),t(k)

)
(23)

1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny

s(k) =

[
i− (k − 1)

2
: i+

(k − 1)

2

]
, t(k) =

[
j − (k − 1)

2
: j +

(k − 1)

2

]
(24)

Finally, the initial similarity matrix S is calculated as the average Pearson correlation between gene pairs’ descriptor
matrices:

Su,v =

{
arg (ρu,v(Ξ

u,Ξv)) ; Ξ ∈ {A(k),S(k), G,Θ, L, C}, k ∈ 1, 3, 5, if u ̸= v

0, if u = v
(25)

Here, u, v represent any two images in the dataset.

1.3 The Joint Optimization of the Image Representation Learning Model and SMM via a Dis-
criminative Boosted Clustering

In this section, we focus on deriving the gradients of Lℓℓ and Lsize with respect to Z, and the gradients of Lrec with respect
to Z and Θ. The derivations of the gradients of Lℓap and Lrec with respect to Z, the gradients of Lrec with respect to X̂ , and
the gradients of Lclr with respect to e (see Equation 10 in the main text) [?] are relatively trivial and therefore ignored. First,
Lℓℓ, Lkl and Lsize can be expressed as:

Lℓℓ = logP(Z|Θ) =

N∑
i=1

log

[∑
k

qi,k

]
(26)

Lkl = KL(P |Q) =

N∑
i

K∑
j

p log
pi,j

qi,j
,where pi,k =

q2
i,k/Σiqi,j

Σj

(
q2
i,j/Σiqi,j

) (27)

Lsize(Z,Θ) =

K∑
k=1

−JklogJk,where Jk =

{∑N
i qi,k

N , ifJk ≤ τ

1, otherwise
(28)

The density function of zi given {µk,Σk, vk} is:

ϕ(zi|µk,Σk, νk) ∝
Γ
(
vk+D

2

)
Γ
(
vk
2

) v
−D

2

k |Σk|−
1
2

[
1 +

1

vk
(zi − µk)

TΣ−1
k (zi − µk)

]−(
vk+D

2

)

= h(vk)|Σk|−
1
2

[
1 +

σi,k

vk

]−(
νk+D

2

)
= h(vk)|Σk|−

1
2µ

−( νk+D
2 )

i,k

(29)
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The partial derivative of qi,k with respect to zi can be represented as:

∂qi,k
∂zi

=
∂qi,k
∂ui,k

· ∂ui,k

∂zi
= −πkh(vk)|Σk|−

1
2

(
vk +D

2

)
u
−
(

vk+D

2 +1
)

i,k · 2
vk

Σ−1
k (zi − µk)

= −
(
νk +D

νk

)
µ−1
i,kqi,k · Σ

−1
k (zi − µk)

(30)

The partial derivative of qi,k with respect to µk can be expressed as follows:

∂qi,j
∂µk

=

{
∂qi,k
∂ui,k

· ∂ui,k

∂µk
= −

(
vk+D
vk

)
u−1
i,kqi,k · Σ

−1
k (µk − zi), j = k

0, j ̸= k
(31)

The expression for the partial derivative of qi,k with respect to Σk can be articulated as follows:

∂qi,j
∂Σk

=

{
∂qi,k
∂ui,k

· ∂ui,k

∂Σk
+

∂qi,k
∂|Σk| ·

∂|Σk|
∂Σk

, j = k

0, j ̸= k

=

{
qi,k

((
vk+D
2vk

)
u−1
i,k · Σ

−1
k (zi − µk)(zi − µk)

TΣ−1
k −

1
2Σ

−1
k

)
= qi,kf(zi, µk, vk,Σk, D), j = k

0, j ̸= k

(32)

The formula for the partial derivative of qi,k with respect to vk is as follows:

∂qi,j
∂vk

=

{
qi,k

∂ ln(qi,k)
∂vk

, j = k

0, j ̸= k

=

{
qi,k

(
vk+D

2 u−1
ik

σi,k

v2
k
− 1

2 lnui,k + 1
2Γ
(
vk+D

2

)
Ψ
(
vk+D

2

)
− 1

2Γ
(
vk
2

)
Ψ
(
vk
2

)
− D

2vk

)
= qi,kg(zi, µk, νk,Σk, D), j = k

0, j ̸= k
(33)

The calculation of the partial derivative of qi,k with regard to πi is as follows:

∂qi,j
∂πk

=

{
qi,k
πk

, j = k

0, j ̸= k
(34)

By chain rules of derivatives, we have the partial derivative of qi,k with respect to zk can be represented as:

∂qi,k

∂zi
=

∂qi,k
∂zi
·
∑

j qi,j − qi,k · Σj
∂qi,j
∂zi(∑

j qi,j

)2 = −
(
vk +D

vk

)
qi,k

µ−1
i,k · Σ

−1
k (zi − µk)−

∑
j

µ−1
i,j qi,j · Σ−1

j (zi − µj)


(35)

The partial derivative of qi,k with respect to µk is given by:

∂qi,j

∂µk
=


∂qi,j
∂µk

·Σjqi,j−qi,j ·Σj
∂qi,j
∂µk

(Σjqi,j)
2 , j ̸= k

∂qi,k
∂µk
·
∑

j qi,j − qi,k ·
∑

j
∂qi,j
∂µk

, j = k

=


(

vk+D
vk

)
qi,j

(
µ−1
i,kqi,k · Σ−1

k (µk − zi)
)
, j ̸= k

−
(

vk+D
vk

)
qi,k

(
µ−1
i,k · Σ

−1
k (µk − zi)− µ−1

i,kqi,k · Σ−1
k (µk − zi)

)
, j = k

(36)

The derivative of qi,k with respect to Σk is expressed as:

∂qi,j

∂Σk
=


∂qi,j
∂Σk

·
∑

j qi,j−qi,j ·Σj
∂qi,j
∂Σk

(Σjqi,j)
2 , j ̸= k

∂qi,k
∂Σk

·
∑

j qi,j−qi,k·Σj
∂qi,j
∂Σk

(Σjqi,j)
2 , j = k

=

{
−qi,j (qi,k · f(zi, µk, vk,Σk, D)) , j ̸= k

qi,k (f(zi, µk, vk,Σk, D)− qi,k · f(zi, µk, vk,Σk, D)) , j = k

(37)
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The partial derivative of qi,k with respect to vk can be denoted as:

∂qi,j

∂vk
=


∂qi,j
∂vk

·Σjqi,j−qi,j ·Σj
∂qi,j
∂νk

(
∑

j qi,j)
2 = −qi,jqi,kg(zi, µk, vk,Σk, D), j ̸= k

∂qi,k
∂vk

·
∑

j ·qi,j−qi,k·Σj
∂qi,j
∂vk

(
∑

j qi,j)
2 = qi,k(1− qi,k)g(zi, µk, vk,Σk, D), j = k

(38)

The expression for the partial derivative of qi,k with respect to πk is as follows:

∂qi,j

∂πk
=

{
∂qi,j
∂πk
·
∑

j qi,j − qi,j · Σj
∂qi,j
∂πk

= −qi,jqi,k

πk
, j ̸= k

∂qi,k

∂πk
·
∑

j qi,j − qi,k · Σj
∂qi,j
∂πk

=
qi,k(1−qi,k)

πk
, j = k

(39)

Then the derivatives of Lℓℓ and Lsize with respect to zi are:

∂Lℓℓ

∂zi
=

Σj
∂qi,j
∂zi∑

j qi,j
= −

(
vk +D

vk

)
µ−1
i,kqi,k · Σ

−1
k (zi − µk)

Σjqi,j
(40)

∂Lsize

∂zi
=

∑
j∈{Jj≤τ}

−(1 + logJj)

N

N∑
i=1

∂qi,j

∂zi
(41)

As the target distribution P is fixed during the joint optimization within an epoch, we have the derivatives of Lkl with respect
to zi and θk = {µk,Σk, vk, πk} as:

∂Lkl

∂zi
= −

∑
j

[
pi,j

qi,j
· ∂qi,j

∂zi

]
=

(
vk +D

vk

)∑
j

(pi,k − qi,k)µ
−1
i,k · Σ

−1
k (zi − µk) (42)

∂Lkl

∂µk
= −

∑
i

∑
j

[
pi,j

qi,j
· ∂qi,j

∂µk

]
=

(
vk +D

vk

)∑
i

(pi,k − qi,k)µ
−1
i,k · Σ

−1
k (µk − zi) (43)

∂Lkl

∂Σk
= −

∑
i

∑
j

[
pi,j

qi,j
· ∂qi,j

∂Σk

]
=
∑
i

(qi,k − pi,k)f(zi, µk, vk,Σk, D) (44)

∂Lkl

∂vk
= −

∑
i

∑
j

[
pi,j

qi,j
· ∂qi,j

∂vk

]
= −

∑
i

(pi,k − qi,k)g(zi, µk, vk,Σk, D) (45)

∂Lkl

∂πk
= −

∑
i

∑
j

[
pi,j

qi,j
· ∂qi,j

∂πk

]
= −

∑
i

(pi,k − qi,k)

πk
(46)

1.4 Creating the Training and Testing Datasets for Evaluating the Prediction on Gene-gene In-
teractions

A pair of genes is considered interacting (positive) if they share GO terms obtained using the R package “org.Hs.eg.db”[?];
otherwise, they are considered noninteracting (negative). To reduce the number of false positive gene pairs, we omit the highly
over-represented GO terms including “single transduction” (GO:0007165), three terms related to phosphorylation (“protein
amino acid phosphorylation”, GO:0006468; “protein amino acid autophosphorylation”, GO:0046777; “protein amino acid
dephosphorylation”, GO:0006470), as well as all terms at the first three layers of the GO hierarchy [?].

The experiment defines its universal gene set as the intersection of genes found in the hDLPFC datasets and the GO
database, totaling 9,187 genes. This set includes 820,519 positive samples from 9,030 human genes and 41,375,372 negative
samples from 9,187 human genes. The positive dataset incorporates all positive samples, and a matching number of randomly
chosen negative samples forms the negative dataset. For the gene-gene interaction predictor neural network (GGIPNN), which
is a basic MLP-based network as described in Du et al., 2019 [?], we sample 2% of gene pairs from both datasets for training,
while the remaining 98% serve as the test set. These gene pairs are then employed for training and evaluation through linear
probing across six datasets (151671-151676).
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2 Supplementary Table

2.1 Representation Learning of Artificially Sparsified Images

Method
Clustering (ACC%) Classification (ACC%)

CIFAR-10 CIFAR-10* STL-10 STL-10* CIFAR-10 CIFAR-10* STL-10 STL-10*

MAE 30.97 17.85 33.29 21.01 45.46 23.74 46.42 31.99

SimCLR 60.32 21.99 59.34 28.89 76.17 32.18 67.01 35.13

Table 1: We evaluate the impacts of image sparsity on the efficacy of MIM (i.e., MAE) and CL (i.e., SimCLR) methods for
yielding image representations. Images from CIFAR-10 and STL-10 datasets are sparsified using a 90% random pixel mask-
ing, creating CIFAR-10* and STL-10* datasets. The quality of representations learned from original and sparsified images are
evaluated via downstream clustering and classification tasks, using K-means and logistic regression model, respectively. For
clustering, the cluster labels are matched to ground truth image labels using the Hungarian algorithm [?]. For classification,
the logistic regression model is trained via five-fold cross validation. The performance of both clustering and classification
are measured in accuracy (ACC). Our results indicate degraded representations learned from sparsified images for both MAE
and SimCLR, as evidenced by the significantly declined clustering and classification accuracy, compared to those learned
from original images.

2.2 Effectiveness of Conventional Data Augmentation in Contrastive Learning with Sparsified
Images

Data augmentation
Clustering (ACC%) Classification (ACC%)

CIFAR-10 CIFAR-10* STL-10 STL-10* CIFAR-10 CIFAR-10* STL-10 STL-10*

full 60.32 21.99 59.34 28.89 76.17 32.18 67.01 35.13
w/o rotating 55.74 22.18 61.08 29.63 76.70 31.92 64.14 37.59
w/o cropping 42.27 22.07 59.25 29.01 73.83 32.96 63.17 36.93
w/o greyscaling 40.30 21.08 47.41 27.86 68.98 32.08 62.24 37.42

Table 2: We evaluate the effectiveness of three conventional data augmentation techniques—rotation, cropping, and greyscal-
ing—for contrastive learning (i.e., SimCLR) on sparsified images in the CIFAR-10 and STL-10 datasets, which are obtained
in the same manner as in Supplementary 2.1. Experiment setups include “full” (all methods combined) and “w/o *” (exclud-
ing “*”, which can be rotating, cropping or greyscaling). The quality of learned representations are evaluated by clustering
and classification, following the same procedure as in Supplementary 2.1. With original images, the significant drops in ac-
curacy for the “w/o” setups, as compared to the “full” experiment, underscore the crucial role of each augmentation method
in the learning process. Conversely, such declines are absent with sparsified images, indicating negligible effects of these
augmentations on contrastive learning in this context. Meanwhile, the significant underperformance of SimCLR on sparsified
images indicates the failure of data augmentation in facilitating contrastive learning.
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3 Supplementary Figure

3.1 Spatial Co-functional Gene images

Figure 1: Spatial gene expression images for five member genes from each of the four gene families (i.e., HLA, MT, CABR,
and RPL) in the dataset 151676.
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