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A OVERVIEW
In the supplementary materials, we present more details of the
FreeGait dataset, encompassing dataset statistics, synchronization,
and calibration details, and ethical considerations. The presentation
is enriched with various data examples highlighting the valuable
contribution of the FreeGait dataset for real-world LiDAR-based
gait recognitions.

B MORE ABOUT OUR FREEGAIT
B.1 Dataset Statistics and Analyses
The statistics about the ID numbers over sequence numbers, frame
numbers over points numbers, and sequence numbers over se-
quence lengths are depicted in Figure 1. (1) Specifically, Figure 1 (a)
shows that each ID has an average of 5 sequences, similar to the
GREW [3] dataset, which is also captured in real-world scenarios
with cameras. (2) Figure 1 (b) illustrates that most LiDAR frames
contain 100-300 points. This contrasts with the SUSTech1K [1]
dataset, which averages 1000 points per frame. The relative spar-
sity of the FreeGait dataset introduces a greater challenge, yet it
is crucial for enhancing real-world gait recognition at long-range
distances. (3) Figure 1 (c) exhibits the variation in sequence length,
ranging from 10 to 60 frames, reflecting the complexity of gait se-
quences in unconstrained scenarios due to factors such as dynamic
occlusion. These statistics demonstrate the diversity and challenges
of FreeGait captured in real-world scenarios.

B.2 Synchronization and Calibration
We synchronized the LiDAR and camera using the GPS clock and
timestamped each frame, enabling seamless collaboration between
the two modalities for a robust gait recognition system. To re-
construct geometry in 3D space, we employed Zhang’s Camera
Calibration Method [2] to recover both the internal and external
parameters of the camera from the 2D image. Additionally, we
processed the calibration matrix from LiDAR to the camera using
MATLAB’s calibrator tools. These steps allowed us to unify the
multi-modal devices within the same coordinate system, achieving
precise multi-sensor system calibration.

B.3 More Data Examples
To demonstrate the contribution of the FreeGait dataset in detail, we
exhibit several examples of our FreeGait under three distinct views
in Figure 2, diverse variance in Figure 3 and low-light conditions in
Figure 4.

B.4 Ethical Discussion
We strictly adhere to privacy-preserving rules. All staff members
and students across the campus were informed via email about data
collection and its purposes. They voluntarily signed an agreement,
consenting to collecting, processing, using, and sharing their data

solely for research purposes. To further preserve privacy, we will
not release any original RGB views of subjects. The silhouettes
and LiDAR point clouds, without any texture and face informa-
tion, naturally protect human privacy. The agreement is shown in
Figure 5.
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Figure 1: Statistics about the FreeGait dataset.

Figure 2: Exemplar frame of FreeGait dataset from three distinct views. We can observe that images bring the ambiguity
of gait characteristics due to the view-dependent property and the lack of depth information. While LiDAR can capture
view-independent depth information, which is friendly for extracting gait geometry and dynamic features.
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Figure 3: Exemplar sequences of FreeGait dataset with diverse variance such as carrying, bag, luggage, and occlusions in free
environments. This demonstrates the diversity and real-world characteristic of our FreeGait.

Figure 4: Exemplar sequences of FreeGait under low-light conditions. In low-light conditions, the quality of the image is greatly
reduced, resulting in poor human segmentation results. In contrast, LiDAR is unaffected by light and can work day and night.
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Data Collection and Usage Agreement for Gait Recognition 
 
This Data Collection and Usage Contract is made and entered into as of , by and between 

 Lab, located at , hereinafter referred to as the "Lab," and Data 
Contributor. 
 
Purpose: 
The Lab is engaged in research and development of gait recognition technologies that involve the 
use of cameras and LiDAR sensors. The objective is to create and enhance algorithms capable of 
recognizing and analyzing human gait patterns for various applications, including security and 
health-related assessments. 
 
Data Collection: 
1. Data Contributor hereby consents to the collection of gait information, including but not 

limited to images and LiDAR data, by the Lab for the purposes stated above. 
2. The data collection process will involve the use of cameras and LiDAR sensors to capture Data 

Contributor's gait as they walk naturally. 
 

Data Usage: 
1. The Lab shall only use the collected gait information for research and academic purposes 

related to gait recognition technology. 
2. The Lab guarantees that the collected data, including silhouettes and point clouds derived 

from Data Contributor's gait, will be anonymized and dissociated from any personally 
identifiable information. 

3. The Lab shall not publish or disclose any personal information about Data Contributor, 
including their identity. 

4. The Lab shall only publish or share the anonymized silhouette and point cloud data without 
any reference to Data Contributor's identity. 
 

Ownership and Confidentiality: 
1. Data Contributor acknowledges and agrees that all data collected during the research project, 

including silhouettes and point clouds, shall become the property of the Lab. 
2. The Lab and Data Contributor shall maintain strict confidentiality regarding all aspects of this 

Contract and the research project, except for disclosures required by law. 
 
 

:                 Data Contributor: 
Signature: _______ _______               Signature: ______________________ 
Date: ______ ___________               Date: ________ __________ 

Figure 5: The example of the signed agreement.
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