
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

IMPROVED NOISE SCHEDULE FOR DIFFUSION
TRAINING

Anonymous authors
Paper under double-blind review

ABSTRACT

Diffusion models have emerged as the de facto choice for generating high-quality
visual signals across various domains. However, training a single model to predict
noise across various levels poses significant challenges, necessitating numerous
iterations and incurring significant computational costs. Various approaches, such
as loss weighting strategy design and architectural refinements, have been intro-
duced to expedite convergence and improve model performance. In this study, we
propose a novel approach to design the noise schedule for enhancing the training
of diffusion models. Our key insight is that the importance sampling of the log-
arithm of the Signal-to-Noise ratio (log SNR), theoretically equivalent to a modi-
fied noise schedule, is particularly beneficial for training efficiency when increas-
ing the sample frequency around log SNR = 0. This strategic sampling allows
the model to focus on the critical transition point between signal dominance and
noise dominance, potentially leading to more robust and accurate predictions. We
empirically demonstrate the superiority of our noise schedule over the standard
cosine schedule. Furthermore, we highlight the advantages of our noise schedule
design on the ImageNet benchmark, showing that the designed schedule consis-
tently benefits different prediction targets. Our findings contribute to the ongoing
efforts to optimize diffusion models, potentially paving the way for more efficient
and effective training paradigms in the field of generative AI.

1 INTRODUCTION

Diffusion models have emerged as a pivotal technique for generating high-quality visual signals
across diverse domains, including image synthesis (Ramesh et al., 2022; Saharia et al., 2022; Rom-
bach et al., 2022) , video generation (Ho et al., 2022; Singer et al., 2023; Brooks et al., 2024), and
even 3D object generation (Wang et al., 2022; Nichol et al., 2022). One of the key strengths of diffu-
sion models lies in their ability to approximate complex distributions, where Generative Adversarial
Networks (GANs) may encounter difficulties. Despite the substantial computational resources and
numerous training iterations required for convergence, improving the training efficiency of diffu-
sion models is essential for their application in large-scale scenarios, such as high-resolution image
synthesis and long video generation.

Recent efforts to enhance diffusion model training efficiency have primarily focused on two direc-
tions. The first approach centers on architectural improvements. For instance, the use of Adaptive
Layer Normalization (Gu et al., 2022), when combined with zero initialization in the Transformer
architecture Peebles & Xie (2023), has shown promising results. MM-DiT (Esser et al., 2024) ex-
tends this approach to multi-modality by employing separate weights for vision and text processing.
Similarly, U-shaped skip connections within Transformers (Hoogeboom et al., 2023; Bao et al.,
2022; Crowson et al., 2024) and reengineered layer designs (Karras et al., 2024) have contributed to
more efficient learning processes.

The second direction explores various loss weighting strategies to accelerate training convergence.
Works such as eDiff-I (Balaji et al., 2022) and Ernie-ViLG 2.0 (Feng et al., 2022) address training
difficulties across noise intensities using a Mixture of Experts approach. Other studies have investi-
gated prioritizing specific noise levels (Choi et al., 2022) and reducing weights of noisy tasks (Hang
et al., 2023) to enhance learning effectiveness. Recent developments include a softer weighting

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

−20 −15 −10 −5 0 5 10

λ = log SNR

0.0

0.1

0.2

0.3

0.4

0.5

p
(λ

)

Cosine: sech(λ/2)/(2π)

Cosine Scaled: s · sech(λs/2)/(2π), s = 2

Cosine Shifted: sech(λ/2− s)/(2π), s = −3

Laplace: 1
2b exp(−|λ− µ|/b), µ = 0, b = 1

Cauchy: 1
π

γ
γ2+(λ−λ0)2 , γ = 1, λ0 = 3

Figure 1: Illustration of the probability density functions of different noise schedules.

approach for high-resolution image synthesis (Crowson et al., 2024) and empirical findings on the
importance of intermediate noise intensities (Esser et al., 2024).

Despite these advances, the fundamental role of noise scheduling in diffusion model training re-
mains underexplored. In this study, we present a novel approach focusing on the fundamental role
of noise scheduling, which is a function that determines how much noise is added to the input data
at each timestep t during the training process, controlling the distribution of noise levels that the
neural network learns to remove. Our framework provides a unified perspective for analyzing noise
schedules and importance sampling, leading to a straightforward method for designing noise sched-
ules through the identification of curves in the p(λ) distribution, as visualized in Figure 1. Through
empirical analysis, we discover that allocating more computation costs (FLOPs) to mid-range noise
levels (around log SNR = 0) yields superior performance compared to increasing loss weights dur-
ing the same period, particularly under constrained computational budgets.

We evaluate several different noise schedules, including Laplace, Cauchy, and the Cosine Shifted/S-
caled variants, through comprehensive experiments using the ImageNet benchmark with a consistent
training budget of 500K iterations (about 100 epochs). Our results, measured using the Fréchet In-
ception Distance (FID) metric at both 256× 256 and 512× 512 resolutions, demonstrate that noise
schedules with concentrated probability density around log SNR = 0 consistently outperform alter-
natives, with the Laplace schedule showing particularly favorable performance.

The key contributions of our work can be summarized as follows:

• A unified framework for analyzing and designing noise schedules in diffusion models, of-
fering a more systematic approach to noise schedule optimization.

• Empirical evidence demonstrating the superiority of mid-range noise level focus over loss
weight adjustments for improving training efficiency.

• Comprehensive evaluation and comparison of various noise schedules, providing practical
guidelines for future research and applications in diffusion model training.

2 METHOD

2.1 PRELIMINARIES

Diffusion models (Ho et al., 2020; Yang et al., 2021) learn to generate data by iteratively reversing
the diffusion process. We denote the distribution of data points as x ∼ pdata(x). The diffusion

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

process systematically introduces noise to the data in a progressive manner. In a continuous setting,
the noisy data at timestep t is defined as follows:

xt = αtx+ σtϵ, where ϵ ∼ N (0, I), (1)

where αt and σt are the coefficients of the adding noise process, essentially representing the noise
schedule. For the commonly used prediction target velocity: vt = αtϵ − σtx (Salimans & Ho,
2022), the diffusion model vθ is trained through the Mean Squared Error (MSE) loss:

L(θ) = Ex∼pdata(x)Et∼p(t)

[
w(t)∥vθ(αtx+ σtϵ, t, c)− vt∥22

]
, (2)

where w(t) is the loss weight, c denotes the condition information. In the context of class-
conditional generation tasks, c represents the class label. Common practices sample t from the uni-
form distribution U [0, 1]. Kingma et al. (2021) introduced the Signal-to-Noise ratio as SNR(t) = α2

t

σ2
t

to measure the noise level of different states. Notably, SNR(t) monotonically decreases with increas-
ing t. Some works represent the loss weight from the perspective of SNR (Salimans & Ho, 2022;
Hang et al., 2023; Crowson et al., 2024). To simplify, we denote λ = log SNR to indicate the noise
intensities. In the Variance Preserving (VP) setting, the coefficients in Equation 1 can be calculated
by α2

t = exp(λ)
exp(λ)+1 , σ2

t = 1
exp(λ)+1 .

While these foundational concepts have enabled significant progress in diffusion models, the choice
of noise schedule remains somewhat ad hoc. This motivates us to develop a more systematic frame-
work for analyzing and designing noise schedules by examining them from a probability perspective.

2.2 NOISE SCHEDULE DESIGN FROM A PROBABILITY PERSPECTIVE

The training process of diffusion models involves sampling timesteps t from a uniform distribu-
tion. However, this uniform sampling in time actually implies a non-uniform sampling of noise
intensities. We can formalize this relationship through the lens of importance sampling (Bishop &
Nasrabadi, 2006). Specifically, when t follows a uniform distribution, the sampling probability of
noise intensity λ is given by:

p(λ) = p(t)

∣∣∣∣ dtdλ
∣∣∣∣ = − dt

dλ
, (3)

where the negative sign appears because λ monotonically decreases with t. We take cosine noise
schedule (Nichol & Dhariwal, 2021) as an example, where αt = cos

(
πt
2

)
, σt = sin

(
πt
2

)
. Then

we can deduce that λ = −2 log tan(πt/2) and t = 2/π arctan e−λ/2. Thus the distribution of
λ is: p(λ) = −dt/dλ = sech(λ/2)/2π. This derivation illustrates the process of obtaining p(λ)
from a noise schedule λ(t). On the other hand, we can derive the noise schedule from the sampling
probability of different noise intensities p(λ). By integrating Equation 3, we have:

t = 1−
∫ λ

−∞
p(λ)dλ = P(λ), (4)

λ = P−1(t), (5)
where P(λ) represents the cumulative distribution function of λ. Thus we can obtain the noise
schedule λ by applying the inverse function P−1. In conclusion, during the training process, the
importance sampling of varying noise intensities essentially equates to the modification of the
noise schedules. To illustrate this concept, let’s consider the Laplace distribution as an example
, we can derive the cumulative distribution function P(λ) = 1 −

∫
1
2b exp (−|λ− µ|/b) dλ =

1
2 (1 + sgn(λ− µ)(1− exp(−|λ− µ|/b))). Subsequently, we can obtain the inverse function to ex-
press the noise schedule in terms of λ: λ = µ−bsgn(0.5−t) ln(1−2|t−0.5|). Here, sgn(·) denotes
the signum function, which equals 1 for positive inputs, −1 for negative inputs. The pseudo-code
for implementing the Laplace schedule in the training of diffusion models is presented in A.1.

This framework reveals that noise schedule design can be reframed as a probability distribution
design problem. Rather than directly specifying how noise varies with time, we can instead focus
on how to optimally distribute our sampling across different noise intensities. Our approach is also
applicable to the recently popular flow matching with logit normal sampling scheme (Esser et al.,
2024). Within our framework, we analyzed the distribution of its logSNR in A.4 and demonstrated
its superiority over vanilla flow matching and cosine scheduling from the perspective of p(λ).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Noise Schedule p(λ) λ(t)

Cosine sech (λ/2) /2π 2 log
(
cot
(
πt
2

))
Laplace e−

|λ−µ|
b /2b µ− bsgn(0.5− t) log(1− 2|t− 0.5|)

Cauchy 1
π

γ
(λ−µ)2+γ2 µ+ γ tan

(
π
2 (1− 2t)

)
Cosine Shifted 1

2π sech
(

λ−µ
2

)
µ+ 2 log

(
cot
(
πt
2

))
Cosine Scaled s

2π sech
(
sλ
2

)
2
s log

(
cot
(
πt
2

))
Table 1: Overview of various Noise Schedules. The table categorizes them into five distinct types:
Cosine, Laplace, Cauchy, and two variations of Cosine schedules. The second column p(λ) denotes
the sampling probability at different noise intensities λ. The last column λ(t) indicates how to
sample noise intensities for training. We derived their relationship in Equation 3 and 5.

2.3 UNIFIED FORMULATION FOR DIFFUSION TRAINING

VDM++ (Kingma & Gao, 2023) proposes a unified formulation that encompasses recent prominent
frameworks and loss weighting strategies for training diffusion models, as detailed below:

Lw(θ) =
1

2
Ex∼D,ϵ∼N (0,I),λ∼p(λ)

[
w(λ)

p(λ)
∥ϵ̂θ(xλ;λ)− ϵ∥22

]
, (6)

where D signifies the training dataset, noise ϵ is drawn from a standard Gaussian distribution, and
p(λ) is the distribution of noise intensities. This formulation provides a flexible framework that can
accommodate various diffusion training strategies. Different predicting targets, such as x0 and v,
can also be re-parameterized to ϵ-prediction. w(λ) denotes the loss weighting strategy. Although
adjusting w(λ) is theoretically equivalent to altering p(λ). In practical training, directly modifying
p(λ) to concentrate computational resources on training specific noise levels is more effective than
enlarging the loss weight on specific noise levels. Given these insights, our research focuses on
how to design an optimal p(λ) that can effectively allocate computational resources across different
noise levels. By carefully crafting the distribution of noise intensities, we aim to improve the overall
training process and the quality of the resulting diffusion models. With the unified formulation
providing a flexible framework for diffusion training, we can now apply these theoretical insights
to practical settings. By carefully designing the distribution of noise intensities, we can optimize
the training process and improve the performance of diffusion models in real-world applications.
In the following section, we will explore practical strategies for noise schedules that leverage these
insights to achieve better results.

2.4 PRACTICAL SETTINGS

Stable Diffusion 3 (Esser et al., 2024), EDM (Karras et al., 2022), and Min-SNR (Hang et al., 2023;
Crowson et al., 2024) find that the denoising tasks with medium noise intensity is most critical to
the overall performance of diffusion models. Therefore, we increase the probability of p(λ) when λ
is of moderate size, and obtain a new noise schedule according to Section 2.2.

Specifically, we investigate four novel noise strategies, named Cosine Shifted, Cosine Scaled,
Cauchy, and Laplace respectively. The detailed setting are listed in Table 1. Cosine Shifted use
the hyperparameter µ to explore where the maximum probability should be used. Cosine Scaled
explores how much the noise probability should be increased under the use of Cosine strategy to
achieve better results. The Cauchy distribution, provides another form of function that can adjust
both amplitude and offset simultaneously. The Laplace distribution is characterized by its mean µ
and scale b, controls both the magnitude of the probability and the degree of concentration of the
distribution. These strategies contain several hyperparameters, which we will explore in Section 3.5.
Unless otherwise stated, we report the best hyperparameter results.

By re-allocating the computation resources at different noise intensities, we can train the complete
denoising process. During sampling process, we align the sampled SNRs as the cosine schedule
to ensure a fair comparison. Specifically, first we sample {t0, t1, . . . , ts} from uniform distribution

U [0, 1], then get the corresponding SNRs from Cosine schedule: {α2
t0

σ2
t0

,
α2

t1

σ2
t1

, . . . ,
α2

ts

σ2
ts

}. According

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Method w(λ) p(λ)

Cosine e−λ/2 sech(λ/2)
Min-SNR e−λ/2 ·min{1, γe−λ} sech(λ/2)
Soft-Min-SNR e−λ/2 · γ/(eλ + γ) sech(λ/2)
FM-OT (1 + e−λ)sech2(λ/4) sech2(λ/4)/8
EDM (1 + e−λ)(0.52 + e−λ)N (λ; 2.4, 2.42) (0.52 + e−λ)N (λ; 2.4, 2.42)

Table 2: Comparison of different methods and related loss weighting strategies. The w(λ) is intro-
duced in Equation 6. The original p(λ) for Soft-Min-SNR (Crowson et al., 2024) was developed
within the EDM’s denoiser framework. In this study, we align it with the cosine schedule to ensure
a fair comparison.

to Equation 5, we get the corresponding {t′0, t′1, . . . , t′s} by inverting these SNR values through
the respective noise schedules. Finally, we use DDIM (Song et al., 2021) to sample with these
new calculated {t′}. It is important to note that, from the perspective of the noise schedule, how
to allocate the computation resource during inference is also worth reconsideration. We will not
explore it in this paper and leave this as future work.

3 EXPERIMENTS

3.1 IMPLEMENTATION DETAILS

Dataset. We conduct experiments on ImageNet (Deng et al., 2009) with 256× 256 and 512× 512
resolution. For each image, we follow the preprocessing in Rombach et al. (2022) to center crop
and encode images to latents. The resulting compressed latents have dimensions of 32× 32× 4 for
2562 images and 64 × 64 × 4 for 5122 images, effectively reducing the spatial dimensions while
preserving essential visual information.

Network Architecture. We adopt DiT-B from Peebles & Xie (2023) as our backbone. We replace
the last AdaLN Linear layer with vanilla linear. Others are kept the same as the original implemen-
tation. The patch size is set to 2 and the projected sequence length of 32× 32× 4 is 32

2 · 32
2 = 256.

The class condition is injected through the adaptive layernorm. In this study, our primary objective
is to demonstrate the effectiveness of our proposed noise schedule compared to existing schedules
under a fixed training budget, rather than to achieve state-of-the-art results. Consequently, we do not
apply our method to extra-large (XL) scale models.

Training Settings. We adopt the Adam optimizer (Kingma & Ba, 2014) with constant learning rate
1× 10−4. We set the batch size to 256 following Peebles & Xie (2023) and Gao et al. (2023). Each
model is trained for 500K iterations (about 100 epochs) if not specified. Our implementation is
primarily based on OpenDiT (Zhao et al., 2024) and experiments are mainly conducted on 8×16G
V100 GPUs. Different from the default discrete diffusion setting with linear noise schedule in the
code base, we implement the diffusion process in a continuous way. Specifically, we sample t from
uniform distribution U [0, 1].
Baselines and Metrics. We compare our proposed noise schedule with several baseline settings
in Table 2. For each setting, we sample images using DDIM (Song et al., 2021) with 50 steps.
Despite the noise strategy for different settings may be different, we ensure they share the same
λ = log SNR at each sampling step. This approach is adopted to exclusively investigate the impact
of the noise strategy during the training phase. Moreover, we report results with different classifier-
free guidance scales(Ho & Salimans, 2021), and the FID is calculated using 10K generated images.
We sample with three CFG scales and select the optimal one to better evaluate the actual performance
of different models.

3.2 COMPARISON WITH BASELINE SCHEDULES AND LOSS WEIGHT DESIGNS

This section details the principal findings from our experiments on the ImageNet-256 dataset, focus-
ing on the comparative effectiveness of various noise schedules and loss weightings in the context

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

100K 200K 300K 400K 500K

Training Iterations

10

15

20

25

30

35

F
ID

-1
0k

10.85

9.04

Const (cfg=2.0)

Min-SNR (cfg=2.0)

Soft-Min-SNR (cfg=2.0)

Laplace-(0, 0.5) (cfg=2.0)

100K 200K 300K 400K 500K

Training Iterations

7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0

F
ID

-1
0k

11.06

7.96

Const (cfg=3.0)

Min-SNR (cfg=3.0)

Soft-Min-SNR (cfg=3.0)

Laplace-(0, 0.5) (cfg=3.0)

Figure 2: Comparison between adjusting the noise schedule, adjusting the loss weights and baseline
setting. The Laplace noise schedule yields the best results and the fastest convergence speed.

of CFG values. Table 3 illustrates these comparisons, showcasing the performance of each method
in terms of the FID-10K score.

The experiments reveal that our proposed noise schedules, particularly Laplace, achieve the most
notable improvements over the traditional cosine schedule, as indicated by the bolded best scores
and the blue numbers representing the reductions compared to baseline’s best score of 10.85.

We also provide a comparison with methods that adjust the loss weight, including Min-SNR and
Soft-Min-SNR. Unless otherwise specified, the hyperparameter γ for both loss weighting schemes
is set to 5. We find that although these methods can achieve better results than the baseline, they
are still not as effective as our method of modifying the noise schedule. This indicates that deciding
where to allocate more computational resources is more efficient than adjusting the loss weight.
Compared with other noise schedules like EDM (Karras et al., 2022) and Flow Matching (Lipman
et al., 2022), we found that no matter which CFG value, our results significantly surpass theirs under
the same training iterations.

Method CFG=1.5 CFG=2.0 CFG=3.0

Cosine (Nichol & Dhariwal, 2021) 17.79 10.85 11.06
EDM (Karras et al., 2022) 26.11 15.09 11.56
FM-OT (Lipman et al., 2022) 24.49 14.66 11.98

Min-SNR (Hang et al., 2023) 16.06 9.70 10.43
Soft-Min-SNR (Crowson et al., 2024) 14.89 9.07 10.66
Cosine Shifted (Hoogeboom et al., 2023) 19.34 11.67 11.13
Cosine Scaled 12.74 8.04 11.02
Cauchy 12.91 8.14 11.02
Laplace 16.69 9.04 7.96 (-2.89)

Table 3: Comparison of various noise schedules and loss weightings on ImageNet-256, showing
the performance (in terms of FID-10K) of different methods under different CFG values. The best
results highlighted in bold and the blue numbers represent the improvement when compared with
the baseline FID 10.85. The line in gray is our suggested noise schedule.

Furthermore, we investigate the convergence speed of these method, and the results are shown in
Figure 2. It can be seen that adjusting the noise schedule converges faster than adjusting the loss
weight. Additionally, we also notice that the optimal training method may vary when using different
CFG values for inference, but adjusting the noise schedule generally yields better results.

3.3 ROBUSTNESS ON DIFFERENT PREDICTING TARGETS

We evaluate the effectiveness of our designed noise schedule across three commonly adopted pre-
diction targets: ϵ, x0, and v. The results are shown in Table 4.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

We observed that regardless of the prediction target, our proposed Laplace strategy significantly out-
performs the Cosine strategy. It’s noteworthy that as the Laplace strategy focuses the computation
on medium noise levels during training, the extensive noise levels are less trained, which could po-
tentially affect the overall performance. Therefore, we have slightly modified the inference strategy
of DDIM to start sampling from tmax = 0.99.

Predict Target Noise Schedule 100K 200k 300k 400k 500k

x0 Cosine 35.20 17.60 13.37 11.84 11.16
Laplace (Ours) 21.78 10.86 9.44 8.73 8.48

v Cosine 25.70 14.01 11.78 11.26 11.06
Laplace (Ours) 18.03 9.37 8.31 8.07 7.96

ϵ Cosine 28.63 15.80 12.49 11.14 10.46
Laplace (Ours) 27.98 13.92 11.01 10.00 9.53

Table 4: Effectiveness evaluated using FID-10K score on different predicting targets: x0, ϵ, and
v. The proposed Laplace schedule performs better than the baseline Cosine schedule along with
training iterations.

3.4 ROBUSTNESS ON HIGH RESOLUTION IMAGES

To explore the robustness of the adjusted noise schedule to different resolutions, we also designed
experiments on Imagenet-512. As pointed out by Chen (2023), the adding noise strategy will cause
more severe signal leakage as the resolution increases. Therefore, we need to adjust the hyperpa-
rameters of the noise schedule according to the resolution.

Specifically, the baseline Cosine schedule achieves the best performance when the CFG value equals
to 3. So we choose this CFG value for inference. Through systematic experimentation, we explored
the appropriate values for the Laplace schedule’s parameter b, testing within the range {0.5, 0.75,
1.0}, and determined that b = 0.75 was the most effective, resulting in an FID score of 9.09. This
indicates that despite the need for hyperparameter tuning, adjusting the noise schedule can still stably
bring performance improvements.

Noise Schedule Cosine Laplace

FID-10K 11.91 9.09 (-2.82)

Table 5: FID-10K results on ImageNet-512. All models are trained for 500K iterations.

3.5 ABLATION STUDY

We conduct an ablation study to analyze the impact of hyperparameters on various distributions of
p(λ), which are enumerated below.

Laplace distribution, known for its simplicity and exponential decay from the center, is straight-
forward to implement. We leverage its symmetric nature and adjust the scale parameter to center
the peak at the middle timestep. We conduct experiments with different Laplace distribution scales
b ∈ {0.25, 0.5, 1.0, 2.0, 3.0}. The results are shown in Figure 3. The baseline with standard cosine
schedule achieves FID score of 17.79 with CFG=1.5, 10.85 with CFG=2.0, and 11.06 with CFG=3.0
after 500K iterations. We can see that the model with Laplace distribution scale b = 0.5 achieves
the best performance 7.96 with CFG=3.0, which is relatively 26.6% better than the baseline.

Cauchy distribution is another heavy-tailed distribution that can be used for noise schedule design.
The distribution is not symmetric when the location parameter is not 0. We conduct experiments
with different Cauchy distribution parameters and the results are shown in Table 6. Cauchy(0, 0.5)
means 1

π
γ

(λ−µ)2+γ2 with µ = 0, γ = 0.5. We can see that the model with µ = 0 achieve better
performance than the other two settings when fixing γ to 1. It means that the model with more
probability mass around λ = 0 performs better than others biased to negative or positive directions.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

0.5 1.0 1.5 2.0 2.5 3.0

b

10

15

20

25

30

F
ID

-1
0
k

12.93

8.197.96

17.79

10.85
11.06

Laplace, CFG=1.5

Laplace, CFG=2.0

Laplace, CFG=3.0

Baseline, CFG=1.5

Baseline, CFG=2.0

Baseline, CFG=3.0

Figure 3: FID-10K results on ImageNet-256 with location parameter µ fixed to 0 and different
Laplace distribution scales b in {0.25, 0.5, 1.0, 2.0, 3.0}. Baseline denotes standard cosine schedule.

Cauchy(0, 0.5) Cauchy(0, 1) Cauchy(-1, 1) Cauchy(1, 1)

CFG=1.5 12.91 14.32 18.12 16.60
CFG=2.0 8.14 8.93 10.38 10.19
CFG=3.0 11.02 11.26 10.81 10.94

Table 6: FID-10k results on ImageNet-256 with different Cauchy distribution parameters.

Cosine Shifted (Hoogeboom et al., 2023) is the shifted version of the standard cosine schedule. We
evaluate the schedules with both positive and negative µ values to comprehensively assess its impact
on model performance. Shifted with µ = 1 achieves FID-10k score {19.34, 11.67, 11.13} with
CFG {1.5, 2.0, 3.0}. Results with shifted value µ = −1 are {19.30, 11.48, 11.28}. Comparatively,
both scenarios demonstrate inferior performance relative to the baseline cosine schedule (µ = 0).
Additionally, by examining the data presented in Table 6, we find concentrated on λ = 0 can best
improve the results.

Cosine Scaled is also a modification of Cosine schedule. When s = 1, it becomes the standard
Cosine version. s > 1 means sampling more heavily around λ = 0 while s < 1 means sampling
more uniformly of all λ. We report related results in Table 7. Our experimental results reveal a clear
trend: larger values of s(s > 1) consistently outperform the baseline, highlighting the benefits of
focused sampling near λ = 0. However, it’s crucial to note that s should not be excessively large
and must remain within a valid range to maintain stable training dynamics. For example, decreasing
1/s from 0.5 to 0.25 hurts the performance and cause the FID score to drop. Striking the right
balance is key to optimizing performance. In our experiments, a model trained with s = 2 achieved
a remarkable score of 8.04, representing a substantial 25.9% improvement over the baseline.

The experiments with various noise schedules, including Laplace, Cauchy, Cosine Shifted, and Co-
sine Scaled, reveal a shared phenomenon: models perform better when the noise distribution or
schedule is concentrated around λ = 0. For the Laplace distribution, a scale of b = 0.5 yielded
the best performance, outperforming the baseline by 26.6%. In the case of the Cauchy distribution,
models with a location parameter µ = 0 performed better than those with µ values biased towards
negative or positive directions. The Cosine Shifted schedule showed inferior performance when
shifted away from µ = 0, while the Cosine Scaled schedule demonstrated that larger values of s
(sampling more heavily around λ = 0) consistently outperformed the baseline, with an optimal im-
provement of 25.9% at s = 2. This consistent trend suggests that focusing the noise distribution
or schedule near λ = 0 is beneficial for model performance. While these different schedules take
various mathematical forms, they all achieve similar optimal performance when given equivalent
training budgets. The specific mathematical formulation is less crucial than the underlying design
philosophy: increasing the sampling probability of intermediate noise levels. This principle provides
a simple yet effective guideline for designing noise schedules.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

1/s 1.3 1.1 0.5 0.25

CFG=1.5 39.74 22.60 12.74 15.83
CFG=2.0 23.38 12.98 8.04 8.64
CFG=3.0 13.94 11.16 11.02 8.26

Table 7: FID-10k results on ImageNet-256 with different scales of Cosine Scaled distribution.

4 RELATED WORKS

EFFICIENT DIFFUSION TRAINING

Generally speaking, the diffusion model uses a network with shared parameters to denoise different
noise intensities. However, the different noise levels may introduce conflicts during training, which
makes the convergence slow. P2 (Choi et al., 2022) improves image generation performance by
prioritizing the learning of perceptually rich visual concepts during training through a redesigned
weighting scheme. Min-SNR (Hang et al., 2023) seeks the Pareto optimal direction for different
tasks, achieves better convergence on different predicting targets. HDiT (Crowson et al., 2024)
propose a soft version of Min-SNR to further improve the efficiency on high resolution image syn-
thesis. Stable Diffusion 3 (Esser et al., 2024) puts more sampling weight on the middle timesteps by
multiplying the distribution of logit normal distribution.

On the other hand, architecture modification is also explored to improve diffusion training.
DiT (Peebles & Xie, 2023) proposes adaptive Layer Normalization with zero initialization to im-
prove the training of Transformer architectures. Building upon this design, MM-DiT (Esser et al.,
2024) extends the approach to a multi-modal framework (text to image) by incorporating separate
sets of weights for each modality. HDiT (Crowson et al., 2024) uses a hierarchical transformer
structure for efficient, linear-scaling, high-resolution image generation. A more robust ADM UNet
with better training dynamics is proposed in EDM2 (Karras et al., 2024) by preserving activation,
weight, and update magnitudes. In this work, we directly adopt the design from DiT (Peebles &
Xie, 2023) and focus on investigating the importance sampling schedule in diffusion models.

NOISE SCHEDULE DESIGN FOR DIFFUSION MODELS

The design of the noise schedule plays a critical role in training diffusion models. In DDPM, Ho
et al. (2020) propose linear schedule for the noise level, which was later adopted by Stable Dif-
fusion (Rombach et al., 2022) version 1.5 and 2.0. However, the linear noise schedule introduces
signal leakage at the highest noise step (Lin et al., 2024; Tang et al., 2023), hindering performance
when sampling starts from a Gaussian distribution. Improved DDPM (Nichol & Dhariwal, 2021)
introduces a cosine schedule aimed at bringing the sample with the highest noise level closer to
pure Gaussian noise. EDM (Karras et al., 2022) proposes a new continuous framework and make
the logarithm of noise intensity sampled from a Gaussian distribution. Flow matching with optimal
transport (Lipman et al., 2022; Liu et al., 2022) linearly interpolates the noise and data point as the
input of flow-based models. Chen (2023) underscored the need for adapting the noise schedule
according to the image resolution. Hoogeboom et al. (2023) found that cosine schedule exhibits
superior performance for images of 32× 32 and 64× 64 resolutions and propose to shift the cosine
schedule to train on images with higher resolutions.

5 CONCLUSION

In this paper, we present a novel method for enhancing the training of diffusion models by strate-
gically redefining the noise schedule. Our theoretical analysis demonstrates that this approach is
equivalent to performing importance sampling on the noise. Empirical results show that our pro-
posed Laplace noise schedule, which focuses computational resources on mid-range noise levels,
yields superior performance compared to adjusting loss weights under constrained computational
budgets. This study not only contributes significantly to the development of efficient training tech-
niques for diffusion models but also offers promising potential for future large-scale applications.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

REFERENCES

Yogesh Balaji, Seungjun Nah, Xun Huang, Arash Vahdat, Jiaming Song, Karsten Kreis, Miika
Aittala, Timo Aila, Samuli Laine, Bryan Catanzaro, Tero Karras, and Ming-Yu Liu. ediff-i: Text-
to-image diffusion models with ensemble of expert denoisers. arXiv preprint arXiv:2211.01324,
2022.

Fan Bao, Shen Nie, Kaiwen Xue, Yue Cao, Chongxuan Li, Hang Su, and Jun Zhu. All are worth
words: A vit backbone for diffusion models. arXiv preprint arXiv:2209.12152, 2022.

Christopher M Bishop and Nasser M Nasrabadi. Pattern recognition and machine learning, vol-
ume 4. Springer, 2006.

Tim Brooks, Bill Peebles, Connor Holmes, Will DePue, Yufei Guo, Li Jing, David Schnurr, Joe
Taylor, Troy Luhman, Eric Luhman, Clarence Ng, Ricky Wang, and Aditya Ramesh. Video
generation models as world simulators. 2024. URL https://openai.com/research/
video-generation-models-as-world-simulators.

Soravit Changpinyo, Piyush Sharma, Nan Ding, and Radu Soricut. Conceptual 12m: Pushing
web-scale image-text pre-training to recognize long-tail visual concepts. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pp. 3558–3568, 2021.

Ting Chen. On the importance of noise scheduling for diffusion models. arXiv preprint
arXiv:2301.10972, 2023.

Jooyoung Choi, Jungbeom Lee, Chaehun Shin, Sungwon Kim, Hyunwoo Kim, and Sungroh Yoon.
Perception prioritized training of diffusion models. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 11472–11481, 2022.

Katherine Crowson, Stefan Andreas Baumann, Alex Birch, Tanishq Mathew Abraham, Daniel Z
Kaplan, and Enrico Shippole. Scalable high-resolution pixel-space image synthesis with hourglass
diffusion transformers. In Forty-first International Conference on Machine Learning, 2024.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers for
high-resolution image synthesis. arXiv preprint arXiv:2403.03206, 2024.

Zhida Feng, Zhenyu Zhang, Xintong Yu, Yewei Fang, Lanxin Li, Xuyi Chen, Yuxiang Lu, Jiaxiang
Liu, Weichong Yin, Shikun Feng, et al. Ernie-vilg 2.0: Improving text-to-image diffusion model
with knowledge-enhanced mixture-of-denoising-experts. arXiv preprint arXiv:2210.15257, 2022.

Shanghua Gao, Pan Zhou, Ming-Ming Cheng, and Shuicheng Yan. Masked diffusion transformer
is a strong image synthesizer. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 23164–23173, 2023.

Shuyang Gu, Dong Chen, Jianmin Bao, Fang Wen, Bo Zhang, Dongdong Chen, Lu Yuan, and
Baining Guo. Vector quantized diffusion model for text-to-image synthesis. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition, pp. 10696–10706, 2022.

Tiankai Hang, Shuyang Gu, Chen Li, Jianmin Bao, Dong Chen, Han Hu, Xin Geng, and Baining
Guo. Efficient diffusion training via min-snr weighting strategy. In Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV), pp. 7441–7451, October 2023.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. In NeurIPS 2021 Workshop on
Deep Generative Models and Downstream Applications, 2021.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
Neural Information Processing Systems, 33:6840–6851, 2020.

10

https://openai.com/research/video-generation-models-as-world-simulators
https://openai.com/research/video-generation-models-as-world-simulators

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Jonathan Ho, Tim Salimans, Alexey A. Gritsenko, William Chan, Mohammad Norouzi, and
David J. Fleet. Video diffusion models. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave,
and Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems, 2022. URL
https://openreview.net/forum?id=f3zNgKga_ep.

Emiel Hoogeboom, Jonathan Heek, and Tim Salimans. simple diffusion: End-to-end diffusion for
high resolution images. In International Conference on Machine Learning, pp. 13213–13232.
PMLR, 2023.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of
diffusion-based generative models. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and
Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems, 2022. URL
https://openreview.net/forum?id=k7FuTOWMOc7.

Tero Karras, Miika Aittala, Jaakko Lehtinen, Janne Hellsten, Timo Aila, and Samuli Laine. Analyz-
ing and improving the training dynamics of diffusion models. In Proc. CVPR, 2024.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In International Conference
on Learning Representations, 2014.

Diederik Kingma, Tim Salimans, Ben Poole, and Jonathan Ho. Variational diffusion models. Ad-
vances in neural information processing systems, 34:21696–21707, 2021.

Diederik P Kingma and Ruiqi Gao. Understanding diffusion objectives as the ELBO with simple
data augmentation. In Thirty-seventh Conference on Neural Information Processing Systems,
2023. URL https://openreview.net/forum?id=NnMEadcdyD.

Shanchuan Lin, Bingchen Liu, Jiashi Li, and Xiao Yang. Common diffusion noise schedules and
sample steps are flawed. In Proceedings of the IEEE/CVF winter conference on applications of
computer vision, pp. 5404–5411, 2024.

Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow match-
ing for generative modeling. In The Eleventh International Conference on Learning Representa-
tions, 2022.

Xingchao Liu, Chengyue Gong, et al. Flow straight and fast: Learning to generate and transfer data
with rectified flow. In The Eleventh International Conference on Learning Representations, 2022.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild.
In Proceedings of International Conference on Computer Vision (ICCV), December 2015.

Alex Nichol, Heewoo Jun, Prafulla Dhariwal, Pamela Mishkin, and Mark Chen. Point-e: A system
for generating 3d point clouds from complex prompts. arXiv preprint arXiv:2212.08751, 2022.

Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models.
In International Conference on Machine Learning, pp. 8162–8171. PMLR, 2021.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 4195–4205, 2023.

Adam Polyak, Amit Zohar, Andrew Brown, Andros Tjandra, Animesh Sinha, Ann Lee, Apoorv
Vyas, Bowen Shi, Chih-Yao Ma, Ching-Yao Chuang, et al. Movie gen: A cast of media founda-
tion models. arXiv preprint arXiv:2410.13720, 2024.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
conditional image generation with clip latents. arXiv preprint arXiv:2204.06125, 2022.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pp. 10684–10695, 2022.

11

https://openreview.net/forum?id=f3zNgKga_ep
https://openreview.net/forum?id=k7FuTOWMOc7
https://openreview.net/forum?id=NnMEadcdyD

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily Denton, Seyed Kam-
yar Seyed Ghasemipour, Raphael Gontijo-Lopes, Burcu Karagol Ayan, Tim Salimans, Jonathan
Ho, David J. Fleet, and Mohammad Norouzi. Photorealistic text-to-image diffusion mod-
els with deep language understanding. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave,
and Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems, 2022. URL
https://openreview.net/forum?id=08Yk-n5l2Al.

Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models. In
International Conference on Learning Representations, 2022. URL https://openreview.
net/forum?id=TIdIXIpzhoI.

Uriel Singer, Adam Polyak, Thomas Hayes, Xi Yin, Jie An, Songyang Zhang, Qiyuan Hu, Harry
Yang, Oron Ashual, Oran Gafni, Devi Parikh, Sonal Gupta, and Yaniv Taigman. Make-a-
video: Text-to-video generation without text-video data. In The Eleventh International Confer-
ence on Learning Representations, 2023. URL https://openreview.net/forum?id=
nJfylDvgzlq.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In Interna-
tional Conference on Learning Representations, 2021.

Zhicong Tang, Shuyang Gu, Chunyu Wang, Ting Zhang, Jianmin Bao, Dong Chen, and Baining
Guo. Volumediffusion: Flexible text-to-3d generation with efficient volumetric encoder. arXiv
preprint arXiv:2312.11459, 2023.

Tengfei Wang, Bo Zhang, Ting Zhang, Shuyang Gu, Jianmin Bao, Tadas Baltrusaitis, Jingjing Shen,
Dong Chen, Fang Wen, Qifeng Chen, et al. Rodin: A generative model for sculpting 3d digital
avatars using diffusion. arXiv preprint arXiv:2212.06135, 2022.

S. Yang, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole. Score-based genera-
tive modeling through stochastic differential equations. In International Conference on Learning
Representations, 2021.

Xuanlei Zhao, Zhongkai Zhao, Ziming Liu, Haotian Zhou, Qianli Ma, and Yang You. Opendit:
An easy, fast and memory-efficient system for dit training and inference. https://github.
com/NUS-HPC-AI-Lab/OpenDiT, 2024.

12

https://openreview.net/forum?id=08Yk-n5l2Al
https://openreview.net/forum?id=TIdIXIpzhoI
https://openreview.net/forum?id=TIdIXIpzhoI
https://openreview.net/forum?id=nJfylDvgzlq
https://openreview.net/forum?id=nJfylDvgzlq
https://github.com/NUS-HPC-AI-Lab/OpenDiT
https://github.com/NUS-HPC-AI-Lab/OpenDiT

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 DETAILED IMPLEMENTATION FOR NOISE SCHEDULE

We provide a simple PyTorch implementation for the Laplace noise schedule and its application in
training. This example can be adapted to other noise schedules, such as the Cauchy distribution,
by replacing the laplace noise schedule function. The model accepts noisy samples xt,
timestep t, and an optional condition tensor c as inputs. This implementation supports prediction of
{x0,v, ϵ}.

1 import torch
2

3

4 def laplace_noise_schedule(mu=0.0, b=0.5):
5 # refer to Table 1
6 lmb = lambda t: mu - b * torch.sign(0.5 - t) * \
7 torch.log(1 - 2 * torch.abs(0.5 - t))
8 snr_func = lambda t: torch.exp(lmb(t))
9 alpha_func = lambda t: torch.sqrt(snr_func(t) / (1 + snr_func(t)))

10 sigma_func = lambda t: torch.sqrt(1 / (1 + snr_func(t)))
11

12 return alpha_func, sigma_func
13

14

15 def training_losses(model, x, timestep, condition, noise=None,
16 predict_target="v", mu=0.0, b=0.5):
17

18 if noise is None:
19 noise = torch.randn_like(x)
20

21 alpha_func, sigma_func = laplace_noise_schedule(mu, b)
22 alphas = alpha_func(timestep)
23 sigmas = sigma_func(timestep)
24

25 # add noise to sample
26 x_t = alphas.view(-1, 1, 1, 1) * x + sigmas.view(-1, 1, 1, 1) * noise
27 # velocity
28 v_t = alphas.view(-1, 1, 1, 1) * noise - sigmas.view(-1, 1, 1, 1) * x
29

30 model_output = model(x_t, timestep, condition)
31 if predict_target == "v":
32 loss = (v_t - model_output) ** 2
33 elif predict_target == "x0":
34 loss = (x - model_output) ** 2
35 else: # predict_target == "noise":
36 loss = (noise - model_output) ** 2
37

38 return loss.mean()

A.2 DETAILS FOR PROPOSED LAPLACE AND CAUCHY DESIGN

For a Laplace distribution with location parameter µ and scale parameter b, the probability density
function (PDF) is given by:

p(λ) =
1

2b
exp

(
−|λ− µ|

b

)
(7)

The cumulative distribution function (CDF) can be derived as follows:

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

1− t =

∫ λ

−∞
p(x) dx

=

∫ λ

−∞

1

2b
exp

(
−|x− µ|

b

)
dx

=
1

2

(
1 + sgn(λ− µ)

(
1− exp

(
−|λ− µ|

b

)))
To obtain λ as a function of t, we solve the inverse function:

λ = µ− bsgn(0.5− t) ln(1− 2|t− 0.5|)

For a Cauchy distribution with location parameter µ and scale parameter γ, the PDF is given by:

f(λ;µ, γ) =
1

πγ

[
1 +

(
λ− µ

γ

)2
]−1

(8)

The corresponding CDF is:

F (λ;µ, γ) =
1

2
+

1

π
arctan

(
λ− µ

γ

)
(9)

To derive λ(t), we proceed as follows:

1− t = F (λ;µ, γ) (10)

1− t =
1

2
+

1

π
arctan

(
λ− µ

γ

)
(11)

t =
1

2
− 1

π
arctan

(
λ− µ

γ

)
(12)

Solving for λ, we obtain:

λ(t) = µ+ γ tan
(π
2
(1− 2t)

)
(13)

A.3 COMBINATION BETWEEN NOISE SCHEDULE AND TIMESTEP IMPORTANCE SAMPLING

We observe that incorporating importance sampling of timesteps into the cosine schedule bears
similarities to the Laplace schedule. Typically, the distribution of timestep t is uniform U [0, 1].
To increase the sampling frequency of middle-level timesteps, we propose modifying the sampling
distribution to a simple polynomial function:

p(t′) =

{
C · t′n, t′ < 1

2

C · (1− t′)n , t′ ≥ 1
2 ,

(14)

where C = (n+ 1)2n is the normalization factor ensuring that the cumulative distribution function
(CDF) equals 1 at t = 1.

To sample from this distribution, we first sample t uniformly from (0, 1) and then map it using the
following function:

t′ =

{(
1
2

) n
n+1 t

1
n+1 , t < 1

2

1−
(
1
2

) n
n+1 (1− t)

1
n+1 , t ≥ 1

2 ,
(15)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

We incorporate the polynomial sampling of t into the cosine schedule λ = −2 log tan πt
2 , whose

inverse function is t = 2
π arctan exp

(
−λ

2

)
. Let us first consider the situation where t < 1

2 :

(
1

2

) n
n+1

t
1

n+1 =
2

π
arctan exp

(
−λ

2

)
(16)

t = 2n
(
2

π
arctan exp

(
−λ

2

))n+1

(17)

We then derive the expression with respect to dλ:

dt

dλ
= 2n

(
2

π

)n+1

(n+ 1)

(
arctan exp

(
−λ

2

))n
1

1 + exp(−λ)

1

−2
exp(−λ/2) (18)

p(λ) = (n+ 1)
4n

π(n+1)
arctann exp

(
−λ

2

)
exp(− 1

2λ)

1 + exp(−λ)
(19)

(20)

Considering symmetry, we obtain the final distribution with respect to λ as follows:

p(λ) = (n+ 1)
4n

π(n+1)
arctann exp

(
−|λ|

2

)
exp(− 1

2 |λ|)
1 + exp(−|λ|) (21)

We visualize the schedule discussed above and compare it with Laplace schedule in Figure 4. We
can see that b = 1 for Laplace and n = 2 for cosine-ply matches well. We also conduct experiments
on such schedule and present results in Table 8. They perform similar and both better than the
standard cosine schedule.

We visualize the schedules discussed above and compare them with the Laplace schedule in Fig-
ure 4. The results demonstrate that Laplace with b = 1 and cosine-ply with n = 2 exhibit a close
correspondence. To evaluate the performance of these schedules, we conducted experiments and
present the results in Table 8. Both the Laplace and cosine-ply schedules show similar performance,
and both outperform the standard cosine schedule.

Iterations 100,000 200,000 300,000 400,000 500,000

Cosine-ply (n = 2) 28.65 13.77 10.06 8.69 7.98
Laplace (b = 1) 28.89 13.90 10.17 8.85 8.19

Table 8: Performance comparison of cosine-ply (n = 2) and Laplace (µ = 1) schedules over
different iteration counts

A.4 FLOW MATCHING WITH LOGIT-NORMAL SAMPLING

In Stable Diffusion 3 (Esser et al., 2024) and Movie Gen (Polyak et al., 2024), logit-normal sampling
is applied to improve the training efficiency of flow models. To better understand this approach, we
present a detailed derivation from the logit-normal distribution to the probability density function of
logSNR λ.

Let the Logit transformation X = logit(t) of random variable t follow a normal distribution:

X ∼ N (µ, σ2) (22)

Then, the probability density function of t is:

p(t;µ, σ) =
1

σ · t · (1− t) ·
√
2π

exp

(
− (logit(t)− µ)2

2σ2

)
, t ∈ (0, 1) (23)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Figure 4: Visualization of p(λ) for Laplace schedule and cosine schedule with polynomial timestep
sampling.

where logit(t) = log
(

t
1−t

)
, and µ and σ are constants.

Consider the variable transformation:

λ = 2 log

(
1− t

t

)
(24)

Our goal is to find the probability density function p(λ) of random variable λ.

First, we solve for t in terms of λ:

λ

2
= log

(
1− t

t

)
e

λ
2 =

1− t

t

1− t = te
λ
2

1 = t
(
1 + e

λ
2

)
t(λ) =

1

1 + e
λ
2

Next, we calculate the Jacobian determinant
∣∣ dt
dλ

∣∣:
t(λ) =

1

1 + e
λ
2

dt

dλ
= − e

λ
2 · 1

2

(1 + e
λ
2)2∣∣∣∣ dtdλ

∣∣∣∣ = e
λ
2

2(1 + e
λ
2)2

Using the variable transformation formula:

p(λ) = p(t(λ);µ, σ) ·
∣∣∣∣ dtdλ

∣∣∣∣ (25)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

We calculate p(t(λ);µ, σ):

logit(t(λ)) = log

(
t(λ)

1− t(λ)

)
= log

 1

1+e
λ
2

e
λ
2

1+e
λ
2

 = −λ

2

p(t(λ);µ, σ) =
(1 + e

λ
2)2

σe
λ
2

√
2π

exp

(
− (µ+ λ

2)
2

2σ2

)

Multiplying by the Jacobian determinant:

p(λ) =
(1 + e

λ
2)2

σe
λ
2

√
2π

exp

(
− (µ+ λ

2)
2

2σ2

)
· e

λ
2

2(1 + e
λ
2)2

=
1

2σ
√
2π

exp

(
− (λ+ 2µ)2

8σ2

)
Therefore, the probability density function of λ is:

p(λ) =
1

2σ
√
2π

exp

(
− (λ+ 2µ)2

8σ2

)
, λ ∈ (−∞,+∞) (26)

This shows that λ follows a normal distribution with mean −2µ and variance 4σ2:

λ ∼ N (−2µ, 4σ2) (27)

The mean and variance are:

E[λ] = −2µ

Var(λ) = 4σ2

To verify normalization, we integrate p(λ) over its domain:∫ +∞

−∞
p(λ) dλ =

∫ +∞

−∞

1

2σ
√
2π

exp

(
− (λ+ 2µ)2

8σ2

)
dλ

Let z =
λ+ 2µ

2
√
2σ

⇒ dλ = 2
√
2σ dz

=
2
√
2σ

2σ
√
2π

∫ +∞

−∞
e−z2

dz

=
1√
π
· √π = 1

Thus, p(λ) satisfies the normalization condition for probability density functions.

We compare the standard cosine scheudle (Nichol & Dhariwal, 2021), Flow Matching (Liu et al.,
2022; Lipman et al., 2022), and Flow Matching with Logit-normal sampling (Esser et al., 2024;
Polyak et al., 2024). The probability density functions of these schedules are visualized in Figure 5.
Our analysis reveals that Flow Matching with Logit-normal sampling concentrates more probability
mass around λ = 0 compared to both the standard Cosine and Flow Matching schedules, resulting
in improved training efficiency (Esser et al., 2024; Polyak et al., 2024).

A.5 IMPORTANCE OF TIME INTERVALS

To investigate the significance of training intervals, we conducted controlled experiments using a
simplified setup. We divided the time range (0, 1) into four equal segments: bini =

(
i
4 ,

i+1
4

)
, i =

0, 1, 2, 3. We first trained a base model M over the complete range (0, 1) for 1M iterations, then

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0

λ

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

p
(λ

)

Probability Density Functions

Flow Matching w/ Logit-Normal

Flow Matching w/o Logit-Normal

Cosine

Figure 5: Comparison of probability density functions for different flow matching approaches. The
plot shows three distributions: Flow Matching with Logit-Normal sampling (blue), Flow Matching
without Logit-Normal sampling (green), and the Cosine schedule (orange).

fine-tuned it separately on each bin for 140k iterations to obtain four specialized checkpoints mi, i =
0, 1, 2, 3.

For evaluation, we designed experiments using both the base model M and fine-tuned checkpoints
mi. To assess the importance of each temporal segment, we selectively employed the corresponding
fine-tuned checkpoint during its specific interval while maintaining the base model for remaining
intervals. For example, when evaluating bin0, we used m0 within its designated interval and M
elsewhere.

The FID results across these four experimental configurations are presented in Figure 6. Our anal-
ysis reveals that optimizing intermediate timesteps (bin1 and bin2) yields superior performance,
suggesting the critical importance of these temporal regions in the diffusion process.

Figure 6: Comparative analysis of interval-specific fine-tuning effects. When sampling within inter-
val
(
1
4 ,

2
4

)
, “Bin1” indicates the use of fine-tuned weights m1, while M is used for other intervals.

“Baseline” represents the use of base model M throughout all intervals, and “All Tuned” denotes
the application of interval-specific fine-tuned models within their respective ranges.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

A.6 IMPORTANCE SAMPLING AS LOSS WEIGHT

We investigate the comparative effectiveness of our approach when applied as a noise schedule
versus a loss weighting mechanism. We adopt Equation 21 as our primary noise schedule due to
its foundation in the cosine schedule and demonstrated superior FID performance. To evaluate its
versatility, we reformulate the importance sampling as a loss weighting strategy and compare it
against established weighting schemes, including Min-SNR and Soft-Min-SNR.

Cosine Cosine-Ply (n=2) Min-SNR Soft-Min-SNR Cosine-Ply as weight

FID-10K 10.85 7.98 9.70 9.07 8.88

Table 9: Quantitative comparison of different noise scheduling strategies and loss weighting
schemes. Lower FID scores indicate better performance.

Figure 7 illustrates the loss weight derived from Cosine-Ply (n=2) schedule alongside Min-SNR and
Soft-Min-SNR. We can observe that under the setting of predict target as v, Min-SNR and Soft-Min-
SNR can be seemed as putting more weight on intermediate levels, aligning with our earlier findings
on the importance of middle-level noise densities.

0.0 0.2 0.4 0.6 0.8 1.0

t

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

W
ei

gh
t

va
lu

e

Min-SNR

Soft-Min-SNR

Cosine-Ply(n = 2)

Figure 7: Visualization of different loss weight schemes.

A.7 ADDITIONAL EXPERIMENTS ON OTHER DATASETS

ImageNet, comprising over one million natural images, has been widely adopted as a benchmark
dataset for validating improvements in diffusion models (Peebles & Xie, 2023; Karras et al., 2024).

In addition to ImageNet, we evaluate our approach on the CelebA (Liu et al., 2015) dataset (64 ×
64 resolution in pixel space), which consists of face images. We employ a DiT architecture (12
layers, embedding dimension of 512, 8 attention heads, and patch size of 4) using different noise
schedules. This is an unconditional generation setting within a single domain. We present FID
results as follows:

FID ↓ 100k 150k

cosine 10.0696 7.93795
Laplace (ours) 7.93795 6.58359

Table 10: FID scores on CelebA dataset at different training iterations

We also follow Stable Diffusion 3 (Esser et al., 2024), train on a more complicated dataset
CC12M (Changpinyo et al., 2021) dataset (over 12M image-text pairs) and report the FID results

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

here. We download the dataset using webdataset. We train a DiT-base model using CLIP as text
conditioner. The images are cropped and resized to 256×256 resolution, compressed to 32×32×4
latents and trained for 200k iterations at batch size 256.

FID ↓ 200k

cosine 58.3619
Laplace (ours) 54.3492 (-4.0127)

Table 11: FID scores on CC12M dataset at 200k iterations

Our method demonstrated strong generalization capabilities across both unconditional image gener-
ation using the CelebA dataset and text-to-image generation using the CC12M dataset.

A.8 ADDITIONAL VISUAL RESULTS

We present addition visual results in Figure 8 to demonstrate the differences in generation quality
between models trained with Cosine and our proposed Laplace schedule. Each case presents two
rows of outputs, where the upper row shows results from the cosine schedule and the lower row
displays results from our Laplace schedule. Each row contains five images corresponding to models
trained for 100k, 200k, 300k, 400k, and 500k iterations, illustrating the progression of generation
quality across different training stages. For each case, the initial noise inputs are identical. As
shown in the results, our method achieves faster convergence in both basic object formation (at
100k iterations) and fine detail refinement, demonstrating superior learning efficiency throughout
the training process.

Cosine

Ours

Cosine

Cosine Cosine

Cosine

Cosine

Ours

Ours Ours

Ours

Ours

Figure 8: Visual comparison of results generated by model trained by cosine schedule and our
proposed Laplace. For each case, the above row is generated by cosine schedule, the below is
generated by Laplace. The 5 images from left to right represents the results generated by the model
trained for 100k, 200k, 300k, 400k, and 500k iterations.

20

	Introduction
	Method
	Preliminaries
	blueNoise Schedule Design from A Probability Perspective
	Unified Formulation for Diffusion Training
	Practical Settings

	Experiments
	implementation Details
	Comparison with baseline schedules and loss weight designs
	Robustness on different predicting targets
	Robustness on high resolution images
	Ablation Study

	Related Works
	Conclusion
	Appendix
	Detailed Implementation for Noise Schedule
	Details for proposed Laplace and Cauchy Design
	Combination between noise schedule and timestep importance sampling
	Flow Matching with Logit-Normal Sampling
	Importance of Time Intervals
	Importance Sampling as Loss Weight
	Additional experiments on other datasets
	Additional Visual Results

