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A APPENDIX

A.1 PROOFS

In order to prove Theorem 1, we need to first look at a special variable structure, which is a ‘chain’.

A non-trivial case: Chain (no loop) A chain is a variable dependency structure illustrated below
of shape (n+ 1) x n, (below is the case n = 3). It is clear that any more dependency entry added
upon a chain will either result in a loop or a dense block.

For the chain example, we argue that we can actually perform min-norm oracle (6) separately w.r.t
θ1,θ2,θ3 and this guarantees Pareto stationary solutions upon termination. Although the proof is
shown for the case n = 3 below, for simplicity, it is not hard to generalize to any n ≥ 3.

We prove this by writing out the exact characterization for the stationary solutions upon termination
and show it is strictly included in the set of all Pareto stationary solutions.

θ1 θ2 θ3

f1 ✓

f2 ✓ ✓

f3 ✓ ✓

f4 ✓

Lemma 2. RP-MGDA applied to the chain structure terminates only upon Pareto stationary solutions.

Proof. The RP-MGDA solutions w∗ = (θ∗
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3) in this example satisfy the following condition:
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we can then find (λ1, λ2, λ3, λ4) that satisfies the Pareto stationary condition
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by keeping ratios the same. Specifically, choose (λ1, λ2, λ3, λ4) such that λ1 : λ2 = λ
′

1 : λ
′

2,
λ2 : λ3 = λ

′′

2 : λ
′′

3 , and λ3 : λ4 = λ
′

3 : λ
′

4.

Theorem 1. RP-MGDA must attain a Pareto stationary solution upon termination.

Proof. We can show that after exhaustively applying rule (I) and (II), the final variable dependency
structure we arrive at, just before applying rule (III), is either a chain or sparser than a chain (A is
sparser than B if by adding more dependency entries to A it can become B). Notice that if the shape
does not match (e.g., many objectives and few variables), we can always add dummy variables.

The resulting dependency structure cannot be denser than a chain since any addition of an entry must
result in either a loop or a dense block, which contradicts rule (I) or (II).

Now that we have shown already that RP-MGDA applied to a chain guarantees Pareto stationary
solutions, and since sparser structures only exhibit fewer constraints over λ′s when reaching sta-
tionary solutions, applying RP-MGDA to the final variable dependency structure guarantees Pareto
stationarity.

A.2 SCENARIO: PERSONALIZED FEDERATED LEARNING

Let’s consider a personalized federated learning setting where every client share a global variable (i.e.,
model parameters) x, and each client also owns a local preference variable (e.g. a local model that
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extracts compact features) zi, so that each objective function fi is specified by two variables (x, zi)
and thusf can be written as fi(x, zi). If we apply MGDA naively, we will treat w = (x, z1, . . . , zn)
while neglecting the sparse variable structure.

The variable structure can be understood more clearly with graphical illustration. For example when
n = 3, we can draw it as:

x z1 z2 z3
f1 ✓ ✓
f2 ✓ ✓
f3 ✓ ✓

As we have mentioned, a naive way to apply MGDA is to treat w = (x, z1, z2, z3) and proceeds
as (6). However, similar to the idea in 3.2, we can do much better by first partitioning according to
variables and optimize in a somewhat coordinate-wise way.

By applying RP-MGDA, we are in effect applying MGDA to the x coordinate of f1, f2, f3 and apply
separate gradient descent to the zi coordinate of fi. The refined optimization iteration is:

xt+1 = xt − ηdt, dt = Jf (x
t)λt

∗,

where λt
∗ = argmin

λ∈∆
∥Jf (xt)λ∥2. (11)

zt+1
i = zti − η∇zifi(x

t, zti), (12)

We will show that this refined MGDA update rule (RP-MGDA) reaches better solutions:

1. In Proposition 1, we prove that the set of solutions of RP-MGDA is a strict subset of (and
thus superior to) Pareto stationary solutions, i.e. solutions of naive MGDA.

2. In Proposition 2 we prove that, under reasonable convexity assumptions, the solutions of
this refined approach (12) are Pareto optimal while the ones of naive MGDA are not.

Proposition 1. All solutions of Algorithm (12) are Pareto stationary, but not vice versa.

Proof. The stationary solutions of 12 are characterized by

∇zifi(x
∗, z∗i ) = 0,∀i, and

∃λi ≥ 0,

n∑
i=1

λi = 1, s.t.

n∑
i=1

λi∇xfi(x
∗, z∗i ) = 0

(13)

This implies that

0 =

n∑
i=1

λi


∇xfi(x

∗, z∗i )
...

∇zi
fi(x

∗, z∗i )
...

 =

n∑
i=1

λi∇fi(x
∗, z∗) (14)

which is exactly the definition of Pareto stationarity.

On the other hand, the Pareto stationary condition
∑n

i=1 λi∇fi(x
∗, z∗) = 0 doesn’t necessarily

imply (13), since ∇zi
fi(x

∗, z∗i ) can be nonzero for indices i where λi = 0.

Lemma 3. If f(x,y) is strictly convex w.r.t (x,y), and g(x, z) is strictly convex w.r.t (x, z). Then
f + g is strictly convex w.r.t. (x,y, z).

Proof. By definition, f + g is strictly convex w.r.t (x,y, z) iff ∀(x1,y1, z1) ̸= (x2,y2, z2) and
0 < t < 1 (let w1 := (x1,y1, z1) and w2 := (x2,y2, z2)), we have

(f + g)(tw1 + (1− t)w2) < t(f + g)(w1) + (1− t)(f + g)(w2) (15)
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Note that

LHS = f(t(x1,y1) + (1− t)(x2,y2)) + g(t(x1, z1) + (1− t)(x2, z2))

< tf(x1,y1) + (1− t)f(x2,y2) + tg(x1, z1) + (1− t)g(x2, z2)

= t(f + g)(x1,y1, z1) + (1− t)(f + g)(x2,y2, z2)

(16)

where the first inequality is due to strict convexity of f(x,y) and g(x, z). Q.E.D.

Proposition 2. With variable structure in the above PFL setting, and jointly convex fi (but not
necessary strictly), the solutions of (12) are Pareto optimal, given that each fi is strictly convex w.r.t.
(x, zi).

Proof. Notation, let w∗ = (x∗, z∗1, z
∗
2, z

∗
3) be the stationary solution of Alg 12, let w′ =

(x′, z′1, z
′
2, z

′
3) be a potential candidate solution that Pareto dominates w∗. In shorthand, denote

f∗
i := f∗

i (x
∗, z∗i ), f

′
i := f ′

i(x
′, z′i).

Recall the stationarity condition of 12:

∇zi
fi(x

∗, z∗i ) = 0,∀i, and

∃λi ≥ 0,

n∑
i=1

λi = 1, s.t.

n∑
i=1

λi∇xfi(x
∗, z∗i ) = 0

(17)

If all λi are nonzero, then w∗ is Pareto optimal, since by Proposition 1, w∗ is always Pareto stationary,
and Pareto stationary solutions are (properly) Pareto optimal if all λi are nonzero (see Jahn’s book, it
is quite easy to give a separate proof, and properly Pareto optimal is actually stronger). Q.E.D.
If one of the λi is 0, WLOG, say λ1 = 0, λ2, λ3 ̸= 0. Consider an auxiliary function f̄(x, z2, z3) :=
λ2f2 + λ3f3, since f̄ is strictly convex (by Lemma 3), ∇f̄(·) = 0 has only one unique solution and
is the minimizer. Furthermore,

∇f̄(x∗, z∗2, z
∗
3) = λ2

[∇xf2(x
∗, z∗2)

∇z2
f2(x

∗, z∗2)
0

]
+ λ3

[∇xf3(x
∗, z∗3)

0
∇z3

f3(x
∗, z∗3)

]
= 0

So (x∗, z∗2, z
∗
3) is the unique minimizer of f̄ , and thus if w′ dominates w∗, we must have

(x′, z′2, z
′
3) = (x∗, z∗2, z

∗
3).

Now that w′ dominates w∗, it must follow that f ′
1 < f∗

1 . However, that means f1(x
∗, z′1) <

f1(x
∗, z∗1), which is not possible because f1(x

∗, ·) is convex and ∇z1
f1(x

∗, z∗1) = 0.
Q.E.D. The same proof applies to arbitrary n and arbitrary number of zeros λi.

Remark 4 (Feasibility of assumption). Note that in Proposition 2, with the PFL variable structure,
it is impossible for any fi to be strictly convex (jointly). Thus, naive MGDA can never guarantee
Pareto optimality for this problem. On the other hand, assumptions on strict convexity w.r.t. partial
variables (x, zi) is feasible, e.g. see Example below.

With the scenario described in §A.2, Theorem 2 is proved with Proposition 2 and Remark 4.
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We also empirically justify the above claims through an example.
A personalized federated learning example. We consider the PFL setting with n = 3 clients.
f1(x, z1, z2, z3) = x2 + z21 , f2(x, z1, z2, z3) = (x − 1)2 + z22 , f3(x, z1, z2, z3) = (x − 2)2 + z23 .
According to experiments, with step size 0.01 and 1000 iterations. Apply MGDA with initialization
(x, z1, z2, z3) = (1.5, 1, 0.1, 0.1), the algorithm converges to (x, z1, z2, z3) = (1.5, 1, 0, 0) with
function values (f1, f2, f3) = ( 134 , 1

4 ,
1
4 ). This is not Pareto optimal since it is dominated by

(f1, f2, f3) = ( 94 ,
1
4 ,

1
4 ) when (x, z1, z2, z3) = (1.5, 0, 0, 0). In contrast, the refined approach 12,

with same setting, converges to (x, z1, z2, z3) = (1.5, 0, 0, 0) which is Pareto optimal.

From Proposition 1, we also see why MGDA fails to reach Pareto optimal solution in the previous
example (since in the example, λ1 = 0, ∇z1fi(x

∗, z∗1) ̸= 0, and MGDA stops even though it has a
descent direction along z1).
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