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Edit As You Wish: Video Caption Editing with
Multi-grained User Control

Anonymous Authors

ABSTRACT
Automatically narrating videos in natural language complying with
user requests, i.e. Controllable Video Captioning task, can help
people manage massive videos with desired intentions. However,
existing works suffer from two shortcomings: 1) the control signal
is single-grained which can not satisfy diverse user intentions; 2)
the video description is generated in a single round which can not
be further edited to meet dynamic needs. In this paper, we pro-
pose a novel Video Caption Editing (VCE) task to automatically
revise an existing video description guided by multi-grained user
requests. Inspired by human writing-revision habits, we design the
user command as a pivotal triplet {operation, position, attribute} to
cover diverse user needs from coarse-grained to fine-grained. To
facilitate the VCE task, we automatically construct an open-domain
benchmark dataset named VATEX-EDIT and manually collect an
e-commerce dataset called EMMAD-EDIT. We further propose a
specialized small-scale model (i.e., OPA) compared with two gener-
alist Large Multi-modal Models to perform an exhaustive analysis
of the novel task. For evaluation, we adopt comprehensive met-
rics considering caption fluency, command-caption consistency,
and video-caption alignment. Experiments reveal the task chal-
lenges of fine-grained multi-modal semantics understanding and
processing. Our datasets, codes, and evaluation tools are ready to
be open-sourced.

CCS CONCEPTS
• Computing methodologies → Natural language generation.

KEYWORDS
Video Captioning, Caption Editing, Controllable Generation

1 INTRODUCTION
The proliferation of videos on the Internet heralds the era of video-
dominated media. Video captioning, i.e. automatically describing
videos using natural language, has been a prevalent task to assist
people in comprehending and managing massive videos. However,
conventional video captioning systems [46, 58] tend to generate
intention-agnostic descriptions, ignoring the various demands of
different users. Therefore, a new task branch, namely controllable
video captioning [5, 8, 22, 60], has been proposed to integrate user
intention as a control signal to guide the description generation.
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Video Captioning

Controllable Video Captioning

Video Caption Editing

“A young man is engaged in an urban sports activity.”

“A young man dressed in casual and vibrant attire is 
engaged in an urban sports activity in the city street.”

User Control (Objects): attire, city

User Control: Add details about the activity

“A young man is engaged in a city walk activity, 
leisurely navigating through the urban landscape with 
an air of casual exploration.”

Reference Cap: A young man is engaged  … sports activity.

x 
M
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ti-
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Figure 1: Comparisons between our proposed Video Caption
Editing (VCE) task with conventional video captioning and
controllable video captioning.

Although controllable video captioning has great potential in
practical applications, existing works have two non-negligible draw-
backs. First, they all employ fixed control signals that can only ex-
press single-grained controls, such as Part-of-Speech(POS) [48] for
structure control, or specified object tags [22] for semantic control.
These single-grained controls can not satisfy flexible and diverse
user demands. Second, they are single-round controls that generate
a video description once which can not be further revised. Whereas
iteratively revising sentences until the ideal texts is a natural pro-
cess for humans [10]. Imagine a real-world scenario, such as E-
commerce product promotion, where sellers upload product videos
with descriptions to attract customers. There is a good chance that
automated video descriptions fail to highlight the seller’s prefer-
ences. As a result, sellers need to further improve the descriptions
by themselves, which is time-consuming and labor-intensive, espe-
cially when facing massive long videos.

We propose a novel Video Caption Editing (VCE) task to auto-
mate the video description editing process. The task aims to edit an
existing video description conditioned on user commands and video
content. As depicted in Figure 1, the inputs of VCE task consist of
a video, a reference description, and a user control. It outputs an
edited video description based on the user command as a control
signal. The reference caption can be initialized using the last edited
output sentence which can thus enable multi-round modification.
The VCE task can facilitate personalized video description gener-
ation by fulfilling miscellaneous demands from different users or
dynamic demands from the same user.

In the VCE task, how to define the user command to cover multi-
grained requests is crucial. Inspired by the human writing-revision
habits, we unify the user edit commands into a triplet format {oper-
ation, position, attribute} (depicted in Figure 2) for three advantages.
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Firstly, it condenses the core elements in an editing operation. Sec-
ondly, it can accommodate two prevalent front-end interface signals
including natural language and editing trajectories from tablet com-
puters. Finally, the different combinations of three elements in the
triplet can cover multi-grained user commands from coarse-grained
control (e.g. sentence length change) to fine-grained control (e.g.
insert new details in the specific position), as illustrated in Table 1.

We collect two novel benchmark datasets named VATEX-EDIT
and EMMAD-EDIT to support the exploration of the VCE task.
The VATEX-EDIT dataset is automatically constructed from a large-
scale video-text dataset VATEX [49] in the open domain. Meanwhile,
to close the gap between research advances and real-life applica-
tions, we manually collect an e-commerce editing dataset called
EMMAD-EDIT, which is more challenging from two aspects: 1)
longer videos (average 27.1 seconds) and longer captions (average
∼100 words); 2) external domain knowledge needed to generate
product-oriented video descriptions. Based on the two benchmark
datasets, we propose a specialized model, namely OPA, that con-
verts the command triplet into a textual token sequence to alleviate
heterogeneity among multi-grained commands. We demonstrate
the feasibility of utilizing a unified framework to handle seven
types of user commands. Moreover, we adopt two generalist Large
Multimodal Models (LMMs) as a comparison to gain an in-depth
understanding of the characteristics and challenges of the VCE task.

The main contributions of this paper are four-fold. 1) To the
best of our knowledge, we are the first to propose the VCE task
to achieve multi-round editing and design the user command as a
triplet format to express multi-grained user requests. 2) We build
two benchmark datasets from different domains, including the
general domain (VATEX-EDIT) and commercial domain (EMMAD-
EDIT), to facilitate the investigation of the VCE task. 3) We develop
an evaluation suite to assess the edited video description based on
caption fluency, command-caption consistency, and video-caption
alignment. 4) We propose a unified specialist framework OPA and
adapt two generalist LMM methods to initially tackle the task,
followed by a comprehensive analysis.

2 RELATEDWORK
Controllable Video Captioning. Video captioning [1, 25, 30, 33,
37, 39, 43, 46, 58] is a challenging cross-modal task to automatically
describe the visual contents of a video in natural languages. In order
to satisfy the varied pragmatic interests of different users, control-
lable video captioning [5, 8, 22, 60] has been a newly prevalent task.
It aims to derive video descriptions conditioned on a predefined
control signal, e.g. visual object tags. Wang et al. [48] introduce
Part-of-Speech(POS) information as guidance and Yuan et al. [60]
directly utilize an exemplar sentence. Their goal is to generate
descriptions with desired syntactic structures. Meanwhile, other
works aim to control sentence semantics. Chen et al. [5] proposes
a topic-guided model to generate topic-oriented descriptions. Liu
et al. [22] focus on producing object-oriented sentences controlled
by multiple user-interested objects. However, the above endeav-
ors all generate a sentence once and can’t be edited dynamically.
Besides, their designed control signals are single-grained which
can not cover flexible user intentions. Instead, we define a novel
VCE task that can revise a description in multiple rounds covering
multi-grained user demands.

video +        draftvideo +        draft

Triplet Control
{operation, position, attribute}

Scenario A：Natural Language Scenario B：Editorial Trajectories 

“These popular … 
comfortable, and available in 

black and white.”

Add product color
These popular knit sweatpants 
are soft and comfortable.

seasons

“These knit sweatpants … , 
suitable for wearing in 

summer.”

Triplet Control
[Operation]  Add
[Position]      -
[Attribute]    product color 

Triplet Control
[Operation]  Add
[Position]      9௧௛

[Attribute]    seasons

x Multi-rounds x Multi-rounds

Figure 2: The triplet control designed in the VCE task can
pivot two prevalent interaction signals including natural
language (Scenario A) and editing trajectories (Scenario B).

Image Caption Editing. Conventional image captioning [4, 17,
20, 21, 41, 47, 52, 55, 56] generates the description for images from
scratch which may lead to factual mistakes. Sammani and Elsayed
[35] firstly define the image caption editing task that modifies an
existing caption (a.k.a. reference caption) conditioned on the im-
age content to obtain more accurate descriptions. Sammani and
Melas-Kyriazi [36] further propose a novel EditNet framework to
achieve interactive and adaptive edits. Yuan et al. [59] design an
adaptive text-denoising network to alleviate the semantic gap be-
tween input images and reference sentences. The above works all
edit image captions implicitly. Wang et al. [50] propose the explicit
image caption editing task to make the modification process more
explainable and efficient. In summary, these caption editing works
can only correct the wrong content in the reference captions and
ignore specific edit intentions of different users. In this paper, we
integrate multi-grained user commands into the video description
editing process.
Large Multimodal Models. Recent months have witnessed the
tremendous success of Large Language Models (LLMs) [6, 27–29,
44, 45, 61] towards artificial general intelligence. Further, Large
Multimodal Models (LMMs) [2, 3, 7, 15, 18, 23, 26, 34, 57, 62] endow
LLMs with the visual understanding ability by incorporating vision
backbones [16, 32, 42]. Existing LMMs primarily bifurcate into two
categories: Image Large LanguageModels (ImgLLMs) [2, 3, 7, 23, 57]
and Video Large Language Models (VidLLMs) [15, 18, 26, 34, 62].
The standard architecture of an LMM comprises a vision backbone
for encoding images or videos, a projector [3, 13] to condense and
translate visual embeddings into textual semantic space, and an
LLM to process all multimodal contexts. As the VCE task involves
capturing video semantics, understanding textual user controls, and
enablingmulti-grained text editing, it can serve as a new touchstone
for LMMs.

2
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Table 1: Editing commands via different combination of elements {operation, position, attribute}. It covers seven multi-grained
demands from coarse-grained controls (e.g. expand description) to fine-grained controls (e.g. add specified attributes at specified
positions). The atomic operations consist of add and delete. The multi-grained commands with a reference caption (e.g. “A
group of girls is on the field playing a game.”) are unified as a control token sequence (Section 5.1) to guide the model.

Command Notation Demand Unified Input Controlopera. pos attr

! ⟨add, - , - ⟩ expand description [ADD] A group of girls is playing a game.

! ! ⟨add, pos, - ⟩ expand description at specified positions [ADD] A group of girls is [MASK] playing a game.

! ! ⟨add, - , attr ⟩ add specified attributes in description [ADD] field, hockey; A group of girls is playing a game.

! ! ! ⟨add, pos, attr ⟩ add specified attributes at specified positions [ADD] field, hockey; A group of girls is [MASK] playing a game.

! ⟨del, - , - ⟩ shorten description [DEL] A group of girls is on the field playing a game.

! ! ⟨del, pos, - ⟩ shorten description at specified positions [DEL] A group of girls is on (the filed) [MASK] playing a game.

! ! ⟨del, - , attr ⟩ delete specified attributes from description [DEL] field, group; A group of girls is on the field playing a game.

3 VIDEO CAPTION EDITING TASK
3.1 Task Definition
Given a video 𝑉 and a reference caption 𝑅 = {𝑟1, . . . , 𝑟𝐿}, the VCE
task aims to generate an edited caption 𝑌 = {𝑦1, . . . , 𝑦𝑇 } according
to the user edit command 𝐶 . The edited caption 𝑌 should satisfy
the constraints of 𝑉 , 𝑅 and 𝐶 . Given a ground truth caption 𝑌 ∗, the
maximum likelihood estimation (MLE) training objective of VCE
task can be formulated as:

LMLE = − 1
𝑇

𝑇∑︁
𝑡=1

log𝑝
(
𝑦∗𝑡 | 𝑦∗<𝑡 ,𝑉 , 𝑅,𝐶

)
(1)

The reference caption can be initialized with the output caption
from the last round of editing. It is also possible to start the editing
process using a auto-generated sentence or human-written one
as the reference. Due to the reference caption input setting, the
VCE task can naturally achieve an interactive editing process with
successive editing rounds, which is in line with human writing
habits [10]. The interactive and multi-round revisions can help
produce descriptions with higher user satisfaction.

3.2 User Edit Command
It is not trivial to define flexible edit commands in the VCE task
to meet various realistic user needs. We observe that natural lan-
guage and writing-revision traces are two natural interactive modes.
The former can be received from keyboards or speech converters,
while the latter conveniently expresses user intentions with the
prevalence of tablets and wireless stylus pens1. A command repre-
sentation compatible with the above two signals is important and
meaningful. In this paper, we propose a novel command represen-
tation in a triplet format {operation, position, attribute}, where
operations control the overall description editing, positions spec-
ify the editing locations, which could affect the syntax of sentences,
and attributes guide the editing operation to control the semantic
contents of descriptions.

1https://www.apple.com/apple-pencil/

We define the atomic edit operations as add and delete, con-
sidering that the replace editing can be decomposed into the two
atomic operations (i.e. first delete then add). Meanwhile, position
and attribute in the triplet are optional, therefore, as shown in
Table 1, seven specific commands2 via different combinations of
operation, position, and attribute elements in the triplet can cover
multi-grained realistic demands from coarse-grained (global) con-
trols to fine-grained (local) controls. The designed triplet command
can be flexibly obtained by processing the inputs from front-end
interfaces including natural language and writing-revision traces
(details in Appendix E). In the following method and experiments
sections, we perform video description editing directly based on
the triplet command.

4 DATA COLLECTION
To faciliate the novel VCE task, we automatically construct an
open-domain dataset VATEX-EDIT, and manually annotate an E-
commerce dataset EMMAD-EDIT. Table 2 displays the overall data
statistics. Compared to prior image caption editing datasets such
as COCO-EE and Flickr30K-EE, our new datasets present several
distinct advantages: 1) more challenging with the video input and
lengthier captions; 2) more diverse encompassing open-domain and
e-commerce data; and 3) larger in scale. Specific annotated data
instances are illustrated in Figure 3.

4.1 VATEX-EDIT Construction
It is challenging to construct data samples for the VCE task from
scratch, which needs a quadruple (video, command, reference cap-
tion, edited caption) data, abbreviated as (𝑉 ,𝐶, 𝑅,𝑌 ). To mitigate
the difficulty, we build the VATEX-EDIT dataset by expanding the
widely-used video captioning dataset VATEX [49], which has high-
quality caption annotations for each video.

We sample an annotated caption of a video as the reference
caption, and the next goal is to construct the command and the

2Note that we omit the command “⟨del, pos, attr⟩, delete attributes at specified positions”,
as it can be covered by “⟨del, pos, -⟩, delete description at specified positions”.
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Table 2: Data statistics of VATEX-EDIT and EMMAD-EDIT dataset. # denotes the number. VTime refers to the average duration
of videos in seconds. Len𝑅𝑒𝑓 denotes the average length of reference captions and Len𝐺𝑇 is the average length of ground-truth
captions. Edit Dist means the average minimum edit distance between reference captions and edited captions.

Dataset Vision #Videos/Images #Editing instances VTime Len𝑅𝑒𝑓 Len𝐺𝑇 Edit Dist VocabTrain Val Test Train Val Test

COCO-EE [50] Image 52,587 3,055 2,948 97,567 5,628 5,366 - 10.3 9.7 10.9 11,802
Flickr30K-EE [50] Image 29,783 1,000 1,000 108,238 4,898 4,910 - 7.3 6.2 8.8 19,124

VATEX-EDIT Video 25,467 2,935 5,867 784,805 91,513 181,638 10.0 14.4 16.0 11.9 21,634
EMMAD-EDIT Video 16,176 5,418 5,502 47,569 15,914 16,169 27.1 91.3 93.7 17.8 44,725

Reference Cap: The classic bucket bag has a cool bucket-shaped appearance, 
with a rounded and nifty body. The unique design of the parent-child bag 
highlights the creative personality and individual style.

Edited Caption: The classic bucket bag with a parent-child bag design brings
back the prosperous era of little deer bags. Its cool bucket-shaped appearance,
rounded and nifty body, and unique design pursue minimalist and practical
fashion, highlighting the creative personality and individual style.

Reference Cap: The classic bucket bag with a parent-child bag design brings
back the prosperous era of little deer bags. Its cool bucket-shaped appearance,
rounded and nifty body, and unique design pursue practical usage, highlighting
the creative personality and individual style.

Edited Caption: The classic bucket bag with a parent-child bag design brings
back the prosperous era of little deer bags. Its cool bucket-shaped appearance,
rounded and nifty body, and unique design pursue minimalist and practical
fashion, highlighting the creative personality and individual style.

User Control: <add, - , ->
(Language Version): Expand the reference description.

User Control: <add, - , ‘style’ >
(Language Version): Add contents about ‘style’ to extend the reference description.

Figure 3: Annotated data instances of the VCE task.

related edited caption. In general, we aim to construct related (com-
mand, edited caption) samples including: 1) coarse-grained length-
control commands referring to the global add or delete edits that
result in length changes, and 2) finer-grained attribute-related
commands to achieve add or delete attributes on the reference
caption.

Coarse-grained length-control commands. For add opera-
tion, we directly select a longer caption with significant length
differences from the rest annotations as the edited caption. The
delete operation does the exact opposite. Considering the delete
operation can be easily achieved without video content referring,
we replace the reference caption with negative captions that have
partially misaligned semantics with the video content. Such up-
dated quadruples require models to prioritize removing visually
irrelevant content from the reference, which makes the delete more
challenging.

Fine-grained attribute-related commands. We construct at-
tribute samples in a “degradation” manner, that is firstly detecting
attribute words in the reference caption 𝑅 and then removing them

50%

35%

15%

verb noun modifier

Figure 4: Attribute statistics on the VATEX-EDIT.
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101~110
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131~140 >140
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Figure 5: Caption length distributions on EMMAD-EDIT.

to obtain the edited caption 𝑌 . We utilize Spacy Syntactic Depen-
dency3 and Semantic Role Labeling [38] to achieve noun, verb or
modifier attributes detection and removal in 𝑅 while maintaining
the fluency of 𝑅\𝑎𝑡𝑡𝑟 to get 𝑌 . After degradation, we can obtain
quadruples for the ⟨del, -, attr⟩ command. We exchange the ref-
erence caption and the edited caption to obtain the opposite add
command. The position information can be naturally recorded to
support position-related commands.

Statistics and analysis. As shown in Table 2, compared with
existing image editing datasets [50], VATEX-EDIT has two salient
features: large-scale and diverse. Figure 4 visualizes the percentages
of modifiers, nouns and verbs in the attribute. Our automatic con-
struction strategy selects verbs as the dominant attributes because
verbs are usually related to temporal visual semantics, which is also
one of the core challenges of the video description task. The word
cloud of specific attribute words shows the attribute diversity.

4.2 EMMAD-EDIT Collection
To satisfy realistic user-demand scenarios, we manually collect
a high-quality dataset called EMMAD-EDIT in the E-commerce

3https://spacy.io/
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domain based on a Chinese E-commerce video captioning dataset E-
MMAD [63]. The E-MMAD dataset consists of product videos with
advertising video descriptions, and additional structure information.
Given a product-oriented video𝑉 and an original video description
𝑅, we recruit crowd workers to annotate three types of edited
descriptions as follows.

Simplify original captions to the target length while maintain-
ing sentence fluency and coherence according to the video content.
To ensure the challenge of the VCE task, we require that the length
of original sentences should be reduced by at least 20%.

Delete specific attributes. It aims to select multiple significant
attribute words/phrases from 𝑅 and remove the attribute-related
content to get a new caption 𝑌 . The attributes can be nouns, verbs,
or modifiers. To ensure the semantic coherence of 𝑌 , workers are
allowed to modify other parts of 𝑅 following the “minimal editing”
principle.

Delete abstract attributes. We further consider deleting ab-
stract attributes that do not directly appear in 𝑅. For example, delet-
ing “Time and Seasons” needs to locate season-related content such
as “spring” and “summer”. It is more challenging to edit with ab-
stract attributes and also more down-to-earth since user intentions
may be vague.

Statistics and analysis. To ensure annotation quality, extra
workers further check the annotated cases. Table 2 shows the spe-
cific data statistics. EMMAD-EDIT has two remarkable characteris-
tics, i.e. long videos and long descriptions. The average video length
is 27.1 seconds and the average description length (specified in
Figure 5) is around 100 words. We believe the challenging EMMAD-
EDIT dataset will promote new technologies for the VCE task.

5 METHODOLOGY
In this section, we begin by introducing how to transform the triplet
control into a unified textual sequence. Subsequently, we explore
three approaches for the VCE task to facilitate a comprehensive
comparison. We propose the Operation-Position-Attribute (OPA)
model as a small-scale specialist. Additionally, we utilize an Image
Large LanguageModel (ImgLLM) pipeline, and an end-to-end Video
Large Language Model (VidLLM) to observe the performance of
large multimodal models. Lastly, we develop an evaluation protocol
for the novel task.

5.1 Input Format Design
We first integrate the seven specific edit commands introduced in
Table 1 into a unified format to achieve multi-grained control.

The main challenge is the heterogeneity among the three el-
ements of command, including operation, position, and attribute.
On the one hand, operations and attributes change the textual se-
mantics while positions mainly influence sentence syntax. On the
other hand, attributes are specific textual words while positions are
absolute position indexes.

To tackle the above challenges, we unify the input format as a
textual token sequence. As shown in Table 1, we define two spe-
cial tokens, [ADD] and [DEL], to represent different add or delete
operations. Attribute words are naturally text tokens. For position,
we put special tokens [MASK] in the reference caption to indicate
the absolute position indexes. For example, a positioned reference

caption “A group of girls is [MASK] playing a game” guides the
model to generate new details between words “is” and “playing”. Fi-
nally, we concatenate the operation token, the attribute words, and
a positioned reference caption as a control sequence to guide the
model for description generation. Table 1 visualizes the input con-
trol sequences under seven specific commands when the reference
caption is “A group of girls is playing a game”.

5.2 OPA: A Small-Scale Model as the Specialist
We construct a small-scale encoder-decoder Transformer architec-
ture, i.e. multi-modal BART [12], to achieve the video description
editing task under the guidance of processed control sequences. We
utilize the pre-trained BART weights and endow it with the multi-
modal ability to understand video content. The specific architecture
is depicted in Appendix A.

Input Representation. Given a video 𝑉 , a reference caption
𝑅 = {𝑟1, . . . , 𝑟𝐿}, and a triplet command 𝐶 , we first extract frame-
level visual features and map them to the same dimension as textual
embedding. We denote the input attributes as𝐴 = {𝑎1, . . . , 𝑎𝑀 } and
the indicated position index as 𝑙 ∈ [1, 𝐿]. Taking the most fine-
grained command “add specified attributes at specified positions” as
an example, the concatenated control sequence𝐶 for the command
is defined as {[ADD], 𝐴, 𝑅}. Using special tokens to separate each
part, it is formulated as:

𝐶 = {[opera] [ADD] [/opera] [attr] 𝐴 [/attr] [ref] 𝑅 [/ref]} (2)

where the positioned reference caption 𝑅 is formulated as:

𝑅 = {𝑟1, . . . , 𝑟𝑙−1, [MASK], 𝑟𝑙+1, . . . , 𝑟𝐿 } (3)

Finally, we input the visual features {𝑉1, . . . ,𝑉𝑁 } and the textual
control sequence embedding𝑊

𝐶
= {𝑊[o],𝑊[ADD], . . . ,𝑊[/r]} to the

Transformer encoder. If the position is empty in the command, we
input the original reference caption 𝑅. When the attribute is empty
in the command, we set 𝐴 as an empty set.

Leverage Pre-trained Knowledge. The overall training objec-
tive as formulated in Section 3.1 is to generate an edited description
conditioned on the video features and the control sequence. It is
worth noting that we keep the [MASK] token consistent with the
same token in the Text Infilling pre-trained task of BART to leverage
the intrinsic pre-training textual ability.

5.3 LMMs as Contrastive Generalists
Large multimodal models integrate the advantages of visual under-
standing and remarkable natural language processing abilities (e.g.,
text editing) from LLMs. It is significant to probe their performance
on the VCE task. Consequently, we explore two typical branches of
LMMs including an ImgLLM pipeline and an end-to-end VidLLM.

ImgLLMPipeline.Weutilize the InstructBLIP [7] as the ImgLLM.
Nevertheless, ImgLLM can only handle images or a single video
frame as visual input. To adapt the ImgLLM to the VCE task, we
combine InstructBLIP with ChatGPT [27]. In this way, InstructBLIP
transforms visual semantics at the frame level into textual context,
while ChatGPT consolidates all textual task context and achieves
caption editing. Specifically, we extract frames from a given video
and utilize InstructBLIP to produce detailed visual descriptions for
each frame. The frame descriptions with the VCE task definition,
task guidelines, and in-context demonstrations [9] of the relative
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Figure 6: Overall performance of the small-scale specialist model (i.e., OPA) and large-scale generalist models (i.e., ImgLLM
pipeline and end-to-end VidLLM) on the VATEX-EDIT and EMMAD-EDIT dataset. We utilize InstructBLIP [7] w/ ChatGPT [27]
as the ImgLLM pipeline without training. Meanwhile, we conduct instruction tuning on the VideoChat-7B [15] as the end-to-end
VidLLM method. The training cost (parameters, used GPUs, and training time) and inference speed via a single GPU are on the
right. It is noted that we take the negative of PPL↓ and rescale it on the radar coordinate for better visualization.

command type will be combined as the final prompt to the ChatGPT.
Instruction details are provided in Appendix A.

End-to-end VidLLM. As VidLLM can handle video tasks di-
rectly, we employ the VideoChat [15] as an end-to-end LMM solu-
tion. Specifically, we reformat the VATEX-EDIT and EMMAD-EDIT
datasets into question-answer chat samples (refer to Appendix A
for specifics) and conduct further instruct-tuning on VideoChat-7B
using two datasets respectively.

5.4 Evaluation Suite
How to evaluate the novel VCE task is another noteworthy chal-
lenge. Conventional video captioning tasks adopt widely-used cap-
tioning metrics such as BLEU4, METEOR, and CIDEr. However,
these reference-based metrics only measure the consistency be-
tween generated captions and ground-truth annotations, which
are insufficient. In this paper, we evaluate the VCE task from three
aspects: 1) fluency, 2) controllability, and 3) text-video alignment.

Fluency. Following the previous work [50], we adopt widely-used
BLEU4 [31] andROUGE-L [19] metrics to measure the overall gen-
eration quality. We also use the Perplexity (PPL) [11] metric that
reflects the grammatical correctness and semantic meaningfulness.

Controllability. Measuring whether an edited caption strictly fol-
lows control signals is important for the VCE task. Inspired by previ-
ous work [10] , we first utilize the SARI [53] metric to measure the
overall edit quality, i.e. the consistency between expected-to-edit
and actually-edited spans. Moreover, we design three breakdown
metrics namely Length Accuracy, Attribute Accuracy and Posi-
tion Accuracy to measure whether the edited caption satisfies the
{operation, position, attribute} triplet control. Concretely, Len-Acc
reflects the length change accuracy. Attr-Acc checks the appear-
ance of commanded attribute words. Pos-Acc evaluates whether
the model inserts/removes content in the specified positions.

Text-Video alignment. The VCE task inherently requires the align-
ment between edited descriptions and the given video. We use
EMScore [40] to calculate the semantic similarity between edited
captions and videos. It focuses on both coarse-grained similarity
(video-sentence) and fine-grained similarity (frame-word).

6 EXPERIMENTS
6.1 Implementation Details
We implement the small-scale OPA model based on Huggingface
Transformers library [51]. The default setting is initialized by the
BART𝑏𝑎𝑠𝑒 . We get video frames using fps=1. For the VATEX-EDIT
dataset in English, we adopt BLIP [14] ViT-B/16 to extract frame
features. The max frame sequence N is set to 20. For the EMMAD-
EDIT dataset in Chinese, we initialize our model with the Chinese
BART. We adopt CN-CLIP [54] ViT-B-16 to extract video frame-
level features. The max frame sequence N is set to 30 and the max
decoding length is set to 150. For training, we use AdamW [24]
with a learning rate of 1e-5 and optimize for 20 epochs with a
batch size of 20. During inference, we set beam size as 5. The
ImgLLM pipeline utilizes the identical frame number N as the OPA
model. This pipeline doesn’t involve any training. We choose one
in-context learning sample for every command type integrated into
the ChatGPT prompt. For VideoChat model, we set frame number
N as 8 to fit its default setting. We conduct further instruct-tuning
on the official 7B checkpoints with batch size 64.

6.2 Compare Specialist and Generalist Models
Figure 6 shows the overall performance of three baselines on the
VATEX-EDIT and EMMAD-EDIT datasets. Interestingly, overall
performances are divergent across the two datasets. On the large-
scale open-domain VATEX-EDIT dataset, the small-scale specialist
OPA model with only 150M parameters outperforms the LMM ap-
proaches. It suggests that with sufficient training instances (784,805
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Table 3: Ablation study of the OPA model on the VATEX-EDIT dataset. Multimodal BART is the backbone of OPA framework.
Pure Transformer is the same model without pre-trained BART parameters. Vision Align means the vision-text alignment.

Model Controllability Fluency Vision Align
Len-Acc Attr-Acc Pos-Acc SARI BLEU4 ROUGE-L PPL↓ EMScore

1 Multimodal BART - - - 49.7 48.0 62.0 73.9 28.7
2 Multimodal BART𝑂𝑝𝑒𝑟𝑎. 97 - - 52.1 49.6 63.2 70.6 28.7
3 Multimodal BART𝑂𝑝𝑒𝑟𝑎.+𝐴𝑡𝑡𝑟 97 93 - 53.8 52.3 65.7 72.7 28.7
4 OPA 98 93 99 53.9 52.2 65.6 72.8 28.7

5 Pure Transformer𝑂𝑝𝑒𝑟𝑎.+𝑃𝑜𝑠+𝐴𝑡𝑡𝑟 98 82 97 52.6 50.5 64.4 77.2 28.7
6 3 Single-grained Models 96 69 99 53.3 51.5 64.6 72.8 28.6

Table 4: Overall and breakdown performances on the EMMAD-EDIT dataset.

Command Controllability Fluency Vision Align
Len-Acc Attr-Acc Pos-Acc SARI BLEU4 ROUGE-L PPL↓ EMScore

1 ⟨add, - , - ⟩ 57 - - 26.2 62.1 73.9 23.7 44.7
2 ⟨add, pos, - ⟩ 75 - 59 27.0 83.6 90.3 25.1 44.9
3 ⟨add, - , attr ⟩ 80 74 - 31.7 84.7 89.9 26.6 45.2
4 ⟨add, pos, attr ⟩ 92 70 85 32.9 88.1 93.3 25.5 44.8

5 ⟨del, - , - ⟩ 100 - - 33.5 66.8 73.8 30.5 44.6
6 ⟨del, pos, - ⟩ 99 - - 30.7 83.9 90.6 28.8 44.6
7 ⟨del, - , attr ⟩ 100 93 - 33.6 75.2 83.6 28.9 44.7

8 Overall 84 79 72 30.5 74.4 81.8 26.6 44.8

samples in VATEX-EDIT), a small specialized model has the poten-
tial to perform more effectively and efficiently.

On the e-commerce EMMAD-EDIT dataset, the LMM methods
achieve higher scores across most metrics. EMMAD-EDIT is more
challenging because it requires domain knowledge, such as unseen
product attributes and advertising description style, and has limited
training data (refer to Table 2). Results show that ImgLLM with
InstructBLIP and ChatGPT achieve highest Attr-Acc (87%) even
without training. We argue that on this domain, generalist methods
are more promising to leverage their intrinsic knowledge to edit
product-related descriptions.

Despite performance advantages, the training cost and inference
speed must be taken into account due to the booming number of
videos. As illustrated in Figure 6 (right), compared to the VidLLM
and ImgLLM, the OPAmodel demonstrates significant benefits over
both VidLLM and ImgLLM in terms of lower training costs and
faster inference speeds. Designing a model that balances perfor-
mance with speed and cost represents a crucial trade-off.

Although both specialist and generalist models offer unique
advantages, there remains considerable scope for further enhance-
ments to develop an effective editing system, especially on the
EMMAD-EDIT dataset. The Controllability (Pos-Acc 72%, Attr-Acc
87% and Len-Acc 94%) on the EMMAD-EDIT dataset is insufficient.
Moreover, the alignment between video and caption, as indicated by
the EMScore, requires significant improvement. In conclusion, the
key of the VCE task lies in the combination of fine-grained video
and user control understanding and precise text editing capabilities.

6.3 Further Task Analysis
We conduct further ablation studies on the small-scale OPA model
to delve into a detailed analysis of the characteristics of the VCE
task.

Increase control signals. We analyze the editing performance
under different control signals in Table 3. The proposed OPA frame-
work achieves high controllability accuracy (Len-Acc 98%, Attr-Acc
93%, and Pos-Acc 99%) while maintaining sentence quality. The
first block (lines 1-4) shows the controllability accuracy and caption
quality when progressively inputting more control signals into the
model. With the increasing aspects of control signals, there is no
decline in sentence fluency and text-vision alignment. It indicates
that our model can edit the reference caption with reasonable syn-
tactic and semantic changes under multi-aspect guidance. Line 5
shows the result of Pure Transformer trained from scratch. Without
BART pre-trained parameters, the overall controllability and flu-
ency metrics decrease (SARI from 53.9 to 52.6, BLEU4 from 52.2 to
50.5), which verifies the benefits of textual pre-training knowledge.
Unified framework vs separate models. To satisfy different-
granularity commands, we compare the performances of training
a unified OPA model vs. training multiple separate models in Ta-
ble 3. In the 3 Single-grained Models setting (line 6), we train three
models respectively to deal with three control granularities, i.e.
{operation}, {operation, attribute}, and {operation, position, attribute}.
The OPA model reaches a remarkably higher score on the Attr-Acc
(93% vs 69%) with better SARI, BLEU4, and ROUGE-L. It demon-
strates that our unified input design can alleviate the confusion and
heterogeneity of multi-grained commands.
Difficulty level of various commands. Table 4 (lines 1-7) displays
the performances of different commands, indicating their respective
difficulty levels. Generally, the add operation proves to be more
challenging than delete, primarily because it requires the constraint
of video content. For the add operations, the finer the command
granularity (lines 1-4), the higher the controllable and fluency scores.
It reveals that when provided with more detailed control signals,
the model can generate desired captions more easily.
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This shoulder bag is decorated with red and white stripes on the body , and (the zipper is designed with a 
floating belt and) a  USB port on the side , very convenient and practical. (27 words)

This shoulder bag is decorated with red and white stripes on the body, (visually eye-catching,)  and the zipper 
is designed with a (letter) floating belt and a USB port on the side, very convenient and practical. (36 words)

This shoulder bag is decorated with red and white stripes on the body, visually eye-catching, and the zipper 
is designed with a letter floating belt and a USB port on the side, very convenient and practical. (40 words)

In front of a door, a girl kicks her leg high into the air in front of her. (20 words)

In a room, a girl kicks her leg high into the air in front of her. (18 words)

A girl is standing in front of the camera and she kicks her leg high into 
the air, then smiles. (20 words)

A girl is standing in front of the camera and she kicks her leg up high into the air.
(20 words)

A girl kicks her leg high into the air (in front of her). (10 words)

(b) Successive Multi-round Editing

Ref Cap: A girl kicks her leg high into the air in front of her . (14 words)

<del, - , - >

<add, - , - >

<add, - , smile>

<add,  𝟏𝐬𝐭, - >

<add,  𝟏𝐬𝐭, door >

(a) Multi-grained Command Editing

Ref Cap/Init Cap: This shoulder bag is decorated with red and white stripes on the body, visually eye-
catching, and the zipper is designed with a letter floating belt and a USB port on the side. (35 words)

# Round 1 <add, - , - >

# Round 2 <del, - , letter & eye-catching>

# Round 3 <del, 𝟏𝟕𝒕𝒉~𝟐𝟑𝐭𝐡, - >

( zipper is  𝟏𝟕𝒕𝒉 and belt is 𝟐𝟑𝒕𝒉)

Figure 7: Visualization of multi-grained command editing and successive multi-round editing using the OPA model.

Table 5: The effects of visual modality on the VATEX-EDIT.

Command Video EMScore SARI BLEU4

Overall % 28.1 53.5 51.7
" 28.7 (+0.6) 53.9 (+0.4) 52.2 (+0.5)

⟨del,-,-⟩ % 27.0 39.4 12.1
" 28.5 (+1.5) 40.4 (+1.0) 13.5 (+1.4)

⟨add,-,-⟩ % 28.3 41.9 10.6
" 29.0 (+0.7) 42.0 (+0.1) 11.1 (+0.5)

Effects of vision modality. We compare the model performance
with and without video input in Table 5. Adding vision modal-
ity brings overall metric improvements since it provides visual
semantics to guide edited video description generation. For ⟨del,-,-⟩
command, we especially construct challenging samples in which
reference captions have misalignments with videos (Section 4.1).
With the visual semantics, our model prioritizes removing the video-
misalignment contents and achieving a higher EMScore (from 27.0
to 28.5). Similarly, ⟨add,-,-⟩ command requires enriching the origi-
nal caption referring to the video content.

6.4 Quantitative Results
Multi-grained editing controls. Provided with various com-
mands, the OPA model can output different edited descriptions
to satisfy multi-grained user requests. As Figure 7 (a) shows, our
OPA model successfully generates different desired descriptions
given the same video, the same reference caption but different com-
mands from coarse-grained (e.g. ⟨add, -, -⟩) to fine-grained (e.g.
⟨add, 1𝑠𝑡 , door⟩).
Successive editing controls. The OPA model also supports inter-
active editing with successive controls in the VCE task, depicted
in Figure 7 (b). The edited description can serve as the reference
caption in the next round to make further editing to satisfy dynamic
user demands.
Human Evaluation.We further adopt human evaluation to assess
the quality of edited video descriptions. We recruit 20 evaluators to
score the generated descriptions.We randomly sample 200 test cases

Table 6: Mean score (rated 1-5) of the human evaluation on
the two datasets. Trans. is short for Pure Transformer.

Dataset Model Control. Fluency Vision Align

EMMAD-EDIT
Trans. 2.94 3.02 3.27
OPA 3.98 3.85 3.76
GT 4.67 4.37 4.22

VATEX-EDIT
Trans. 4.18 4.23 3.76
OPA 4.36 4.43 3.93
GT 4.48 4.34 4.41

from VATEX-EDIT and 350 cases from EMMAD-EDIT respectively.
During the evaluation, we randomly order the edited captions gen-
erated from Pure Transformer baseline, OPA, and groundtruths (GT).
The evaluators are asked to rate each description from three aspects
on a scale of 1 to 5 points. Table 6 shows the OPA model exceeds
the controllable Transformer baseline in three aspects, especially
the controllability.

7 CONCLUSION
We propose a novel multi-modal task named Video Caption Edit-
ing (VCE), which aims to automatically edit video descriptions
under the guidance of multi-grained user commands. To satisfy
diverse and varied user demands, we design the user control sig-
nal as a {operation, position, attribute} triplet to flexibly cover both
coarse-grained and fine-grained controls. We collect two datasets
named VATEX-EDIT and EMMAD-EDIT from different domains.
We further employ comprehensive metrics to assess fluency, con-
trollability, and vision-text alignment. Finally, we introduce a small
specialized model called OPA, an ImgLLM pipeline, and an end-
to-end VidLLM to dive into the task challenges and provide good
starting points.

Limitations and Future Work. This paper primarily intro-
duces appropriate baseline solutions for the VCE task, aiming to
provide a thorough analysis. Nonetheless, it falls short of designing
architectural innovations, leaving ample room for exploration in
the future. Further insights into significant future directions are
discussed in Appendix F.
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