
Distributional Bellman Operators over Mean Embeddings

Li Kevin Wenliang 1 Grégoire Delétang 1 Matthew Aitchison 1 Marcus Hutter 1 Anian Ruoss 1

Arthur Gretton 1 2 Mark Rowland 1

Abstract
We propose a novel algorithmic framework for
distributional reinforcement learning, based on
learning finite-dimensional mean embeddings of
return distributions. The framework reveals a
wide variety of new algorithms for dynamic pro-
gramming and temporal-difference algorithms
that rely on the sketch Bellman operator, which
updates mean embeddings with simple linear-
algebraic computations. We provide asymptotic
convergence theory using a novel error analysis
approach, and examine the empirical performance
of the algorithms on a suite of tabular tasks. Fur-
ther, we show that this approach can be straightfor-
wardly combined with deep reinforcement learn-
ing to give competitive performances.

1. Introduction
In distributional approaches to reinforcement learning (RL),
the aim is to learn the full probability distribution of fu-
ture returns (Morimura et al., 2010a; Bellemare et al., 2017;
2023), rather than just their expected values, as is typi-
cally the case in value-based reinforcement learning (Sutton
& Barto, 2018). Distributional RL was proposed in the
setting of deep reinforcement learning by Bellemare et al.
(2017), with a variety of precursor work stretching back
almost as far as Markov decision processes themselves (Ja-
quette, 1973; Sobel, 1982; Chung & Sobel, 1987; Morimura
et al., 2010a;b). Beginning with the work in Bellemare et al.
(2017), the distributional approach to reinforcement learn-
ing has been central across a variety of applications of deep
RL in simulation and in the real world (Bodnar et al., 2020;
Bellemare et al., 2020; Wurman et al., 2022; Fawzi et al.,
2022), and has motivated new theories of how neurons in
the brain represent uncertainties in rewards (Dabney et al.,
2020; Tano et al., 2020; Muller et al., 2024)

1Google DeepMind 2Gatsby Unit, University College Lon-
don. Correspondence to: LKW <kevinliw@google.com>, MR
<markrowland@google.com>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

Typically, predictions of return distributions are represented
directly as approximate probability distributions, such as cat-
egorical distributions (Bellemare et al., 2017) and equally-
weighted mixtures of Dirac deltas (Dabney et al., 2018b;
Nguyen-Tang et al., 2021). Rowland et al. (2019) proposed
an alternative framework where return distributions are rep-
resented via the values of statistical functionals, called a
sketch by Bellemare et al. (2023). This provided a new
space of distributional reinforcement learning algorithms,
leading to improvements in deep RL agents, and hypotheses
regarding distributional RL in the brain (Dabney et al., 2020;
Lowet et al., 2020). On the other hand, a potential drawback
of this approach is that, to perform each distributional Bell-
man update to this representation, these statistical functional
values must be “decoded” back into an approximate distri-
bution via an expensive imputation strategy. In practice, this
can introduce significant computational overhead to Bell-
man updates, and is unlikely to be biologically plausible for
distributional return learning in the brain (Tano et al., 2020).

Here, we focus on a notable instance of the sketch called
the mean embedding sketch. In short, the mean embedding
is the expectation of nonlinear functions under the distribu-
tion represented (Smola et al., 2007; Sriperumbudur et al.,
2010; Berlinet & Thomas-Agnan, 2011), and is related to
frames in signal processing (Mallat, 1999) and distributed
distributional code in theoretical neuroscience (Sahani &
Dayan, 2003; Vértes & Sahani, 2018).

The core contributions of this paper are to revisit the ap-
proach to distributional reinforcement learning based on
sketches (Rowland et al., 2019), and to propose the sketch
Bellman operator that updates the implicit distributional
representation as a simple linear operation, obviating the
need for the expensive imputation strategies converting be-
tween sketches and distributions. This leads to a rich new
space of distributional RL algorithms that operate entirely in
the space of sketches. We provide theoretical convergence
analysis to accompany the framework, using a novel error
analysis approach. We then investigate the practical be-
haviour of various instantiations of the proposed algorithms
in tabular domains, and demonstrate the effectiveness in
deep reinforcement learning, showing that our approach is
robust enough to serve as the basis for a new variety of deep
distributional reinforcement learning algorithms.

1

mailto:kevinliw@google.com
mailto:markrowland@google.com

Distributional Bellman Operators over Mean Embeddings

2. Background
We consider a Markov decision process (MDP) with state
space X , action space A, transition probabilities P : X ×
A →P(X), reward distribution function PR : X ×A →
P(R), and discount factor γ ∈ [0, 1). (P(X) denotes the
space of probability distributions over X .) Given a policy
π : X →P(A) and initial state x ∈ X , a random trajectory
(Xt, At, Rt)t≥0 is the sequence of random states, actions,
and rewards encountered when using the policy π to select
actions in this MDP. More precisely, we have X0 = x,
At ∼ π(·|Xt), Rt ∼ PR(Xt, At), Xt+1 ∼ P (·|Xt, At)
for all t ≥ 0. We write Pπ

x and Eπ
x for probabilities and

expectations with respect to this distribution (conditioned
onX0 = x and following π), respectively. The performance
along the trajectory is measured by the discounted return,
defined by

∞∑
t=0

γtRt . (1)

In typical value-based RL, during policy evaluation, the
agent learns the expectation of the return for each possible
initial state x ∈ X , which is encoded by the value function
V π : X → R, given by V π(x) = Eπ

x [
∑∞

t=0 γ
tRt].

2.1. Distributional RL and Bellman Equation

In distributional RL (Bellemare et al., 2023), the problem of
policy evaluation is to learn the probability distribution of re-
turn in Equation (1) generated by following a policy π from
each possible initial state x ∈ X . This is encoded by the
return-distribution function ηπ : X →P(R), which maps
each initial state x ∈ X to the corresponding distribution
of the random return. A central result in distributional rein-
forcement learning is the distributional Bellman equation,
which relates the distribution of the random return under
different combinations of initial states and actions.

To build the random variable formulation of the returns, we
let (Gπ(x) : x ∈ X) be a collection of random variables
with the property that Gπ(x) is equal to Equation (1) in dis-
tribution (random variables sharing the same distribution),
conditioned on the initial state X0 = x. This formulation
implies that the random variable Gπ(x) is distributed as
the return distribution ηπ(x) for all x ∈ X . Consider a
random transition (x,R,X ′) generated by π, independent
of the Gπ random variables. Then, the (random variable)
distributional Bellman equation states that for each state x,

Gπ(x)
D
= R+ γGπ(X ′) |X = x ,

where D
= denotes equality in distribution. Here, we use the

slight abuse of the conditioning bar to set the distribution of
X in the random transition. It is also useful to introduce the
distributional Bellman operator T π : P(R)X →P(R)X

to describe the transformation that occurs on the right-hand
side for all x ∈ X (Morimura et al., 2010a; Bellemare
et al., 2017). If η ∈ P(R)X is a collection of probability
distributions, and (G(x) : x ∈ X) is a collection of random
variables such that G(x) ∼ η(x) for all x, and (X,R,X ′)
is random transition generated by π, independent of (G(x) :
x ∈ X), then (T πη)(x) = Dist(R+ γG(X ′)|X = x).

To implement algorithms of distributional RL, one needs
to approximate the infinite-dimensional return-distribution
function ηπ with finite-dimensional representations. This
is typically done via approximations in the space of return
distributions; see e.g. Bellemare et al. (Chapter 5; 2023).

2.2. Statistical Functionals and Sketches

Rather than using representations in the space of return
distributions, Rowland et al. (2019) proposed to represent
return distributions indirectly via functionals of the return
distribution, called sketches by Bellemare et al. (2023). In
this work we consider a specific class of sketches below.
Definition 2.1 (Mean embedding sketches). A mean em-
bedding sketch ψ is specified by a function ϕ : R → Rm,
and defined by

ψ(ν) := EZ∼ν [ϕ(Z)] . (2)

For a given distribution ν, the embedding ψ(ν) can there-
fore be thought of as providing a lossy summary of the
distribution. The name is motivated by the kernel literature,
in which Equation (2) can be viewed as embedding the dis-
tribution ν into Rm based on the mean of ϕ under ν (Smola
et al., 2007; Sriperumbudur et al., 2010; Berlinet & Thomas-
Agnan, 2011). As we will show, the mean embedding sketch
enables elegant distributional RL algorithms.

Statistical functional dynamic programming (SFDP; Row-
land et al. (2019), see also Bellemare et al. (2023)) is
an approach to distributional RL in which sketch values,
rather than approximate distributions, are the primary ob-
ject learned. Given a sketch ψ and estimated sketch values
U : X → Rm, SFDP proceed by first defining an impu-
tation strategy ι : Rm → P(R) mapping sketch values
back to distributions, with the aim that ψ(ι(U)) ≈ U , so
that ι acts as an approximate pseudo-inverse of ψ. The
usual Bellman backup is then applied to this imputed dis-
tribution, and the sketch value extracted from this updated
distribution. Thus, a typical update in SFDP takes the form
U ← ψ((T πι(U))(x)); see Figure 1.

This approach led to expectile-regression DQN, a deep RL
agent that aims to learn the sketch values associated with
certain expectiles (Newey & Powell, 1987) of the return, and
influenced a distributional model of dopamine signalling in
the brain (Dabney et al., 2020; Muller et al., 2024), although
the computation of the imputation strategy is often costly in

2

Distributional Bellman Operators over Mean Embeddings

...

1

2 3

Distributional DP SFDP vs Sketch DP

...

...

...

...

0 0

Environment

Figure 1. Example of DP update for a three-state environment.
State 1 has two child states 2 and 3 associated with return distri-
butions η2 and η3. In the exact distributional DP, the domain of η
is scaled and shifted by fr(g) = r + γg (pushed-forward by fr ,
giving (fr)#η), and then weighted by the transition probabilities.
In SFDP (grey) (Rowland et al., 2019), the map ι imputes, from
initial sketch values U , approximate (e.g. categorical) distributions
on which the distribution DP is applied, followed by evaluating
the sketch ψ. In our approach Sketch-DP (green), the updates are
computed in the mean embedding space, facilitated by the Bell-
man coefficients Br along the green paths, avoiding the expensive
conversions using imputation in the grey paths.

applications and biologically implausible in neuroscience
modelling (Tano et al., 2020).

3. The Bellman Sketch Framework
Our goal is to derive a framework for approximate computa-
tion of the mean embedding sketch ψ (with corresponding
feature function ϕ) of the return distributions corresponding
to a policy π, without needing to design, implement, or
compute an imputation strategy as in the case of SFDP/TD.
That is, we aim to compute Uπ : X → Rm, given by

Uπ(x) := ψ(ηπ(x)) = Eπ
x [ϕ(

∑∞
t=0 γ

tRt)] .

We refer to Uπ(x) as the mean embedding of ηπx , a type
of sketch value. We begin by considering environments
with a finite set of possible rewards R ⊆ R; we discuss
generalisations later. To motivate our method, we consider
a special case; suppose that for each possible return g ∈ R,
and each possible immediate reward r ∈R, there exists a
matrix Br such that

ϕ(r + γg) = Brϕ(g) ; (3)

note that Br does not depend on g, and γ is a constant.
In words, this says that the feature function ϕ evaluated
at the bootstrap return r + γg is expressible as a linear
transformation of the feature function evaluated at g itself.
If such a relationship holds, then we have

Uπ(x)
(a)
= Eπ

x [ϕ(R+ γGπ(X ′))]
(b)
= Eπ

x [BRϕ(G
π(X ′))]

(c)
= Eπ

x [BRU
π(X ′)] , (4)

where (a) follows from the distributional Bellman equation,
(b) from Equation (3), and (c) from exchanging the lin-
ear map Br and the conditional expectation given (R,X ′),
crucially relying on the linearity of the approximation in
Equation (3). Note that for example with ϕ(g) = (1, g)⊤

we have Br = (1 0
r γ), and Equation (4) reduces to the classi-

cal Bellman equation for V π, with Uπ(x) = (1, V π(x))⊤.
In Appendix B.2, we generalise the relation in Equation (4)
to stochastic rewards under a condition that differs slightly
from equation (4).

Thus, Uπ(x) satisfies its own linear Bellman equation,
which motivates algorithms that work directly in the space
of sketches, without recourse to imputation strategies. In
particular, a natural dynamic programming algorithm to
consider is based on the recursion

U(x) ← Eπ
x [BRU(X ′)] . (Sketch-DP)

See Figure 1 for an example and comparison with SFDP.
As this is an update applied directly to mean embeddings
themselves, we introduce the sketch Bellman operator T π

ϕ :

(Rm)X → (Rm)X , with (T π
ϕ U)(x) defined according to

the right-hand side of Equation (Sketch-DP). Note that T π
ϕ

is a linear operator, in contrast to the standard expected-
value Bellman operator, which is affine. We recover the
affine case by taking one component of ϕ to be constant, e.g.
ϕ1(g) ≡ 1, and enforcing U1(x) ≡ 1.

The right-hand side of Equation (Sketch-DP) can be un-
biasedly approximated with a sample transition (x, r, x′).
Stochastic approximation theory (Kushner & Yin, 1997;
Bertsekas & Tsitsiklis, 1996) then naturally suggests the
following temporal-difference learning update:

U(x) ← (1− α)U(x) + αBrU(x′) (Sketch-TD)

given a learning rate α. Rowland et al. (2019) introduced
the term Bellman closed for sketches for which an ex-
act dynamic programming algorithm is available, and pro-
vided a characterisation of Bellman closed mean embedding
sketches. The notion of Bellman closedness is similar to
the relationship in Equation (3), and from Rowland et al.
(Theorem 4.3; 2019), we can deduce that the only mean
embedding sketches that satisfy Equation (3) are invertible
linear combinations of the first-m moments.

Thus, our discussion above serves as a way of re-deriving
known algorithms for computing moments of the return (So-
bel, 1982; Lattimore & Hutter, 2014), but is insufficient to
yield algorithms for computing other sketches. Addition-
ally, since moments of the return distribution are naturally
of widely differing magnitudes, it is difficult to learn a
high-dimensional mean embedding based on moments; see
Appendix D.1 for further details. To go further, we must
weaken the assumption made in Equation (3).

3

Distributional Bellman Operators over Mean Embeddings

3.1. General Sketches

To extend our framework to a much more general family of
sketches, we relax our assumption of the exact predictability
of ϕ(r+γg) from ϕ(g) in Equation (3), by defining a matrix
of Bellman coefficients Br for each possible reward r ∈ R
as the solution of the linear regression problem:

Br := argmin
B

EG∼µ

[
∥ϕ(r + γG)−Bϕ(G)∥22

]
, (5)

so that, informally, we have ϕ(r + γg) ≈ Brϕ(g) for each
g. Here, µ is a distribution to be specified that weights the
returns G; we found that a uniform distribution on evenly
supported atoms over an estimated return range produces
good results (see Appendix B.4). Using the same motivation
as in the previous section, we therefore obtain

Uπ(x)
(a)
= Eπ

x [ϕ(R+ γGπ(X ′))] ≈ Eπ
x [BRϕ(G

π(X ′))]

(c)
= Eπ

x [BRU
π(X ′)] , (6)

noting that informally we have approximate equality in the
middle of this line. This still motivates the approaches ex-
pressed in Equations (Sketch-DP) and (Sketch-TD), though
we have lost the property that the exact mean embeddings
Uπ are a fixed point of the dynamic programming proce-
dure.
Algorithm 1 Sketch-DP/Sketch-TD

Precompute Bellman coefficients
Compute C as in Equation (7)
for r ∈ R do

Compute Cr as in Equation (7)
Set Br = CrC

−1

end for
Initialise U : X → Rm

Main loop
for k = 1, 2, . . . do

if DP then
U(x)←

∑
r,x′,a

P (r, x′|x, a)π(a|x)BrU(x′) ∀x

else if TD then
Observe transition (xk, ak, rk, x

′
k).

U(xk)← (1− αk)U(xk) + αkBrkU(x′k)
end if

end for

Computing Bellman coefficients. Under mild conditions
(invertibility of C as follows) the matrix of Bellman co-
efficients Br defined in Equation (5) can be solved as
Br = CrC

−1, where C,Cr ∈ Rm×m are defined by

C := EG∼µ[ϕ(G)ϕ(G)
⊤] ,

Cr := EG∼µ[ϕ(r + γG)ϕ(G)⊤] .
(7)

A derivation is in Appendix B.3 where we also describe the
choice of µ. The elements of these matrices are expressible

as integrals over the real line, and hence several possibilities
are available for (approximate) computation: if µ is finitely-
supported, direct summation is possible; in certain cases
the integrals may be analytically available, and otherwise
numerical integration can be performed. Additionally, for
certain feature maps ϕ, the Bellman coefficients Br have
particular structure that can be exploited computationally;
see Appendix B.4 for further discussion. The generalisation
to handle an infinite R is presented in Appendix B.5; and
detailed properties of Br are studied in Appendix B.6.

Algorithms. We summarise the two core algorithmic contri-
butions, sketch dynamic programming (Sketch-DP) and
sketch temporal-difference learning (Sketch-TD), that
arise from our proposed framework in Algorithm 1. Pausing
to take stock, we have proposed an algorithm framework
for computing approximations of lossy mean embeddings
for a wide variety of feature functions ϕ. Further, these
algorithms operate directly within the space of mean em-
beddings.

Selecting feature maps. A natural question is what effect
the choice of feature map ϕ has on the performance of the
algorithm. There are several competing concerns. First,
the richer the map ϕ, the more information about the re-
turn distribution can be captured by the corresponding mean
embedding. However, in the worst case, the computational
costs of our proposed Algorithm 1 scale cubically with m
(the dimensionality of ϕ) prior to the iterative updates which
then scale quadratically with m. In addition, the accuracy
of the algorithm in approximating the mean embeddings of
the true return distributions relies on having a low approxi-
mation error in Equation (6), which in turn relies on a low
regression error in Equation (5) (see Proposition 4.1 below).
Selecting an appropriate feature map is therefore somewhat
nuanced, and involves trading off a variety of computational
and approximation concerns.

A collection of feature maps that offer the potential for trade-
offs along the dimensions above is the translation family

ϕi(z) := κ(s(z − zi)), ∀ i ∈ {1, · · · ,m} , (8)

where κ : R → R is a base feature function, s ∈ R+ is
the slope, and the set {z1, . . . , zm} ⊆ R is the anchors
of the feature map. We will often take κ to be commonly
used bounded and smooth nonlinear functions, such as the
Gaussian or the sigmoid functions, and spread the anchor
points uniformly over the return range. We emphasise that
the choice of feature maps for the Bellman sketch framework
is flexible; see Appendix B.7 for other possible choices.
Remark 3.1 (Invariance). Given them-dimensional function
space obtained from the span of the coordinate functions
ϕ1, . . . , ϕm, the algorithms above are essentially indepen-
dent of the choice of basis for this space. For any invertible
matrix M ∈ Rm×m, replacing ϕ by M−1ϕ, and also || · ||2

4

Distributional Bellman Operators over Mean Embeddings

by || · ||M⊤M in Equation (5) gives an equivalent algorithm.
See Appendix B.8 for formal results.

Remark 3.2 (The need for linear regression). It is tempting
to try and obtain a more general framework by allowing
non-linear regression of ϕ(r+ γg) on ϕ(g) in Equation (5),
to obtain a more accurate fit, for example fitting a function
H : R× Rm → Rm so that ϕ(r + γg) ≈ H(r, ϕ(g)). The
issue is that if H is not linear in the second argument, then
generally E[H(r, ϕ(G(X ′)))] ̸= H(r,E[ϕ(G(X ′))]), and
so step (c) in Equation (6) is not valid. However, there may
be settings where it is desirable to learn such a function H ,
to avoid online computation of Bellman coefficients every
time a new reward value is encountered in TD learning.

Remark 3.3 (Linear update). The sketch updates in Equa-
tions (Sketch-DP) and (Sketch-TD) are linearly, which is
distinct from typical particle-based distributional RL algo-
rithms (e.g. (Dabney et al., 2018b;a; Nguyen-Tang et al.,
2021), where the updates involve non-linear operations. In
particular, Nguyen-Tang et al. (2021) proposed a TD algo-
rithm for updating particle locations by decreasing a sample
MMD objective (Gretton et al., 2012). However, this does
not yield a dynamic programming algorithm, and Nguyen-
Tang et al. (2021) do not analyse the TD algorithm; further
comparisons are more clearly described in Appendix B.9.

Remark 3.4 (Multidimensional rewards). Since the sketch
algorithms operate fully in the mean embedding space, they
generalise to multidimensional or source-dependent reward
settings (Van Seijen et al., 2017; Lin et al., 2020; Zhang
et al., 2021) by using a ϕ that takes vector-valued inputs.

3.2. Sketch-DP at Work

To give more intuition for the Bellman sketch framework,
we provide a walk-through of using Algorithm 1 to estimate
the return distributions for the environment in Figure 2A.
We take a sinusoidal feature map ϕ that consists of m = 13
harmonics over the range [−4.5, 4.5] (see Appendix D.2 for
an example using feature map of the form Equation (8)). The
Bellman regression problem in Equation (5) is set with µ =
Uniform([−4, 4]), based on the typical returns observed in
the environment. We then run the Sketch-DP algorithm with
the initial estimates U(x) set to ϕ(0) for all x ∈ X .

To visualise how the estimated mean embeddings evolve
over iterations, we project them onto their first two princi-
pal components in Figure 2C. To approximate the ground
truth return distributions, we collected a large number of
Monte Carlo samples from the MRP as (Figure 2D); see
Appendix C.1 for details. We then estimate the ground-truth
mean embeddings and project them on to the principal sub-
space in Figure 2C as crosses. The Sketch-DP estimates
converge to close proximity of the ground-truth. The distinc-
tive update pattern stems from the fact that all paths between
rewarding states have length 3. The mean embedding of

state 2 is closer to state 4 due to more frequent transitions
from state 2 to 4.

To aid interpretation of these results, we also include a
comparison in which we “decode” the mean embeddings at
selected iterations back into probability distributions (via
an imputation strategy (Rowland et al., 2019)), and com-
pare with the ground-truth return distributions projected
(in Cramér distance) onto the anchor locations of the fea-
tures (Rowland et al., 2018, Proposition 1), as shown in
Figure 2D. Full details of the imputation strategy are in
Appendix B.1. These decoded distributions are shown in
Figure 2E. Initially, the imputed distributions of the Sketch-
DP mean embedding estimates reflect the initialisation to
the mean embedding of δ0. As more iterations of Sketch-DP
are applied, the imputed distributions of the evolving mean
embedding estimates become close to the projected ground-
truth. This indicates that, in this example, not only does
Sketch-DP compute accurate mean embeddings of the re-
turn, but that this embedding is rich enough to recover a lot
of information regarding the return distributions themselves.

Concluding the introduction of the Sketch-DP algorithmic
framework, there are several natural questions that arise.
Can we quantify how accurately Sketch-DP algorithms
can approximate mean embeddings of return distributions?
What effects do choices such as the feature map ϕ have on
the algorithms in practice? The next sections are devoted to
answering these questions in turn.

4. Convergence Analysis
We analyse the Sketch-DP procedure described in Algo-
rithm 1, with a novel error analysis approach that can be
mathematically described in the following succinct manner.
We let U0 : X → Rm denote the initial mean embedding
estimates, and then note from Algorithm 1 that the collec-
tion of estimates after each DP update form a sequence
(Uk)

∞
k=0, with Uk+1 = T π

ϕ Uk. Our convergence analysis
therefore focuses on the asymptotic behaviour of this se-
quence. We introduce the notation Φ : P(R) → Rm for
the sketch associated with the feature function ϕ, so that
Φµ = EZ∼µ[ϕ(Z)], and define Φ for return-distribution
functions (RDFs) by specifying for η ∈ P(R)X that
(Φη)(x) = Φ(η(x)). Ideally, we would like these iterates to
approach Uπ : X → Rm, the mean embeddings of the true
return distributions, given by Uπ(x) = Eπ

x [ϕ(
∑∞

t=0 γ
tRt)].

As already described, typically this is not possible when
the sketch Φ is not Bellman closed, and so we can only
expect to approximate Uπ . Mathematically, this is because
in general ΦT π ̸= T π

ϕ Φ when ϕ is not Bellman closed.

The first step is to bound the error incurred in a single step of
dynamic programming due to using T π

ϕ directly on the mean
embeddings, rather taking mean embeddings after applying

5

Distributional Bellman Operators over Mean Embeddings

A

1 2

3 4

0.3 0.7

 -1=r +1=r
B

5 0 5

Feature function

C

time steps
0

5
10

15
20

25
PC1

1
0

1
2

1.0
0.5

0.0
0.5
1.0
1.5

PC2

Evolution of mean embeddings
D E

state 1 state 2

state 3 state 4

Ground-truth

Categorical proj.

Iteration 0

Iteration 2

Iteration 1

Iteration 25

Figure 2. An example run of Sketch-DP. A, The MRP considered here. B, The first 5 of m = 13 sinusoidal feature functions ϕ. The
regression Equation (5) is performed under a densely spaced grid over the white region [−4, 4]. C, Evolution of the estimated mean
embeddings from initialisation (grey dot) onto the first two principal components. Crosses represent the ground-truth mean embeddings. D,
Ground-truth return distributions (estimated by Monte-Carlo) and their categorical projections onto a regular grid. E, Imputed distributions
from the mean embeddings onto the same grid for selected iterations (curves), compared against the categorical projections (stems).

η̄ η̄′

η η′

Ū Ū ′

U Ũ U ′

T π

Φ
Φ

T π

Φ

δ+εR γc(δ+εR)

Φ

T π
ϕ

δ

εB

γc(δ+εR)+εE

Figure 3. The objects and structure used to analyse the Sketch-DP.

the true distributional Bellman operator to the underlying
distributions; this corresponds to the foreground of Figure 3.
Proposition 4.1. (Regression error to Bellman approxi-
mation.) Let ∥ · ∥ be a norm on Rm. Then for any RDF
η ∈P([Gmin, Gmax])

X , we have

max
x∈X
∥Φ(T πη)(x)− (T π

ϕ Φη)(x)∥ (9)

≤ sup
g∈[Gmin,Gmax]

max
r∈R
∥ϕ(r + γg)−Brϕ(g)∥ .

The second step of the analysis is to chain together the errors
that are incurred at each step of dynamic programming,
so as to obtain a bound on the asymptotic distance of the
sequence (Uk)

∞
k=0 from Uπ , motivated by error propagation

analysis in the case of function approximation (Bertsekas &
Tsitsiklis (1996); Munos (2003); see also Wu et al. (2023)
in the distributional setting). The next proposition provides
the technical tools required for this; the notation is chosen
to match the illustration in Figure 3.
Proposition 4.2. (Error propagation.) Consider a norm
∥ · ∥ on Rm, and let ∥ · ∥∞ be the norm on (Rm)X defined
by ∥U∥∞ = maxx∈X ∥U(x)∥. Let d be a metric on RDFs
such that T π is a γc-contraction with respect to d (such
as the supermum-Wasserstein and the supermum-Cramer
distances). Suppose the following bounds hold.

• (Bellman approximation bound.) For any η ∈
P([Gmin, Gmax])

X ,

max
x∈X
∥Φ(T πη)(x)− (T π

ϕ Φη)(x)∥ ≤ εB .

• (Reconstruction error bound.) For any η, η̄ ∈
P([Gmin, Gmax])

X with sketches U, Ū , we have
d(η, η̄) ≤ ∥U − Ū∥∞ + εR.

• (Embedding error bound.) For any η′, η̄′ ∈
P([Gmin, Gmax])

X with sketches U ′, Ū ′, we have
∥U ′ − Ū ′∥∞ ≤ d(η′, η̄′) + εE.

Then for any two return-distribution functions η, η̄ ∈
P([Gmin, Gmax])

X with sketchesU, Ū satisfying ∥U−Ū∥ ≤
δ, we have

∥ΦT πη − T π
ϕ Ū∥∞ ≤ γc(δ + εR) + εR + εE .

A formal proof is given in Appendix A; Figure 3 (bottom)
shows the intuition, propagating bounds through different
intermediate stages of the analysis of the update. The main
error bound result combines the two earlier results.
Proposition 4.3. Suppose the assumptions of Proposi-
tion 4.2 hold, that T π maps P([Gmin, Gmax])

X to itself, and
suppose T π

ϕ maps {Φν : ν ∈ P([Gmin, Gmax])
X } to itself.

Then for a sequence of sketches (Uk)
∞
k=0 defined iteratively

via Uk+1 = T π
ϕ Uk, we have

lim sup
k→∞

∥Uk − Uπ∥ ≤ 1

1− γc
(γcεR + εB + εE) .

Proof. For each Uk, let ηk be an RDF with the property
Φηk = Uk. Applying Proposition 4.2 to sketches Uπ and
Uk, we obtain ∥Uk+1−Uπ∥∞ ≤ γc∥Uk−Uπ∥∞+γcεR +
εB + εE . Taking a limsup on both sides over k and rearrang-
ing yields the result.

6

Distributional Bellman Operators over Mean Embeddings

4.1. Concrete Example

The analysis presented above is abstract; it provides a
generic template for conducting error propagation analy-
sis to show that Sketch-DP converges to a neighbourhood
of the true values, and moreover illustrates the dependence
of this error on the “richness” of the sketch, and accuracy
of the Bellman coefficients. To apply this abstract result to
a concrete algorithm, we are required to establish the three
error bounds that appear in the statement of Proposition 4.2.
The result below shows how this can lead to a concrete re-
sult for a novel class of sketches; in particular, proving that
computed mean embeddings under these features become
arbitrarily accurate as the number of features increases.

Proposition 4.4. Consider a sketch ϕ whose coordinates
are feature functions of the form ϕi(z) = 1{z1 ≤ z <
zi+1} (i = 1, . . . ,m − 1), and ϕm(z) = 1{z1 ≤
z ≤ zm+1}, where z1, . . . , zm+1 is an equally-spaced
grid over [Gmin, Gmax], with Gmin = minR/(1 − γ),
Gmax = maxR/(1 − γ). Let T π

ϕ be the corresponding
Sketch-DP operator given by solving Equation (5) with
µ = Unif([Gmin, Gmax]), and define a sequence (Uk)

∞
k=0

by taking U0(x) to be the sketch of some initial distribution
in P([Gmin, Gmax]), and Uk+1 = T π

ϕ Uk for all k ≥ 0. Let
Uπ ∈ (Rm)X be the mean embeddings of the true return
distributions. Finally, let ∥ · ∥ be the norm on Rm defined
by ∥u∥ = Gmax−Gmin

m

∑m
i=1 |ui| . Then we have

lim sup
k→∞

∥Uk − Uπ∥∞ ≤
(Gmax −Gmin)(3 + 2γ)

(1− γ)m
.

5. Experiments
We first test quality of return distribution predictions by
the sketch algorithms, investigating the effects of three key
factors in Equation (8): the base feature κ, the number of fea-
turesm, and the slope s, using three tabular MRPs (details in
Appendix C.1, extended results in Appendix D.3). In Ran-
dom chain, the transitions are random, and the rewards are
deterministic; in Directed chain (DC), both transitions and
rewards are deterministic; and in DC+Gaussian R, the tran-
sitions are deterministic and the rewards are Gaussian. We
compare the mean embeddings estimated by Sketch-DP with
ground-truth mean embeddings, reporting their squared L2

distance (mean embedding squared error), and also com-
pare the Cramér distance maxx∈X ℓ

2
2(η̂(x), η

π(x)) (see
e.g. Rowland et al. (2018)) between the distribution η̂(x)
imputed from the Sketch-DP estimate against the ground-
truth ηπ(x) (grey dotted line). To aid interpretation of the
Cramér distance results, we also report the Cramér dis-
tance between the ground truth ηπ(x) and two baselines.
First, the Dirac delta δV π(X) at the mean return; we expect
Sketch-DP to outperform this naı̈ve baseline by better cap-
turing properties of the return distribution beyond the mean.

Second, the return distribution estimate computed by cate-
gorical DP (Rowland et al., 2018; Bellemare et al., 2023),
a well-understood approach to distrbutional RL based on
categorical distributions.

The results for sweeps over feature count m and slope s
are shown in Figure 4. By sweeping over m, we see that
the estimated mean embedding goes towards the ground-
truth as we use more features. This is consistent with our
intuition that more features should improve the estimates.
Further, the Cramér distance also decreases as m increases,
suggesting that the distribution represented also approaches
the ground-truth. To highlight differences between vari-
ous Sketch-DP algorithms, we also compute the excess
Cramér distance: the Cramér distance as above, minus the
corresponding distance between the categorical (Carmér)
projection of ηπ and ηπ itself; the latter gives the theoreti-
cal lower bound achievable by any distribution on a given
finite support. All distributional methods perform well on
these tasks, and significantly outperform the Dirac estimator
in stochastic environments; we note that all methods have
tunable hyperparameters (bin locations for CDRL, feature
parameters for Sketch-DP), which should inform direct com-
parison between methods. We see that the sketch algorithm,
in combination with the imputation strategy described in
Appendix B.1, can give lower Cramér distances than the
CDRL algorithm, especially when using the sigmoidal or
Gaussian base features. The results of the sweep on the
slope parameter s show different trends depending on the
metric. For smoother ϕ, generally we can obtain smaller
error on the mean embeddings, but the Cramér distances
are only small for intermediate range of slope values. This
result is expected: when the features are too smooth or too
sharp, there exists regions within the return range where the
feature values do not vary meaningfully. This results in a
more lossy encoding of the return distribution, indicating the
importance of tuning the slope parameter of the translation
family (Equation (8)).

We include additional experiments in Appendix D.4 show-
ing that Sketch-DP outperforms and is substantially faster in
wallclock run-time than SFDP based on imputation strate-
gies (Rowland et al., 2019; Bellemare et al., 2023). The
faster speed of Sketch-DP is because its updates involve
simple linear-algebraic operations, as opposed to the more
involved DP update, using imputation strategies, in SFDP.

5.1. Deep Reinforcement Learning

The primary motivation of our work has been to develop
principled novel approaches to distributional RL based on
mean embeddings. Here, we also verify that the Bellman
sketch framework is robust enough to apply in combina-
tion with deep reinforcement learning. We train neural-
network predictions Uθ(x, a) of mean embeddings for each

7

Distributional Bellman Operators over Mean Embeddings

10 8

10 4

100

104

M
ea

n-
em

be
dd

in
g

sq
ua

re
d

er
ro

r Random chain Directed chain (DC) DC+Gaussian R

0.1
0.2
0.3
0.4

Cr
am

ér
di

st
an

ce

projected

10 50 90
Feature count, m

10 6

10 4

10 2

Ex
ce

ss
 C

ra
m

ér
di

st
an

ce

sigmoid
gaussian

CDRL
sinusoidal

indicator
mean

10 50 90 10 50 90

Random chain Directed chain (DC) DC + Gaussian R

0.1 1 10
Slope, s

0.1 1 10 0.1 1 10

Figure 4. Results of running Sketch-DP (Algorithm 1) on tabular environments. First row shows the squared L2 distance between
ground-truth mean embeddings to the Sketch-DP estimates. The grey dotted line in the second row is the Cramér distance between the
ground-truth ηπ and its categorical projection. The third row shows the difference between the Cramér distance and the projected ηπ .

0 25 50 75 100 125 150 175 200
Million frames

0.0

0.5

1.0

1.5

2.0

M
ed

ia
n

no
rm

al
ise

d
re

tu
rn DQN

C51
QR
IQN

Sketch

0 25 50 75 100 125 150 175 200
Million frames

0.0

2.5

5.0

7.5

10.0

12.5

15.0
M

ea
n

no
rm

al
ize

d
re

tu
rn

Figure 5. Median (left) and mean (right) human-normalised scores on the Atari 57 suite.

state-action pair (x, a). To be able to define greedy policy
improvements based on estimated mean embeddings, we
precompute value-readout coefficients β ∈ Rm by solving

min
β

EG∼µ[(G− ⟨β, ϕ(G)⟩)2] ,

so that we can approximate the expected returns from the
mean embedding estimates as ⟨β, Uθ(x, a)⟩ by linearity
of expectation. This allows us to define a Q-learning-
style update rule: given a transition (x, a, r, x′), first com-
pute a′ = argmaxã⟨β, Uθ̄(x

′, ã)⟩, and then the gradient:
∇θ∥Uθ(x, a)−BrUθ̄(x

′, a′)∥22 , where θ̄ are the target net-
work parameters. In our experiments, we parametrise Uθ

according to the architecture of QR-DQN (Dabney et al.,
2018b), so that the m outputs of the network predict the val-
ues of the m coordinates of the corresponding mean embed-
ding. We use the sigmoid function as the base feature κ. Full
experimental details for replication are in Appendix C.2;
further results are in Appendix D.5.

Figure 5 shows the mean and median human-normalised
performance on the Atari suite of environments (Bellemare
et al., 2013) across 200M training frames, and includes
comparisons against DQN (Mnih et al., 2015), as well

as the distributional agents C51 (Bellemare et al., 2017),
QR-DQN (Dabney et al., 2018b), and IQN (Dabney et al.,
2018a). Sketch-DQN attains higher performance on both
metrics relative to the comparator agents C51 and QR-DQN,
and approaches the performance of IQN, which uses a
more complex prediction network to make non-parametric
predictions of the quantile function of the return. In ad-
dition, Sketch-DQN runs faster than QR-DQN and IQN;
see Appendix D.6. These results indicate that the sketch
framework can be reliably applied to deep RL, and we be-
lieve further investigation of the combination of this frame-
work and deep RL agents is a promising direction for fu-
ture work. Code is available at https://github.com/
google-deepmind/sketch_dqn.

6. Related Work
Typical approaches to distributional RL focus on learning ap-
proximate distributions of the true return distributions (see,
e.g., Bellemare et al. (2017); Dabney et al. (2018b); Yang
et al. (2019); Nguyen-Tang et al. (2021); Wu et al. (2023)).
Much prior work has considered statistical functionals of the

8

https://github.com/google-deepmind/sketch_dqn
https://github.com/google-deepmind/sketch_dqn

Distributional Bellman Operators over Mean Embeddings

random return, at varying levels of generality with regard
to the underlying Markov decision process model. See for
example Mandl (1971); Farahmand (2019) for work on char-
acteristic functions, Chung & Sobel (1987) for the Laplace
transform, Tamar et al. (2013; 2016) for variance, and Sobel
(1982) for higher moments.

Our use of finite-dimensional mean embeddings is inspired
by distributed distributional codes (DDCs) from theoreti-
cal neuroscience (Sahani & Dayan, 2003; Vértes & Sahani,
2018; Wenliang & Sahani, 2019), which can be regarded as
neural activities encoding return distributions. DDCs were
previously used to model transition dynamics and successor
features in partially observable MDPs (Vértes & Sahani,
2019). Tano et al. (2020) consider applying non-linearities
to rewards themselves, rather than the return, and learning
with a variety of discount factors, to encode the distribu-
tion of rewards at each timestep. In addition, Tano et al.
(2020) showed that learning with a variety of discount fac-
tors encode the distribution of rewards at each timestep,
complementary to modelling return distributions. Tano et al.
(2020) were also motivated by a biologically plausible mech-
anism for distributional reinforcement learning in the brain
(i.e. not requiring the non-local optimisation in the impu-
tation strategies described by Rowland et al. (2019)). The
approach proposed here is also biologically plausible, as
all computations for value estimation are linear and can be
easily implemented with neuronal circuits, and there may
be value in further investigation of the consequences of our
framework for dopamine modelling in the brain.

The sketches in this paper are in fact mean embeddings
into finite-dimensional reproducing kernel Hilbert spaces
(RKHSs; the kernel corresponding to the feature function
ϕ is K(z, z′) = ⟨ϕ(z), ϕ(z′)⟩). Kernel mean embeddings
have been used in RL for representing state-transition distri-
butions (Grünewälder et al., 2012; Boots et al., 2013; Lever
et al., 2016; Chowdhury & Oliveira, 2023), and maximum
mean discrepancies (MMDs) (Gretton et al., 2012) have
been used to define losses in distributional RL by Nguyen-
Tang et al. (2021). Nguyen-Tang et al. (2021) combine an
MMD loss and distributional bootstrapping to define an in-
cremental learning algorithm, but it does not naturally lead
to a DP formulation, and its convergence is not analysed. In
contrast, our sketch framework not only generalises their
approach to define both DP and TD algorithms but also
allows rigorous analysis of DP convergence as presented
in Section 4. We elaborate the comparisons to MMDRL
and a few other distributional RL methods in Appendix B.9.
Similar to their work, our method generalises to multidimen-
sional or source-dependent reward settings (Van Seijen et al.,
2017; Lin et al., 2020; Zhang et al., 2021), as discussed in
Remark 3.4.

7. Conclusion
We have proposed a framework for distributional RL based
on Bellman updates that take place entirely within the sketch
domain. This has yielded new dynamic programming and
temporal-difference learning algorithms and a novel error
propagation analysis. We have provided empirical valida-
tion on a suite of tabular MRPs and demonstrated that the
approach can be successfully applied as a variant of the
DQN. While convergence analysis for general sketches and
mean embedding feature functions is an immediate future
work, we expect that there will be benefits from further
exploration of algorithmic possibilities opened up by this
framework, and potential consequences for modelling value
representations in the brain.

Acknowledgments
We thank Tim Genewein, Jiaxin Shi, Yayi Zou, Maneesh
Sahani and Csaba Szepesvári for helpful discussions on
the contractivity and generalisations of the sketch Bellman
framework.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Marc G. Bellemare, Yavar Naddaf, Joel Veness, and Michael

Bowling. The arcade learning environment: An evalu-
ation platform for general agents. Journal of Artificial
Intelligence Research, 2013.

Marc G. Bellemare, Will Dabney, and Rémi Munos. A
distributional perspective on reinforcement learning. In
Proceedings of the International Conference on Machine
Learning, 2017.

Marc G. Bellemare, Salvatore Candido, Pablo Samuel Cas-
tro, Jun Gong, Marlos C. Machado, Subhodeep Moitra,
Sameera S. Ponda, and Ziyu Wang. Autonomous naviga-
tion of stratospheric balloons using reinforcement learn-
ing. Nature, 588(7836):77–82, 2020.

Marc G. Bellemare, Will Dabney, and Mark Rowland. Dis-
tributional Reinforcement Learning. MIT Press, 2023.
http://www.distributional-rl.org.

Alain Berlinet and Christine Thomas-Agnan. Reproduc-
ing kernel Hilbert spaces in probability and statistics.
Springer Science & Business Media, 2011.

9

http://www.distributional-rl.org

Distributional Bellman Operators over Mean Embeddings

Dimitri Bertsekas and John N. Tsitsiklis. Neuro-dynamic
programming. Athena Scientific, 1996.

Cristian Bodnar, Adrian Li, Karol Hausman, Peter Pastor,
and Mrinal Kalakrishnan. Quantile QT-Opt for risk-aware
vision-based robotic grasping. In Robotics: Science and
Systems, 2020.

Giulio Bondanelli and Srdjan Ostojic. Coding with transient
trajectories in recurrent neural networks. PLoS computa-
tional biology, 16(2):e1007655, 2020.

Byron Boots, Arthur Gretton, and Geoffry J. Gordon.
Hilbert space embeddings of predictive state represen-
tations. In Proceedings of the Conference on Uncertainty
in Artificial Intelligence, 2013.

Sayak Ray Chowdhury and Rafael Oliveira. Value func-
tion approximations via kernel embeddings for no-regret
reinforcement learning. In Proceedings of The Asian
Conference on Machine Learning, 2023.

Kun-Jen Chung and Matthew J. Sobel. Discounted MDPs:
Distribution functions and exponential utility maximiza-
tion. SIAM Journal on Control and Optimization, 25(1):
49–62, 1987.

Will Dabney, Georg Ostrovski, David Silver, and Rémi
Munos. Implicit quantile networks for distributional rein-
forcement learning. In Proceedings of the International
Conference on Machine Learning, 2018a.

Will Dabney, Mark Rowland, Marc G. Bellemare, and Rémi
Munos. Distributional reinforcement learning with quan-
tile regression. In Proceedings of the AAAI Conference
on Artificial Intelligence, 2018b.

Will Dabney, Zeb Kurth-Nelson, Naoshige Uchida,
Clara Kwon Starkweather, Demis Hassabis, Rémi Munos,
and Matthew Botvinick. A distributional code for value
in dopamine-based reinforcement learning. Nature, 577
(7792):671–675, 2020.

Thang Doan, Bogdan Mazoure, and Clare Lyle. GAN Q-
learning. arXiv, 2018.

Amir-massoud Farahmand. Value function in frequency
domain and the characteristic value iteration algorithm.
In Advances in Neural Information Processing Systems,
2019.

Alhussein Fawzi, Matej Balog, Aja Huang, Thomas
Hubert, Bernardino Romera-Paredes, Mohammadamin
Barekatain, Alexander Novikov, Francisco J. R. Ruiz,
Julian Schrittwieser, Grzegorz Swirszcz, David Silver,
Demis Hassabis, and Pushmeet Kohli. Discovering
faster matrix multiplication algorithms with reinforce-
ment learning. Nature, 610(7930):47–53, 2022.

Dror Freirich, Tzahi Shimkin, Ron Meir, and Aviv Tamar.
Distributional multivariate policy evaluation and explo-
ration with the Bellman GAN. In Proceedings of the
International Conference on Machine Learning, 2019.

Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bern-
hard Schölkopf, and Alexander Smola. A kernel two-
sample test. The Journal of Machine Learning Research,
13(1):723–773, 2012.

Steffen Grünewälder, Guy Lever, Luca Baldassarre, Massi
Pontil, and Arthur Gretton. Modelling transition dynam-
ics in MDPs with RKHS embeddings. In Proceedings
of the International Conference on Machine Learning,
2012.

Guillaume Hennequin, Tim P Vogels, and Wulfram Gerstner.
Non-normal amplification in random balanced neuronal
networks. Physical Review E, 86(1):011909, 2012.

Stratton C. Jaquette. Markov decision processes with a
new optimality criterion: Discrete time. The Annals of
Statistics, 1(3):496–505, 1973.

Harold J. Kushner and George Yin. Stochastic approxima-
tion and recursive algorithm and applications. Springer,
1997.

Tor Lattimore and Marcus Hutter. Near-optimal PAC bounds
for discounted MDPs. Theoretical Computer Science,
558:125–143, 2014.

Guy Lever, John Shawe-Taylor, Ronnie Stafford, and Csaba
Szepesvari. Compressed conditional mean embeddings
for model-based reinforcement learning. In Proceedings
of the AAAI Conference on Artificial Intelligence, 2016.

Zichuan Lin, Derek Yang, Li Zhao, Tao Qin, Guangwen
Yang, and Tieyan Liu. RD2: Reward decomposition with
representation disentanglement. In Advances in Neural
Information Processing Systems, 2020.

Adam S. Lowet, Qiao Zheng, Sara Matias, Jan Drugow-
itsch, and Naoshige Uchida. Distributional reinforcement
learning in the brain. Trends in neurosciences, 43(12):
980–997, 2020.

Stéphane Mallat. A wavelet tour of signal processing. Else-
vier, 1999.

Petr Mandl. On the variance in controlled Markov chains.
Kybernetika, 7(1):1–12, 1971.

Alexandre Marthe, Aurélien Garivier, and Claire Vernade.
Beyond average return in markov decision processes.
In Advances in Neural Information Processing Systems,
2023.

10

Distributional Bellman Operators over Mean Embeddings

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, An-
drei A Rusu, Joel Veness, Marc G Bellemare, Alex
Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik,
Ioannis Antonoglou, Helen King, Dharshan Kumaran,
Daan Wierstra, Shane Legg, and Demis Hassabis. Human-
level control through deep reinforcement learning. Nature,
2015.

Tetsuro Morimura, Masashi Sugiyama, Hisashi Kashima,
Hirotaka Hachiya, and Toshiyuki Tanaka. Nonparamet-
ric return distribution approximation for reinforcement
learning. In Proceedings of the International Conference
on Machine Learning, 2010a.

Tetsuro Morimura, Masashi Sugiyama, Hisashi Kashima,
Hirotaka Hachiya, and Toshiyuki Tanaka. Parametric
return density estimation for reinforcement learning. In
Proceedings of the Conference on Uncertainty in Artifi-
cial Intelligence, 2010b.

Timothy H Muller, James L Butler, Sebastijan Veselic,
Bruno Miranda, Joni D Wallis, Peter Dayan, Timothy EJ
Behrens, Zeb Kurth-Nelson, and Steven W Kennerley.
Distributional reinforcement learning in prefrontal cortex.
Nature Neuroscience, pp. 1–6, 2024.

Rémi Munos. Error bounds for approximate policy itera-
tion. In Proceedings of the International Conference on
Machine Learning, 2003.

Whitney K. Newey and James L. Powell. Asymmetric least
squares estimation and testing. Econometrica: Journal
of the Econometric Society, pp. 819–847, 1987.

Thanh Nguyen-Tang, Sunil Gupta, and Svetha Venkatesh.
Distributional reinforcement learning via moment match-
ing. In Proceedings of the AAAI Conference on Artificial
Intelligence, 2021.

Mark Rowland, Marc Bellemare, Will Dabney, Rémi Munos,
and Yee Whye Teh. An analysis of categorical distri-
butional reinforcement learning. In Proceedings of the
International Conference on Artificial Intelligence and
Statistics, 2018.

Mark Rowland, Robert Dadashi, Saurabh Kumar, Rémi
Munos, Marc G. Bellemare, and Will Dabney. Statistics
and samples in distributional reinforcement learning. In
Proceedings of the International Conference on Machine
Learning, 2019.

Mark Rowland, Rémi Munos, Mohammad Gheshlaghi Azar,
Yunhao Tang, Georg Ostrovski, Anna Harutyunyan, Karl
Tuyls, Marc G Bellemare, and Will Dabney. An analysis
of quantile temporal-difference learning. arXiv, 2023.

Maneesh Sahani and Peter Dayan. Doubly distributional
population codes: Simultaneous representation of uncer-
tainty and multiplicity. Neural Computation, 2003.

Alex Smola, Arthur Gretton, Le Song, and Bernhard
Schölkopf. A Hilbert space embedding for distributions.
In Proceedings of the International Conference on Algo-
rithmic Learning Theory, 2007.

Matthew J. Sobel. The variance of discounted Markov
decision processes. Journal of Applied Probability, 19
(4):794–802, 1982.

Le Song, Xinhua Zhang, Alex Smola, Arthur Gretton, and
Bernhard Schölkopf. Tailoring density estimation via
reproducing kernel moment matching. In Proceedings
of the International Conference on Machine Learning,
2008.

Bharath K. Sriperumbudur, Arthur Gretton, Kenji Fukumizu,
Bernhard Schölkopf, and Gert R. G. Lanckriet. Hilbert
space embeddings and metrics on probability measures.
Journal of Machine Learning Research, 11:1517–1561,
2010.

Ke Sun, Yingnan Zhao, Yi Liu, Wulong Liu, Bei Jiang, and
Linglong Kong. Distributional reinforcement learning
via Sinkhorn iterations. arXiv, 2022.

Richard S. Sutton and Andrew G. Barto. Reinforcement
learning: An introduction. MIT Press, 2nd edition, 2018.

Aviv Tamar, Dotan Di Castro, and Shie Mannor. Temporal
difference methods for the variance of the reward to go. In
Proceedings of the International Conference on Machine
Learning, 2013.

Aviv Tamar, Dotan Di Castro, and Shie Mannor. Learning
the variance of the reward-to-go. The Journal of Machine
Learning Research, 17(1):361–396, 2016.

Pablo Tano, Peter Dayan, and Alexandre Pouget. A local
temporal difference code for distributional reinforcement
learning. In Advances in Neural Information Processing
Systems, 2020.

Harm Van Seijen, Mehdi Fatemi, Joshua Romoff, Romain
Laroche, Tavian Barnes, and Jeffrey Tsang. Hybrid re-
ward architecture for reinforcement learning. In Advances
in Neural Information Processing Systems, 2017.

Eszter Vértes and Maneesh Sahani. Flexible and accurate
inference and learning for deep generative models. In Ad-
vances in Neural Information Processing Systems, 2018.

Eszter Vértes and Maneesh Sahani. A neurally plausible
model learns successor representations in partially observ-
able environments. In Advances in Neural Information
Processing Systems, 2019.

11

Distributional Bellman Operators over Mean Embeddings

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt
Haberland, Tyler Reddy, David Cournapeau, Evgeni
Burovski, Pearu Peterson, Warren Weckesser, Jonathan
Bright, Stéfan J. van der Walt, Matthew Brett, Joshua
Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew
R. J. Nelson, Eric Jones, Robert Kern, Eric Larson, C J
Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake Vander-
Plas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian
Henriksen, E. A. Quintero, Charles R. Harris, Anne M.
Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul
van Mulbregt, and SciPy 1.0 Contributors. SciPy 1.0: Fun-
damental Algorithms for Scientific Computing in Python.
Nature Methods, 17:261–272, 2020.

Li Kevin Wenliang and Maneesh Sahani. A neurally plau-
sible model for online recognition and postdiction in a
dynamical environment. In Advances in Neural Informa-
tion Processing Systems, 2019.

Runzhe Wu, Masatoshi Uehara, and Wen Sun. Distribu-
tional offline policy evaluation with predictive error guar-
antees. In Proceedings of the International Conference
on Machine Learning, 2023.

Peter R. Wurman, Samuel Barrett, Kenta Kawamoto, James
MacGlashan, Kaushik Subramanian, Thomas J. Walsh,
Roberto Capobianco, Alisa Devlic, Franziska Eckert, Flo-
rian Fuchs, Leilani Gilpin, Piyush Khandelwal, Varun
Kompella, HaoChih Lin, Patrick MacAlpine, Declan
Oller, Takuma Seno, Craig Sherstan, Michael D. Tho-
mure, Houmehr Aghabozorgi, Leon Barrett, Rory Dou-
glas, Dion Whitehead, Peter Dürr, Peter Stone, Michael
Spranger, and Hiroaki Kitano. Outracing champion Gran
Turismo drivers with deep reinforcement learning. Na-
ture, 602(7896):223–228, 2022.

Derek Yang, Li Zhao, Zichuan Lin, Tao Qin, Jiang Bian,
and Tie-Yan Liu. Fully parameterized quantile function
for distributional reinforcement learning. In Advances in
Neural Information Processing Systems, 2019.

Pushi Zhang, Xiaoyu Chen, Li Zhao, Wei Xiong, Tao Qin,
and Tie-Yan Liu. Distributional reinforcement learning
for multi-dimensional reward functions. In Advances in
Neural Information Processing Systems, 2021.

12

Distributional Bellman Operators over Mean Embeddings

Distributional Bellman Operators over Mean Embeddings:
Supplementary Material

A. Proofs
Proposition 4.1. (Regression error to Bellman approximation.) Let ∥ · ∥ be a norm on Rm. Then for any RDF
η ∈P([Gmin, Gmax])

X , we have

max
x∈X
∥Φ(T πη)(x)− (T π

ϕ Φη)(x)∥ (9)

≤ sup
g∈[Gmin,Gmax]

max
r∈R
∥ϕ(r + γg)−Brϕ(g)∥ .

Proof. Let (G(x) : x ∈ X) be an instantiation of η (Bellemare et al., 2023); that is, a collection of random variables
such that for each x ∈ X , we have G(x) ∼ η(x). First, note that the distribution (T πη)(x) is exactly the distribution of
R+ γG(X ′) (when the transition begins at x and is generated by π). So we have

Φ(T πη)(x) = EZ∼(T πη)(x)[ϕ(Z)] = Eπ
x [ϕ(R+ γG(X ′))] .

It then follows that:

max
x∈X
∥Φ(T πη)(x)− (T π

ϕ Φη)(x)∥ = max
x∈X

∥∥∥Eπ
x

[
ϕ(R+ γG(X ′))

]
− Eπ

x

[
BRE[ϕ(G(X ′))|X ′]

]∥∥∥
= max

x∈X

∥∥∥Eπ
x

[
ϕ(R+ γG(X ′))−BRϕ(G(X

′))
]∥∥∥

≤ max
x∈X

Eπ
x

[∥∥ϕ(R+ γG(X ′))−BRϕ(G(X
′))
∥∥]

≤ max
g∈[Gmin,Gmax]

max
r∈R
∥ϕ(r + γg)−Brϕ(g)∥ ,

as required.

Proposition 4.2. (Error propagation.) Consider a norm ∥ · ∥ on Rm, and let ∥ · ∥∞ be the norm on (Rm)X defined by
∥U∥∞ = maxx∈X ∥U(x)∥. Let d be a metric on RDFs such that T π is a γc-contraction with respect to d (such as the
supermum-Wasserstein and the supermum-Cramer distances). Suppose the following bounds hold.

• (Bellman approximation bound.) For any η ∈P([Gmin, Gmax])
X ,

max
x∈X
∥Φ(T πη)(x)− (T π

ϕ Φη)(x)∥ ≤ εB .

• (Reconstruction error bound.) For any η, η̄ ∈P([Gmin, Gmax])
X with sketches U, Ū , we have d(η, η̄) ≤ ∥U − Ū∥∞ +

εR.

• (Embedding error bound.) For any η′, η̄′ ∈ P([Gmin, Gmax])
X with sketches U ′, Ū ′, we have ∥U ′ − Ū ′∥∞ ≤

d(η′, η̄′) + εE.

Then for any two return-distribution functions η, η̄ ∈P([Gmin, Gmax])
X with sketches U, Ū satisfying ∥U − Ū∥ ≤ δ, we

have

∥ΦT πη − T π
ϕ Ū∥∞ ≤ γc(δ + εR) + εR + εE .

13

Distributional Bellman Operators over Mean Embeddings

Proof. We follow the illustration laid out in Figure 3:

∥T π
ϕ U − ΦT π η̄∥∞

(a)

≤ ∥T π
ϕ U − ΦT πη∥∞ + ∥ΦT πη − ΦT π η̄∥∞

(b)

≤ εB + ∥ΦT πη − ΦT π η̄∥∞
(c)

≤ εB + d(T πη, T π η̄) + εE

(d)

≤ εB + γcd(η, η̄) + εE

(e)

≤ εB + γc(δ + εR) + εE ,

as required, where (a) follows from the triangle inequality, (b) follows from the Bellman approximation bound, (c) follows
from the embedding error bound, (d) follows from γc-contractivity of T π with respect to d, and (e) follows from the
reconstruction error bound.

Proposition 4.4. Consider a sketch ϕ whose coordinates are feature functions of the form ϕi(z) = 1{z1 ≤ z < zi+1}
(i = 1, . . . ,m − 1), and ϕm(z) = 1{z1 ≤ z ≤ zm+1}, where z1, . . . , zm+1 is an equally-spaced grid over [Gmin, Gmax],
with Gmin = minR/(1− γ), Gmax = maxR/(1− γ). Let T π

ϕ be the corresponding Sketch-DP operator given by solving
Equation (5) with µ = Unif([Gmin, Gmax]), and define a sequence (Uk)

∞
k=0 by taking U0(x) to be the sketch of some initial

distribution in P([Gmin, Gmax]), and Uk+1 = T π
ϕ Uk for all k ≥ 0. Let Uπ ∈ (Rm)X be the mean embeddings of the true

return distributions. Finally, let ∥ · ∥ be the norm on Rm defined by ∥u∥ = Gmax−Gmin
m

∑m
i=1 |ui| . Then we have

lim sup
k→∞

∥Uk − Uπ∥∞ ≤
(Gmax −Gmin)(3 + 2γ)

(1− γ)m
.

Proof. We begin by obtaining reconstruction and embedding error bounds for this sketch. We introduce the shorthand
∆ = (Gmax−Gmin)/m. To obtain a reconstruction error bound, for any distribution ν ∈P([z1, zm+1]), define Πν to be the
distribution obtained by mapping each point of support z of ν to the greatest zi less than or equal to z. Mathematically, if we
define f(z) = max{zi : zi ≤ z}, then Πν = f#ν, i.e. Πν is the pushforward of ν through f . We then have w1(ν,Πν) ≤ ∆
for all ν supported on [z1, zm], where w1 is the 1-Wasserstein distance, since f transports mass by at most ∆. Introducing
another distribution ν′ and the projection Πν′, we note that w1(Πν,Πν

′) = ∥Φν − Φν′∥. Combining these observations
with the triangle inequality yields

w1(ν, ν
′) ≤ w1(ν,Πν) + ∥Φν − Φν′∥+ w1(ν

′,Πν′) ≤ ∥Φν − Φν′∥+ 2∆ ,

which gives the required form of reconstruction bound, with εR = 2∆, for the supremum-Wasserstein distance w1(η, η
′) =

maxx∈X w1(η(x), η
′(x)) defined over RDFs η, η′ ∈P(R)X . We can also essentially reverse the argument to get

∥Φν − Φν′∥ = w1(Πν,Πν
′) ≤ w1(Πν, ν) + w1(ν, ν

′) + w1(ν
′,Πν′) ≤ w1(ν, ν

′) + 2∆

which gives the required form of the embedding error bound, with εE = 2∆.

Additionally, we can analyse the worst-case regression error ∥ϕ(r + γg) − Brϕ(g)∥ to get a bound on the Bellman
approximation εB, by Proposition 4.1. Observe that ϕ(g) is constant for g ∈ [zi, zi+1), and equal to

(1, . . . , 1︸ ︷︷ ︸
i times

, 0, . . . , 0)⊤ .

The minimum regression error in

EG∼Unif([z1,zm][∥ϕ(r + γG)−Brϕ(G)∥] (10)

is therefore obtained by setting the ith column of Br so that

Brϕ(zi) = EG∼Unif([zi,zi+1))[ϕ(r + γG)] ;

14

Distributional Bellman Operators over Mean Embeddings

note the support of the distribution in the line above. Since r + γG in this expectation varies over an interval of width γ∆,
the integrand ϕ(r + γG) takes on at most two distinct values. It then follows that we can bound the minimum regression
error in Equation (10) by ∆, and hence we can take εB = ∆.

Finally, we observe that T π maps P([Gmin, Gmax]) to itself, since for any g ∈ [Gmin, Gmax] and any r ∈ R, we have
by construction of Gmin, Gmax that r + γg ∈ [Gmin, Gmax]. In addition, we have {Φν : ν ∈ P([Gmin, Gmax]} = {u ∈
Rm : 0 ≤ u1 ≤ · · · ≤ um−1 ≤ um = 1}, and by the inspection of the columns of Br above, it follows that T π

ϕ maps
{Φν : ν ∈P([Gmin, Gmax]

X
} to itself. Therefore the conclusion of Proposition 4.3 holds, and we obtain

lim sup
k→∞

∥Uk − Uπ∥∞ ≤
1

1− γ
(γεR + εB + εE)

≤ 1

1− γ
(γ2∆ +∆+ 2∆)

=
∆(3 + 2γ)

1− γ

=
(Gmax −Gmin)(3 + 2γ)

(1− γ)m

as required.

B. Further details and extensions
In this section, we collect further details on a number of topics raised in the main paper.

B.1. Categorical imputation

In the tabular experiments in Sections 3.2 and 5, we include comparisons of distributions imputed from the learned mean
embeddings, to provide an interpretable comparison between the different Sketch-DP methods studied. Here, we provide a
detailed description of the imputation method.

For a given feature map ϕ, and a learned mean embedding u, the goal is to define an imputation strategy ι : Rm →P(R)
(Rowland et al., 2019; Bellemare et al., 2023); that is, a function with the property EZ∼ι(u)[ϕ(Z)] ≈ u, so that ι serves as
an approximate pseudo-inverse to the mean embedding. Here, we follow the approach of Song et al. (2008), and impute
probability distributions supported on a finite support set {z1, . . . , zn}. We define ι(s) implicitly through the following
(convex) quadratic program

argmin
p∈∆n

∥∥∥ n∑
i=1

piϕ(zi)− s
∥∥∥2
2
.

Note that the left-hand term inside is the expectation of ϕ(Z) with Z ∼
∑n

i=1 piδzi , and so the objective is simply aiming
to minimise the squared error between the learned mean embedding and the mean embedding from this discrete distribution.
Since this quadratic program is convex, it is solvable efficiently; in our implementations, we use SciPy’s MINIMIZE algorithm
(Virtanen et al., 2020).

B.2. Alternative condition for Bellman-closedness

In the main paper, we relied on the condition equation (3) to derive the Bellman coefficients. Here we derive a condition
slightly different from equation (3) when the rewards are stochastic. We begin by writing the mean embedding of the return
in terms of the random variables involved explicitly:

Uπ(x) = EG∼ηπ
x
[ϕ(G)] = Eπ

R,X′,G′|x[ϕ(R+ γG′(X ′))]

We can decompose the target by

Eπ
X′,R,G′|x[ϕ(R+ γG′(X ′))] = Eπ

X′|xE
π
G′|X′Eπ

R|X′,x[ϕ(R+ γG′(X ′))] (11)

where we assumed that G′ is independent of the previous state x given the current state X ′, and the immediate reward R
does not depend on G′. Usually, the reward R depends only on x. Suppose now that the last (conditional) mean embedding

15

Distributional Bellman Operators over Mean Embeddings

is linear in the mean embedding of the return distributions of state x′; that is, there exists a matrix Wx′,x for each pair of
states such that, for all g ∈ R,

Eπ
R|X′,x[ϕ(R+ γg)] =WX′,xϕ(g), (12)

then substituting this in equation (11) gives

Uπ(x) = Eπ
X′,R,G′|x[ϕ(R+ γG′(X ′))] = Eπ

X′|X [WX′,xEπ
G′|X′ [ϕ(G′(X ′))]] = Eπ

x [WX′,xU
π(X ′)]

Here, the matrix Wx′,x plays a similar role to BR in Equation (4), although the former has the random reward marginalised
out explicitly. If R is deterministic, then the condition in Equation (12) reduces to Equation (4). If R is stochastic, then
Equation (12) may be weaker than Equation (4) as it only needs to hold in expectation over R.

B.3. Computational properties of Bellman coefficients

Under many choices of feature maps ϕ, the matrix Br has structure that may be exploited computationally. We provide
sketches of several cases of interest. For “binning features”, even for overlapping bins, Br is a very narrow band matrix,
and hence is sparse, leading to linear-time matrix-vector product computation. This remains approximately true for other
forms of localised features, such as low-bandwidth Gaussians and related bump-like functions, and in particular applying
truncation to near-zero coefficient in the Bellman coefficients in such cases will also lead to sparse matrices.

Bellman coefficients as least-squares coefficients. The closed-form solution for the Bellman coefficientsBr in Equation (7)
can be derived by viewing the optimisation problem in Equation (5) as a vector-valued linear regression problem, and using
the usual expression for the optimal prediction coefficients. The derivation is the same in content to the usual derivation of
least-squares coefficients, which we provide below for completeness, to illustrate how it is obtained in our case. We begin
by differentiating the (quadratic) objective in Equation (7) with respect to B, and setting the resulting expression equal to
the zero vector, to obtain

−2EG∼µ[ϕ(r + γG)ϕ(G)⊤] + 2EG ∼µ[Brϕ(G)ϕ(G)
⊤] = 0 .

Rearranging, we obtain

BrEG ∼µ[ϕ(G)ϕ(G)
⊤] = EG∼µ[ϕ(r + γG)ϕ(G)⊤] .

Finally, under the assumption of invertibility of EG ∼µ[ϕ(G)ϕ(G)
⊤], we obtain the expression for the Bellman coefficients

in Equation (7):

Br = EG∼µ[ϕ(r + γG)ϕ(G)⊤]EG ∼µ[ϕ(G)ϕ(G)
⊤]−1 .

Online computation of Bellman coefficients in the case of unknown rewards. In settings where the set of possible
rewardsR is not known in advance, is infinite, or is too large to cache Bellman coefficients for all possible rewards r ∈ R,
we may exploit the structure of the Bellman coefficients described above to speed up the computation of the coefficients
online. Rather than solving the regression problem from scratch, an alternative is to cache the matrix EG ∼µ[ϕ(G)ϕ(G)

⊤]−1

above, and construct the matrix EG∼µ[ϕ(r + γG)ϕ(G)⊤] as required, upon observing a new reward r. This reduces the
marginal cost of computing the Bellman coefficients Br to a matrix-matrix product.

B.4. Choices of regression distribution µ

In the main paper, we note that the one-dimensional integrals defining the matrices C and Cr which in turn define the
Bellman coefficients Br can be computed in a variety of ways, depending on the choice of µ and feature map ϕ. In our
experiments, we take ν to be a finitely-supported grid in the range [Ĝmin − bL̂, Ĝmax + bL̂], where b is casually chosen to be
around 0.2. The support of ν is thus slightly wider than the estimated return range and slightly narrower than the anchor
range described in Section B.7. The intuition for using a wider anchor range is that we need the features to cover the return
distribution (and ν) with the non-trivial support of the features. We validate this intuition in an additional experiment in
Appendix D.3. With this ν, Equation (5) is a standard regression problem, and C and Cr can be computed with standard
linear-algebraic operations.

Another possibility, particularly if one wishes to use µ which is not finitely supported, is to use numerical integration to
compute these integrals. Additionally, in certain settings the integrals may be computed analytically. For example, with

16

Distributional Bellman Operators over Mean Embeddings

0.00

0.25

0.50

0.75

1.00
(z)

0.00

0.25

0.50

0.75

1.00
(r + z)

0.50

0.25

0.00

0.25

singular vectors

0.0

0.5

1.0

singular values

0.0 0.5 1.0

0.2

0.0

0.2

eigenvalues

5 0 5
0.00

0.25

0.50

0.75

1.00

5 0 5
0.00

0.25

0.50

0.75

1.00

5 0 5

0.50

0.25

0.00

0.25

0 10
rank

0.0

0.5

1.0

0.0 0.5 1.0
Re

0.2

0.0

0.2

Im

Figure 6. In-depth analysis of Bellman coefficients in the setting described in Section B.6. In the third column, solid curves are the most
significant input/right singular vectors, and dashed lines with matching colours are the corresponding output/left singular vectors.

Gaussian ϕi(x) = exp(−s2(x− zi)2/2) and Gaussian µ, or µ as Lebesgue measure (in which case, technically, we modify
the expectation in Equation (5) into an integral against an unnormalised measure), C and Cr can be computed analytically.
In the case of µ as Lebesgue measure, we have

Cij =

√
π

2s
exp

(
−s
2
(zi − zj)2

)
and (Cr)ij =

√
π

s(1 + γ2)
exp

(
−s(r + γzi − γzj)2)

1 + γ2

)
.

B.5. Knowledge of rewards

In distributional approaches to dynamic programming, it is necessary to know all aspects of the environment’s transition
structure and reward structure in advance, including the setR required for precomputing the Bellman coefficients. However,
in temporal-difference learning, this is a non-trivial assumption. In many environments, this information is available in
advance (in the Atari suite with standard reward clipping post-processing (Mnih et al., 2015), rewards are known to lie in
{−1, 0, 1}, for example). When this information is not available, one may modify Algorithm 1 to instead compute Bellman
coefficients for observed rewards just-in-time; that is, when these rewards are encountered in a transition. This makes the
algorithm more broadly applicable, but clearly incurs a significant cost of computing Bellman coefficients for rewards for
which these coefficients are not already cached. As Remark 3.2, one possibility in this setting is to learn an approximator
H : R→ Rm×m that maps from rewards to Bellman coefficients, and use the predictions of the approximator as proxies for
the true Bellman coefficients to reduce the need to solve for the Bellman coefficients every time a new reward is encountered.

B.6. Mathematical properties of Bellman coefficients

The Bellman coefficients Br play a crucial role in our Bellman sketch framework. Here, we present various properties of
Br in a worked example, derived from both a sigmoid and a Gaussian base feature in Figure 6. For each base feature, we
choose 20 evenly spaced anchors in [−8, 8], and find Br for r = 1 and γ = 0.8, and µ uniformly supported on a dense grid
of 10,000 evenly spaced points in [−5, 5]. We apply a small L2 regulariser with weight 10−6 in the regression problem.

First, we assess how accurate approximation in Equation (6) is when Br is found via the regression problem in Equation (5).
In the left two columns of Figure 6, we show the feature functions ϕ(z) and ϕ(r + γz) in the first two columns. In the
second column, we also show Brϕ(z) in dashed lines evaluated on [−8, 8], wider than the grid over which we minimised the
error. The error is tiny and virtually invisible within the interval [−5, 5], but is larger outside. Quantitatively, the maximum
absolute difference between ϕ(r + γz) and Brϕ(z) over the dense grid in [−5, 5] is less than 0.002 for both base features.
By Proposition 4.1, we expect a small error in a single step of dynamical programming.

17

Distributional Bellman Operators over Mean Embeddings

Had Br been a contraction, we would have been able to prove contraction for Algorithm 1. However, we show empirically
that Br is not in general a contraction in L2 norm, but the dynamics from repeated multiplication of Br may converge to a
stable fixed point. First, we performed a singular value decomposition of the Br for the two base features. We see that the
singular vectors in Figure 6 (third column) are similar to harmonic functions. Importantly, in the largest singular values
(operator norms) in Figure 6 (fourth column) are greater than 1, suggesting that a single application of Br may expand the
input. Further, we show the eigenvalues of Br in the fifth column of Figure 6. Interestingly, all eigenvalues have real parts
less or very close to 1.0 suggesting that there exists fixed points in the dynamics induced by Br. As such, the Bellman
coefficients Br exhibit transient dynamics (typical for non-normal matrices) but is stable after repeated applications to an
initial vector. Further studies into these dynamical properties are important for future work. Given the important role of
non-normal dynamics hypothesised to be present in the nervous system (Hennequin et al., 2012; Bondanelli & Ostojic,
2020), these observations allude to the possibility that the Bellman sketch framework could contribute to a biological
implementation of distributional RL.

B.7. Choices of feature function

In the main paper, we note that any set of features spanning the degree-m polynomials is Bellman closed, as described by
Rowland et al. (2019), and hence exact dynamic programming is possible with this feature set, as shown by Sobel (1982).
However, in preliminary experiments we found these features difficult to learn with temporal-difference methods beyond
small values of m, due to the widely varying magnitude of moments as m grows, making learning rate selection problematic
in stochastic environments; further details are provided in Appendix D.1.

In this paper, we tested the following functions as the base feature κ in the translation family Equation (8):

• Sigmoid: κ(x) = 1
1+exp(−x) ;

• Gaussian: κ(x) = exp(−x2/2);

• Parabolic: κ(x) = 1− x2 for |x| ≤ 1, zero otherwise.

• Hyperbolic tangent: κ(x) = tanh(x)

In Appendix D.3, we provide further experimental results for a wide variety of feature maps from this family. In addition,
we also consider the indicator feature used in Proposition 4.4 as well as sinusoidal features shown in Figure 2B.

We found that the anchor points must be chosen carefully so that the features produce variations within the return range.
This can be done by choosing the range of the anchors to be slightly wider than and estimated return range, and setting the
slope so that there does not exist a region of the return range that produce no change in the feature functions. In the tabular
experiments, we set the extremum anchor points to be Ĝmin − aL̂ and Ĝmax + aL̂, where L̂ = Ĝmin − Ĝmin is the estimated
return range, and a is a small positive value around 0.4 casually chosen and not tuned. The return limits Ĝmin and Ĝmax are
estimated by the sample minimum and maximum from samples collected by first-visit Monte Carlo; see Appendix C.1.

The slope parameter should depend on the feature and the return range, and we applied the following intuition. Most of
the base feature κ have an “non-trivial support” that produces the most variations in the function value. For example, the
“non-trivial” support for the sigmoidal and Gaussian κ can be chosen as [−2, 2]; and for base features that are nonzero only
in [−1, 1], this support is [−1, 1]. We define the width w of a base function as the length of the non-trivial support. Crudely,
the feature with slope s has width w/s, as sharper features tend to have shorter non-trivial support. In addition, for the set of
features to cover return range uniformly, we set each adjacent feature functions to overlap by 50%. Finally, we want the
union of the non-trivial supports of 10 (arbitrary chosen) such overlapping features to equal the return range. We must then
have 0.5× 10w/s = Ĝmin − Ĝmax. This is the default slope for each feature and each environment with known return range.
As such, the sigmoidal and Gaussian base features have default slope equal to s = 20/(Ĝmin − Ĝmax).

B.8. Invariance of sketch algorithm to linear transformation of sketch features.

Suppose we instead choose to work with a collection of feature functions φ, . . . , φ which serve as an alternative basis for the
finite-dimensional vector space ⟨ϕ1, . . . , ϕm⟩. Specifically, consider an invertible matrix M ∈ Rm×m, and suppose we have

φ(g) =Mϕ(g)

18

Distributional Bellman Operators over Mean Embeddings

for all g ∈ R. By definition, the mean embeddings of the return distribution ηπ(x) under the two features are related by

Sπ(x) = EG∼ηπ(x)[φ(G)] = EG∼ηπ(x)[Mϕ(G)] =MUπ(x)

Let us write Bφ for the Bellman coefficients associated with φ. It can be shown that Bφ is related to Br in the following
sense: for all g ∈ R, we have

Bφφ(g) = φ(r + γg) ⇐⇒ BφMϕ(g) =Mϕ(r + γg) ⇐⇒ M−1BφMϕ(g) = ϕ(r + γg) .

But now by linear independence of the ϕ, we must have M−1BφM = Br, or equivalently

Bφ =MBrM
−1.

The corresponding Sketch-DP update to an approximate mean embeddings S ∈ RX×m is (c.f. Equation (Sketch-DP))

S(x)← Eπ
x [B

φS(X ′)] .

The right-hand side of this update is

Eπ
x [B

φS(X ′) = Eπ
x [MBRM

−1S(X ′)] = Eπ
x [MBRM

−1Mϕ(X ′)] =MEπ
x [BRϕ(X

′)] .

Thus, a Sketch-DP update (using Bφ
r) on the mean embeddings associated with φ is equal to the same update applied to the

mean embeddings of the original feature ϕ (using Br).

Likewise, we can show a similar result for Sketch-TD. Following the transition (x, r, x′), the corresponding sketch-TD
update to an approximate S ∈ RX×m to mean embeddings under φ is given by

S(x)← (1− α)S(x) + αBφS(x′) .

The right-hand side of this update is

(1− α)S(x) + αBφ
r S(x

′)

=(1− α)MU(x) + αMBrM
−1MU(x′)

=M((1− α)U(x) + αBrU(x′)) .

Thus, we have shown that both Sketch-DP and Sketch-TD algorithms with respect to φ and ϕ are equivalent: one can
perform updates for one choice of features, and then with the transformation M or M−1, obtain the updated predictions that
would have been obtained had we worked with the other set of features in the first place.

This shows that in the tabular setting, with a scalar learning rate, it does not matter which choice of basis for polynomial
features we use. However, there are factors that could make the choice of basis important, including function approximation,
adaptive optimisers (such as Adam), and floating point numerical issues (e.g. if the condition number of Bφ becomes large).

B.9. Comparison with other approaches to distributional RL

In this section, we provide additional comparisons against existing approaches to distributional RL. As distributional RL is a
quickly evolving field, we focus our comparison on a few main classes of algorithms related to our work, which illustrate
some key axes of variation within the field: (i) categorical approaches (Bellemare et al., 2017); (ii) quantile approaches
(Dabney et al., 2018a;b; Yang et al., 2019); (iii) approaches related to maximum mean discrepancy (MMD; Gretton et al.,
2012), such as Nguyen-Tang et al. (2021); Zhang et al. (2021); Sun et al. (2022); and (iv) sketch-based approaches (Sobel,
1982; Rowland et al., 2019).

Distribution representation. Categorical, quantile, and MMD approaches are typically presented as learning approximate
return distributions directly. In categorical approaches, the approximate distribution is parametrised as

m∑
i=1

piδzi ,

19

Distributional Bellman Operators over Mean Embeddings

with fixed particle locations (zi)
m
i=1, and learnable probabilities (pi)

m
i=1 for each state-action pair at which the return

distribution is to be approximated. In contrast, quantile and MMD approaches learn fixed-weight particle approximations, of
the form

m∑
i=1

1

m
δzi , (13)

in which the particle locations (zi)
m
i=1 are learnable. Work on sketches has instead focused on learning the values of

particular statistical functionals of the return, rather than explicitly approximating return distributions.

Rowland et al. (2019) also shows that standard categorical- and quantile-based algorithms can also be viewed through the
lens of sketch-based distributional RL. Other work in this vein includes Sobel (1982), who analysed the case of moments
specifically, and Marthe et al. (2023), who extend the work of Rowland et al. (2019) to the undiscounted, finite-horizon
case. The approach proposed in this paper sits firmly in the camp of sketch-based approaches, without ever representing
approximated distributions directly. We highlight generative models of distributions as another prominent class of (non-
parametric) representation (see, e.g., Doan et al. 2018; Freirich et al. 2019; Dabney et al. 2018a; Yang et al. 2019; Wu et al.
2023).

Algorithm types. Most prior algorithmic contributions to distributional reinforcement learning have focused on sample-
based temporal-difference approaches, in which prediction parameters are iteratively and incrementally updated based on
the gradient of a sampled approximation to a loss function. These approaches include the original C51 (Bellemare et al.,
2017), QR-DQN (Dabney et al., 2018b), MMDRL (Nguyen-Tang et al., 2021), and EDRL (Rowland et al., 2019) algorithms.
Dynamic programming algorithms, in which parameters are not updated incrementally via loss gradients, but instead
according to the application of an implementable operator, have also been considered (see Rowland et al. (2018; 2023);
Wu et al. (2023) for categorical dynamic programming, quantile dynamic programming, and fitted likelihood estimation,
respectively). In this paper, our algorithmic contributions include both DP and TD methods.

Losses, projections, and convergence theory. One of the core axes of variation across distributional RL approaches is
the loss used to define updates in incremental algorithms, and to define projections in dynamic programming. Categorical
approaches use a projection in Cramér metric (Rowland et al., 2018) to define a target distribution for both dynamic
programming and incremental versions of the algorithm; the incremental algorithm updates predictions via the gradient of a
KL loss between the current and target distributions. Quantile-based approaches use either the quantile regression loss in
incremental settings, or a Wasserstein-1 projection in dynamic programming (Dabney et al., 2018b).

The approach proposed in this paper works entirely with mean embeddings of probability distributions. Earlier approaches to
sketched-based distributional RL, both in dynamic programming and incremental forms, have defined losses via imputation
strategies, which compute updates by converting sketches into approximate distributions (Rowland et al., 2019; Bellemare
et al., 2023).

Here, we contribute a novel perspective on the work of Nguyen-Tang et al. (2021), who propose a sample-based TD
algorithm for updating particle locations (as in Equation (13)) by using an MMD loss, specifically taking the form

MMD2
K

(
m∑
i=1

1

m
δzi(x,a),

m∑
i=1

1

m
δr+γzi(x′,a′)

)
, (14)

for some choice of kernel K. Although not described in this manner by Nguyen-Tang et al. (2021), this can be seen as an
incremental update on approximate mean embeddings for the RKHSHK corresponding to the kernel K, amongst the class
of mean embeddings of the form

m∑
i=1

1

m
K(zi, ·) ∈ HK , (15)

where the particle locations (zi)
m
i=1 are optimised. We note that Nguyen-Tang et al. (2021) do not provide theoretical

analysis for their algorithm. They provide contraction analysis of T π (Theorem 2), and MMD approximation bounds for
fixed target distributions (Theorem 3 and Proposition 2), but these do not constitute a proof of convergence of the incremental
algorithm described therein. A key reason why the proposed algorithm may not yield clean convergence theory is that the
space of mean embeddings described in Equation (15), where only the particles (zi)mi=1 can vary, is a non-convex subset of

20

Distributional Bellman Operators over Mean Embeddings

an infinite-dimensional RKHS. As such, tractable global optimisation of the objective may not be possible, along with the
definition of a straightforward dynamic programming version of this approach. In other words, it is not straightforward to
define a dynamic programming method to optimise the particle locations (zi)mi=1.

In contrast, the Sketch-DP and Sketch-TD algorithms introduced in this paper work with finite-dimensional RKHS, and
define updates via matrix-vector products with the Bellman coefficients derived in Equation (5). This naturally yields
tractable dynamic programming and temporal-difference learning algorithms, and also allows us to develop convergence
theory, as described in Section 4.

Contrasting against the Sketch-DP/Sketch-TD approaches described above, earlier approaches to sketched-based distri-
butional RL, both in dynamic programming and incremental forms, have defined losses via imputation strategies, which
compute updates by converting sketches into approximate distributions (Rowland et al., 2019; Bellemare et al., 2023).
Foreshadowing the remarks on theoretical analysis below, we remark that neither MMDRL nor the earlier sketch-based
approach described above have been analysed for convergence, while Section 4 in this paper deals with convergence analysis
of the approach proposed in this paper.

In general, convergence analysis of dynamic programming algorithms has been obtained for several classes of distributional
algorithms beyond the theory described in this paper; see Rowland et al. (2018) for the case of categorical dynamic
programming, Dabney et al. (2018b) for the case of a quantile dynamic programming algorithm, Bellemare et al. (2023);
Rowland et al. (2023) for later generalisations of this work, and Wu et al. (2023) in the case of fitted likelihood evaluation.
This analysis typically centres around (i) proving contractivity of the distributional Bellman operator T π with respect to
some metric d, and proving non-contractivity of the specific distributional projection used by the dynamic programming
algorithm under this same metric. Notably, the metric d used in the analysis need not be the same as any metrics used in
defining the algorithm; this is the case for quantile dynamic programming, for which Wasserstein-1 distance is used to define
the algorithm, while Wasserstein-∞ distance is used to analyse the algorithm (Dabney et al., 2018b; Bellemare et al., 2023;
Rowland et al., 2023). Our proof technique in this paper, in particular, makes use of contraction of the distributional Bellman
operator in Wasserstein distances, though such distances do not feature in the definition of the Sketch-DP/TD algorithms.

In general, there has been less work on the convergence analysis of sample-based incremental algorithms. Rowland et al.
(2023) recently showed convergence of quantile temporal-difference learning, though the question of convergence for
many other sample-based incremental distributional reinforcement learning algorithms is currently open. The analysis
of incremental algorithms is generally more mathematically involved than in the dynamic programming case, principally
owing to the fact that rather than analysing the iterated application of a fixed operator, one needs to analyse the continuous
dynamical system associated with incremental updates.

C. Experimental details
In this section, we provide additional details on the experimental results reported in the main paper.

C.1. Tabular environments

We describe the setup in the main paper. In Appendix D.3, we show extended results of more features and more environments.

Environments. In the main paper, we reported results on the on the following environments,

• Random chain: Ten states {x1, x2, . . . , x10} are arranged in a chain. There is equal probability of transitioning to
either neighbour at each state, and state x10 has a deterministic reward of +1;

terminal← x1 ←→ x2 ←→ x3 ←→ · · · ←→ x10 → terminal .

• Directed chain (DC): Five states are arranged in a directed chain, but the agent can only move along the arrow
deterministically until termination. A deterministic reward of +1 is given at state x5;

x1 −→ x2 −→ x3 −→ · · · −→ x5 → terminal .

• DC with Gaussian reward: A variant of the directed chain above, with the only difference that x5 has a Gaussian
reward with mean 1 and unit variance.

21

Distributional Bellman Operators over Mean Embeddings

The discount factor is γ = 0.9. These environments cover stochastic and deterministic rewards and state transitions, giving a
range of different types of return distributions.

Feature functions. We use features of translation family Equation (8), with κ chosen from a subset of base features
described in equation (B.7). We also include the indicator features used in Proposition 4.4. For the sweep over slope, we set
the slope s to be the default slope (described in Appendix B.7) multiplied by a scaling factor, and sweep over this factor.
from 0.001 to 10.0. This is done primary because the return range varies a lot across different environments, and the default
slope is adjusted to the return range. The results serve as justification for the heuristics on choosing the default slope.

Ground-truth distribution. We approximate the ground-truth mean embeddings and the ground-truth return distributions
by collecting a large number of return samples from the MRPs. To do so, we use first-visit Monte Carlo with a sufficiently
long horizon (after the first visit to each state) to ensure that the samples are unbiased and has bounded error caused by
truncating the rollout to a finite horizon. For environments with deterministic rewards, truncating the horizon at L steps
induces maximum truncation error |r|maxγ

L/(1− γ), where |r|max is the maximum reward magnitude. We bound this error
at 10−4, giving L > 110, so we set the horizon after the first visit to 110. For environments with Gaussian rewards, we set
the horizon to 200. We initialise the rollout at each state in the environment, and for initial each state this is repeated 105

times. This gives us at least 105 samples each state.

Sketch DP under conditional independence. Many RL environments, including the tabular environments tested in this
paper, have the property that R ⊥⊥ X ′|X for the trajectory X,A,R,X ′, so the Sketch-DP update Equation (Sketch-DP)
simplifies to

U(x)← Eπ
x [BR]Eπ

x [U(X ′)] = Eπ
x [BR]

∑
x′∈X

P (x′|x)U(x′).

This means we need to evaluate the expected Bellman coefficient Eπ
x [BR]. This is trivial for deterministic rewards. For

stochastic rewards with known distributions, we approximate the expectation via numerical integration. We run all DP
methods for 200 iterations.

Jittered imputation support. The support on which we impute the distribution are the anchors of the features. Some
tabular environments have states with deterministic returns that directly align with the feature anchors, which interferes in
unintuitive ways with the finite support on which we impute distributions, producing non-monotonic trends in the results. To
avoid this unnecessary complication, we jitter the support before imputing the distribution: for points in the support, we
add noise uniformly distributed over [−∆/2,∆/2], where ∆ is the distance between consecutive support points. Likewise,
we project ground truth distribution using the same jittered support to. In Figure 4, we report the average of the metrics
computed from 100 independent jitters. Note that since the imputation (from mean embedding) and projection (from
ground-truth) share the same support for each of the 100 jitters, the average Cramér distance between the projected and the
ground-truth still lower-bounds the average Cramér distance between the imputed distribution and the ground-truth.

C.2. Deep reinforcement learning implementation details

In this section, we provide further details on the deep reinforcement learning experiments described in the main paper, in
particular describing hyperparameters and relevant sweeps.

Environment. We used the exact same Atari suite environment for benchmarking QR-DQN (Bellemare et al., 2013; Dabney
et al., 2018b). In all experiments, we run three random seeds per environment.

Feature map ϕ. The results in Figure 5 uses the sigmoid base feature κ(x) = 1/(e−x + 1) with slope s = 5, and the
anchors to be 401 (tuned from 101, 201 and 401) evenly spaced points between −12 and 12. These values are loosely
motivated by the range used in C51 (Bellemare et al., 2017). We did not use the heuristic in Appendix B.7 to choose the
slope parameter, instead we set this to 10 by tuning from {1, 2, . . . , 12}. Larger slope values typically resulted in Bellman
coefficients with a worst-case regression error maxr∈R maxg∈supp(µ) ∥ϕ(r + γg) − Brϕ(g)∥ greater than 0.01. In these
cases, we regard the regression error as too large, and did not perform agent training with these hyperparameter settings.
In addition, ϕ is appended with a constant feature of ones, which we found to be very crucial for a good performance; as
noted in the main paper, this ensures that the sketch operator is truly affine, not linear. We also tried a several other feature
functions, including the Gaussian, the hyperbolic tangent and the (Gaussian) error function, and found that the sigmoid
reliably performed the best.

Solving the regression problems. To compute the Bellman coefficients as well as the value readout weights β described

22

Distributional Bellman Operators over Mean Embeddings

in Section 5.1, we solve the corresponding regression problem with µ set to be 100,000 points evenly spaced between
−10 and 10. We also add a L2 regulariser with strength set to 10−9 to avoid numerical issues, which is tuned from
{10−15, 10−12, 10−9, 10−6, 10−3}.

Neural network. We implement Sketch-DQN based on the QR-DQN architecture, using almost the same convolutional
torso and fully-connected layers to estimate the mean embeddings, with the differences being:

• We add a sigmoid or tanh nonlinearity, depending on the base feature output range to the final layer. This helps bound
the predicted mean embedding and improved the results.

• The network only predicts the non-constant dimensions of the mean embedding, and the constant feature is appended
as a hard-coded value.

• We use the pre-computed mean readout coefficients β to predict state-action values for state-action pairs in the
Q-learning objective, and at current states to determine the greedy policy.

Training. We use the exact same training procedure as QR-DQN (Dabney et al., 2018b). Notably, the learning rate,
exploration schedule, buffer design are all the same. We tried a small hyperparameter sweep on the learning rate, and found
the default learning rate 0.00005 to be optimal for performance taken at 200 million frames.

Evaluation. The returns are normalised against random and human performance, as reported by Mnih et al. (2015). We use
the mean and median over all games and three random seeds for each game.

Baseline methods. We also tuned the number of atoms of the approximating distributions in the baseline methods. In
particular, we found that C51 performed the best compared to using more atoms; IQN did best when using 51 quantiles; and
QR-DQN did best using 201 quantiles. Increasing the number of atoms in these methods lead to worse performance. We
report the results of these best variants of the corresponding baseline methods in Figure 5.

D. Further experiments
In this section, we collect further experimental results to complement those reported in the main paper.

D.1. Temporal-difference learning with polynomial features

As noted in the main text, the sketch corresponding to the polynomial feature function ϕ(g) = (1, g, g2, . . . gm) is Bellman
closed, and the Bellman coefficients Br obtain zero regression error in Equation (5). In addition, there has been much prior
work on dynamic programming (Sobel, 1982) for moments of the return, and temporal-difference learning specifically in the
case of the first two moments (Tamar et al., 2013; 2016). However, such polynomial feature functions are difficult to use as
the basis of learning high-dimensional feature embeddings. This stems from several factors, including that the typical scales
of the coordinates of the feature function often vary over many orders of magnitude, making tuning of learning rates difficult,
as well as the fact that polynomial features are non-local, making it more difficult to decode distributional information via
an imputation strategy.

To quantify these informal ideas, we ran an experiment comparing Sketch-TD updates for a 50-dimensional mean embedding
based on the translation family (Equation (8)) with a sigmoid base feature κ, as well as polynomial features with m = 5,
and m = 50. The sigmoid features are chosen according to the intuitions in Appendix B.7. We ran 100,000 synchronous
TD updates on mean embedding estimates initialised at ϕ(0) for all state. Each run uses a fixed learning rate chosen from
10−6 to 1.

In Figure 7, we plot the Cramér distance of imputed distributions from ground-truth after running TD for each of these three
methods, on a variety of the environments described in Section D.3. In all environments, there is a similar pattern. For
the Sketch-TD algorithm based on sigmoid non-linearities, there is a reasonably wide basin of good learning rates, with
performance degrading as the learning rate becomes too small or too large. On several environments this pattern is reflected
also in the performance of the degree-5 polynomial embedding, though the minimal Cramér error is generally significantly
worse than that of the sigmoid embedding. This supports our earlier observations; this mean embedding captures relatively
coarse information about the return distribution, and in addition different feature components have different magnitudes,
meaning that a constant learning rate cannot perform well. The mean embedding with degree-50 polynomials generally

23

Distributional Bellman Operators over Mean Embeddings

performs very badly on all environments, as the components of the embedding are at such different magnitudes that no
appropriate learning rate exists.

D.2. Sketch DP example with sigmoidal features

To given an example of how to use the translation family described in Equation (8), we include another example of Sketch-DP
execution in Figure 8. The results are largely similar to using sinusoidal features, except that the evolution is smoother and
compared to using sinusoids. We also found that the first two principal components explained >97% variance, higher than
using sinusoids. Please see Appendices B.4 and B.7 for how to the heuristics on selecting the anchors and µ.

D.3. Extended tabular results

We tested Sketch-DP using the following additional MRPs. If unspecified, the default reward distribution for each state is a
Dirac delta at 0, and the transition probabilities from a state to its child states are equal.

• Tree: State 1 transitions to states 2 and 3; state 3 transitions to states 4 and 5. State 2 has mean reward 5; state 4 has
mean reward -10, and state 5 has mean reward 10. All leaf states are terminal.

• Loopy tree: Same as Tree, but with a connection from state 2 back to state 1.

• Cycle: Five states arranged into a cycle, with only a single state having mean reward 1.

• Rowland ’23: The environment in Example 6.5 of Rowland et al. (2023).

• S&B ’18: The environment in Example 6.4 of Sutton & Barto (2018).

• Loopy fork: The environment shown in Figure 2(A).

All environments have discount factor γ = 0.9. For each environment, except Rowland ’23 and S&B’18, the reward
distributions for the non-zero-reward states are either Dirac deltas at the specified mean, or Gaussian with specified mean
and unit standard deviation.

The results, extending those in Figure 4, are illustrated in Figure 9. The results are in general consistent with the main
Figure 4. In particular, the Cramér distances decay as the number of features increases, and can be closer to the corresponding
projected ground-truths than the CDRL baseline.

In Appendix B.7, we suggested that the range of the anchors should be wider than the range of the uniform grid µ on which
we measure the regression loss. We validate this intuition by performing another experiment, sweeping the ratio of the width
of the anchor range relative to the width of the grid µ, fixing the mid points between these two ranges the same. Here, we
use m = 50 features for each base feature function and apply the default slope described in Appendix B.7. The results in
Figure 10 shows that a slightly wider anchor range produces reliably small Cramér distances for almost all base features.
When the anchor range decreases from 1 to 0, there is a much sharper increase in the Cramér distance, because the support
on which we impute the distribution is too narrow and can miss substantial probability mass outside the support. On the
other hand, when the anchor range increases from 1, the Cramér distance also increases because the support points get
further away from each other, lowering the resolution of the imputed distribution. Since the grid is chosen to be slightly
wider than the true return range, we see that the smallest Cramér distances can be attained at anchor range ratio slightly less
than 1, but this does not hold universally (see, e.g., random chain and cycle results). Choosing this ratio to be slightly greater
than 1, as suggested in Appendices B.4 and B.7, is more reliable at the cost of a small increase in distributional mismatch.

10 5 10 3 10 1

Learning rate

10 1

100

Cr
am

er
 d

ist
an

ce Random chain

sigmoid, m = 50 polynomials, m = 5 polynomials, m = 50
10 5 10 3 10 1

Directed chain

10 5 10 3 10 1

Tree

10 5 10 3 10 1

Loopy tree

10 5 10 3 10 1

Cycle

10 5 10 3 10 1

Rowland '23

10 5 10 3 10 1

Loopy fork

Figure 7. Results comparing Sketch-TD with sigmoidal and polynomial features.

24

Distributional Bellman Operators over Mean Embeddings

A

1 2

3 4

0.3 0.7

 -1=r +1=r
B

5 0 5

Feature function

C

time steps
0

10
20

30
PC1

0.5

0.0
0.5

1.0

0.2
0.0
0.2

PC2

Evolution of mean embeddings
D E

state 1 state 2

state 3 state 4

Ground-truth

Categorical proj.

Iteration 0

Iteration 2

Iteration 1

Iteration 30

Figure 8. An example run of Sketch-DP as in Figure 2 but using sigmoidal features as shown in B. We use m = 13 sigmoidal features
with anchors evenly spaced in [−4.5, 4.5] at locations indicated by the dotted lines. The regression Equation (5) is performed under a
densely spaced grid over the white region [−4, 4].

D.4. Comparison with statistical functional dynamic programming

The Sketch-DP methods developed in this paper were motivated in Section 2 with the aim of having distributional dynamic
programming algorithms that operate directly on mean embeddings, without the need for the computationally intensive
imputation strategies associated with SFDP algorithms. In this section, we empirically compare Sketch-DP and SFDP
methods, to quantitatively measure the extent to which this has been achieved. We give details below of the Sketch-DP and
SFDP algorithms we compare, and provide comparisons of per-update wallclock time to assess computational efficiency,
and distribution reconstruction error to assess accuracy.

Sketch-DP. We consider the Sketch-DP algorithm based on sigmoid features as described in Section 3.1, and implemented
as described in Section 5 and Appendix C.1.

SFDP. We consider the SFDP algorithm for learning expectile values as described by Bellemare et al. (2023, Section 8.6).
We use SciPy’s default minimize implementation (Virtanen et al., 2020) to solve the imputation strategy optimisation
problem given in Equation (8.15) in Bellemare et al. (2023). For a given sketch dimension m, we use expectiles at linearly
spaced levels τi = (2i− 1)/(2m) for i = 1, . . . ,m.

Results. These two algorithms, for varying numbers of feature/expectiles m, were run on a selection of deterministic-reward
environments as described in Appendix D.3. In Figure 11, we plot the Cramér distance and the excess Cramér distance
of reconstructed distributions to ground truth, as described in Section 5 and plotted in Figure 4. In addition, we also plot
two wallclock times in each case: the average time it takes to run one iteration of the dynamic programming procedure,
and the time it takes to setup the Bellman operator, which includes solving for Br for Sketch-DP. As predicted, the run
time is significantly higher for the SFDP algorithm, due to its use of imputation strategies. The approximation errors
measured by Craḿer distances are also smaller for Sketch-DP, particularly as the number of features/expectiles is increased.
Considering the per-update wallclock times in the third row of the figure, there is consistently a speed up of at least 100x
associated with the Sketch-DP algorithm relative to SFDP. This is due to the fact that the Sketch-DP update consists of
simple linear-algebraic operations, while the SFDP update includes calls to an imputation strategy, which must solve an
optimisation problem. The one-off computation of the Bellman coefficients takes around 0.1–4 seconds, depending on the
number of features m, which is only at most a couple of SFDP iterations, and hence a small fraction of the total run time of
the SFDP algorithm.

D.5. Extended results on Atari suite

We show in Figure 12 the advantage of the Sketch-DQN method to other baselines. On one hand, we see that Sketch-DQN
surpasses DQN on almost all games. Compared to IQN and QR-DQN, Sketch-DQN is consistently better on CRAZY
CLIMBER, SPACE INVADERS, RIVER RAID, ROAD RUNNERS and VIDEO PINBALL, while worse on ASSAULT, ASTERIX,
DOUBLE DUNK, KRULL, PHOENIX, and STAR GUNNER.

To show how sensitive are the results depending on the feature parameters, we ran the full Atari suite using a few sigmoidal

25

Distributional Bellman Operators over Mean Embeddings

10 8
10 4
100
104

M
ea

n-
em

be
dd

in
g

sq
ua

re
d

er
ro

r Random chain Directed chain Tree Loopy tree Cycle Rowland '23 Loopy fork

0.0

0.5

Cr
am

ér
di

st
an

ce

10 50 90
Feature count, m

10 7

10 4

10 1

Ex
ce

ss
 C

ra
m

ér
di

st
an

ce

sigmoid gaussian parabolic tanh sinusoidal CDRL
10 50 90 10 50 90 10 50 90 10 50 90 10 50 90 10 50 90

(a) Environments with deterministic rewards, sweeping over feature count m.

10 8

100

108

M
ea

n-
em

be
dd

in
g

sq
ua

re
d

er
ro

r Random chain Directed chain Tree Loopy tree Cycle Rowland '23 Loopy fork

0.0

0.5

Cr
am

ér
di

st
an

ce

0.1 1 10
Slope, s

10 8

10 3

Ex
ce

ss
 C

ra
m

ér
di

st
an

ce

sigmoid gaussian parabolic tanh sinusoidal CDRL
0.1 1 10 0.1 1 10 0.1 1 10 0.1 1 10 0.1 1 10 0.1 1 10

(b) Environments with deterministic rewards, sweeping over slope s.

10 8
10 4
100
104

M
ea

n-
em

be
dd

in
g

sq
ua

re
d

er
ro

r Random chain Directed chain Tree Loopy tree Cycle S&B '18 Loopy fork

0.0

0.5

Cr
am

ér
di

st
an

ce

10 50 90
Feature count, m

10 7

10 4

10 1

Ex
ce

ss
 C

ra
m

ér
di

st
an

ce

sigmoid gaussian parabolic tanh sinusoidal CDRL
10 50 90 10 50 90 10 50 90 10 50 90 10 50 90 10 50 90

(c) Environments with Gaussian rewards, sweeping over feature count m.

10 8

100

108

M
ea

n-
em

be
dd

in
g

sq
ua

re
d

er
ro

r Random chain Directed chain Tree Loopy tree Cycle S&B '18 Loopy fork

0.0

0.5

Cr
am

ér
di

st
an

ce

0.1 1 10
Slope, s

10 3

10 1

Ex
ce

ss
 C

ra
m

ér
di

st
an

ce

sigmoid gaussian parabolic tanh sinusoidal CDRL
0.1 1 10 0.1 1 10 0.1 1 10 0.1 1 10 0.1 1 10 0.1 1 10

(d) Environments with Gaussian rewards, sweeping over slope s.

Figure 9. Additional tabular results extending Figure 4.

26

Distributional Bellman Operators over Mean Embeddings

10 8

100

108

M
ea

n-
em

be
dd

in
g

sq
ua

re
d

er
ro

r Random chain Directed chain Tree Loopy tree Cycle Rowland '23 Loopy fork

0 1 2 3
anchor range ratio

0.0

0.5

Cr
am

er
di

st
an

ce

sigmoid gaussian parabolic tanh sinusoidal CDRL
0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

(a) Environments with deterministic rewards.

10 8

100

108

M
ea

n-
em

be
dd

in
g

sq
ua

re
d

er
ro

r Random chain Directed chain Tree Loopy tree Cycle S&B '18 Loopy fork

0 1 2 3
anchor range ratio

0.0

0.5

Cr
am

er
di

st
an

ce

sigmoid gaussian parabolic tanh sinusoidal CDRL
0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

(b) Environments with Gaussian rewards.

Figure 10. Additional tabular results from sweeping over the range of the anchors relative to the width of the uniform grid given by the
support of µ.

0.00
0.25
0.50
0.75
1.00

Cr
am

er
di

st
an

ce

Random chain Directed chain Tree Loopy tree Cycle Rowland '23 Loopy fork

10 6

10 3

100

Ex
ce

ss
 C

ra
m

er
di

st
an

ce

10 4

10 2

100

Ti
m

e
/ I

te
r (

s)

25 50 75
features/expectiles

0

2

4

Op
er

at
or

se
tu

p
tim

e
(s

)

SFDP Sketch-DP (sigmoid)
25 50 75 25 50 75 25 50 75 25 50 75 25 50 75 25 50 75

Figure 11. Results comparing Cramér distances as in Figure 4 (first two rows), and wallclock runtimes for each DP iteration (third
row) and for setting the corresponding Bellman operator (bottom row), for Sketch-DP and SFDP algorithms, varying the numbers of
features/expectiles m.

27

Distributional Bellman Operators over Mean Embeddings

102
101
1000
100
101
102

Sk
et

ch
 D

QN
 a

dv
.

DQN

102
101
1000
100
101
102

Sk
et

ch
 D

QN
 a

dv
.

Double

102
101
1000
100
101
102

Sk
et

ch
 D

QN
 a

dv
.

Dueling

102
101
1000
100
101
102

Sk
et

ch
 D

QN
 a

dv
.

C51

102
101
1000
100
101
102

Sk
et

ch
 D

QN
 a

dv
.

QR

al
ie

n
am

id
ar

as
sa

ul
t

as
te

rix
as

te
ro

id
s

at
la

nt
is

ba
nk

_h
ei

st
ba

ttl
e_

zo
ne

be
am

_r
id

er
be

rz
er

k
bo

wl
in

g
bo

xi
ng

br
ea

ko
ut

ce
nt

ip
ed

e
ch

op
pe

r_
co

m
m

an
d

cr
az

y_
cli

m
be

r
de

fe
nd

er
de

m
on

_a
tta

ck
do

ub
le

_d
un

k
en

du
ro

fis
hi

ng
_d

er
by

fre
ew

ay
fro

st
bi

te
go

ph
er

gr
av

ita
r

he
ro

ice
_h

oc
ke

y
ja

m
es

bo
nd

ka
ng

ar
oo

kr
ul

l
ku

ng
_f

u_
m

as
te

r
m

on
te

zu
m

a_
re

ve
ng

e
m

s_
pa

cm
an

na
m

e_
th

is_
ga

m
e

ph
oe

ni
x

pi
tfa

ll
po

ng
pr

iv
at

e_
ey

e
qb

er
t

riv
er

ra
id

ro
ad

_r
un

ne
r

ro
bo

ta
nk

se
aq

ue
st

sk
iin

g
so

la
ris

sp
ac

e_
in

va
de

rs
st

ar
_g

un
ne

r
su

rro
un

d
te

nn
is

tim
e_

pi
lo

t
tu

ta
nk

ha
m

up
_n

_d
ow

n
ve

nt
ur

e
vi

de
o_

pi
nb

al
l

wi
za

rd
_o

f_
wo

r
ya

rs
_r

ev
en

ge
za

xx
on

Game name

102
101
1000
100
101
102

Sk
et

ch
 D

QN
 a

dv
.

IQN

Figure 12. Advantage of Sketch-DQN, measured as Sketch-DQN’s normalised return minus the returns of other baseline methods. Positive
values means Sketch-DQN is better. We show the mean and standard error over 3 seeds for each game.

28

Distributional Bellman Operators over Mean Embeddings

Number of features / atoms
Method 51 64 201 401

Sketch-DQN - - 1326 ± 107 1320 ± 110
Categorical-DQN (C51) 1309 ± 146 1306 ± 139 1293 ± 152 1291 ± 154

QR-DQN - - 1258 ± 107 1256 ± 106
IQN - 1120 ± 90 698 ± 41 400 ± 16

Table 1. Frame rate for selected methods. Higher is faster.

and Gaussian features, and show the results in Figure 13. Overall, we see that the choice on feature parameters is important;
in particular, the sigmoidal feature outperforms Gaussian features. For the sigmoidal feature, the performance improved
from using 101 to 201 features. On the contrary, for Gaussian features, increasing the feature count does not produce much
change.

D.6. Runtime comparison

Here, we report the mean (±s.d.) rate (per second) at which frames are processed during training in our Atari experiments,
with each agent running on a single V100 GPU. These frame-processing times reflect the wallclock time associated with all
aspects of the DQN training, including network forward passes for action selection, environment simulation, and periodic
gradient updates. These statistics are averaged across all games and seeds.

The results are shown in Table 1. Note that, by default, C51 uses 51 atoms, QR-DQN uses 201 quantiles, and IQN uses 64
quantiles. The Sketch-DQN method has the highest frame rate, and C51 and QR-DQN has slightly lower average frame
rates. IQN with default 64 quantiles has a slightly lower average frame rate still, and is much lower when the number of
quantiles is increased to match the number of predictions made by QR-DQN and Sketch-DQN. This is because the IQN
architecture requires one forward pass through the MLP component of the network for each predicted quantile level. By
contrast, the Sketch & QR architectures simply modify the original DQN architecture to produce multiple predictions of
mean embeddings/quantiles from the final hidden layer of the network.

29

Distributional Bellman Operators over Mean Embeddings

0

5

10

15 : sigmoid, Count m = 101 : gaussian, Count m = 101

0 50 100 150 200
Million frames

0

5

10

15

M
ea

n
no

rm
al

ise
d

re
tu

rn : sigmoid, Count m = 201

0 50 100 150 200
Million frames

: gaussian, Count m = 201

(a) Mean normalised return.

0.0

0.5

1.0

1.5

: sigmoid, Count m = 101

slope s
4.0 5.0 6.0

: gaussian, Count m = 101

slope s
1.33 1.67 2.0

0 50 100 150 200
Million frames

0.0

0.5

1.0

1.5

M
ed

ia
n

no
rm

al
ise

d
re

tu
rn : sigmoid, Count m = 201

slope s
4.0 5.0 6.0

0 50 100 150 200
Million frames

: gaussian, Count m = 201

slope s
1.33 1.67 2.0

(b) Median normalised return.

Figure 13. Results on Atari suite for different feature parameters.

30

