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ORGANIZATION OF APPENDIX

In the Appendix, we provided experiments, proofs and discussions to support the main paper. Here is
the organization:

• Appendix A gives an example to distinguish between I/O and IS stability.

• Appendix B compares the gradient normalization vs logarithmic mapping.

• Appendix C shows extra LQR experiments under different instabilities.

• Appendix D shows other experiments under unstable RL problems with neural network
based policy parameterization.

• Appendix E provides proofs supporting the theoretical analysis in the main paper.

A EXAMPLE ON STABILITY DEFINITION

We use the illustrative example from Sontag (2008). Consider a n dimension linear system ẋ =
Ax + Bu where A ∈ Rn×n being full rank matrix, x ∈ Rn with initial condition x(0) = x0,
B ∈ Rn×m and u = u(t) ∈ Rm. By solving inhomogeneous ODE, the solution is

x(t) = eAtx0 +

∫ t

0

eA(t−τ)Bu(τ) dτ.

Lemma A.1. The system is ISS if all the eigenvalues of A are strictly negative.

Proof. let β(x0, t) be ∥eAt∥∥x0∥ and γ(x0) be ∥B∥
∫∞
0
∥eAτ∥ dτ . With all the eigenvalues of A

being strictly negative, both ∥eAt∥ and ∥B∥
∫∞
0
∥eAτ∥ dτ are bounded. ∥x(t, x0, u)∥ ≤ ∥eAt∥∥x0∥+

∥B∥
∫∞
0
∥eAτ∥ dτ∥u∥∞, therefore satisfies 5.

Consider y(x) := x itself, the system is I/O stable. While if we take y(x) := 1
∥x∥ , then the system is

ISS but not I/O stable with y →∞ with x0, u→ 0.

Now suppose A has non-negative eigenvalues and AB is not an empty matrix, then∫ t

0
eA(t−τ)Bu(τ) dτ is not bounded by γ function since ∥B∥

∫∞
0
∥eAτ∥ dτ when t→∞, which also

means the effect of previous action u will grow or at least not vanish along the time trajectory. Then
the system is not ISS. But the system could be I/O stable if we take trivial output like y(·) := 0.

In this paper, we consider I/O stability, regardless of the problem being ISS or not. While in many of
the real-world RL applications such as target tracking, the output function y(·) is correlated to the
norm of x such as using distance to target as cost function. In this case, I/O stability is dependent on
ISS. Specifically, for LQR problems, the eigenvalues of the system matrix A determine the system
ISS and also I/O stability (discrete LQR requires the eigenvalue within the unit circle and continuous
LQR requires eigenvalues to the left half-plane). Therefore, in the discrete LQR experiments, we use
matrix A to manipulate I/O stability. Since we are dealing with I/O stability, RL scenarios with ISS
but not I/O stable system is beyond the scope of this paper, for instance, an unstable invert pendulum
problem with cost clipped to [0, 1].
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B COMPARING LOGARITHMIC MAPPING WITH GRADIENT NORMALIZATION

Normalizing gradient is a classical approach to speed up the convergence, where we have the follow
update step:

θ ← θ − η
∇θVT (θ)

∥∇θVT (θ)∥
,

Compared with logarithmic mapping, the gradient normalization has similar theoretical performance
in deterministic case by controlling the spectral radius of the optimization step. In the stochastic
case, the updating step consists of a summation of gradient over the mini-batch followed by a
normalization process. In logarithmic mapping, the log function is applied on individual examples
ahead of summation. Therefore, the outliers with relatively large noise can be “normalized” to prevent
them from dominating sampling summation. Besides, the portion of unstable examples with large
loss are expected to drop during optimization, it is necessary to map the exponentially growing effect
of these unstable cases into linear forms. In practice, our logarithmic mapping outperforms the
gradient normalization in the convergence speed, as shown in the experiment section (Section 4).

Figure 2 are the comparisons between logarithmic mapping and normalizing gradient, where learning
rate 1e-1 and 1e0 will crash their optimization respectively. The plots of η = 1e-2 for logarithmic
mapping and η = 1e-1 for normalizing gradient effectively show similar convergence rate with
minor fluctuation at the beginning. The logarithmic mapping eventually reaches a slightly better
performance due to normalizing gradient’s trapping in the local minimum. Noticeably, if both
methods are coupled, the initial fluttering disappears and plots are smoother. We also tested using
logarithmic mapping ahead of the average of each trajectory, where loss = log(1/b

∑
j [vT (sj , θ)]),

instead of following Equation (12). The results are similar.

Figure 2: LQR cost difference to optimal: normalizing gradient vs log mapping, ρmax(A) = 5

C MORE EXPERIMENTS OF UNSTABLE LQR WITH DIFFERENT SPECTRAL
RADIUS

We include additional results for unstable LQR in Figure 3 both with pre-process enabled. ρmax(A) =
2 is a relatively moderate case, the vanilla method could use a learning rate of η = 1e− 4 and slowly
converge to optimal. In ρmax(A) = 10 case, the vanilla method crashes for η > 1e − 11 and
the optimization stagnates for η = 1e − 12. The logarithmic mapping has similar performance in
ρmax(A) = 2 case and converges faster than the latter in ρmax(A) = 10 case.

D GENERAL UNSTABLE RL

Figure 4 shows 3 customized unstable environments: unstable cart-pole, unstable mountain car and
Planar Vertical Take-off and Landing (PVTOL) aircraft. We use a single hidden layer neural network
with 64 hidden neurons and ReLU activation functions. The input layer and output layer has the
same dimension of environment state and action space respectively. Similar to LQR experiments, we
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Figure 3: LQR cost difference to optimal, left: ρmax(A) = 2, right: ρmax(A) = 10

search a largest learning rate without crashing the optimization. Each experiment is performed under
3 random seeds. The lower half of variance is omitted for visualization in log-scale plots.

Figure 4: Unstable RL examples: modified cart-pole, modified mountain car, PVTOL aircraft

D.1 MODIFIED CART-POLE

Compared with standard cart-pole problem from OpenAI Gym package, we use a continuous force
input and enlarged its force magnitude to introduce more instability to the input-output system (a
small amount of control feedback could dramatically change the system behavior). Besides, we allow
the agent to simulate fixed 20 time steps instead of terminating the episode if the agent runs into an
undesired zone. The cost function is defined in the quadratic form of the distance between current
state towards target position, instead of using the 0/1 reward depending on whether the episode is
done or not.

Figure 5 shows the cost against epochs for cart-pole problem with and without pre-process. For
vanilla loss without pre-process, η = 1e-8 is the maximum allowed learning rate and there is a
significant difference in convergence speed compared with other two. The logarithmic mapped cost is
higher but close to vanilla loss with normalizing gradient. With a pre-processed policy, the system is
more stable at the beginning and therefore larger learning rates are allowed. All three methods could
reach the optimal. To remark on the cart-pole problem, the instability mostly comes from the large
force magnitude instead of the unbounded state space because there exists local equilibrium when the
pole sticks downward. Therefore, compared to the following 2 environments, it is less challenging
and could be addressed with vanilla loss with a simple pre-process.

D.2 PVTOL AIRCRAFT

The Planar Vertical Take-off and Landing (PVTOL) aircraft (Lin et al., 1999) is a simplified 2D
model of realistic aircraft maneuver. The aircraft state includes the lateral/vertical displacement of
the gravity center and roll angle. The control feedback Ut and Um are longitudinal thrust and lateral
rolling force. Notice Um provides both force and rolling moment to the airplane. The target is to
control and airplane to a certain state and the cost function is also in the quadratic form.

Similar to the unstable mountain car example, both vanilla loss and normalizing gradient show slow
convergence when pre-process is not engaged. The logarithmic mapping is capable to achieve optimal
results regardless of the pre-treatment.
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Figure 5: Cost loss: left: unstable cart-pole, right: PVTOL

D.3 MODIFIED MOUNTAIN CAR

Similar to the cart-pole treatment, we remove the terminal conditions and re-define the cost function
in the quadratic form. The control target is to drive the car to a certain location and stabilize it.
We manipulate a steep slope by adding an acceleration term proportional to the cube of horizontal
displacement from the peak, and there does not exist any local equilibrium point.
The results are shown in Figure 6. Both vanilla loss and normalizing gradient require small learning
rate, the logarithmic mapping outperforms the other two methods. When pre-processing is engaged,
the vanilla loss still converges slowly, the other two methods share similar performance and achieve a
smaller cost compared with the optimal results without the pre-process.

Figure 6: Cost loss: Unstable mountain car

E MORE THEORETICAL RESULTS ON UNSTABLE RL

Lemma 3.7 (Restated). Update the value function VT (θ) by policy gradient method with θ ←
θ − η∇θVT (θ), choose step size η < 2/max

ξ
ρmax(JT (θ − ξη∇JT (θ))) for ξ ∈ [0, 1], then VT (θ)

is monotonically decreasing..
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Proof. Let ξ ∈ [0, 1] be a scalar, denote s = −η∇VT (θ), g(ξ) = VT (θ + ξs), we have

VT (θ + ξs)− VT (θ) = g(1)− g(0) =

∫ 1

0

dg

dξ
dξ

=

∫ 1

0

s⊤∇VT (θ + ξs) dξ

≤
∫ 1

0

s⊤∇VT (θ) dξ + |
∫ 1

0

s⊤(∇VT (θ)−∇VT (θ + ξs)) dξ|

≤ s⊤∇VT (θ) +

∫ 1

0

∥s∥∥(∇VT (θ)−∇VT (θ + ξs))∥ dξ

≤ s⊤∇VT (θ) + ∥s∥2max
ξ

ρmax(JT (θ + ξs))/2.

substitute s = −η∇VT (θ) into the equation, we have

VT (θ + ξs)− VT (θ) ≤ −η(1−
η

2
max

ξ
ρmax(JT (θ − ξη∇JT (θ))))∥∇VT (θ)∥2 < 0.

when (1− η
2max

ξ
ρmax(JT (θ − η∇JT (θ)))) term is negative.

Theorem 3.9 (Restated). If VT (θ) satisfies Assumption 3.2 and Assumption 3.4, using the vanilla gra-
dient descent algorithm from Equation (8), then ρmax(JT (θ)) <

∑m
k=1 dk[L1(

∑T
t=0 tϕk(θ)

t−1) +

L2
2(
∑T

t=0 t(t− 1)ϕk(θ)
t−2]

Proof.

∇θVT (θ) =

m∑
k=1

dk(

T∑
t=0

tϕk(θ)
t−1)

∂ϕk(θ)

∂θ
,

Jacobian JT (θ) = ∇2
θVT (θ)

=

m∑
k=1

Jk
T (θ).

where

Jk
T (θ) = dk[(

T∑
t=0

tϕk(θ)
t−1)

∂2ϕk(θ)

∂θ2

+ (

T∑
t=0

t(t− 1)ϕk(θ)
t−2)

∂ϕk(θ)

∂θ

∂ϕk(θ)

∂θ

⊤
].

(14)

Denote the eigenvalues of ∂2ϕk(θ)
∂θ2 , ∂ϕk(θ)

∂θ
∂ϕk(θ)

∂θ

⊤
, Jk

T (θ), as µk
1 > ... > µk

n, υk
1 > ... > υk

n,

νk1 > ... > νkn respectively. Notice ∂ϕk(θ)
∂θ

∂ϕk(θ)
∂θ

⊤
is positive semi-definite and has same non-zero

eigenvalue with ∂ϕk(θ)
∂θ

⊤ ∂ϕk(θ)
∂θ , then υk

1 ≤ L2
2 by Lipschitz condition. To bound the eigenvalues of

∂2ϕk(θ)
∂θ2 ,

|µk
i | ≤ ∥

∂2ϕk(θ)

∂θ2
v∥/∥v∥

= lim
h→0

∥∇ϕk(θ + hv)−∇ϕk(θ)∥
|h|∥v∥

≤ L1∥hv∥
|h|∥v∥

≤ L1.
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Notice ∂2ϕk(θ)
∂θ2 and ∂ϕk(θ)

∂θ
∂ϕk(θ)

∂θ

⊤
are Hermitian, by Weyl’s inequality to bound:

νk1 ≤ dk[L1(

T∑
t=0

tϕk(θ)
t−1) + L2

2(

T∑
t=0

t(t− 1)ϕk(θ)
t−2)],

νkn ≥ dk[−L1(

T∑
t=0

tϕk(θ)
t−1)].

ρmax(J
k
T (θ)) = max(|νk1 |, |νkn|)

≤ dk[L1(

T∑
t=0

tϕk(θ)
t−1) + L2

2(

T∑
t=0

t(t− 1)ϕk(θ)
t−2)].

ρmax(JT (θ)) ≤
m∑

k=1

dk[L1(
T∑

t=0

tϕk(θ)
t−1) + L2

2(
T∑

t=0

t(t− 1)ϕk(θ)
t−2)].

Theorem 3.10 (Restated). Suppose VT (θ) satisfies Assumption 3.2 and Assumption 3.4, using the
vanilla gradient descent algorithm from Equation (8), if η < 1/

∑m
k=1 dk[L1(

∑T
t=0 tϕk(θ)

t−1) +

L2
2(
∑T

t=0 t(t−1)ϕk(θ)
t−2], then the update step requirement in Lemma 3.7 for monotonic decrease

of value function is satisfied.

The proof is completed by substituting Theorem 3.9 into Lemma 3.7 and taking ξ = 0.
Lemma E.1. If function f(x) : Rm → R+ is L1 smooth and L2 Lipschitz and non-negative for
x ∈ S ⊂ Rm, then its polynomial f(x)n is (nfS

n−1
L1 + n(n− 1)fS

n−2
L2

2) smooth on S, where
fS = max

x∈S
[f(x)]

Proof. With function f(x) being L1 smooth, equivalently

∥∇f(x)−∇f(y)∥ ≤ L1∥x− y∥

⇐⇒g(x) =
L1

2
x⊤x− f(x) is convex

⇐⇒L1I ⪰
∂2f(x)

∂x2
.

With function f(x) being L2 Lipschitz, ∥∇f(x)∥ ≤ L2,

for polynomial f(x)n,

∂2[f(x)n]

∂x2
= nf(x)n−1 ∂

2f(x)

∂x2
+ n(n− 1)f(x)n−2∇f(x)∇f(x)⊤

⪯ (nfS
n−1

L1 + n(n− 1)fS
n−2

L2
2)I.

where the L2
2 term comes from the fact that ∇f(x)∇f(x)⊤ has same non-zero eigenvalue with

∇f(x)⊤∇f(x).

Therefore, f(x)n is locally (nfS
n−1

L1 + n(n− 1)fS
n−2

L2
2) smooth on the support S.

Lemma E.2.
VT (θ)− VT (θ∗)

∥∇θVT (θ)∥2
≥ 1

2L′ .
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where

L′ =

m∑
k=1

dk

T∑
t=0

[tϕk(θ)
t−1L1 + t(t− 1)ϕk(θ)

t−2L2
2].

where
ϕk(θ) = max

ξ
[ϕk(θ∗ + ξ(θ − θ∗))] for ξ ∈ [0, 1].

Proof. With Assumption 3.4 on ϕk(θ), apply Lemma E.1 on the straight line from θ to θ∗, VT (θ) ∼∑m
k=1 dk

∑T
t=0 ϕk(θ)

t is L′ smooth on the straight line.

VT (θ∗) ≤ min
ξ

VT (θ − ξ∇VT (θ))

≤ min
ξ

[VT (θ)− ξ∥∇VT (θ)∥2 +
L′

2
ξ2∥∇VT (θ)∥2]

≤ min
ξ

[VT (θ) + ∥∇VT (θ)∥2(
L′

2
(ξ − 1

L′ )
2 − 1

2L′ )]

≤ VT (θ)−
1

2L′ ∥∇VT (θ)∥2.

where second inequality comes from the L′ smoothness on the straight line from θ to θ∗.
therefore,

VT (θ)− VT (θ∗)

∥∇θVT (θ)∥2
≥ 1

2L′ .

Remark E.3. If ϕk(θ∗ + ξ(θ − θ∗)) is monotonically increasing on ξ, then

ϕk(θ) ≤ ϕk(θ),

L′ ≤
m∑

k=1

dk

T∑
t=0

[ϕk(θ)
t−1L1 + t(t− 1)ϕk(θ)

t−2L2
2].

then the smoothness along the updated step is bounded by the spectral radius of the Hessian on θ, as
ρmax(JT (θ)) in Theorem 3.9.
Theorem 3.12 (Restated). Assume ϕk(θ) is local strong convex as stated in Assumption 3.5 and the
decreasing learning rate η satisfies the conditions in Theorem 3.10, then if we run gradient descent
for VT (θ), it yields a solution:

∥θl − θ∗∥2 ≤ ql∥θ0 − θ∗∥2, (15)

where ω∗ = min
θ

m∑
k=0

dk[(

T∑
t=0

tϕk(θ)
t−1)] ,

√
q denotes the convergence rate and its square q is lower

bounded s.t. q ≥ (1− 2ω∗α
ρmax(JT (θ0))

)

Proof. by Proposition 3.11, ∂2ϕk(θ)
∂θ2 ≽ αI . From equation 14,

Jk
T (θ) ≽ dk[(

T∑
t=0

tϕk(θ)
t−1)]αI,

JT (θ) ≽
m∑

k=0

dk[(

T∑
t=0

tϕk(θ)
t−1)]αI

≽ min
θ

m∑
k=0

dk[(

T∑
t=0

tϕk(θ)
t−1)]αI = ω∗αI.
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by Proposition 3.11, VT (θ) is ω∗α strong convex:

VT (θ1 + θ2) ≥ VT (θ1) + θ⊤2 ∇θVT (θ1) +
ω∗α

2
∥θ2∥2. (16)

∥θl+1 − θ∗∥2

= ∥θl − ηl∇θVT (θl)− θ∗∥2

= ∥θl − θ∗∥2 − 2ηl∇θVT (θl)
⊤(θl − θ∗) + η2l ∥∇θVT (θl)∥2

(16)

≤ ∥θl − θ∗∥2(1− ηlω
∗α)− 2ηl(VT (θl)− VT (θ∗))

+ η2l ∥∇θVT (θl)∥2

≤ ∥θl − θ∗∥2(1− ηlω
∗α) when ηl < 2

VT (θl)− VT (θ∗)

∥∇θVT (θl)∥2
(17)

where the inequality condition is satisfied with our analysis in Lemma E.2 and Remark E.3 when

ηl < 1/

m∑
k=1

dk[L1(

T∑
t=0

tϕk(θl)
t−1) + L2

2(

T∑
t=0

t(t− 1)ϕk(θl)
t−2] (conditions in Theorem 3.10)

≤ 1

L′

≤ 2
VT (θl)− VT (θ∗)

∥∇θVT (θl)∥2
.

Since we have a non-increasing step size, ηl is upper bounded by 2
ρmax(JT (θ0))

, (1−ηlω
∗α) is greater

than (1− 2ω∗α
ρmax(JT (θ0))

).

Theorem 3.15 (Restated). Assume ϕk(θ) is local strong convex as stated in Assumption 3.5 and
the decreasing learning rate ηl <

C
L1T+L2

2T (T−1)
, then if we run gradient descent for logarithmic

mapped VT (θ) with Equation (13), it yields a solution:

∥θl+1 − θ∗∥2 ≤ ql∥θl − θ∗∥2.

where the the square of the step convergence rate ql has a varying lower bound s.t. ql ≥ (1 −
2ω∗α

ρmax(JT (θl))
)

Proof.

∥θl+1 − θ∗∥2

= ∥θl −
ηl

VT (θl)
∇θVT (θl)− θ∗∥2

= ∥θl − θ∗∥2 − 2
ηl

VT (θl)
∇θVT (θl)

⊤(θl − θ∗) +
ηl

VT (θl)

2
∥∇θVT (θl)∥2

≤ ∥θl − θ∗∥2(1−
ηl

VT (θl)
ω∗α)− 2

ηl
VT (θl)

(VT (θ)− VT (θ∗)) +
ηl

VT (θl)

2
∥∇θVT (θl)∥2

≤ ∥θl − θ∗∥2(1−
ηl

VT (θl)
ω∗α) when

ηl
VT (θl)

≤ 2
VT (θl)− VT (θ∗)

∥∇θVT (θl)∥2

where the inequality condition is satisfied with our analysis in Lemma E.2 and Remark E.3 when
ηl

VT (θl)
< 1/

∑m
k=1 dk[L1(

∑T
t=0 tϕk(θl)

t−1) + L2
2(
∑T

t=0 t(t − 1)ϕk(θl)
t−2]. The latter is valid
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because VT (θl)/
∑m

k=1 dk[L1(
∑T

t=0 tϕk(θl)
t−1) +L2

2(
∑T

t=0 t(t− 1)ϕk(θl)
t−2] is lower bounded

by a constant

min
l

VT (θl)∑m
k=1 dk[L1(

∑T
t=0 tϕk(θl)t−1) + L2

2(
∑T

t=0 t(t− 1)ϕk(θl)t−2]

= min
l

∑m
k=1 dk[(

∑T
t=0 ϕk(θl)

t)∑m
k=1 dk[L1(

∑T
t=0 tϕk(θl)t−1) + L2

2(
∑T

t=0 t(t− 1)ϕk(θl)t−2)

≥ min
l

min
k

ϕk(θl)

L1T + L2
2T (T − 1)

>
C

L1T + L2
2T (T − 1)

> ηl.

Because

ηl
VT (θl)

< 1/

m∑
k=1

dk[L1(

T∑
t=0

tϕk(θl)
t−1) + L2

2(

T∑
t=0

t(t− 1)ϕk(θl)
t−2]

<
2

ρmax(JT (θl))
. (18)

we have (1− ηl

VT (θl)
ω∗α) > (1− 2ω∗α

ρmax(JT (θl))
).

Assumption E.4. assume ϕ̂j,k(θ) and its gradient has small i.i.d. random noise ϵ1,j,k and ϵ2,j,k s.t.:

ϕ̂j,k(θ) = ϕk(θ) + ϵ1,j,k,

∂ϕ̂j,k(θ)

∂θ
=

∂ϕk(θ)

∂θ
+ ϵ2,j,k.

Let

V̂b,T (θ) =
1

b

b∑
j=1

vT (sj , θ).

be the value function approximation by stochastic sampling over mini-batch with size b. where
vT (sj , θ) is parameterized by

∑m
k=1 dk

∑T
t=0 ϕ̂j,k(θ)

t.

Lemma E.5. if the realizations of ϕ̂j,k and its gradient has random noise following Assumption E.4,
the variance of stochastic gradient descent for vanilla method is bounded by

1

b2
[∥

m∑
k=1

dk

T∑
t=0

t(t− 1)ϕk(θ)
t−2 ∂ϕk(θ)

∂θ
∥2 E[ϵ21,j,k] + (

m∑
k=1

dk

T∑
t=0

tϕk(θ)
t−1)2 E[∥ϵ2,j,k∥2].

Proof. the approximated gradient is:

∇θV̂b,T (θ)

=
1

b

b∑
j=1

m∑
k=1

dk(

T∑
t=0

tϕ̂j,k(θ)
t−1)

∂ϕ̂j,k(θ)

θ

=
1

b

b∑
j=1

m∑
k=1

dk(

T∑
t=0

t(ϕk(θ) + ϵ1,j,k)
t−1)(

∂ϕk(θ)

∂θ
+ ϵ2,j,k).
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The variance of vanilla method is:

E[∥∇θVT (θ)−∇θV̂b,T (θ)∥2]

= E[∥
1

b

b∑
j=1

m∑
k=1

dk[(

T∑
t=0

t(ϕk(θ) + ϵ1,j,k)
t−1)(

∂ϕk(θ)

∂θ
+ ϵ2,j,k)

− (

T∑
t=0

tϕk(θ)
t−1 ∂ϕk(θ)

∂θ
)]∥2]

neglect high order terms

≈ E[∥
1

b

b∑
j=1

m∑
k=1

dk[(

T∑
t=0

t((t− 1)ϕk(θ)
t−2ϵ1,j,k

∂ϕk(θ)

∂θ

+ ϕk(θ)
t−1ϵ2,j,k)∥2]

=
1

b2
[∥

m∑
k=1

dk

T∑
t=0

t(t− 1)ϕk(θ)
t−2 ∂ϕk(θ)

∂θ
∥2 E[ϵ21,j,k]

+ (

m∑
k=1

dk

T∑
t=0

tϕk(θ)
t−1)2 E[∥ϵ2,j,k∥2].

Lemma E.6. If the realizations of ϕ̂j,k and its gradient has random noise following Assumption E.4,
the variance of log mapping policy gradient is bounded by 1

b2 (2L2
2 T 4

C4 E[ϵ21,j,k] +
T 2

C2 E[∥ϵ2,j,k∥2]),
where C is the lower bound of ϕk(θ) in Assumption 3.2

Proof. Variance of stochastic gradient descent for logarithmic mapped ṼT (θ):

let

̂̃
V b,T (θ) =

1

b

b∑
j=1

log(vT (sj , θ)).

be the value function approximation by stochastic sampling over mini-batch with size b.

∇θ
̂̃
V b,T (θ)

=
1

b

b∑
j=1

∑m
k=1 dk(

∑T
t=0 tϕ̂j,k(θ)

t−1)
∂ϕ̂j,k(θ)

θ∑m
k=1 dk(

∑T
t=0 ϕ̂j,k(θ)t)

=
1

b

b∑
j=1

∑m
k=1 dk(

∑T
t=0 t(ϕk(θ) + ϵ1,j,k)

t−1)(∂ϕk(θ)
∂θ + ϵ2,j,k)∑m

k=1 dk(
∑T

t=0(ϕk(θ) + ϵ1,j,k)t
.

The gradient variance of logarithmic mapping is:

E[∥∇θṼT (θ)−∇θ
̂̃
V b,T (θ)∥2]

= E[∥
1

b

b∑
j=1

(

∑m
k=1 dk(

∑T
t=0 t(ϕk(θ) + ϵ1,j,k)

t−1)(∂ϕk(θ)
∂θ + ϵ2,j,k)∑m

k=1 dk
∑T

t=0(ϕk(θ) + ϵ1,j,k)t
−

∑m
k=1 dk(

∑T
t=0 tϕk(θ)

t−1)∂ϕk(θ)
∂θ∑m

k=1 dk
∑T

t=0 ϕk(θ)t
)∥2]

neglect high order terms

≈ E[∥
1

b

b∑
j=1

(

∑m
k=1 dk(

∑T
t=0 tϕk(θ)

t−1 ∂ϕk(θ)
∂θ + t(t− 1)ϕk(θ)

t−2ϵ1,j,k
∂ϕk(θ)

∂θ + tϕk(θ)
t−1ϵ2,j,k)∑m

k=1 dk
∑T

t=0(ϕk(θ)t + tϕk(θ)t−1ϵ1,j,k)
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−
∑m

k=1 dk(
∑T

t=0 tϕk(θ)
t−1)∂ϕk(θ)

∂θ∑m
k=1 dk

∑T
t=0 ϕk(θ)t

)∥2]

= E[∥
1

b

b∑
j=1

∑m
k=1 dk(

∑T
t=0 t(t− 1)ϕk(θ)

t−2ϵ1,j,k
∂ϕk(θ)

∂θ + tϕk(θ)
t−1ϵ2,j,k)∑m

k=1 dk
∑T

t=0 ϕk(θ)t

−
∑m

k=1 dk(
∑T

t=0 tϕk(θ)
t−1)∂ϕk(θ)

∂θ∑m
k=1 dk

∑T
t=0 ϕk(θ)t

∑m
k=1 dk

∑T
t=0(t− 1)ϕk(θ)

t−1ϵ1,j,k∑m
k=1 dk

∑T
t=0 ϕk(θ)t

∥2]

≤ 1

b2
1∑m

k=1 dk
∑T

t=0 ϕk(θ)t

2

(

m∑
k=1

∥dk(
T∑

t=0

t(t− 1)ϕk(θ)
t−2)

∂ϕk(θ)

∂θ
∥2 E[ϵ21,j,k] + (

m∑
k=1

dk

T∑
t=0

tϕk(θ)
t−1)2 E[∥ϵ2,j,k∥2]

+ (
∥
∑m

k=1 dk(
∑T

t=0 tϕk(θ)
t−1)∂ϕk(θ)

∂θ ∥∑m
k=1 dk

∑T
t=0 ϕk(θ)t

)2
m∑

k=1

(dk(

T∑
t=0

(t− 1)ϕk(θ)
t−1))2 E[ϵ21,j,k])

≤ 1

b2
(L2

2 T
4

C4 E[ϵ21,j,k] +
T 2

C2 E[∥ϵ2,j,k∥2] + L2
2 T

4

C4 E[ϵ21,j,k])

=
1

b2
(2L2

2 T
4

C4 E[ϵ21,j,k] +
T 2

C2 E[∥ϵ2,j,k∥2]).

Lemma E.7 (Bertsekas (2011)). Let Yk, Zk, and Wk, k = 0, 1, ..., be three sequences of random
variables and let Fk, k ≥ 0 be a filtration, that is, σ-algebras such that {Fk} ⊂ Fk+1 for all k.
Suppose that:

• The random variables Yk, Zk, and Wk are non-negative, and Fk-measurable.

• For each k, we have E[Yk+1|Fk] ≤ Yk − Zk +Wk

• There holds, w.p.1,

∞∑
k=0

Wk <∞.

then we have w.p.1,
∞∑
k=0

Zk <∞ and Yk → Y ≥ 0.

Theorem E.8. If the realizations of ϕ̂j,k and its gradient has random noise following Assumption E.4
with decreasing learning rate ηl s.t.

0 < ηl ≤
2

ρmax(JT (θ0))
,

∞∑
l=0

ηl =∞ and
∞∑
l=0

η2l <∞,

then we have ∥θl − θ∗∥ → 0 w.p.1

Proof. In the stochastic case, the gradient is replaced by∇θV̂b,T (θ) approximated by sampling. From
Lemma E.5,

E[∥∇θV̂b,T (θ)−∇θVT (θl)∥2] =
N(θ)

b2
.

where

N(θ) = [∥
m∑

k=1

dk

T∑
t=0

t(t− 1)ϕk(θ)
t−2 ∂ϕk(θ)

∂θ
∥2 E[ϵ21,j,k]

+ (

m∑
k=1

dk

T∑
t=0

tϕk(θ)
t−1)2 E[∥ϵ2,j,k∥2].
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E[∥θl+1 − θ∗∥2]
= E[∥θl − ηl∇θV̂b,T (θl)− θ∗∥2]
= E[∥θl − (∇θVT (θl) + (∇V̂b,T (θl)−∇θVT (θl)))− θ∗∥2]
= ∥θl − θ∗∥2 − 2ηl∇θVT (θl)

⊤(θl − θ∗) + η2l ∥∇θVT (θl)∥2 + η2l E[∥∇θV̂b,T (θ)−∇θVT (θl)∥2]

= ∥θl − θ∗∥2 − 2ηl∇θVT (θl)
⊤(θl − θ∗) + η2l ∥∇θVT (θl)∥2 + η2l

N(θl)

b2

(16)

≤ ∥θl − θ∗∥2(1− ηlω
∗α)− 2ηl(VT (θl)− VT (θ∗)) + η2l ∥∇θVT (θl)∥2 + η2l

N(θl)

b2

≤ ∥θl − θ∗∥2(1− ηlω
∗α) + η2l

N(θl)

b2
when ηl < 2

VT (θl)− VT (θ∗)

∥∇θVT (θl)∥2
. (19)

Similar to the treatment of Theorem 1 in Nguyen et al. (2018), apply Lemma E.7 with∑∞
l=0 η

2
l
N(θl)
b2 <∞ and ηl ≤ 2

ρmax(JT (θ0))
, then we have w.p.1,

∥θl − θ∗∥2 →W ≥ 0,

and
∞∑
l=0

∥θl − θ∗∥2
2ω∗α

ρmax(JT (θ0))
<∞.

Suppose there exists ϵ > 0 and l0, s.t. ∥θl − θ∗∥2 > ϵ for l > l0, then
∞∑
l=0

∥θl − θ∗∥2
2ω∗α

ρmax(JT (θ0))
>

∞∑
l=l0

∥θl − θ∗∥2
2ω∗α

ρmax(JT (θ0))
>

∞∑
l=l0

ϵ
2ω∗α

ρmax(JT (θ0))
=∞.

by contradiction, ∥θl − θ∗∥2 → 0 w.p.1.

Theorem E.9. If the realizations of ϕ̂j,k and its gradient has random noise following Assumption E.4
with decreasing learning rate ηl s.t.

0 < ηl ≤
C

L1T + L2
2T (T − 1)

,

∞∑
l=0

ηl =∞ and
∞∑
l=0

η2l <∞.

where C is the lower bound of in Assumption 3.2.

then we have ∥θl − θ∗∥ → 0 w.p.1.

Proof. For the logarithmic mapping stochastic case, the stochastic gradient is ̂̃
V b,T (θ) =

1
b

∑b
j=1 log(vT (sj , θ)), let Ñ = 1

b2 (2L2
2 T 4

C4 E[ϵ21,j,k]+
T 2

C2 E[∥ϵ2,j,k∥2]) be its variance upper bound
in Lemma E.6.

E[∥θl+1 − θ∗∥2]

= E[∥θl − ηl∇θ
̂̃
V b,T (θl)− θ∗∥2]

= E[∥θl − ηl(∇θṼb,T (θl) + (∇θ
̂̃
V b,T (θl)−∇θṼb,T (θl)))− θ∗∥2]

= ∥θl − θ∗∥2 − 2ηl∇θṼb,T (θl)
⊤(θl − θ∗) + η2l ∥∇θṼb,T (θl)∥2 + η2l E[∥∇θ

̂̃
V b,T (θl)−∇θṼb,T (θl)∥2]

= ∥θl − θ∗∥2 − 2ηl∇θṼb,T (θl)
⊤(θl − θ∗) + η2l ∥∇θṼb,T (θl)∥2 + η2l

Ñ

b2

≤ ∥θl − θ∗∥2(1−
ηl

VT (θl)
ω∗α)− 2

ηl
VT (θl)

(VT (θ)− VT (θ∗)) +
ηl

VT (θl)

2
∥∇θVT (θl)∥2 + η2l

Ñ

b2

≤ ∥θl − θ∗∥2(1−
ηl

VT (θl)
ω∗α) + η2l

Ñ

b2
when

ηl
VT (θl)

≤ 2
VT (θl)− VT (θ∗)

∥∇θVT (θl)∥2
(20)
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Using the same treatment in Theorem E.8 we have ∥θl − θ∗∥2 → 0 w.p.1.

Now Theorem E.8 and Theorem E.9 prove the convergence of both vanilla and logarithmic mapping
method under stochastic case, we would like to further explore the convergence rate.

For the vanilla case, taking the expectation of Equation (19), we have

E[∥θl+1 − θ∗∥2] ≤ E[∥θl − θ∗∥2](1− ηlω
∗α) + η2l

N(θl)

b2

≤ E[∥θl − θ∗∥2](1− ηlω
∗α) + η2l

N(θ0)

b2

where ηl is bounded by 2
ρmax(JT (θ0))

. Substitute the maximum allowed ηl =
2

ρmax(JT (θ0))
into above,

then we have

E[∥θl+1 − θ∗∥2] ≤ E[∥θl − θ∗∥2](1−
2ω∗α

ρmax(JT (θ0))
) +

2

ρmax(JT (θ0))

2N(θl)

b2

By induction,

E[∥θl − θ∗∥2] ≤ E[∥θ0 − θ∗∥2]
l−1∏
i=0

(1− 2ω∗α

ρmax(JT (θ0))
) +

N(θ0)

b2

l−1∑
i=0

2

ρmax(JT (θ0))

2 l−1∏
j=i+1

(1− 2ω∗α

ρmax(JT (θ0))
)

= E[∥θ0 − θ∗∥2](1−
2ω∗α

ρmax(JT (θ0))
)l +

N(θ0)

b2
2

ρmax(JT (θ0))

1− (1− 2ω∗α
ρmax(JT (θ0))

)l

ω∗α
(21)

where the 2nd term→ N(θ0)
b2

2
ρmax(JT (θ0))

1
ω∗α when l→∞

For the logarithmic mapping case, take the expectation of Equation (20),

E[∥θl+1 − θ∗∥2] ≤ E[∥θl − θ∗∥2](1−
ηl

VT (θl)
ω∗α) + η2l

Ñ

b2

using the maximum allowed ηl

VT (θl)
= 2

ρmax(JT (θl))
in Equation (18), then we have

E[∥θl+1 − θ∗∥2] ≤ E[∥θl − θ∗∥2](1−
2ω∗α

ρmax(JT (θl))
) + (

2VT (θl)

ρmax(JT (θl))
)2
Ñ

b2

By induction,

E[∥θl − θ∗∥2] ≤ E[∥θ0 − θ∗∥2]
l−1∏
i=0

(1− 2ω∗α

ρmax(JT (θ))
) +

Ñ

b2

l−1∑
i=0

2VT (θi)

ρmax(JT (θi))

2 l−1∏
j=i+1

(1− 2ω∗α

ρmax(JT (θj))
)

(22)

Here we do not have an upper bound for 2VT (θi)
ρmax(JT (θi))

term because the denominator ρmax(JT (θi)) is

upper bounded by
∑m

k=1 dk[L1(
∑T

t=0 tϕk(θi)
t−1)+L2

2(
∑T

t=0 t(t−1)ϕk(θi)
t−2]. With VT (θi) ∼∑m

k=1 dk
∑T

t=0 ϕk(θi)
t, approximate 2VT (θi)

ρmax(JT (θi))
∼ max{ C

L1T
, C
L2

2T (T−1)
} is a constant, where

C = max
k

max
θ

ϕk(θ). The
l−1∏

j=i+1

(1− 2ω∗α

ρmax(JT (θj))
) term is a diminishing series with coefficient

(1 − 2ω∗α
ρmax(JT (θi+1)) ) strictly less than 1. Therefore, the 2nd term in Equation (22) converges to a

constant as well.

Now, comparing Equation (21) and Equation (22) both under maximum allowed fix learning rate,
both have a constant second term and the first term of Equation (22) diminishes much faster than
Equation (21) as similar to the deterministic case.
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