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ABSTRACT

Temporal difference (TD) learning represents a fascinating paradox: It is the prime
example of a divergent algorithm that has not vanished after its instability was
proven. On the contrary, TD continues to thrive in reinforcement learning (RL),
suggesting that it provides significant compensatory benefits. Empirical evidence
supports this, as many RL tasks require substantial computational resources, and
TD delivers a crucial speed advantage that makes these tasks solvable. However,
it is limited to cases where the divergence issues are absent or negligible for un-
known reasons. So far, the theoretical foundations behind the speed-up are also
unclear. In our work, we address these shortcomings of TD by employing tech-
niques for analyzing iterative schemes developed over the past century. Our anal-
ysis reveals that TD possesses a mechanism that enables efficient mapping into the
smallest eigenspace—an operation previously thought to necessitate costly matrix
inversion. Notably, this effect is independent of the conditioning of the problem,
making it particularly well-suited for RL tasks characterized by rapidly increasing
condition numbers, e.g. through delayed rewards. Our novel theoretical under-
standing allows us to develop a scalable algorithm that integrates TD’s speed with
the reliable convergence of gradient descent (GD). We additionally validate these
improvements through a rigorous mathematical proof in two dimensions, as well
as experiments on problems where TD and GD falter, providing valuable insights
into the future of optimization techniques in artificial intelligence.

1 INTRODUCTION

Temporal difference (TD) learning is a training technique for prediction models in multi-step tasks,
mostly known for its application to value prediction in reinforcement learning (RL, |Sutton, 1988}
Kaelbling et al.,|1996; |Arulkumaran et al.,|2017). By estimating expected future rewards, TD learn-
ing helps agents make informed decisions based on their interactions with the environment. This ap-
proach has proven successful in various domains such as robotics (Littman et al.,|1995; |Rajeswaran
et al., [2017), game playing (Mnih et al.l 2015} Lample & Chaplot, 2017)), and autonomous driving
(Shalev-Shwartz et al., 2016; Sallab et al., 2017), by addressing challenges like delayed rewards
where the impact of actions is not immediately clear.

Behind these successes of TD hides a profound contrast in how information is processed over time
compared to traditional time prediction methods, like autoregressive models. Such models are 1-
step predictors and are often trained via unrolling (Goodfellow et al.| |2016), which is an n-step
update rule. This is suboptimal since predicting n steps with 1-step models leads to exponentially
accumulating errors, and an n-step update rule requires storing n-step trajectories. By contrast,
value functions combined with TD offer n-step predictors via a 1-step update rule, scoring in terms
of both mathematical and computational scalability.

However, challenges arise during optimization: TD objectives are usually minimized with a non-
gradient method, harboring the potential for divergence (Baird,19935)). Nonetheless, it often succeeds
in finding good solutions quickly. In contrast, provably convergent algorithms such as gradient
descent (GD) and its variants are impractically slow in RL, despite being the leading optimization
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methods in deep learning. This difference in speed is well-documented empirically (Sutton & Barto,
2018)), but the theoretical reasons behind it are unclear. As a consequence, attempts of unifying GD
and TD to arrive at a convergent, fast optimization method are often based on intuition. The lack of
theoretical understanding means there are no design principles to guide their development.

Our paper addresses this issue with the following contributions:

* We provide a theoretical foundation to explain why TD can be fast starting from the long-
established link between condition numbers and the speed of gradient methods. We gener-
alize these ideas to non-gradient methods, such as TD.

* The insights into what makes TD fast uniquely position us to identify the necessary modifi-
cations. We demonstrate with a simple method how a unification of GD and TD preserving
their positive attributes can look like.

2 BACKGROUND

Optimization Theory The natural starting point for all optimization methods based on derivatives
is quadratic objectives. They arise in linear systems as well as in nonlinear systems near the optima,
where higher-order terms become negligible. Therefore, any method with issues on quadratic ob-
jectives will eventually fail. Typically, a quadratic loss L of n variables is expressed as:

1
L=gllQz|> QeR™" zeR" || (lz-norm) (M)

A non-zero target y € R™ would not affect convergence properties of iterative solution methods, so
we neglect this possibility to maintain compact notation. Such methods take the following generic
form in their ¢-th iteration.

41 = (1 —nPQ)x; 1 € R (learning rate), P € R™*™ )

The most prominent examples are GD (P = Q7') and Newton’s Method (P = Q). Convergence

occurs if the induced norm of the iteration operator ||1 — nPQ)|| is strictly smaller than 1. This value

is also called the convergence rate because the induced norm, by definition, exactly describes the

worst-case decrease of ||z, || relative to |||, and therefore, the optimization progress. For GD
P

and optimal learning rate, the convergence rate equals 1=, where £ is the condition number of the

Hessian Q7' Q. Ill-conditioned problems (x >> 1) result in a convergence rate only slightly below 1,
rendering GD ineffective for solving them (Garrigos & Gower, [2023).

IlI-Conditioning in Reinforcement Learning While one-step tasks can also suffer from ill-
conditioning, RL tasks have their own unique mechanisms that elevate condition numbers, thereby
complicating optimization, e.g. delayed rewards in multi-step problems require information to flow
through several time steps. Suppose we have an n-state Markov Reward Process with a linear tran-
sition structure (n — n — 1 — ... — 1 — terminal), where all rewards are O except for the
final transition into the terminal state with a reward of 1. This scenario exemplifies a quintessen-
tial delayed reward problem, isolated from other complexities in RL such as stochasticity, changing
environments, and continuous spaces. The correct values v must fulfill the Bellman equation, a
consistency equation stating the value difference between consecutive states equals the intermediate
reward. Any violation of this equation is called the temporal difference error d,,:

op =v(n)—v(n—1)=0 forn>1land 6; =v(l)—1=0 3)

This linear system is one of the most studied in linear algebra, often called Poisson problem. Its
condition number scales as n2 (Strang;, 2006). Hence, even though the solution seems trivial—all
values are 1—GD becomes increasingly impractical for solving this simple task as n increases.

Temporal Difference Objective with Function Approximation In most RL tasks, the number of
states is exponentially large and so is the number of values. Therefore, values v(s) of states s have to
be approximated by value functions v(s, §) parametrized by 6. As loss function for training serves
the TD objective [, that is, the squared TD error §. In the standard RL setting, there is typically a
reward r between states s and s’, and a discount rate -y, compared to our example in Equation

l= %62 §=uv(s,0) —yv(s',0) —r 4)
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When these terms are summed over all state transitions (s, s”), we obtain the full loss for the value
function. For linear function approximation, i.e. v(s,#) is linear in the parameters 6, this loss is
of the form in Equation[I] The z in the notation for the iteration scheme corresponds then to the,
possibly shifted, parameters 6, and () is determined by the state transitions of a specific RL task.

Gradient Descent in the Temporal Difference Objective One way to solve for the TD objective
[)is by applying Gradient Descent, in this context also known as Residual Gradient (Baird [1995):

ugp = —0pl = =6 - (6‘91}(5,9) — (s, 9)) ®)

However, GD is slow as the TD objective is ill-conditioned. This is because on top of the task
of finding the correct values, which already has high condition number, comes the secondary task
of learning this value through function approximation, making the overall condition number even
worse. In Deep Learning, various methods have been proposed to reduce the condition number and
so alleviate the slow convergence of GD (Goodfellow et al.,2016). However, they only have limited
effectiveness in Deep RL, where typically value functions are approximated: Normalizing data is
impractical since the outputs are values and a priori unknown. Also, the input distribution changes
continually during the ongoing exploration of the state-action space. As a consequence, initialization
schemes, designed to transport normalization properties from one layer to the next, fail since input
and output were never normalized. And while momentum can accelerate gradient optimization, it is
insufficient to reach an acceptable convergence rate by itself.

Minimizing the Temporal Difference Objective with Non-Gradient Updates An alternative
method is the following, commonly referred to as *Temporal Difference Learning’. From now on,
we will use TD to refer to this method. It is important to note that this encompasses not only the
temporal difference objective but also the specific form of parameter updates.

urp = —0 - Ogv(s, 0) (6)

Compared to ugp in eq. E} the TD update urp lacks the derivative term of the subsequent value.
Removing this term is motivated by the idea that observations of new rewards should only adjust
values of past states. However, the missing term renders the TD update a non-gradient update,
therefore lacking any convergence guarantees. That TD updates can indeed lead to divergence has
been shown (Baird, [1995)). Yet, empirical evidence suggests that this instability sometimes does not
occur and that then TD finds solutions in reasonable time [Sutton & Barto| (2018)). From a practical
point of view, this ability to deliver solutions in at least some cases makes it the preferred method
over consistently slow GD. The logical conclusion is that completely resolving the divergence issue
of TD without compromising its speed advantage would be even more beneficial. Achieving this
requires a clear understanding of the reasons behind TD’s speed advantage.

3 THE INCREASED SPEED OF TEMPORAL DIFFERENCE LEARNING

To answer why TD can provide faster convergence than GD, we analyze the iteration scheme intro-
duced in Equation (2), replacing PQ by H:

xt-‘,—l = (1 — nH)I'f (7)

We begin exactly where previous works stop: The update equation of TD (6)) lacks a term present in
GD (B), making it a non-gradient method. Basic calculus reveals that a gradient field is associated
with a corresponding scalar potential, the loss function, whose first derivative is the gradient field
and whose second derivative, the Hessian H¢gp, is symmetric. Hence, a non-gradient field like the
one from TD need not, and generally will not, have a symmetric Jacobian, allowing for a skew-
symmetric part in Hrp. Gaining insight into how this part affects the eigenvalues is crucial for
answering the question of TD’s superior convergence speed.

3.1 CLOSED-FORM SOLUTION IN TWO DIMENSIONS

To explore the impacts of a non-symmetric Hrp on optimization, we first focus on the special
case of two-dimensions. This scenario can be solved exactly and will serve as the guiding example
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Figure 1: a) - d): Illustration of the four types of a Hyp matrix with an example of an optimization
trajectory for a random starting point. The background shows the underlying quadratic loss. e)
Corresponding loss curves. f) Convergence rate as a function of the learning rate. The amount of
rotation increases from blue (no rotation) to red (large rotation). The dot on each curves marks the
best convergence rate under optimal learning rate.

for the mathematically precise but abstract argumentation for the generic case. Let us consider the
following matrix, which we require to be positive-definite and not the identity for » = 0:

_ a b+r
H= < b—r c ) ®)
This provides a simple model for a possible Hgp (r = 0) matrix and Hpp (r # 0) matrices
with varying strength of the skew-symmetric part. The symmetric part of Hrp equals Hgp, a

simplifying assumption for this model that we will remove later. The two eigenvalues Ay /o of
1 — nH are key to understanding the dynamics of the corresponding iteration process.

Al/Qzl—g(a—i—C):I:g\/D with D = (a — ¢)% + 4b% — 472 )
For r = 0, the discriminant D is positive, resulting in two distinct eigenvalues. As r increases in
magnitude, D decreases, causing the eigenvalues to converge. With more balanced eigenvalues, the
iteration scheme progresses more uniformly in both eigendirections, thereby increasing the conver-
gence rate. We identify four qualitatively distinct cases, illustrated in Figure [T}

a) r =0, D > 0: gradient case, distinct eigenvalues, orthogonal eigenvectors
b) |r| > 0, D > 0: small rotation, converging eigenvalues,non-orthogonal eigenvectors
¢) |r| > 0, D = 0: critical rotation, identical eigenvalues, only one eigenvector

d) |r| > 0,D < 0: large rotation, complex eigenvalues with identical real part, complex
eigenvectors

Figure [Tk depicts the loss curves for the shown optimization trajectories across the four regimes.
The r # 0 curves differ from GD by their short burn-in phase that is followed by convergence at
improved speed. In Figure|[Tf, the convergence rate ¢ is plotted against the learning rate for different
values of r. Overall, the results indicate that the observed speed-up for r # 0 is consistent across
a wide range of r values, suggesting that this improvement is not a result of specific learning rate
choices, but rather stems from the influence of the skew-symmetric part in Hrp.
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3.2 GENERALIZING CONVERGENCE RATES

Next, we formalize the ideas above using more rigorous mathematical language. We first link the
convergence rate to the minimal eigenvalue, and then show how rotation increases the minimal
eigenvalue in arbitrary dimension. We observed that the loss curve may exhibit a burn-in phase or
oscillate during its descent, which motivates us to investigate TD’s speed through an asymptotic
convergence rate ¢, defined as follows:

R [
c¢= lim max
t—oo zgeR™ \| ||zl

(10)

For GD, the connection between c¢ and the condition number arises from the symmetry of Hgp.
For the non-symmetric TD case, establishing a similar link from c to the spectrum of Hpp requires
further work:

Theorem 1: Letn € R,n € N, zp € R", H € R"*" and t € N. Denote eigenvalues of H and
their real and imaginary part as A\, = Ry, + il ,k € {1, ...,n} and define:

Nmax = 2Mmin

k .
& w len - m]jn Rk' (1 1)

Then, the iteration scheme x; = (1 — nH)x;—; is convergent if B, > 0 Vk € {1,...,n} and
0 < 1 < Nmaz- Furthermore, the convergence rate c is upper bounded by:

CS\/I—URmin(l— ) (12)
nmam

Corollary 1: Let R,;;, < 1, p = 2maxy (R, I;) and copt be the convergence rate under optimal
learning rate. Then: cope < 4/1 — %nmamein <1-R2, /p*+O(R:.)

Corollary 2: Letn < 1. Then: ¢ < 1 — nRyin + O(n?)

Theorem 1 provides a formula for how the convergence rate can be estimated from the spectrum in
the case of a non-symmetric Hrp. Corollary 1 and 2 offer more interpretable expressions for two
relevant situations in deep learning: ill-conditioned matrices (Rmin << 1) and small learning rates
(n < 1). Both expressions share the dependence on the eigenvalue with the smallest real part Ry,
highlighting how increasing this value benefits optimization.

3.3 EIGENSPECTRA OF SYMMETRIC, POSITIVE-DEFINITE MATRICES UNDER
SKEW-SYMMETRIC PERTURBATIONS

We now generalize the ideas from Section [3.1]to arbitrary n > 2. Our analysis begins again with a
matrix H = A 4 rB, where A is symmetric, positive-definite and B skew-symmetric. As before,
r = 0 corresponds to GD and r # 0 to TD cases. We find the following statements about the
spectrum of H:

Theorem 2: Let A € R"*"™ be symmetric, positive-definite matrix and B € R"*" skew-
symmetric. Additionally, let A and B have non-degenerate eigenvalues. Denote the i-th eigenvalue
by A;(+) ordered from smallest to largest eigenvalue, the i-th eigenvector of A by v;, and of B by
w;. Then:

i) Amin(A) <X (A +7rB) < X (A +7B) < Apax(4)  VreR

i) lim, 00 AF(A 4+ 7B) = (w;, Aw;)
iii.) -4 preal (A+7rB)|;—o = 0 and %/\real (A+1B)|—o > (v2,Bvy)?

dr “'min min )\Q(A)
In Figure 2, we illustrate these statements for n = 5 using random matrices A and B. The eigen-
values (blue dotted lines) converge towards each other, as earlier in the n = 2 case. Especially
the smallest eigenvalue, previously identified as crucial for the convergence rate, improves signif-
icantly. The statements of Theorem 2, depicted in red, prove that this picture is representative of
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Figure 2: Real-part eigenspectra of a symmetric matrix A with different strengths r of a skew-
symmetric perturbation B in a) n = 5 and b) n = 100 dimensions.

any A and B matrices: Part i) secure that smallest and largest real part eigenvalue cannot separate
any further by bounding the spectrum’s real part from above and below. Part ii) fixes the right side
through a formula for the large » asymptotic limit. Part iii) brings us to the heart of why TD im-
proves convergence speed. The formula quantifies the initial increase of the smallest eigenvector.
With the second-smallest eigenvalue serving as the denominator, this term can become extremely
large depending on just how ill-conditioned A is. This counters ill-conditioning perfectly, making
TD ideally suited for RL. To further illustrate this point, Figure 2p presents a more ill-conditioned
example with n = 100, showcasing a remarkable rise in the small eigenvalues.

Enhancing Theorem 2 by Probabilistic Arguments: Non-degeneracy of eigenvalues is one of
the requirements in Theorem 2; however, it is not essential for the statements to hold. Including it
simplifies the mathematical proof and, more importantly, allows us to highlight a different type of
argument that we will revisit later: In function approximation, the entries of the involved matrices
originate from a random process, typically initiated by the random initialization of layers in a neu-
ral network or feature matrices in linear function approximation. Among all possible eigenvalues
of such a matrix, the occurrence of two identical eigenvalues is a rare edge case and practically
irrelevant.

This can be mathematically formalized and proven using measure theory. One of its central theorems
states the zero set of a non-constant polynomial is a Lebesgue null set. Building on that, the set of
matrices with degenerated eigenvalues is Lebesgue null since these matrices’ characteristic polyno-
mials have degenerated zeros if and only if their discriminant, itself a polynomial, is zero. Similarly,
part ii) describes the eigenvalues’ asymptotic limit which, in theory, could equal A’s eigenvalues.
But since eigenvectors are defined through polynomial equations, improvement of the spectrum is
practically guaranteed. Moreover, by the law of large numbers, as n increases, the eigenvalues of I
scatter around the mean of A’s eigenvalues, a normal-sized number. In summary, the eigenspectra
depicted in Figure [2]are representative of all practically relevant scenarios and this conclusion stands
firm under rigorous mathematical evaluation.

3.4 THE COMPLETE PICTURE

Finally, we are in a position to present a coherent argument for why TD leads to faster convergence
than GD, provided that divergence does not occur.

1. The convergence behavior of iterative methods x;11 = (1 — nH)x; is determined by
the matrix H, known as the Hessian Hgp for GD. For TD, Hrp is distinguished by the
presence of a skew-symmetric part B. We decompose this as Hyp = A + B.
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2. As established in Theorem 1, convergence requires that the real parts of the eigenvalues of
Hrp are positive. This directly translates to A being positive-definite.

3. With that, we are in the scope of Theorem 2. The real parts of eigenvalues of Hrp con-
verge towards each other. Especially the smallest eigenvalue increases quickly, driven by
the ill-conditioning of A. While we previously thought of A as Hgp, this assumption is
not necessary anymore since Theorem 2 yields a better Hrp for any symmetric positive-
definite A.

4. According to Corollary 1, increasing the smallest eigenvalue improves the convergence
rate. However, the speed-up is capped by the maximal learning rate. This limitation be-
comes critical in the large-rotation regime, where the growing imaginary parts of the spec-
trum limit the achievable benefits.

5. More importantly, Corollary 2 provides a similar link for small learning rates. This is
particularly relevant in nonlinear function approximation, where learning rates must be
kept small to ensure the accuracy of linear approximations. In this regime, this explanation
for the speed-up from TD is valid without restriction.

This inherent speed advantage of TD has motivated research aimed at addressing its divergence is-
sue. Shortly after Baird introduced GD to RL, he presented interpolation between GD and divergent
TD, marking the first attempt to fuse these two methods. Our analysis sheds new light on why this
idea does not work: In Theorem 2, we interpolated with a skew-symmetric B, whereas in Baird’s
framework, this matrix would possess an indefinite symmetric part. Perturbation analysis reveals
that in this case eigenvalues shift in both directions. Thus, for an ill-conditioned A characterized by
small positive eigenvalues, even a minimal negative shift creates negative eigenvalues, making this
interpolation method instantaneously divergent. Nevertheless, unifying GD and TD is desirable and
we demonstrate now with a simple construction how this can be achieved.

4 A PRINCIPLE-GUIDED METHOD TO UNIFY GRADIENT DESCENT AND
TEMPORAL DIFFERENCE LEARNING

Inspired by our new understanding, we combine the two update vectors of GD ugp and TD urp by
using GD’s sign and TD’s magnitude. Therefore, we denote this new method by GDS-TDM:

Uaps—-Tpm = Sign(uGD) : ‘UTD‘ (13)

The particular form of this update rule is motivated as follows: Through the sign term, the angle be-
tween GD and GDS-TDM can be at most 7/2, enforcing movement in similar directions as conver-
gent GD and thereby preventing divergence. Where the signs of GD and TD are constant, the update
rule is described by a linear map. Its matrix will have a skew-symmetric part as it is build from the
TD update. As we learnt, this is the key property that causes a drastic speed up in ill-conditioned
problems. We now present a mathematical proof to show that this theoretical argumentation also
holds under mathematical scrutiny:

Theorem 3 (Enhanced Version): Let D € R?*2 be symmetric and positive-definite, R € R?**?
with eigenvalues unequal 0, H : R? — R%z — —sign(Dx) - [Rz|, S = {s € R%[s; €
{=1,0,1} Vi € {1,2}}, and for s € S, let A, = {z € R?|sign(Dx); - sign(Rz); = s; Vi €
{1,2}}. Then:

i.) Forall s € S, in A,, H is described by a linear map R, € R?*? such that Vz € A, :
H(z) = Rsx.

ii.) There exists a maximal learning rate 7y,ax > 0 such that for n < 7nax, the iteration scheme
xy = (1 +nH)(z¢—1) converges to 0.

iii.) If convergence occurs within one Ag, the convergence rate ¢ is given by ¢ = 1 —n\,, where
A is the smallest eigenvalue of — Ry.

iv.) If convergence occurs across two A, the convergence rate is given by ¢ < 1 —nG(f, K, ¢€),
where f is the direction of the smallest eigenvector of D, K the condition number of D,
and e the angle between d and Rd, where d is the boundary vector between the two A;. G
is a monotonically increasing function in K.
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Figure 3: Illustration of our proposed GDS-TDM update: The GD and TD vector fields (left and
middle) result in the GDS-TDM field on the right. Convergence either occurs within a single region
(orange), or zigzagging (cyan).

As before, we separated the technical requirements that are automatically fulfilled if the involved
matrices stem from a continuous sampling process. The full list of these Lebesgue null assumptions
can be found in the appendix. Figure [3] gives an illustration of the theorem. Part a) and b) show
examples of D and R vector fields, corresponding to GD and TD. Part ¢) shows the boundaries
of the different regions, the dashed lines, along which the sign flips happen. They decompose the
domain into the regions A, each with its own linear map. The orange trajectory shows an example
of convergence within one A, and the cyan trajectory of zigzag convergence between two A,.

To understand why this method can have better convergence speed, consider first the zigzag case
(part iv) and the function G. For GD, the term after the learning rate decreases with the smallest
eigenvalue, explaining its slowness for ill-conditioned D. In contrast, here G shows the opposite
behavior, increasing convergence speed with the condition number of D. As one can also guess from
Figure [3c, the dependence depends more on geometric quantities of R, not D, such as the angle at
which the flow lines of R intersect the boundary line. For the inner convergence case (part iii), the
convergence rate depends on the smallest eigenvalue. The linear maps R, are non-symmetric, and as
we have shown before, this substantially increases the smallest eigenvalue, improving convergence.

Besides this mathematical characterization, practical advantages of the update rule are that it is easy
to implement and causes minimal computational overhead. Since GD and TD are two backprop-
agation techniques based on the same forward pass, they can be computed in parallel with little
additional memory. The runtime increase due to a component-wise sign comparison is likewise
minimal.

5 EXPERIMENTS

While our central contribution is a theoretical foundation for understanding TD and for deriving
algorithms with well-understood properties, we provide a first set of empirical results for how GDS-
TDM compares against GD and TD. In our experiments, we target value estimation, which is a
fundamental part of most practical reinforcement learning algorithms. The choice and setup of these
experiments are described below and motivated by our intention to provide a clear consistency check
of our theoretical derivation. Two additional experiments can be found in Appendices [BJand [C]

Two-State Example for TD’s Divergence We consider a variant of [Tsitsiklis & Van Roy|
(T1996b)’s canonical value prediction task with a second parameter, as shown in Figure[4p. There are
two transitions (state 0 — 0 and 1 — 0). The self-transition is convergent while the other one leads
to divergence. Training off-policy using a state distribution with too much weight on the divergent
transition will therefore make TD divergent on this task. This alternating between convergent and
divergent updates can be nicely seen in TD trajectory in Figure @p. GD and GDS-TDM both con-
verge. However, as can be seen in Figure [, the convergence rate of GDS-TDM is substantially
better, agreeing with our theoretical treatment.

10x10 Grid World This is a classic RL environment, for which value functions are easy to visu-
alize, allowing for easier assessment of iterative solution methods. We consider a two-dimensional
non-periodic grid with terminal states located in the top-left and bottom-right corners. The agent
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Figure 5: (Top) Visualization of the learnt value
function in a 10 x 10 grid world for the different
methods: gradient descent (GD, left), temporal
difference (TD, center) and GDS-TDM (right).
(Bottom) Comparison of the learning curves of
the three methods.

Figure 4: a) Schematic representation of Tsitsik-
lis and Van Roy’s counterexample. b) Learning
trajectories of the different algorithms in the pa-
rameter space. c¢) Training loss as a function of
the learning iterations.

can move up, down, left and right (unless on the boundary), and is penalized with a reward of —1 for
every move that does not lead to the terminal state. Given the optimal policy, we estimate its values
using a 100-parameter linear function approximator based on polynomial features, which we train
on full batches to avoid stochastic effects of mini-batch training. The state pairs for the updates are
sampled with equal probability, i.e. this is an off-policy case. In the optimal policy distribution, state
pairs closer to the terminal states would occur more frequently than those further away. The exact
solution has a value of 0 in the terminal corners and is minimal along the diagonal. An illustration
is given in Figure 5] where GD and GDS-TDM correctly approach this solution. In contrast, TD
suffers from divergence and is unable to find a good answer. Comparing the loss curves, we observe
that GD and GDS-TDM behave similarly, both steadily decreasing the loss and eventually reaching
a similar accuracy. This 100-parameter example gives us an outlook beyond the strict mathematical
argumentation of our 2D proof. The absence of a substantial speed-up of GDS-TDM over GD could
point to a limitation of our method in higher dimensions, suggesting that additional modifications
might be necessary. It is also possible that Grid World, with its immediate rewards, does not generate
the high condition numbers where TD methods thrive and GD fails. The fact that the value function
estimated by GD already closely resembles the exact solution supports this. Regarding divergence,
the picture is clearer: GDS-TDM does not encounter the divergence issues exhibited by TD.

6 RELATED WORK

A number of successful applications of TD exists in literature (Tesauro, |1995; Mnih et al.l [2015)).
TD learning was originally introduced in contrast to Monte-Carlo methods, which rely on complete
episodes, along with further TD variants that vary the number of steps over which errors are evalu-
ated (Sutton |1988])). Notably, our analysis applies to all variants of TD, as we did not use any specific
form of updates but only their non-gradient nature. The fact that TD is not a gradient method and
divergent was discovered by [Baird| (1995), and another example of divergence of TD was given
by [Tsitsiklis & Van Roy| (1996b). While the precise circumstances under which TD diverges re-
main mostly unclear, it has been shown that TD converges for linear function approximation with
on-policy training [Tsitsiklis & Van Roy| (1996a)). In that case, the convergent transitions outweigh
the divergent ones. Generalizations of linear TD’s on-policy convergence were found by |Asadi et al.
(2023). Even in this setting, a method convergent on every transition could speed-up optimization.
Emphatic-TD methods (Sutton et al.| 2016)) reweight the state distribution to update less frequently
on divergent state transitions. While this can suppress divergence, it inherently impairs the ability
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to learn the divergent part of the state space. The factors contributing to divergence in RL were
later summarized under the term ’deadly triad’, including TD training, function approximation and
off-policy training. Given the importance of these elements in modern RL, a number of different
research works have tried to address the shortcomings of TD divergence. For instance, van Hasselt
et al.|(2018) try to build intuition for the TD algorithm behaviour and design a number of mitigation
strategies that they test empirically. Furthermore, least-squares TD (LSTD), in its recursive (Bradtke
& Barto,|1996) or incremental (Geramifard et al., 2006)) implementation, provide convergence guar-
antees at the cost of a higher computational complexity. More recently, diverse attempts are made to
address TD’s divergence through normalization techniques (Gallici et al.l 2024), or by introducing
and updating a second set of parameters that then leads to updates on the actual network parameters
(Wang & Ueda,|2022)). Beyond the divergence issue, [Kumar et al.| (2021) studies how regularization
can improve the quality of TD solutions.

The introduction of GD to RL, under the name residual gradient (Baird,|1999), has been proposed as
a solution to the divergence of TD. This was quickly followed by interpolation techniques between
TD and GD to address the apparent slowness of GD (Baird, [1999), marking the first attempt to
combine the positive elements of both methods into a new method. Ill-conditioning, the property
that slows down GD, was also investigated in an RL context, confirming that condition numbers
can indeed be high in RL tasks (Shariftnassab & Sutton, 2023)). Further attempts to unify TD and
GD have been made under the name gradient TD (GTD) methods (Sutton et al.,[2008; 2009). They
address another phenomenon in how TD and GD can differ: On stochastic tasks, GD can converge to
a different solution than TD. While GTD methods converge and approach the original TD solution,
they do not address the slowness of GD. This is apparent when considering that the slowness issue
already exists in deterministic tasks, where GTD simplifies to GD. Further improvements to the
GTD algorithms were proposed by |Yao| (2023) and |Qian & Zhang| (2023)), reducing the number of
hyper-parameters to tune in the algorithm.

It is noteworthy that positive observations of learning with non-gradient methods reach beyond
RL (Schnell & Thuereyl}, 2024). Examples include time series prediction with unrolled computa-
tion graphs (Stachenfeld et al.| [2022)) often in combination with differentiable simulators (Um et al.,
2020), as well as in the context of bilevel optimization (Bolte et al., 2024} [Domkel [2012)), such as
hyperparameter optimization (Lorraine et al.| [2020), deep equilibrium models (Geng et al., 2021}
Fung et al., 2022) and meta-learning (Andrychowicz et al.l [2016). Typically, the backpropagation
pass is either shortened or modified in another way, which consequently destroys the gradient prop-
erty of the outcome, thus falling within the scope of our argument. Similar to TD, the evidence is
primarily empirical and these research fields could benefit also from the discovery of the underlying
reasons behind the observed improvements.

7 CONCLUSION

Our work presented a theoretical framework that explains the widespread and puzzling observa-
tions that TD can deliver a crucial speed-up for making RL tasks solvable. We identified the
skew-symmetric part of the iteration operator, which distinguishes non-gradient from gradient-based
methods, as the key quantity driving this acceleration. An interesting future direction will be to de-
sign model architectures that effectively control this quantity to enable a consistent performance
boost. This shares similarities with initialization schemes that are tailored to influence the condition
number to enhance gradient descent.

Furthermore, we proposed a method that combines the convergence properties of GD with the speed-
up mechanisms of TD. We supported this with a mathematical proof for the two-dimensional case,
providing a detailed understanding of how these properties integrate. With our focus primarily on
the theoretical aspects, a natural next step is further empirical investigations. These could include
exploring nonlinear function approximation, testing compatibility with momentum and other opti-
mization techniques, and extending to advanced control algorithms in RL.

In an empirically-driven field, it is crucial to remember the significance of theoretical results. Unify-
ing GD and TD has been a longstanding goal in RL, and despite extensive empirical research, it has
not been satisfactorily resolved, even in two dimensions. In that spirit, we believe our theoretical
framework can serve as a stepping stone for developing more reliable and faster RL algorithms.
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A  MATHEMATICAL PROOFS

A.1 THEOREM 1 AND ITS COROLLARIES

Theorem 1: Letn € R,n € N, g € R", H € R"*" and t € N. Denote eigenvalues of H and
their real and imaginary part as A\, = Ry, + il ,k € {1,...,n} and define:

Nmax = 2Min i

k RI+1I?
Then, the iteration scheme x; = (1 — nH)x;—1 is convergent if B, > 0 Vk € {1,...,n} and
0 < 1 < Mmaz- Furthermore, the convergence rate c is upper bounded by:

c< \/1 — 1 Buin (1 - n:) (15)

Roin = mkin Ry, (14)

Proof:

We start with:

16
< 1im /(1 —nE)| (16)
k—oo

= 1—nA
iy 1
The first equality is the definition of the convergence rate; the following inequality rewrites the
expression using operator norms; the last equality applies Gelfand’s formula (Lax| [2002). For the
inputs to max-operator, we have:

\1777/\,4:\/172an+172(1%§+1,§) a17)

Hence, in order to have ¢ < 1, we require Ry, > 0 for all k € {1, ...,n}. The radicand is a parabola
with a value of 1 for 7 = 0. Hence, it is also 1 for 7 = 275, where 7, is the minimum.

d c C
%(172nkRk+nk(Ri+L§)) —0 (18)
We find:
R
L 19
TR T o

Hence, ¢ < 1for 0 < ¢ < Nmax = 2ming ng.

For the inequality on the convergence rate, we use again properties of parabolas: parabolas are
determined by three conditions. A parabola P(n) lying above the k other parabolas between 0 and
Nmax 18 fixed by:

- P(0)=1
* P(fmax) = 1
* &P(0) = —2Rumin
This leads to: R .
P(n) = nm—‘;fnz — 2R + 1 (20)

Corollaries 1 and 2:

Both follow from Taylor expansion and determining the extrema of Equation 20}
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A.2 THEOREM 2

Theorem 2: Let A € R™ "™ be symmetric, positive-definite matrix and B € R"*™ skew-
symmetric.. Additionally, let A and B have non-degenerate eigenvalues. Denote the i-th eigenvalue
by X;(+) ordered from smallest to largest eigenvalue, the i-th eigenvector of A by v;, and of B by
w;. Then:

i) Amin(A) <X (A+7B) < N (A+7B) < Apax(4)  VreR

max

i) lim, 00 AP (A 4 7B) = (w;, Awi>
111) d )\real (A + T‘B)|T 0= =0 and )\real (A + ’I"B)|r 0 > (1)2,BU1>

dr “‘min dr? ‘min (A)

Proof:
Part i)

We compute the numerical range of A+r B, which is defined as the range of the Rayleigh coefficient:
Let x € C™ and normalized. Denote the vectors of the eigenbasis of A by v; and the corresponding
eigenvalues by ;.

(z,(A+rB)x Z)\ |z 47 - ZB]kx]xk

21
:Z)\j\xj| +T-ZBjk (z; Ryl 4 of xk )+ ir- ZBJk (z; Byl — xlsckR)
7 ,

Since B is skew-symmetric, the second term adds to zero. Therefore, an expression for the real
part of the Rayleigh quotient contains only the first term. Using ||z||2 = 1, we find a bound for the
numerical range:

Amin(A) < Re((z, (A4 rB)zx)) < Amax(4) (22)

As the numerical range of a matrix contains its spectrum, the claim follows.

Part ii) and iii):

We follow the procedure outlined by [Lax| (2013) to compute the derivatives: Consider a differen-
tiable square-matrix-valued function F'(t) of a real variable ¢. Let 1 be a non-degenerate eigenvalue
of F(0). Then for sufficiently small ¢, A(¢) has an eigenvalue p(¢) and corresponding eigenvector

h(t) that both depend differentiably on ¢. The derivatives with respect to ¢ at 0 are denoted by dots
and given as follows with A = h(0) and [ the left eigenvector of F'(0) corresponding to f:

-t
(F(0) = p)h = —(F — ji)h (24)
_ EFh) +2(1, Fh) + 24(l, h) 25)

(I, h)
Application to iii):

A+rB is a differentiable square-matrix-valued of r equalling A for » = 0. A is symmetric, implying
left and right eigenvectors are identical. Using Av; = A;v; to denote eigenvalues and normalized
eigenvectors, we find:

Aj = (vj,Bu;) =0 (26)
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The last equality follows from the antisymmetry of B.

(A= X))y = =(B =Xy @7

This singular system is solved by the following expression for any o € R. Note that the inverse here
is the pseudoinverse.

bj = —(A—X;) "N (B — \j)v; + av; (28)

The second derivatives are given as follows:

Aj = 2(v;, Bij)
= 2(Bv;, (A — X\;)"'Bv; + av;)
= 2(Bv;, (A — \;)"'Bu;) (29)

For the largest eigenvalue, all denominators are negative and therefore the largest eigenvalue does
not grow for sufficiently small r. For the smallest eigenvalue, the situation is reversed.

)\max <0 (30)
Xmin Z 0

Application to ii):

In the same spirit, we apply the formulas for the derivatives again. B is skew-symmetric, therefore
diagonalizable. We have:

di)\i(eA—l—B) = e{w;, Aw;) (31
€

Since eigenvalues of skew-symmetric matrices lie on the imaginary axis, we find:

\i(€A + B) = e(w;, Aw;) + O(€?) (32)

Hence, we can verify the claim:

lim M\ (A+rB) = lir% 1)\Z-(eA + B) = (w;, Aw;) (33)
e—0 €

T—00

A.3 THEOREM 3

Theorem 3: Let D € R2*2 be symmetric and positive-definite, R € R?*2, H : R? — R? 2
—sign(Dx) - |Rz|, S = {s € R?|s; € {~1,0,1}},and for s € S, let A, = {x € R?|sign(Dx); -
sign(Rx); = s; Vi € {1,2}}. Then:

i.) Forall s € S, in A,, H is described by a linear map R, € R?*2 such that Vz € A, :
H(z) = Rsz.

Assume further that D has different eigenvalues, R has eigenvalues unequal 0, and that all the R
are diagonalizable. Let v; , be the maximal eigenvector to R (eigenvector to the eigenvalue with
largest real part). We assume vy s and Dv; , have no zero components for all s. Denote by d; a
vector for which the i-th component of Dd; is 0. Then we assume Rd; has no zero component.
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ii.) There exists a maximal learning rate 1,,x > 0 such that for 7 < n,.x, the iteration scheme
z; = (1 +nH)(z,—1) converges to 0.

iii.) If convergence occurs within one Ag, the convergence rate ¢ is given by ¢ = 1 —n\,, where
A is the smallest eigenvalue of — Ry.

iv.) If convergence occurs across two A, the convergence rate is given by ¢ < 1 —nG(f, K, €),
where f is the direction of the smallest eigenvector of D, K the condition number of D,
and ¢ the angle between d and Rd, where d is the boundary vector between the two Ag. G
is a monotonically increasing function in K.

Proof:

Description by a Linear Map For all s € S, the matrix elements of R, are given by (R);; =
—s; - R;j. Then, for all k € {1,2}:

2
(Rew)i = > —skRijzj = —si - (Ra)i (34)

Jj=1

Furthermore, for all x € Ag:

Brle o (Ra), (35)

H(z), = —sign(Dz)y, - T TR Gien(Rr)
(T)k sign(Dx)y, - | B[k *F sign(Ra)y

Therefore, for all z € A, H(x) = Rsx.

Further Subdividing R2  For each = € R?, there exists an s such that z € A,. We will classify
the dynamics within each region A by using the eigendecomposition of its linear map R:

Rsvk = )\kvk (36)
We choose the numbering according to the size of the real part of eigenvalues:
R(A1) > R(a) 37)

The division A, of R? consists of straight lines (when a component of s is zero) and double cones
(for the remaining s). A cone C generated by vectors g; is defined as:

C={zeR"z= Zaigi where all «; > 0} (38)

A double cone is the unification of the two cones generated by g; and —g;. The problem with this
division is that the behavior within one specific cone can vary. For instance, an A, with only negative
eigenvalues and the eigenvectors inside of Ag, there will have some = for which it converges to 0
and other x for which it leaves A;. This is why we further subdivide the A, into subregions B that
behave consistently for all points inside. This works as follows:

1. First we split all double cones into the two cones they are made of.

2. For each cone C, we check if an eigenvector v of the corresponding R is in the interior
of C. If not, we leave C' as it is. If so, we divide C, generated by {g1, g2} into new cones
always replacing one of the generators by v: {v, g2} and {v,g2}. In between these new
smaller cones, we will also have 1-dimensional cones, generated by fewer than n vectors.

3. If there still are eigenvectors in the two smaller cones, we repeat this procedure until there
are none inside anymore.

This will leave us with a subdivision of R™ into subregions B with no eigenvectors in their interiors.

Restriction to Neighbor Transitions For our convergence proof to work, we restrict our iteration
scheme to avoid jumping between subregions but only transition to adjacent subregions. Adjacent
subregions By and B means 0B; N 0By # {0}. For a subregion B, we achieve this by allowing
only learning rates smaller than a maximal learning rate np. Let B be generated by g; and C' be B
unified with all its adjacent subregions. Then we define D; as the cone spanned by the generators
g1 — 0 - go and g5 — 0 - g1. These are obviously cones containing B C Dj for all 6 > 0.
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Now, there exists a v > 0s.t. D, C C. For each of the g;, determine 7; such that f(n) =
(1 —=nRp)g; € D,,. This ); is greater than 0 since f is continuous, f(0) = g; and g; is an interior
point of D.. Set np = min; 7;. Then for any x € B, v = a191 + a2g2, the result of an iteration
step y is:

n
(1 —-npRp)r = Z a;(1 —npRp)gi (39
i=1

Since a; > 0 due to z € B, y is in the open cone spanned by (1 —npRp)a;. These generators are in
D., by construction. Hence, y € D, and y € C, This means hat for all learning rates below np, the
iteration scheme maps only to B or its adjacent subregions. If the subregion was a lower-dimensional
cone, we can apply this argument to an adjacent full-dimensional cone. Choosing the minimum 73
over all subregions, we receive a maximal learning rate 1,y ar that guarantees adjacent transitions
globally.

Classification of the Dynamics within Subregions We classify a subregion B according to the
position of the largest eigenvector v; of their corresponding linear map Rp.

Case 1: v; € 0B, convergence

(v1 lies on the boundary of B)

An immediate consequence is that the eigenvalue \; to v; has to be negative (A\; = 0 is not possible
by our theorem assumptions). To prove this, let {z;} be sequence of vectors converging to v; =
limy_, o ¢ with zg € B Vk € N. Then by how our method is constructed:

sign(Dz;) = —sign(Rpx;) VteN (40)
By continuity, we have lim;_,. Rz = Rpvi = Aiv; and lim; o Dx; = Dw;. Since
by assumption of the theorem v; and Dw; have no zero components, and the sign function is
continuous outside of 0, we also have lim;_, . sign(Rpz:) = sign(Rpv1) = sign(Av1) and

limy_, oo sign(Dzx;) = sign(Dw, ). Putting that together, we find:
sign(Dwvy) = —sign(Rpvy) = — sign(A) sign(vy) 41)

By assumption of our theorem, D is positive definite, implying the angle between v, and Dv; has to
be smaller than 7/2 and eliminating the possibility of a positive A in the last equation. Therefore,
A1 is negative.

Next, we show that our method converges to 0 from within this region: For all x € B, we can
write © = Y, a;g;. This is again the standard parametrization of cones with " positive and g;
the generators of the cone. Note that v; is such a generator; we set g; = v;. Furthermore, this
parametrization also includes lower-dimensional cones, where the g; could be linear dependent. Let
now be o € B. We obtain the next iteration vector x1 by applying the iteration scheme with the
linear operator of B:
z1 = (1 +nH)(wo)
= (14 nRg)wo

2
=(1+nRp)>_ aigi

i=1
= (14 nRp)(a1v1 + asBiv] + azB2v2)

= (1 +nRp)((a1 + 2f1)v1 + 2B202) (42)
= (1+nA)(e1 + azfi)vr + (1 +nA2)azBovs

= (1 +nM)(a1 +a2p1)g1 + (1 +n2)az(g2 — fi1g1)

= ((1 +nA1) (a1 + agfr) — (1+ 77)\2)(1251)(11 + (1 +nl2)azg2

_ (1+n)2)
—(1+ n)\l)(al - (1 - Ty

In the fourth step, we switched from conic coordinates «; to the eigencoordinates [3;, the description
in the eigenbasis of R . The last line shows the conic coordinates of the new iterate ;. We choose

)%51)91 + (14 nA2)azgz
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a learning rate < —1/Ay. Then the second coordinate is positive. The first coordinate is also
positive since (1+nX2) < (14+nA1) and 51 > 0 because f3;, the coordinates of g in the eigenbasis,
are themselves conic coordinates of a cone spanned by the eigenvectors that g» is part of. Altogether,
we conclude that the sequence z; stays within B. Therefore, the dynamics of the iteration scheme
is entirely described by the linear map Rp. We estimate for a starting point zy within B:

o= tim (1 < i /TR = max 14+ 0 = 1490 3)

t—o0 ||m0|| t

Hence, for < —1/\2 as chosen above, we have ¢ < 1 and the sequence converges to 0 inside of
B. Repeating this for any B yields a maximal learning rate nmax,rc for inner convergence within
all subregions where this is possible.

Case 2: v; ¢ OB, transition to an adjacent subregion or convergence

While we could repeat a similar calculation in conic coordinates as before, we present an alternative
briefer argument here: In case the eigenvalues and v, are real, consider f(t) = (1 — nRp)'zo for
t € R This is a continuous map with f(0) = xo and, by power iteration, lim;_ ., f(¢) approaches
the direction of the largest eigenvector, which is v;. Therefore, by the intermediate value theorem,
there exists a minimal ¢ such that g(¢1) lies on the boundary of the cone and ¢(t) inside of B for
all t < t1. Choose t = [t;] (smallest integer larger than or equal to ¢;). Then z; is outside of B but,
by our choice of learning rate, inside an adjacent subregion.

In case the eigenvalues and v; have an imaginary part, we can switch the basis defined by the real
and imaginary part of v1. There Rp takes the form:

(A (A (A A (A A
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The last matrix is a rotation matrix. So applying this linear map n-times to a vector means rescaling
it by a factor |A\1|™ and then rotating it by the angle n arccos(R(A1)/|A1|). Therefore, it is clear that
any for any zg in the cone B, the cone will be left in a finite number of steps.

For completeness, there is also the possibility that x is proportional to the second eigenvector v2. By
the same argument as above in Case 1, the second eigenvalue would then be negative and we would
observe convergence within the learning rate bound and rate as determined in Case 1. Nevertheless,
this is an edge case and does not compromise the conclusion that for any subregion we observe
either convergence or transition to an adjacent subregion.

Dynamics between Subregions With the dynamics of single subregions classified, we can begin
to glue them back together. Let d; be a vector for the first component of Dd; is zero, and ds be a
vector for the second component of Ddy is zero. Then the cones spanned by {d1,ds}, {—d1,d2},
{dy,—ds}, {—dy,—ds} along with the lower-dimensional cones in between decompose R?. We
will denote these cones as C-cones. All of the cones of subregions B are exactly part of one C'
and several B-cones may form one C'-cone. The statement is now within one C' cone the iteration
scheme will either converge to 0 or leave C' in a finite number of steps. This is basically the same sort
of statement we received for the B regions. This implies that the iteration scheme cannot diverge
within C' by jumping back and forth between subregions B.

To prove this, assume we have a sequence {x} from our iteration scheme inside a C-cone that does
neither leave C nor converges to 0. Since {x;} does not converge within a subregion, it will leave
any subregions it ever visits. Since the number of subregions B is finite, {«;} must therefore revisit
at least one subregion it has already been in. In two dimensions, this implies there are two adjacent
subregions B; and By, and a,b € N with a < bsuch that z; € By fort =aandt = band z; € By
for a < t < b+ 1. By construction and by assumption of no convergence, neither B; nor By have
an eigenvector inside or on their boundary.

The important observation is that inside a D region there are no sign flips of Dz. That means
even though H may be described by different linear functions in the different subregions, they are
glued together in a way that H is continuous on D. The updates moving out of B; into Bs is Hz,
and the one moving from By back into B; is Hx,. Working in polar coordinates and recalling
that the subregions are adjacent cones, this means that the angular coordinates of these two updates
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must have different signs. By continuity of H and the intermediate value theorem, this implies that
there is an z in between z, and x3, in one of the subregions or their boundary, where the angular
coordinate of Hz is 0. Therefore, Hx has only a radial component, implying x is an eigenvector of
the corresponding linear map and the sequence {x; } will converge in contradiction to the assumption
that {z;} does not converge. As a consequence, the iteration scheme does either converge inside D
regions or leaves them in a finite number of steps.

A further consequence of this argument here the transition from one subregion to the next happens
in one direction only, clockwise or counter-clockwise. This can be seen by repeating the above
argument, where we had two different linear maps when we assumed the existence of two points
with different update direction. The two linear map were continuously connected. In contrast,
here we would have only one linear map for the two points, and this map is trivially continuous
everywhere between, allowing us to repeat argument.

Dynamics between D-Cones To understand the dynamics between the D-cones, we first char-
acterize them geometrically. Let f; be the largest eigenvector of D. Then we choose the vectors
d; and dy, which were defined by the i-th component of Dd; being 0 in the last subsection, to
have (f1,d;) > 0. This can be achieved by simply replacing d; by —d;. Then all d; and dy lie
within the same quadrant and f; lies inside the cone generated by the d;. This is a direct conse-
quence from the fact that positive definite matrices define ellipses. As our D by assumption has an
off-diagonal part unequal 0, the d; will not be the coordinate axes. A further consequence is that
sign(d;) = sign(ds) = sign(f).

Next, we conclude that H (z) for all 2 in D-cone spanned by d; and d points to 0 in terms of their
sign:

sign(H (z)) = —sign(Dx) = —sign(D f1) = —sign(f1) = — sign(z) (45)
Similarly, we have for = in the D-cone spanned by —d; and —d5:
sign(H (x)) = —sign(Dzx) = sign(D f1) = sign(f1) = —sign(z) (46)

For the remaining cones, the last equality does not hold. Let f5 be the other eigenvector of D and
be oriented such that it is part of the D cone spanned by di, —d>. Then for all x in that cone:

sign(H (x)) = — sign(Da) = — sign(Df) = — sign(f2) @47)
For all z in the remaining cone spanned by —d;, ds:
sign(H (x)) = —sign(Dx) = sign(D f2) = sign(f2) (48)

We already showed that the transitions from one subregion to the next go only in one direction. With
these geometric thoughts, we can eliminate the possibility of our iteration scheme circling around
forever between the D-cones. What is possible is going back and forth between two subregions
that meet at the d; or the ds line. This can be shown by the existence of two subregion where the
transitions happen only clockwise in one and counterclockwise in the other.

To show this assume without loss of generality that d; lies before do when moving clockwise and
that both lie in the first quadrant, i.e. sign(d;) = (+1,41) Then the first subregion is given by the
subregion B; whose boundary is d; and not in the cone spanned by d; and ds. For z € B; and in
the first quadrant, we are in the cone spanned by d;, —ds, therefore the sign of the update direction
is (—1,41) . Hence the iteration scheme will cross d; clockwise. Repeating the argument for the
subregion B, whose boundary is ds and not in the cone spanned by d; and ds, we find that there
the iteration scheme will cross dy in counter-clockwise direction. This proofs the existence of two
subregions adjacent to one the d-lines between which the iteration scheme moves back and forth.

To describe this dynamics near the d-line, where the iteration scheme moves back and forth between
two subregions B; and Bs, we work in the basis d, e with e being orthogonal to d. We denote the
corresponding coordinates by v, 7., and without loss of generality assume that for 7, > 0 we move
into B; First we analyze this zigzag behavior for a simplified map H* defined by H*(z) = Bz
if (e, ) > 0and H*(z) = Bow if (7, x) < 0. A drawing of this situation can be found in[A.3]
for the case where one of the sides moves actually away from 0. It is part of the argumentation
that in this case the movement toward 0 on the other side outweighs the divergent part. Denoting
r1 = ||B1d|| and ro = ||Bad]|, one iteration step in B; changes the coordinates as follows:

Avg = —nrivyq cos()

. 49
Ave = —nr1yg sin(a) “49)
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Figure 6: Geometric model for zigzag convergence. Blue lines show where the sign of the gradient
field switches. The green crosses with the red-colored quadrant indicate the allowed signs of the
update vector in the three regions defined by the blue lines. The red line corresponds to the flow line
of the non-gradient field.

Similarly, one iteration step in By changes the coordinates as follows:

Ay = —nravacos(B)
. 50
Avye = nravgsin(f) 0

For the iteration scheme to move between B; and B endlessly, we require A., the number of B
steps has to be x the number of B, steps, where « can be computed from:

_ sin(B)

~ sin(a)

knrsin(8)yq = nrsin(a)yg  or (51)

Here, we set r = r1 = ro since along the boundary, the vector only flips a sign in one component
and therefore, the lengths are the same. Consequently, the average A+, progress per step is:

Ay = _"(/;Zl COS(/B))’Yd = —nF(a,B)va (52)

cos(a) + e

As long as o + B < m, the expression in the brackets F' gives a positive number, leading to
convergence. e is the angle between the H*(x) updates and the coordinate axis along which the sign
flips. € fulfills:

a+p+2c=m (53)

By assumption of the theorem, they are not parallel, giving € > 0 and « + 3 < . We also introduce
the angle ¢ between d and the first coordinate axis.

0+a+e=m/2 (54)
To apply these ideas now to the actual vector field H, we note that the maximal step away from the

boundary can be no more than w; = (1 + nR;1)d and we = (1 + nRy)d. To receive a worst-case
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estimate for the convergence rate, we assume the updates always happen with the worst possible
angle o, and (3,,, which would lead to more movement along e and less along d. As by continuity
for n = 0, they approach « and /3, we choose a learning rate smaller than a 7yax 7z that is chosen
such that the angle between the worst case value of o and 8’ on both sides of d with the coordinate
axis of the sign flip is still €/2. Then Equations [53]|and [54] change to:

o +B +e=m
0+a +¢€/2=m/2

As still o' + ' < 7, our iteration scheme is still convergent through The o’ and 8’ can be
written as a function of ¢ and 6:

(55)

o =7/2—€/2—-6

56
B =m/2—¢/2+0 (56)
With that we can give an upper bound on the convergence rate, using that z is bounded by 4.
o= Jim (1 <1 e g =1 gE (0,0, (0,0) 57)
t=o0 |/ o

By again using the geometry of ellipses, we can further estimate 6: As mentioned d lies between the
eigenvector f1 of D and the coordinate axis. As the ellipse defined by D becomes more elongated
by increasing the condition number K of D, 6 increases with K. Using this information together
with the functional form of F', we can then give the following formula for ¢, where G > 0 through
K > 1lande > 0, and G fulfills G(f1, K1,¢) > G(f1, Ko, ¢) if K1 > K as this leads to a better 6.

c<1-nG(f1,K,¢€) (58)

Final Estimates Putting it all together, we choose 7yax as the minimum of Myax, AT, max, IC
Nmax,zz- Then for 0 < 1 < nmax, the construction in our proof is valid and after a finite num-
ber of steps, we either reach one of the two asymptotic situations of convergence. The convergence
rate is bounded by the maximum of ¢ < 1 — nG(f1, K, €) for zigzag convergence and ¢ < 1 + n),
for convergence within one subregion.
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Figure 7: a) Schematic representation of Baird’s counterexample with 7 states. b) Loss as a function
of iterations.

B BAIRD’S COUNTEREXAMPLE

As another test case, we present the version of Baird’s counterexample provided by [Sutton & Barto
(2018), which is likely the most famous example associated with TD’s divergence. Figure[7a shows
a schematic drawing of this Markov zero reward process along with the structure of the used function
approximation. The transition probabilities of the policy to be estimated are 1 on the solid arrows
and 0 elsewhere. The transition probabilities of the behavior policy used for off-policy training are
1/7 on the solid arrows, 6/7 on the dashed arrows, and 0 elsewhere. We use a discount factor of
0.99 and train on full batches to avoid stochastic effects of mini-batch training.

Figure[7p shows the loss (Bellmann error) over training iterations for GD, TD and GDS-TDM. At the
beginning, GD performs decently before then stagnating around 10~°. This is due to ill-conditioning
as an explicit calculation of the condition number of the Hessian reveals; its value is 1.3 - 10*. TD
diverges, which is due to the off-policy training procedure. GDS-TDM behaves similarly to GD in
the beginning, decreasing the loss. When GD reaches is plateau, GDS-TDM continuous to decrease
the loss. Later GDS-TDM stagnates as well but at a much better value of roughly 10719, It is worth
mentioning that at some point we expect the loss not to decrease any further due to floating point
precision and the presence of non-zero solutions. The latter exists in any underdetermined linear
system; here, we use 8 variables to learn 7 values.
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Figure 8: Loss over iterations for 3x3 Gridworld.

C 3X3 GRID WORLD

We present an additional variation of our Grid World experiment where we reduce the size from
10x10 to 3x3. For that case, TD converges and we have a reference of what the convergence speed
of TD actually is. Consequentially, we can test whether our method GDS-TDM can indeed reach the
same speed as TD in higher dimensions as well. The results are shown in Figure[§] We observe GD
is slower than TD, as expected; however, GD is not impractically slow since the condition number
for this low-dimensional Grid World is still small. GDS-TDM lies between GD and TD. After the
burn-in phase, GDS-TDM achieves a similar asymptotic speed as TD. This is an encouraging result
as the theoretical analysis in our work was also focused on the asymptotic convergence rate.
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