
Resolving the Tug-of-War: A Separation of
Communication and Learning in Federated Learning

Junyi Li
Computer Science

University of Maryland College Park
junyili.ai@gmail.com

Heng Huang ∗

Computer Science
University of Maryland College Park

henghuanghh@gmail.com

Abstract

Federated learning (FL) is a promising privacy-preserving machine learning
paradigm over distributed data. In this paradigm, each client trains the parameter
of a model locally and the server aggregates the parameter from clients period-
ically. Therefore, we perform the learning and communication over the same
set of parameters. However, we find that learning and communication have fun-
damentally divergent requirements for parameter selection, akin to two opposite
teams in a tug-of-war game. To mitigate this discrepancy, we introduce FedSep,
a novel two-layer federated learning framework. FedSep consists of separated
communication and learning layers for each client and the two layers are con-
nected through decode/encode operations. In particular, the decoding operation is
formulated as a minimization problem. We view FedSep as a federated bilevel opti-
mization problem and propose an efficient algorithm to solve it. Theoretically, we
demonstrate that its convergence matches that of the standard FL algorithms. The
separation of communication and learning in FedSep offers innovative solutions
to various challenging problems in FL, such as Communication-Efficient FL and
Heterogeneous-Model FL. Empirical validation shows the superior performance of
FedSep over various baselines in these tasks.

1 Introduction

In Federated Learning (FL) [42], a set of clients jointly solve a machine learning task under the
coordination of a central server. The process of FL involves two category of operations: Learning
and Communication. For the learning operation, each client optimizes their local objectives, and
for the communication operation, clients exchange local parameters to facilitate knowledge sharing.
In the existing FL pipeline, both Learning and Communication operations hinge on the same set of
parameters. However, these two operations have fundamentally divergent requirements, akin to two
teams engaged in a tug-of-war, each pulling in opposite directions. In fact, on the communication
side, it is imperative that the parameters of all clients reside in a uniform space. Moreover, to mitigate
the high communication costs, a major bottleneck in FL, it is beneficial to maintain these parameters
within a low-dimensional space. In contrast, on the learning side, given the heterogeneity of devices,
including variations in hardware and data distribution, it is advantageous to allow the parameter
space to differ across clients. Furthermore, to accommodate the implementation of state-of-the-art
large-scale machine learning models (such as Transformers [56]), a high-dimensional parameter
space is desirable. In summary, a huge discrepancy of requirements to parameter selection exists
between the communication and the learning in FL.

∗This work was partially supported by NSF IIS 1838627, 1837956, 1956002, 2211492, CNS 2213701, CCF
2217003, DBI 2225775.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

To mitigate this discrepancy, we opt to ‘break the rope’ in this tug-of-war scenario. More precisely,
we propose a two-layer structure on clients: a communication layer and a learning layer. As shown in
Figure 1, we denote this framework as FedSep: The communication layer connects with the server
and uploads/downloads parameter, while the learning layer performs local objective optimization.
Then the communication layer and the learning layer are connected through encode/decode operations.
The decode operation maps the parameter of the communication layer to the parameter of the learning
layer and the encode operation performs the mapping in the opposite direction. More specifically, we
formulate the decode operation as solving a minimization problem and does not assume an explicit
relation between the parameter of communication layer and the parameter of the learning layer.
In summary, we aim to use two distinct sets of parameters in FedSep to resolve the ‘competition’
between the communication and learning operations, meanwhile, the two set of parameters are close
connected through decode/encode operations. Mathematically, FedSep can be formulated as solving
a federated bilevel problem. The upper level problem corresponds to the learning problems on clients,
while the lower level problem is the minimization problem in the decode operation. We propose
an efficient algorithm to solve this bilevel problem, which is composed of three consecutive steps:
Decode the communication parameter, Learning on local problems and Encode the learning parameter
to the communication parameter. The convergence of the algorithm is guaranteed.

Figure 1: The structure of FedSep. FedSep follows
the one-server-multiple-clients structure, in partic-
ular, each client has two layers: the communication
layer and the learning layer. The two layers are
connected through the decode and encode opera-
tions.

To demonstrate the flexibility of FedSep in in-
corporating the contradictory requirements of
the communication and learning, we study two
real-world FL tasks. In the first task, we study
the communication-efficient FL task. In this
task, we set the dimension of the communica-
tion parameter to be much smaller than the learn-
ing parameter, furthermore, we decode the com-
munication parameter through a LASSO prob-
lem. In the second task, we study the model-
heterogeneous FL task. In this task, the learning
parameters on different clients have different
dimension. We set the communication param-
eter to be the parameter of the server model,
and the learning parameter be a subset of the
communication parameter (server model). In
particular, the decode operation is to select the
subset adaptively based on the client’s local data.
We empirically verify the superior performance
of our methods compared to other baselines. Fi-
nally, we summarize the main contributions of
our work as follows:

1. We propose a novel two-layer Federated Learning framework, i.e. FedSep, where the
communication layer and the learning layer are separated on clients;

2. We let the decode operation from the communication layer to the learning layer be solving
a minimization problem, and therefore, the FedSep framework has a bilevel optimization
formulation. We propose an efficient algorithm to solve the bilevel problem and show that
its convergence rate matches that of the standard Federated Learning algorithms;

3. We apply the FedSep framework to solve two important FL tasks: Communication-Efficient
FL and Model-Heterogeneous FL. Numerical experiments show the superior performance
of the methods based on FedSep.

Notations. ∇ denotes the full gradient, ∇x is the partial derivative for variable x, and higher-order
derivatives follow similar rules. || · ||2 is ℓ2-norm for vectors and the spectral norm for matrices. AB
denotes the multiplication of the matrix between the matrix A and B. [K] represents the sequence of
integers from 1 to K.

2 Related Works

Federated Learning. FL is a novel paradigm for performing machine learning tasks over distributed
data, but it also poses challenges such as heterogeneity [27], privacy [44] and communication

2

bottleneck [58]. In particular, communication cost is one of the major bottlenecks in FL. A widely
used approach to reduce communication burden is through compression. Various compressors [58,
39, 54, 28] have been studied in the literature. Next, model-heterogeneous FL is also studied to solve
the device heterogeneity issue. There are two main categories of heterogeneous model methods:
knowledge-distillation (KD) [38, 24, 10] based and partial-training (PT) [12, 6, 1] based. KD-based
methods treat the server model as the teacher and the clients’ model as the student. In contrast,
PT-based methods select a subset of the server model for each client, and in the aggregation phase,
the server simply aggregates the updated sub-models.

Bilevel Optimization. Bilevel problem is a type of two-layer optimization problem [59]. In
the machine learning community, Hyper-parameter Optimization problems [31, 8, 4, 13] are one
of the mostly studied bilevel problems. Early bilevel optimization algorithms solved the lower
problem exactly to update the upper variable. Recently, researchers developed algorithms that
solve the lower problem approximately with a fixed number of steps and use the back-propagation
technique to compute the approximate hyper-gradient [14, 41, 16, 46, 51]. More recently, single-loop
algorithms [18, 20, 26, 33, 29, 9, 62, 34, 11, 22, 23] based on alternative updates of lower and upper
level problems are proposed. However, less work studies bilevel problems under the federated setting.
[55, 36, 35] studies a type of federated bilevel problems where the lower level problems are federated.
In particular, [36] solves the noisy label problem in FL. Note that our FedSep is formulated as a type
of federated bilevel problems, however, our problem is different from that in [55, 36]. Firstly, our
problem has a unique lower problem for each client, moreover, FedSep impose unique constraints not
covered by the existing methods. Please refer to Section B in Appendix for more related works.

3 Separating Communication and Learning in Federated Learning

In this section, we propose FedSep, a novel two-layer Federated Learning Framework. As shown in
Figure 1, FedSep has the one-server-multiple-clients structure as in the classical Federated learning
framework, we assume M clients in the training. The difference between the FedSep and classical FL
framework lies in the client. Different from the classical FL, FedSep includes two separated layers on
clients: a communication layer and a learning layer. The two layers have different responsibilities.
As the name shows, the learning layer is responsible of finishing the learning task, e.g. fitting a
neural network over a dataset. We assume that the learning layer on client m ∈ [M] has parameter
y(m) ∈ Rd(m)

. Note that the choice of y(m) should be adapted to the specific setting of each client,
such as the data distribution, hardware resources etc.. Next, the communication layer performs
communication with the server (other clients), which includes the upload and download operations.
We assume the communication layer on client m has parameter x ∈ Rp. Note that the parameter of
communication layer has identical formulation for all clients. Finally, the communication layer and
the learning layer are connected through the encode and decode operations.

To model the various potential relationship between the communication and learning layer, we
abstract the decode operation as solving a minimization problem, and the encode operation be its
reverse operation. As a result, we have the following bilevel formulation for the FedSep framework.

min
x∈Rp

h(x) :=
1

M

M∑
m=1

h(m)(x) :=
1

M

M∑
m=1

f (m)(y(m)
x), y(m)

x = argmin
y(m)∈Rd(m)

g(m)(x, y(m)) (1)

In Eq. (1), M is the number of clients; f (m)(y),m ∈ [M] denotes the local problem solved by the
client m; g(m)(x, y) is the minimization problem solved in the decode operation by the client m; x is
the parameter of the communication layer; y(m) denotes the parameter of the learning layer on the
client m.

Next, we propose a three-stage algorithm to solve Eq. (1). As shown by Algorithm 1, we perform
T global steps, and at each step t ∈ T , we randomly choose a subset of clients Mt to perform the
training and then the server performs aggregation. The Client training is divided into three stages:
Decode stage (lines 7-12), Learning stage (lines 14-17), and Encode Stage (line 19).

Decode Stage. In Eq. (1), the decode operation solves the lower optimization problem g(m)(x, y) to
obtain y

(m)
x . We denote the decode operator on the mth client by Dec(m){·}, thus we have: y(m)

x =
Dec(m){x}. In Algorithm 1, we solve g(m)(x, y) approximately with Idec steps of stochastic gradient

3

Algorithm 1 Separating Communication and Learning in FL (FedSep)
1: Input: Initial states x1; learning rates γ, η; mini-batchsize bx, by
2: for t = 1 to T do
3: Randomly sample a subset Mt of clients;
4: for m ∈ Mt in parallel do
5: // Decode stage, estimate y

(m)
x = Dec(m){x};

6: Receive the global state xt from the server and set x(m) = xt, and initialize y
(m)
0 ;

7: for i = 1 to Idec do
8: Randomly sample a minibatch of by samples By;
9: y

(m)
i = y

(m)
i−1 − γ∇yg

(m)(x(m), y
(m)
i−1 ,By)

10: end for
11: Set ŷ(m)

0 = y
(m)
Idec

as the estimation of Dec(m)(x(m));
12: // Learning stage, optimize f (m)(y);
13: for i = 1 to I do
14: Randomly sample a minibatch of by samples Bŷ;
15: ŷ

(m)
i = ŷ

(m)
i−1 − η∇f (m)(ŷ

(m)
i−1 ;Bŷ);

16: end for
17: // Encode stage, encode the update of the learning layer back to the communication layer;

18: Set ∆ŷ(m) = ŷ
(m)
I − ŷ

(m)
0 and compute ∆x̂

(m)
t = Ẽnc

(m)
{∆ŷ(m)}, where Ẽnc

(m)
{·} is

defined in Eq. (3) and we choose |Bx| = bx.
19: end for
20: xt+1 = xt − 1

|Mt|
∑

m∈Mt
ηg∆x̂

(m)
t

21: end for

descent (Line 8-11) and use the output as an approximation of y(m)
x , i.e.. y(m)

Idec
= D̃ec

(m)
(x(m)) ≈

y
(m)
x , where D̃ec

(m)
(·) represents the approximation of the exact decoder Dec(m){·}.

Learning Stage. Next, we perform I steps of stochastic gradient descent to solve the local learning
problem f (m)(y) (Line 14 - 17). This stage is similar to the local gradients in classical FL framework.
Note we get ŷ(m)

I as the updated learning parameter y(m), more formally, we use ∆ŷ(m) = ŷ
(m)
I −

ŷ
(m)
0 = ŷ

(m)
I − y

(m)
Idec

to represent the update in the learning stage.

Encode Stage. After the learning stage, we get the update of the local learning problem ∆ŷ(m).
Suppose we denote the encode operator Enc(m){·}, then we get the update of the communication
parameter as ∆x̂(m) = Enc(m)(∆ŷ(m)) (Line 19). In particular, we choose the following encode
operator:

Enc(m){·} := −∇xy
(m)
x = ∇xyg

(m)(x, y(m)
x)

(
∇yyg

(m)(x, y(m)
x)

)−1
(2)

where y
(m)
x = Dec(m)(x) is the output of the exact decode operation and the second equality can be

derived following the implicit function theorem under mild assumptions [18]. To reduce the computa-
tion complexity, we use Neumann series to approximate the inverse operation in Eq. (2). More specif-
ically, we have the following approximation:

(
∇yyg

(m)(x, y)
)−1 ≈ τ

∑Q
q=0(I − τ∇yyg

(m)(x, y))q ,

where Q and τ are some constants. Since in the decode stage, we use y
(m)
x ≈ y

(m)
Idec

, we get a
stochastic approximation of Eq. (2) as:

Ẽnc
(m)

{·} :=

Q∑
q=0

τ∇xyg
(m)(x, y

(m)
Idec

;Bx)(I − τ∇yyg
(m)(x, y

(m)
Idec

;Bx))
q (3)

Remark 1. We use Eq. (2) as the encode operator due to the following fact about the hyper-gradient:

∇h(m)(x) = ∇xy
(m)
x (∇f (m)(y(m)

x))

Note that suppose ∆ŷ(m) = −∇f (m)(y
(m)
x), which means the learning layer performs one step of

gradient descent with learning rate 1 in the learning stage of Algorithm 1, then we have: ∇h(m)(x) =

4

Enc{∆ŷ(m)} = ∆x(m). Therefore, we update the communication parameter x such that it optimize
the overall problem ∇h(m)(x).

Server Aggregation. Finally, the server aggregates the local updates of communication parameter
∆x̂(m),m ∈ Mt to get the new communication parameter as shown in Line 21 of Algorithm 1.

Difference with existing bilevel algorithms. Bilevel optimization problems are widely studied in
the literature [18, 26]. However, FedSep cannot directly apply existing algorithms. In a standard
bilevel algorithm, each step of update to the upper level variable requires (approximately) solving of
the corresponding lower level problem. However, in each epoch of FedSep, we only solve the lower
level problem once and perform multiple steps of update to the upper level variable.

3.1 Convergence Analysis

In this section, we provide the convergence analysis of Algorithm 1. Before we state the convergence
result, we first make the following assumptions.

Assumption 3.1. Function f (m)(y) is possibly non-convex and g(m)(x, y) is µ-strongly convex w.r.t
y for any given x.

Assumption 3.2. Function f (m)(y) is L-smooth and has Cf -bounded gradient.

Assumption 3.3. Function g(m)(x, y) is L-smooth; ∇xyg
(m)(x, y) and ∇y2g(m)(x, y) are Lipschitz

continuous with constants Lxy and Ly2 , respectively.
Assumption 3.4. We have unbiased stochastic first-order and second-order gradient oracle with
bounded variance.

Note that Assumption 3.1-Assumption 3.3 are standard assumptions used to analyze bilevel prob-
lems [26, 18]. Assumption 3.4 is standard in analyzing stochastic optimization problems. For a full
version of Assumption 3.4, please refer to Assumption C.1 in the Appendix.

In the learning stage of Algorithm 1, we perform I steps of updates to optimize the learning problem,
and the update has the form of: ∆ŷ(m) = ŷ

(m)
I − ŷ

(m)
0 =

∑I−1
i=0 −η∇f (m)(ŷ

(m)
i ;Bŷ), therefore we

have: ∆x̂
(m)
t = Ẽnc

(m)
{∆ŷ(m)} =

∑I−1
i=0 ηẼnc

(m)
{−∇f (m)(ŷ

(m)
i ;Bŷ)}. We denote ∆x̂

(m)
t,i =

Ẽnc
(m)

{∇f (m)(ŷ
(m)
i ;Bŷ)}. Then the main effort of the proof is bounding the estimation error

of ∆x̂
(m)
t,i to the hyper-gradient ∇h(m)(x).

More specifically, we first show that ∆x̂
(m)
t,i estimates a term µ

(m)
i with bounded variance and bias as

stated in the following proposition:

Proposition 3.5. Suppose Assumptions 3.1-3.3 and 3.4 hold and τ < 1
L , we have ∥Eξ[∆x̂

(m)
t,i] −

µ
(m)
i ∥ ≤ G1, where µ

(m)
i = −∇xyg

(m)(x, y
(m)
Idec

)
(
∇yyg

(m)(x, y
(m)
Idec

)
)−1∇f (m)(ŷ

(m)
i), and

E∥∆x̂
(m)
t,i − Eξ[∆x̂

(m)
t,i]∥2 ≤ G2

2. G1 and G2 are some constants related to Q in Eq. (3) and
mini-batch size.

Please refer to Proposition C.3 for the specific form of the constants in Proposition 3.5. Next, we
have that µ(m)

i ≈ ∇h(m)(x) as shown in the following proposition:
Proposition 3.6. Suppose Assumptions 3.2 and 3.3 hold, the following statements hold:

a) ∥µ(m)
i −∇h(m)(x)∥2 ≤ 2L̂2∥y(m)

Idec
− y

(m)
x ∥2 +2κ2L2∥ŷ(m)

i − y
(m)
x ∥2, where L̂ = O(κ2).

b) h(m)(x) is Lipschitz continuous in x with constant L̄ i.e., for any given x1, x2 ∈ Rp, we
have ∥∇h(m)(x2)−∇h(m)(x1)∥2 ≤ L̄2∥x2 − x1∥, where L̄ = O(κ3).

where we denote the condition number as κ = L/µ.

Please refer to Proposition C.2 for the proof. Proposition 3.6 shows that µ(m)
i estimates the true

hyper-gradient ∇h(m)(x) with two types of errors: the estimation error of the decode operation
(∥y(m)

Idec
− y

(m)
x ∥2) and the drift of the learning process (∥ŷ(m)

i − y
(m)
x ∥2), where Lemma C.4 and

5

Lemma C.5 show bounds for these two errors. Furthermore, Proposition 3.6.b) shows that h(m)(x) is
smooth. Next, we are ready to show the convergence of Algorithm 1:
Theorem 3.7. Suppose Assumptions 3.1-3.4 hold, and we run T iterations of Algorithm 1, with the
learning rates satisfy γ < 1

L , ηηg < 1
2IL̄

, then we have:

1

T

T∑
t=1

(
E∥∇h(xt)∥2 +

1

2I

I∑
i=1

E∥Eξ[∆̄x̂t,i]∥2
)

≤ 2h(x1)

TIηηg
+

ηηgL̄G
2
2

bxM
+ 12I2κ2L2η2Cf +

4I2κ2L2η2σ2

by

+
4(3κ2L2 + L̂2)γσ2

µby
+ 2G2

1 + 2(3κ2L2 + L̂2)(1− µγ)IdecC0

where the expectation Eξ is w.r.t the noise of stochastic gradient. bx, by denotes the batch size, and
G1, G2 and C0 are some constants.

Please refer to Theorem C.8 in the Appendix for the proof. We can further control the noise terms in
Theorem 3.7 by choosing the learning rates carefully:

Corollary 3.8. Suppose we choose the learning rates as γ = min(1
2L , (

1
CγT

)1/2), η =

min

(
1,

(
8IbxML̄h(x1)

TG2
2

)1/2

,
(

4L̄h(x1)
CηI2T

)1/3)
and ηg = 1

2IL̄
, then we have:

1

T

T∑
t=1

E
(
∥∇h(xt)∥2 +

1

2I

I∑
i=1

∥Eξ[∆̄x̂t,i]∥2
)
= O

(
κ3

T
+

(
κ5

T

)1/2

+

(
κ6

T 2

)1/3

+ G̃

)
where G̃ = κ2(1− τµ)2(Q+1) + κ4(1− µγ)Idec , Cη and Cγ are some constants.

To reach an ϵ stationary point, we need to run Algorithm 1 with T = O(κ5ϵ−2) number of iterations,
furthermore, we need Q = O(κ log(κϵ)), Idec = O(κ log(κϵ)). Note that this matches the iteration
complexity of standard FL algorithms [60] up to some logarithm factors (Q and Idec). Note that
Corollary 3.8 shows that the following term converges to 0: E∥∇h(xt)∥2 + 1

2I

∑I
i=1 E∥Eξ[∆̄x̂t,i]∥2.

In fact, for the first term, it shows that xt reaches to a stationary point of the bilevel problem h(x),
meanwhile, since we have:

Eξ[∆̄x̂t,i] =
1

M

M∑
m=1

Q∑
q=0

τ∇xyg
(m)(x, y

(m)
Idec

)× (I − τ∇yyg
(m)(x, y

(m)
Idec

))q∇f (m)(ŷ
(m)
i)

Therefore, if ∥∇xyg
(m)(x, y)∥ is lower-bounded and ∥∇yyg

(m)(x, y)∥ is upper-bounded, we also get
the learning parameter ŷ(m)

i converges to the stationary point of the local learning problem f (m)(y).

4 Application of FedSep to Real-world FL Problems

In FedSep, the separation of the communication layer and the learning layer makes it able to solve
various challenges in Federated Learning. In this section, we apply FedSep to solve two challenging
problems in Federated Learning: communication-efficient FL and model-heterogeneous FL.

4.1 Communication-efficient Federated Learning

Communication-cost is one of the major bottlenecks in Federated Learning due to slow connections
between clients and the server. In Federated Learning, compression is commonly employed to
mitigate communication costs, where clients compress the local updates before transferring to the
server. A common compressor is choosing the Top-K coordinates, however, this approach is only
good at reducing the upload communication cost. Since clients have different Top-K coordinates,
the aggregated updates are often dense. More complicated approaches can save both upload and
download communication cost, such as the Count-sketch based compressor [48]. In fact, we can
develop a simple yet effective approach to reduce the communication cost based on FedSep.

6

In our FedSep framework, suppose we have the learning parameter θ ∈ Rd, and the communication
parameter ω ∈ Rp. We choose p ≪ d to have a communication efficient federated learning algorithm.
More specifically, we consider the following formulation:

min
ω∈Rp

1

M

M∑
m=1

L(θ(m)
ω ;D(m)

tr) s.t. θ(m)
ω = argmin

θ∈Rd

1

2

∥∥S(m)θ − ω
∥∥2
2
+ β

∥∥θ∥∥
1

(4)

where D(m)
tr denotes the training distribution of the mth client; L(·) denotes the loss function. In

particular, S(m) ∈ Rp×d (p ≪ d) is a random sketch matrix whose coordinates are sampled from
Gaussian distribution. We choose the quadratic optimization problem (LASSO) as the decode
function.

Eq. (4) is a special case of Eq. (1): θ corresponds to the learning parameter y, ω corresponds to
the communication parameter x, L(θ;D(m)

tr) corresponds to the learning problem f (m)(y) and the
decoding problem is a LASSO problem. We can solve it through Algorithm 1.

The LASSO problem of the decode operation involves a non-smooth L1 regularization term and we
solve it with the standard proximal gradient method [3]. For the encode operation, we have:

Enc(m){·} = −∇ωθ
(m)
ω = γS(m)U

(
I −

(
I − γ(S(m))TS(m)

)
U
)−1

(5)

where I is the identity matrix and U = Diag{Iγβ(θ(m)
ω + γ(S(m))T (ω− S(m)θ

(m)
ω))} where Iγβ(·)

is an indicator operator, which outputs 1 if the absolute value of the input is greater than γβ. Please
refer to Appendix A.1 for more details of the proximal gradient method and the encode operator.
Remark 2. If we set β = 0 in Eq. (4), i.e. we remove the sparsity constraints, both encode and decode
operators have explicit solutions. More specifically, we have the decode operator Dec(m){·} :=(
(S(m))TS(m)

)−1
(S(m))T and the encode operator Enc(m){·} := S(m)

(
(S(m))TS(m)

)−1
. If we

choose S(m) = S for all m ∈ [M], we get a linear compressor.

4.2 Model-Heterogeneous Federated Learning

In practical Federated Learning applications, the scale of the model is inherently limited by the
on-device resources of the participating clients, which often exhibit significant diversity. As a result,
we can choose different scale of models based on the available resources of each individual client.
One widely-used approach is the sub-model extraction, i.e. each client selects a part of the server
model to perform local training. Different strategies can be used to do extraction: fixed [12, 2],
random [6] and roll [1]. In contrast, we provide a data-dependent approach to select the sub-models.
As shown by the following formulation:

min
ω∈Rp

1

M

M∑
m=1

L(θ(m)
ω ;D(m)

tr) (6)

s.t. θ(m)
ω = a(m)

ω ⊙ ω, a(m)
ω = argmin

a∈{0,1}p

L(a⊙ ω;D(m)
val) + βR(T (a), p(m)Ttol)

where D(m)
tr denotes the training distribution; L(·) denotes the loss function and θ and ω are the

learning parameter. Note that ω denotes the parameter of the full model and θ is the parameter of the
sub-model. In particular, we denote a mask vector a(m)

ω , whose value is from {0, 1}. ⊙ represents
the coordinate-wise multiplication.

For the decode operation, we have θ
(m)
ω = a

(m)
ω ⊙ ω. So we first need to find an optimal mask a

(m)
ω ,

instead of solving the complicated integer programming as in Eq. (6), we solve the following relaxed
continuous problem:

a(m)
ω = argmin

a∈[0,1]p
L(a⊙ ω;D(m)

val) + βR(T (a), p(m)Ttol) (7)

Eq. (7) includes two parts. L(a ⊙ ω;D(m)
val) measures the loss of the extracted sub-model over

D(m)
val . The second part R(T (a), p(m)Ttol) is called resource loss [17]. Ttol denotes FLOPS of

7

Figure 2: Test Accuracy w.r.t Communication Rate for FedSep and other baseline methods for MNIST
Dataset. The first two plots show results under the I.I.D case, and the last two plots show results
for the Non-I.I.D case. p in the second and the fourth plot is the dimension of the communication
parameter. The local learning steps are set as I = 5.

the server model and T (a) denotes FLOPS of the sub-model. Therefore, p(m) ∈ [0, 1] con-
trols the size of the sub-model. Following [17], we choose R(·) as: R(T (a), p(m)Ttol) =
log(max(T (a), p(m)Ttol)/p

(m)Ttol). In summary, we choose the ’best’ sub-model which keeps
the loss value small and meanwhile, satisfies the FLOPS constraint. Note that this is in contrast to the
data-independent sub-model selection methods [12, 6, 1].

Next for the encode operator Enc{·}, we follow the definition of Eq. (2) to have:

Enc(m){·} = −∇ωθ
(m)
ω = −∇ω

(
a(m)
ω ⊙ ω

)
= −Diag{a(m)

ω } −Diag{ω}∇ωa
(m)
ω (8)

Where the last equality follows from the chain rule. Finally, combine Eq. (7) and Eq. (8), we can
solve Eq. (6) with Algorithm 1.

Remark 3. For the encode operator Eq. (8), we have Enc(m)(·) ≈ −Diag{a(m)
ω } by omitting the

second term in Eq. (8), where ∆θ denotes the updates to the sub-model θ. As shown in Line 21 of
Algorithm 1, we have the update of the server model be ∆ω = 1

|Mt|
∑

m∈Mt
ηgDiag{a(m)

ω }∆θ. In
other words, the server simply aggregates the updates of the sub-model, this is the aggregation rule
widely used in the partial training literature [12, 6, 1].

5 Numerical Experiments

In this section, we perform numerical experiments to validate the efficacy of FedSep in solving
communication-efficient FL and model-heterogeneous FL as discussed in Section 4. The code is writ-
ten with Pytorch [45], and the Federated Learning environment is simulated via Pytorch.Distributed
Package. We used servers with AMD EPYC 7763 64-core CPU and 8 NVIDIA V100 GPUs to run
our experiments.

5.1 Experiments for Communication-Efficient Federated Learning

In this section, we provide numerical experiments for the communication-efficient FL task discussed
in Section 4.1. We first introduce the experimental settings.

Dataset. We consider MNIST [32] and CIFAR-10 [30] in our experiments. We create the federated
version of these datasets by evenly distributing the training samples among 10 clients. We consider
an I.I.D setting and a Non-I.I.D setting. For the I.I.D setting, each client has data samples from all 10
classes, while for the Non-I.I.D setting, each client only has data samples from 2 classes.

Model. For experiments related to MNIST, we use a four-layer convolutional neural network. The
first three layers contain 32 kernels of size 3×3 and the fourth layer contains 32 kernels of size 2×2.
For the experiments related to CIFAR-10, we increase the number of kernels to 64. The total number
of parameters of the model is around 105. For the sketch matrix S(m) of our FedSep, we let all
clients choose the same sketch matrix, and we test the dimension of the communication parameter
p ∈ {10, 100, 500, 1000, 2000, 5000, 10000, 20000}.

Baselines and Hyper-parameters. For baselines, we first compare with the uncompressed base-
line (the communication parameter and the learning parameter are in the same dimension); Next
we compare with the local Top-K compressor (with error feedback [53]) and the Count-Sketch
compressor [48]. Please refer to the Appendix for the hyper-parameter selection of FedSep and
baselines.

8

Table 1: Test accuracy comparison between FedSep with other model-heterogeneous FL baseline
methods. High data heterogeneity represents K = 2 for CIFAR-10 and K = 20 for CIFAR-100;
Lower data heterogeneity represents K = 5 for CIFAR-10 and K = 50 for CIFAR-100.

Method High Data Heterogeneity Low Data Heterogeneity
CIFAR-10 CIFAR-100 CIFAR-10 CIFAR-100

KD-based
FedDF [38] 73.81 (± 0.42) 31.87 (± 0.46) 76.55 (± 0.32) 37.87 (± 0.31)
DS-FL [24] 65.27 (± 0.53) 29.12 (± 0.51) 68.44 (± 0.47) 33.56 (± 0.55)
Fed-ET [10] 78.66 (± 0.31) 35.78 (± 0.45) 81.13 (± 0.28) 41.58 (± 0.36)

PT-based
HeteroFL [12] 63.90 (± 2.74) 52.38 (± 0.80) 73.19 (± 1.71) 57.44 (± 0.42)
Federated Dropout [6] 46.64 (± 3.05) 45.07 (± 0.07) 76.20 (± 2.53) 46.40 (± 0.21)
ZeroFL [47] 64.61 (± 2.18) 51.39 (± 0.45) 83.31 (± 0.78) 53.62 (± 0.51)
FedDST [5] 67.65 (± 1.27) 54.21 (± 0.34) 84.57 (± 0.28) 54.97 (± 0.44)
Flash [2] 67.08 (± 1.46) 54.92 (± 0.29) 84.61 (± 0.37) 55.04 (± 0.32)
FedRolex [1] 69.44 (± 1.50) 56.57 (± 0.15) 84.45 (± 0.36) 58.73 (± 0.33)
FedSep (Ours) 71.13 (± 0.94) 58.16 (± 0.25) 84.61 (± 0.37) 61.41 (± 0.29)
Homogeneous (smallest) 38.82 (± 0.88) 12.69 (± 0.50) 46.86 (± 0.54) 19.70 (± 0.34)
Homogeneous (largest) 75.74 (± 0.42) 60.89 (± 0.60) 84.48 (± 0.58) 62.51 (± 0.20)

The experimental results are summarized in Figure 2 for MNIST (Figure 3 in the Appendix for CIFAR-
10). As shown by the figures, FedSep outperforms other baselines. In particular, our FedSep achieves
much better performance in the high-compression-rate regime and can get similar performance as
other baselines in the low-compression-rate regime. Please refer to the Appendix for more ablation
studies.

5.2 Experiments for Model-Heterogeneous Federated Learning

In this section, we provide numerical experiments for the task of a model-heterogeneous FL task
discussed in Section 4.2. First, we introduce the experimental settings.

Dataset. We consider CIFAR-10 and CIFAR-100 [30] in our experiments. We create Federated
datasets by evenly distributing images among clients; we have 100 clients in our experiments. We
create data heterogeneity by controlling the number of classes K a client can have [1]. For CIFAR-10,
we test K ∈ {2, 4, 5, 8}, while for CIFAR-100, we test K ∈ {5, 10, 20, 50}. Note that smaller values
of K mean higher heterogeneity of the data. For FedSep, the validation and training set are the same.

Model. We choose ResNet-18 [19] in the experiments. Following the setting in [1, 12], we replace
the batch normalization layer with static batch normalization and add a scalar module after each
convolution layer. Instead of using the coordinate mask as defined in Eq. (6), we select kernels
in each convolutional layer of ResNet-18; furthermore, we parameterize the mask a with a neural
network HN(ϕ) [17], i.e. a = HN(ϕ); finally, we reuse the masks and only update the masks
every two epochs, this stabilizes the training. This reduces the dimension of a that we need to
optimize. In experiments, the size of the submodel p (Eq. (6)) of a client is randomly chosen
from {1, 0.5, 0.25, 0.125, 0.0625}, where the ratio p is w.r.t the server model. For our FedSep, after
optimizing Eq. (7), we select the top p percent kernels of each convolutional layer by the value of
the leaned mask a, and then we only use the selected kernels to perform the training. In the encode
operation, we only evaluate the first term of Eq. (8) as stated in Remark 3.

Baselines and Hyper-parameters. We compare with both state-of-the-art Knowledge Distillation-
based methods: FedDF [38], DS-FL [24] and Fed-ET [10], and Partial Training Based methods:
HeteroFL [12], ZeroFL [47], Federated Dropout [6], FedDST [5], Flash [2] and FedRolex [1].
Fjord [21] gets similar performance as HeteroFL, so we do not include it in the comparision.
For ZeroFL, FedDST and Flash, we consider their heterogeneous-model version by varying the
compression rate among clients.

The experimental results are summarized in Table 1. As shown in the table, our FedSep gets
comparable performance with the Knowledge Distillation based methods, which needs additional
public data, furthermore, FedSep outperforms the partial training based methods, including the
state-of-the-art FedRolex [1] method. This result shows the effectiveness of the adaptive sub-model
extraction strategy used by our FedSep. Our method chooses the most important part of the model

9

at each step for clients, thus our method converges faster than other data-independent methods. For
more experimental results, please refer to the Appendix.

6 Conclusion

In this work, we propose a novel federated learning framework, i.e. FedSep with separated commu-
nication and learning components. Based on the observation that communication and learning set
opposite requirements to the parameter, we let clients to have two layers: a communication layer and
a learning layer. We formulate the decode operation from the communication layer to the learning
layer as solving a minimization problem, therefore, FedSep has a bilevel structure. We propose an
efficient algorithm to solve this bilevel problem and also prove that the algorithms converge to a
stationary point with rate O(ϵ−2). Finally, we apply FedSep to solve the communication-efficient FL
task and the model heterogeneous FL task. Numerical experiments show the superior performance of
our FedSep over various baselines.

References
[1] S. Alam, L. Liu, M. Yan, and M. Zhang. Fedrolex: Model-heterogeneous federated learning

with rolling sub-model extraction. arXiv preprint arXiv:2212.01548, 2022.

[2] S. Babakniya, S. Kundu, S. Prakash, Y. Niu, and S. Avestimehr. Federated sparse training: Lot-
tery aware model compression for resource constrained edge. arXiv preprint arXiv:2208.13092,
2022.

[3] A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse
problems. SIAM journal on imaging sciences, 2(1):183–202, 2009.

[4] Y. Bengio. Gradient-based optimization of hyperparameters. Neural computation, 12(8):1889–
1900, 2000.

[5] S. Bibikar, H. Vikalo, Z. Wang, and X. Chen. Federated dynamic sparse training: Computing
less, communicating less, yet learning better. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 36, pages 6080–6088, 2022.

[6] S. Caldas, J. Konečny, H. B. McMahan, and A. Talwalkar. Expanding the reach of federated
learning by reducing client resource requirements. arXiv preprint arXiv:1812.07210, 2018.

[7] M. Charikar, K. Chen, and M. Farach-Colton. Finding frequent items in data streams. In
International Colloquium on Automata, Languages, and Programming, pages 693–703. Springer,
2002.

[8] D. Chen and M. T. Hagan. Optimal use of regularization and cross-validation in neural network
modeling. In IJCNN’99. International Joint Conference on Neural Networks. Proceedings (Cat.
No. 99CH36339), volume 2, pages 1275–1280. IEEE, 1999.

[9] T. Chen, Y. Sun, and W. Yin. A single-timescale stochastic bilevel optimization method. arXiv
preprint arXiv:2102.04671, 2021.

[10] Y. J. Cho, A. Manoel, G. Joshi, R. Sim, and D. Dimitriadis. Heterogeneous ensemble knowledge
transfer for training large models in federated learning. arXiv preprint arXiv:2204.12703, 2022.

[11] M. Dagréou, P. Ablin, S. Vaiter, and T. Moreau. A framework for bilevel optimization that
enables stochastic and global variance reduction algorithms. arXiv preprint arXiv:2201.13409,
2022.

[12] E. Diao, J. Ding, and V. Tarokh. Heterofl: Computation and communication efficient federated
learning for heterogeneous clients. arXiv preprint arXiv:2010.01264, 2020.

[13] C. B. Do, C.-S. Foo, and A. Y. Ng. Efficient multiple hyperparameter learning for log-linear
models. In NIPS, volume 2007, pages 377–384. Citeseer, 2007.

[14] J. Domke. Generic methods for optimization-based modeling. In Artificial Intelligence and
Statistics, pages 318–326. PMLR, 2012.

10

[15] M. C. Ferris and O. L. Mangasarian. Finite perturbation of convex programs. Applied Mathe-
matics and Optimization, 23(1):263–273, 1991.

[16] L. Franceschi, M. Donini, P. Frasconi, and M. Pontil. Forward and reverse gradient-based
hyperparameter optimization. In Proceedings of the 34th International Conference on Machine
Learning-Volume 70, pages 1165–1173. JMLR. org, 2017.

[17] S. Gao, F. Huang, W. Cai, and H. Huang. Network pruning via performance maximization. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
9270–9280, 2021.

[18] S. Ghadimi and M. Wang. Approximation methods for bilevel programming. arXiv preprint
arXiv:1802.02246, 2018.

[19] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–
778, 2016.

[20] M. Hong, H.-T. Wai, Z. Wang, and Z. Yang. A two-timescale framework for bilevel optimization:
Complexity analysis and application to actor-critic. arXiv preprint arXiv:2007.05170, 2020.

[21] S. Horvath, S. Laskaridis, M. Almeida, I. Leontiadis, S. Venieris, and N. Lane. Fjord: Fair and
accurate federated learning under heterogeneous targets with ordered dropout. Advances in
Neural Information Processing Systems, 34:12876–12889, 2021.

[22] F. Huang and H. Huang. Biadam: Fast adaptive bilevel optimization methods. arXiv preprint
arXiv:2106.11396, 2021.

[23] F. Huang and H. Huang. Enhanced bilevel optimization via bregman distance. arXiv preprint
arXiv:2107.12301, 2021.

[24] S. Itahara, T. Nishio, Y. Koda, M. Morikura, and K. Yamamoto. Distillation-based semi-
supervised federated learning for communication-efficient collaborative training with non-iid
private data. IEEE Transactions on Mobile Computing, 22(1):191–205, 2021.

[25] N. Ivkin, D. Rothchild, E. Ullah, V. Braverman, I. Stoica, and R. Arora. Communication-efficient
distributed sgd with sketching. arXiv preprint arXiv:1903.04488, 2019.

[26] K. Ji, J. Yang, and Y. Liang. Provably faster algorithms for bilevel optimization and applications
to meta-learning. arXiv preprint arXiv:2010.07962, 2020.

[27] S. P. Karimireddy, S. Kale, M. Mohri, S. J. Reddi, S. U. Stich, and A. T. Suresh. Scaf-
fold: Stochastic controlled averaging for on-device federated learning. arXiv preprint
arXiv:1910.06378, 2019.

[28] S. P. Karimireddy, Q. Rebjock, S. Stich, and M. Jaggi. Error feedback fixes signsgd and other
gradient compression schemes. In International Conference on Machine Learning, pages
3252–3261. PMLR, 2019.

[29] P. Khanduri, S. Zeng, M. Hong, H.-T. Wai, Z. Wang, and Z. Yang. A near-optimal algorithm for
stochastic bilevel optimization via double-momentum. arXiv preprint arXiv:2102.07367, 2021.

[30] A. Krizhevsky, G. Hinton, et al. Learning multiple layers of features from tiny images. 2009.

[31] J. Larsen, L. K. Hansen, C. Svarer, and M. Ohlsson. Design and regularization of neural
networks: the optimal use of a validation set. In Neural Networks for Signal Processing VI.
Proceedings of the 1996 IEEE Signal Processing Society Workshop, pages 62–71. IEEE, 1996.

[32] Y. LeCun, C. Cortes, and C. Burges. Mnist handwritten digit database. ATT Labs [Online].
Available: http://yann. lecun. com/exdb/mnist, 2, 2010.

[33] J. Li, B. Gu, and H. Huang. Improved bilevel model: Fast and optimal algorithm with theoretical
guarantee. arXiv preprint arXiv:2009.00690, 2020.

11

[34] J. Li, B. Gu, and H. Huang. A fully single loop algorithm for bilevel optimization without
hessian inverse. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36,
pages 7426–7434, 2022.

[35] J. Li, F. Huang, and H. Huang. Communication-efficient federated bilevel optimization with
local and global lower level problems. arXiv preprint arXiv:2302.06701, 2023.

[36] J. Li, J. Pei, and H. Huang. Communication-efficient robust federated learning with noisy
labels. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining, pages 914–924, 2022.

[37] T. Li, S. Hu, A. Beirami, and V. Smith. Ditto: Fair and robust federated learning through
personalization. In International Conference on Machine Learning, pages 6357–6368. PMLR,
2021.

[38] T. Lin, L. Kong, S. U. Stich, and M. Jaggi. Ensemble distillation for robust model fusion in
federated learning. Advances in Neural Information Processing Systems, 33:2351–2363, 2020.

[39] Y. Lin, S. Han, H. Mao, Y. Wang, and W. J. Dally. Deep gradient compression: Reducing the
communication bandwidth for distributed training. arXiv preprint arXiv:1712.01887, 2017.

[40] I. Loshchilov and F. Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

[41] D. Maclaurin, D. Duvenaud, and R. Adams. Gradient-based hyperparameter optimization
through reversible learning. In International Conference on Machine Learning, pages 2113–
2122, 2015.

[42] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas. Communication-efficient
learning of deep networks from decentralized data. In Artificial Intelligence and Statistics,
pages 1273–1282. PMLR, 2017.

[43] M. Mohri, G. Sivek, and A. T. Suresh. Agnostic federated learning. arXiv preprint
arXiv:1902.00146, 2019.

[44] K. Nandakumar, N. Ratha, S. Pankanti, and S. Halevi. Towards deep neural network training on
encrypted data. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops, pages 0–0, 2019.

[45] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, et al. Pytorch: An imperative style, high-performance deep learning
library. In Advances in Neural Information Processing Systems, pages 8024–8035, 2019.

[46] F. Pedregosa. Hyperparameter optimization with approximate gradient. arXiv preprint
arXiv:1602.02355, 2016.

[47] X. Qiu, J. Fernandez-Marques, P. P. Gusmao, Y. Gao, T. Parcollet, and N. D. Lane. Ze-
rofl: Efficient on-device training for federated learning with local sparsity. arXiv preprint
arXiv:2208.02507, 2022.

[48] D. Rothchild, A. Panda, E. Ullah, N. Ivkin, I. Stoica, V. Braverman, J. Gonzalez, and R. Arora.
Fetchsgd: Communication-efficient federated learning with sketching. In International Confer-
ence on Machine Learning, pages 8253–8265. PMLR, 2020.

[49] S. Sabach and S. Shtern. A first order method for solving convex bilevel optimization problems.
SIAM Journal on Optimization, 27(2):640–660, 2017.

[50] A. K. Sahu, T. Li, M. Sanjabi, M. Zaheer, A. Talwalkar, and V. Smith. On the convergence of
federated optimization in heterogeneous networks. arXiv preprint arXiv:1812.06127, 3, 2018.

[51] A. Shaban, C.-A. Cheng, N. Hatch, and B. Boots. Truncated back-propagation for bilevel
optimization. arXiv preprint arXiv:1810.10667, 2018.

[52] M. Solodov. An explicit descent method for bilevel convex optimization. Journal of Convex
Analysis, 14(2):227, 2007.

12

[53] S. U. Stich. Local sgd converges fast and communicates little. arXiv preprint arXiv:1805.09767,
2018.

[54] S. U. Stich, J.-B. Cordonnier, and M. Jaggi. Sparsified sgd with memory. arXiv preprint
arXiv:1809.07599, 2018.

[55] D. A. Tarzanagh, M. Li, C. Thrampoulidis, and S. Oymak. Fednest: Federated bilevel, minimax,
and compositional optimization. arXiv preprint arXiv:2205.02215, 2022.

[56] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and
I. Polosukhin. Attention is all you need. Advances in neural information processing systems,
30, 2017.

[57] S. Wagh, D. Gupta, and N. Chandran. Securenn: 3-party secure computation for neural network
training. Proc. Priv. Enhancing Technol., 2019(3):26–49, 2019.

[58] W. Wen, C. Xu, F. Yan, C. Wu, Y. Wang, Y. Chen, and H. Li. Terngrad: Ternary gradients to
reduce communication in distributed deep learning. arXiv preprint arXiv:1705.07878, 2017.

[59] R. A. Willoughby. Solutions of ill-posed problems (an tikhonov and vy arsenin). SIAM Review,
21(2):266, 1979.

[60] B. Woodworth. The minimax complexity of distributed optimization. arXiv preprint
arXiv:2109.00534, 2021.

[61] I. Yamada, M. Yukawa, and M. Yamagishi. Minimizing the moreau envelope of nonsmooth
convex functions over the fixed point set of certain quasi-nonexpansive mappings. In Fixed-Point
Algorithms for Inverse Problems in Science and Engineering, pages 345–390. Springer, 2011.

[62] J. Yang, K. Ji, and Y. Liang. Provably faster algorithms for bilevel optimization. arXiv preprint
arXiv:2106.04692, 2021.

13

A More Experimental Results

A.1 Communication-efficient FL

Figure 3: Test Accuracy w.r.t Communication Rate for FedSep and other baseline methods for
CIFAR-10 Dataset. The left figure shows results under the I.I.D case, and the right figure show results
for the Non-I.I.D case. The local learning steps are set as I = 5.

In this section, we include more details related to the Communication-efficient FL. We first introduce
details of some definitions.

Soft-threshold Operator. We use the definition of the soft threshold operator Qγβ(·) in Section 4.1,
formally, we have the following definition:

Qγλ(x) = sign(x)max(abs(x)− γλ, 0) (9)

Proximal Gradient Descent. we solve θ
(m)
ω through the following update rule:

θ+ = Qγβ

(
θ + γ(S(m))T (ω − S(m)θ)

)
(10)

where Qγβ(·) is the soft-threshold operator and its definition is in Eq. (9) and γ is some constant. We
denote the generalized gradient based on Eq. (10) as:

G∗(θ) =
1

γ

(
θ − θ+

)
(11)

In summary, for the decode operation Dec{·} in Eq. (4), we solve decode problem through gradient
descent with the gradient operator defined by Eq. (11). As for the encode operation, we have
G∗(θ

(m)
ω) = 0 by definition of θ(m)

ω , then take derivation over ω on both sides, and use the chain rule,
we get the expression in Eq. (5).

Figure 4: Test Accuracy w.r.t Communication Round for FedSep over the MNIST Dataset. The left
figures shows results under the I.I.D case, and the right figure show results for the Non-I.I.D case.
We vary the value of local step I ∈ {2, 5, 10, 20, 50} in the figure, and we fix the dimension of the
communication parameter as p = 2000.

Next, we introduce more details of experimental settings.

Baselines and Hyper-Parameter. We first compare with the uncompressed baseline (the communi-
cation parameter and the learning parameter are in the same dimension); Next we compare with the
local Top-K compressor and the Count-Sketch compressor [48]. For the count-sketch, we tune the
size of sketch table; a typical good value for the length of the sketch table is half of the communication
parameter dimension. For our FedSep, we tune the values of β and γ. A typical good value for

14

γ is [0.5, 5] and it depends on the dimension of the communication parameter p, for β, we choose
[0, 0.01]. We use the SGD optimizer to optimize L(θ(m)

ω ;D(m)
tr) for all methods, and set the learning

rate at 0.1, and set Idec = 10 for the decode operation, i.e. for solving the Lasso problem.

More Experimental Results. The experimental results for the CIFAR-10 dataset is included in
Figure 3. We observe that FedSep also outperforms other baselines as in the MNIST data set. Finally,
in Figure 4, we vary the number of local steps I under a fixed compression rate. As shown in the
figure, our FedSep can benefit from more local steps. More specifically, for the homogeneous case,
our FedSep can benefit from more local steps as large as I = 50, while for the heterogeneous case,
increasing local steps brings little benefit to I > 10.

A.2 Model-Heterogeneous FL

Figure 5: Test Accuracy and Loss w.r.t Communication Rounds for FedSep under different levels of
data heterogeneity. K is the number of classes each client has. The first two plots show results for
CIFAR-10, then the last two plots show results for CIFAR-100.

In this section, we introduce more details of the experimental setting for Model-Heterogeneous FL
task and present more experimentsl results.

Hyper-parameters. For our FedSep, we perform grid search to search the best parameter setting.
More specifically, we decode problem Eq. (7) with β = 10 and AdamW [40] with learning rate 0.01.
Regarding the learning problem, for CIFAR-10, we use the Adam optimizer with learning rate 10−4

when K = {2, 4} and 2× 10−4 when K ∈ {5, 8}, for CIFAR-100, we use the Adam optimizer with
learning rate 2 × 10−4 when K = {5, 10, 20, 50}. We decrease learning by a factor of 0.25 at the
{800, 1600} steps for the CIFAR-10 dataset and at the {1200, 1800} global steps for the CIFAR-100
dataset.

More Experimental Results. Next, we test our FedSep at different levels of heterogeneity. The
results are summarized in Figure 5. As shown by the figures, our FedSep is quite robust when clients
have highly heterogeneous data.

B More Related Works

Federated Learning. FL is a promising paradigm for performing machine learning tasks on
distributed located data. Compared to traditional distributed learning in the data center, FL poses
new challenges such as heterogeneity [27, 50, 43, 37], privacy [44, 42, 57] and communication
bottleneck [58, 39, 54, 28, 25]. In particular, communication cost is one of the major bottlenecks
in FL. A widely used approach to reduce communication burden is through compression: clients
compress parameters before transmitting to the server. Various compressors [58, 39, 54, 28] have been
studied in the literature. In particular, the local Top-K compressor selects the K largest coordinates
of the parameter to transmit. From the view of FedSep: the vector of Top-K coordinates is the
communication parameter, while the encode operation is finding these coordinates. Count Sketch [7]
based compressors [25, 48] are also widely studied. Since the count sketch is linear, from the point
of view of FedSep: count sketch performs a linear mapping between the communication parameter
and the learning parameter. Next, model-heterogeneous FL is also studied to solve the device
heterogeneity issue. There are two main categories of heterogeneous model methods: knowledge-
distillation (KD) [38, 24, 10] based and partial-training (PT) [12, 6, 1] based. KD-based methods
treat the server model as the teacher and the clients’ model as the student. A disadvantage of this
category is the dependence on a public dataset. In contrast, PT-based methods select a subset of the
server model for each client, and in the aggregation phase, the server simply aggregates the updated
sub-models. We also develop a PT-based method where we select the sub-models adaptively based
on the clients’ local data.

15

Bilevel Optimization. Bilevel problem is a type of two-layer optimization problem. It includes an
upper-level problem and a lower-level problem, and the upper-level problem relies on the solution of
the lower-level problems. The study of bilevel problems dates back at least to the 1960s [59] and is
followed by [15, 52, 61, 49]. In the machine learning community, Hyper-parameter Optimization
problems [31, 8, 4, 13] are one of the most studied bilevel problems. Early bilevel optimization
algorithms solved the lower problem exactly to update the upper variable. Recently, researchers
developed algorithms that solve the lower problem approximately with a fixed number of steps and
use the back-propagation technique to compute the approximate hyper-gradient [14, 41, 16, 46, 51].
More recently, single-loop algorithms [18, 20, 26, 29, 9, 62, 34, 11, 22, 23] based on alternative
updates of lower and upper level problems are proposed. However, less work studies bilevel problems
under the federated setting. [55, 36, 35] studies a type of federated bilevel problems where the lower
level problems are federated. In particular, [36] solves the noisy label problem in FL. Note that our
FedSep is formulated as a type of federated bilevel problems, however, our problem is different from
that in [55, 36], as our problem has a unique lower problem for each client.

C Proof for the convergence of Algorithm 1

In this section, we present the proofs for Algorithm 1. First, we denote some notation for clarity.
Recall that we denote ∆ŷ(m) = ŷ

(m)
I − ŷ

(m)
0 =

∑I−1
i=0 −η∇f (m)(ŷ

(m)
i ;Bŷ) to be the update of the

learning problem on client m. Then we denote µ
(m)
i as:

µ
(m)
i = −∇xyg

(m)(x, y
(m)
Idec

)
(
∇yyg

(m)(x, y
(m)
Idec

)
)−1∇f (m)(ŷ

(m)
i)

and denote µ(m) as:

µ(m) = −∇xyg
(m)(x, y

(m)
Idec

)
(
∇yyg

(m)(x, y
(m)
Idec

)
)−1

∆ŷ(m)

while in Algorithm 1, we use the stochastic encoder Ẽnc{·} to compute ∆x̂
(m)
t ,

∆x̂
(m)
t =

Q∑
q=0

τ∇xyg
(m)(x, y

(m)
Idec

;Bx)(I − τ∇yyg
(m)(x, y

(m)
Idec

;Bx))
q∆ŷ(m)

Since x(m) is not updated during local steps, we omit the superscript when clear from the context.
We further denote ∆x̂

(m)
t,i as

∆x̂
(m)
t,i = −

Q∑
q=0

τ∇xyg
(m)(x, y

(m)
Idec

;Bx)(I − τ∇yyg
(m)(x, y

(m)
Idec

;Bx))
q∇f (m)(ŷ

(m)
i ;Bŷ)

Lastly, recall the hyper-gradient of h(m)(x) has the form of:

∇h(m)(x) = −∇xyg
(m)(x, y(m)

x)
(
∇yyg

(m)(x, y(m)
x)

)−1∇f (m)(y(m)
x)

Assumption C.1 (Assumption 4). We have unbiased stochastic first order and second order derivative
oracle with bounded variance, more specifically, denote z = (x, y), we have:

a) we have ∇f (m)(y; ξ), such that: E[∇f (m)(y; ξ)] = ∇f (m)(y) and var(∇f (m)(y; ξ)) ≤
σ2;

b) we have ∇g(m)(z; ξ), such that: E[∇g(m)(z; ξ)] = ∇g(m)(z) and var(∇g(m)(z; ξ)) ≤ σ2;

c) we have ∇y2g(m)(z, ξ), such that: E[∇y2g(m)(z; ξ)] = ∇y2g(m)(z) and
var(∇y2g(m)(z; ξ)) ≤ σ2;

d) we have ∇xyg
(m)(z; ξ), such that: E[∇xyg

(m)(z; ξ)] = ∇xyg
(m)(z) and

var(∇xyg
(m)(z; ξ)) ≤ σ2;

Proposition C.2. Suppose Assumptions 3.2 and 3.3 hold, the following statements hold:

a) ∥µ(m)
i −∇h(m)(x)∥2 ≤ 2L̂2∥y(m)

Idec
− y

(m)
x ∥2 +2κ2L2∥ŷ(m)

i − y
(m)
x ∥2, where L̂ = O(κ2).

16

b) h(m)(x) is Lipschitz continuous in x with constant L̄ i.e., for any given x1, x2 ∈ Rp, we
have ∥∇h(m)(x2)−∇h(m)(x1)∥2 ≤ L̄2∥x2 − x1∥ where L̄ = O(κ3).

where we denote the condition number as κ = L/µ.

Proof. We prove the Part a) here. Proof of b) and can be referred in Lemma 2.2 of [18].

∥µ(m)
i −∇h(m)(x)∥

=

∥∥∥∥∇xyg(x, y
(m)
Idec

)

(
∇yyg(x, y

(m)
Idec

)

)−1

∇f (m)(ŷ
(m)
i)−∇xyg(x, y

(m)
x)

(
∇yyg(x, y

(m)
x)

)−1

∇f (m)(y(m)
x)

∥∥∥∥
≤
∥∥∥∥∇xyg(x, y

(m)
Idec

)−∇xyg(x, y
(m)
x)

∥∥∥∥∥∥∥∥(∇yyg(x, y
(m)
x)

)−1

∇f (m)(ŷ
(m)
i)

∥∥∥∥
+

∥∥∥∥∇xyg(x, y
(m)
x)

∥∥∥∥∥∥∥∥(∇yyg(x, y
(m)
Idec

)

)−1

∇f (m)(ŷ
(m)
i)−

(
∇yyg(x, y

(m)
x)

)−1

∇f (m)(y(m)
x)

∥∥∥∥
≤ CfLxy

µ

∥∥∥∥y(m)
Idec

− y(m)
x

∥∥∥∥+ L

∥∥∥∥(∇yyg(x, y
(m)
Idec

)

)−1

∇f (m)(ŷ
(m)
i)−

(
∇yyg(x, y

(m)
x)

)−1

∇f (m)(y(m)
x)

∥∥∥∥
≤ CfLxy

µ

∥∥∥∥y(m)
Idec

− y(m)
x

∥∥∥∥+ CfL

∥∥∥∥(∇yyg(x, y
(m)
Idec

)

)−1

−
(
∇yyg(x, y

(m)
x)

)−1∥∥∥∥+ κ

∥∥∥∥∇f (m)(ŷ
(m)
i)−∇f (m)(y(m)

x)

∥∥∥∥
≤
(
CfLxy

µ
+

κCfLyy

µ

)∥∥∥∥y(m)
Idec

− y(m)
x

∥∥∥∥+ κ

∥∥∥∥∇f (m)(ŷ
(m)
i)−∇f (m)(y(m)

x)

∥∥∥∥
Suppose we denote L̂ =

(
CfLxy

µ +
κCfLyy

µ

)
, then we have:∥∥∥∥µ(m)

i −∇h(m)(x)

∥∥∥∥2 ≤ 2L̂2

∥∥∥∥y(m)
Idec

− y(m)
x

∥∥∥∥2 + 2κ2

∥∥∥∥∆∇f (m)(ŷ
(m)
i)−∇yf(y

(m)
x)

∥∥∥∥2
which completes the proof.

Proposition C.3. (Lemma 4 and 7 in [62]) Suppose Assumptions 3.2, 3.3 and 3.4 hold and τ < 1
L ,

we have

a) ∥Eξ[∆x̂
(m)
t,i]− µ

(m)
i ∥ ≤ G1, where G1 = κ(1− τµ)Q+1Cf

b) E∥∆x̂
(m)
t,i − Eξ[∆x̂

(m)
t,i]∥2 ≤ G2

2, where G2
2 = (2C2

f + 12C2
fL

2τ2(Q+ 1)2 + 4C2
fL

2(Q+

2)(Q+ 1)2τ4σ2)/bx

where we assume the mini-batch has |Bx| = bx

C.1 Lower Problem Solution Error

Lemma C.4. When γ < 1
L , we have:

1

M

M∑
m=1

E
∥∥∥∥y(m)

Idec
− y

(m)

x(m)

∥∥∥∥2 ≤ (1− µγ)Idec

M

M∑
m=1

E
∥∥∥∥y(m)

0 − y
(m)

x(m)

∥∥∥∥2 + 2γσ2

µby

Proof. First, follow the property of the strong convex function, we have:

E
∥∥∥∥y(m)

i − y
(m)

x(m)

∥∥∥∥2 ≤ (1− µγ)E
∥∥∥∥y(m)

i−1 − y
(m)

x(m)

∥∥∥∥2 + 2γ2σ2

by
where we choose γ < 1/L. Next, we telescope from i = 1 → Idec to have

E
∥∥∥∥y(m)

Idec
− y

(m)

x(m)

∥∥∥∥2 ≤ (1− µγ)IdecE
∥∥∥∥y(m)

0 − y
(m)

x(m)

∥∥∥∥2 + 2γ2σ2

by

I∑
i=0

(1− µγ)i

≤ (1− µγ)IdecE
∥∥∥∥y(m)

0 − y
(m)

x(m)

∥∥∥∥2 + 2γσ2

µby
Average over all clients, we get the claim in the lemma.

17

Lemma C.5. For I ≥ 1, than we have:

1

M

M∑
m=1

I∑
i=1

E∥ŷ(m)
i − y(m)

x ∥2 ≤ 3I

M

M∑
m=1

E∥ŷ(m)
0 − y(m)

x ∥2 + 6I2η2
1

M

M∑
m=1

I∑
i=1

∥∇f (m)(ŷ
(m)
i)∥2 + 2I3η2σ2

by

Proof. By the update rule in Algorithm 1, we have:

E∥ŷ(m)
i − y(m)

x ∥2 = E∥ŷ(m)
i−1 − η∇f (m)(ŷ

(m)
i−1 ;Bŷ)− y(m)

x ∥2

≤ (1 +
1

I
)E∥ŷ(m)

i−1 − y(m)
x ∥2 + (1 + I)η2∥∇f (m)(ŷ

(m)
i−1 ;Bŷ)∥2

≤ (1 +
1

I
)E∥ŷ(m)

i−1 − y(m)
x ∥2 + 2Iη2∥∇f (m)(ŷ

(m)
i−1 ;Bŷ)∥2

≤ (1 +
1

I
)E∥ŷ(m)

i−1 − y(m)
x ∥2 + 2Iη2∥∇f (m)(ŷ

(m)
i−1)∥

2 +
2Iη2σ2

by

where the first inequality is by the generalized inequality. Next we telescope over i, to obtain:

E∥ŷ(m)
i − y(m)

x ∥2 ≤
i∑

j=1

(1 +
1

I
)i−j

(
2Iη2∥∇f (m)(ŷ

(m)
j)∥2 + 2Iη2σ2

by

)
+ (1 +

1

I
)iE∥ŷ(m)

0 − y(m)
x ∥2

≤ (1 +
1

I
)I

I∑
i=1

(
2Iη2∥∇f (m)(ŷ

(m)
i)∥2 + 2Iη2σ2

by

)
+ (1 +

1

I
)IE∥ŷ(m)

0 − y(m)
x ∥2

≤ 3E∥ŷ(m)
0 − y(m)

x ∥2 + 6Iη2
I∑

i=1

∥∇f (m)(ŷ
(m)
i)∥2 + 2I2η2σ2

by

The third inequality uses the inequality log(1+a/x) ≤ a/x for x > −a, so we have (1+a/x)x ≤ ea,
Then we choose a = 1 and x = I . Finally, we use the fact that e ≤ 3. It completes the proof by
summing over all i.

C.2 Descent Lemma

Lemma C.6. For all t ∈ [T], the iterates generated satisfy:

E
∥∥∥∥∇h(xt)− Eξ[∆̄x̂t,i]

∥∥∥∥2 ≤ 1

M

M∑
m=1

(
2L̂2E∥y(m)

Idec
− y(m)

x ∥2 + 2κ2L2E∥ŷ(m)
i − y(m)

x ∥2
)
+ 2G2

1

Proof. By definition of ∆̄x̂t,i, µ
(m)
t,i and ∇h(xt), we have:

E
∥∥∥∥∇h(xt)− Eξ[∆̄x̂t,i]

∥∥∥∥2
(a)

≤ 1

M

M∑
m=1

E
∥∥∥∥Eξ[∆x̂

(m)
t]−∇h(m)(xt)

∥∥∥∥2

≤ 2

M

M∑
m=1

E
[∥∥∥∥Eξ[∆x̂

(m)
t,i]− µ

(m)
t,i

∥∥∥∥2 + ∥∥∥∥µ(m)
t,i −∇h(m)(xt)

∥∥∥∥2]
(b)

≤ 1

M

M∑
m=1

(
2L̂2E∥y(m)

Idec
− y(m)

x ∥2 + 2κ2E∥∇f (m)(ŷ
(m)
i)−∇f (m)(y(m)

x)∥2
)
+ 2G2

1

≤ 1

M

M∑
m=1

(
2L̂2E∥y(m)

Idec
− y(m)

x ∥2 + 2κ2L2E∥ŷ(m)
i − y(m)

x ∥2
)
+ 2G2

1

where inequality (a) follows the generalized triangle inequality; inequality (b) follows the Proposi-
tion C.2 and Proposition C.3.

18

Lemma C.7. Suppose ηηg ≤ 1
2IL̄

For t ∈ [T], the iterates generated satisfy:

E[h(xt+1)] ≤ E[h(xt)]−
Iηηg
2

E∥∇h(xt)∥2 −
ηηg
4

I∑
i=1

E
∥∥∥∥Eξ[∆̄x̂t,i]

∥∥∥∥2 + Iη2η2gL̄G
2
2

2bxM
+ IηηgG

2
1

+
ηηg
M

M∑
m=1

I∑
i=1

(
L̂2E∥y(m)

Idec
− y(m)

x ∥2 + κ2L2E∥ŷ(m)
i − y(m)

x ∥2
)

where the expectation is w.r.t the stochasticity of the algorithm.

Proof. Using the smoothness of f we have:

E[h(xt+1)] ≤ E[h(xt)] + E⟨∇h(xt), xt+1 − xt⟩+
L̄

2
E∥xt+1 − xt∥2

(a)
= E[h(xt)]− ηgE⟨∇h(xt),Eξ[∆̄x̂t]⟩+

η2gL̄

2
E∥Eξ[∆̄x̂t]∥2 +

Iη2η2gL̄G
2
2

2bxM

= E[h(xt)]− ηgη

I∑
i=1

E⟨∇h(xt),Eξ[∆̄x̂t,i]⟩+
Iη2η2gL̄

2

I∑
i=1

E∥Eξ[∆̄x̂t,i]∥2 +
Iη2η2gL̄G

2
2

2bxM

(b)
= E[h(xt)]−

Iηηg
2

E∥∇h(xt)∥2 +
ηηg
2

I∑
i=1

E∥∇h(xt)− Eξ[∆̄x̂t,i]∥2

−

(
ηηg
2

−
Iη2η2gL̄

2

)
I∑

i=1

E∥Eξ[∆̄x̂t,i]∥2 +
Iη2η2gL̄G

2
2

2bxM

(c)

≤ E[h(xt)]−
Iηηg
2

E∥∇h(xt)∥2 −
ηηg
4

I∑
i=1

E
∥∥∥∥Eξ[∆̄x̂t,i]

∥∥∥∥2 + Iη2η2gL̄G
2
2

2bxM
+ IηηgG

2
1

+
ηηg
M

M∑
m=1

I∑
i=1

(
L̂2E∥y(m)

Idec
− y(m)

x ∥2 + κ2L2E∥ŷ(m)
i − y(m)

x ∥2
)

where equality (a) follows from the iterate update given in Step 21 of Algorithm 1; (b) uses
⟨a, b⟩ = 1

2 [∥a∥
2 + ∥b∥2 − ∥a− b∥2]; (c) follows the condition that Iηηg ≤ 1/2L̄ and Lemma C.6.

This completes the proof.

C.3 Proof of Convergence Theorem

We prove the convergence of Algorithm 1 in this section.

Theorem C.8. Suppose we the learning rates

η = min

(
1,

(
8IbxML̄h(x1)

TG2
2

)1/2

,

(
4L̄h(x1)

CηI2T

)1/3)
, γ = min

(
1

2L
,

(
1

CγT

)1/2)
and ηg = 1

2IL̄
, then we have:

1

T

T∑
t=1

(
E∥∇h(xt)∥2 +

1

2I

I∑
i=1

E∥Eξ[∆̄x̂t,i]∥2
)

= O

(
κ3

T
+

(
κ5

T

)1/2

+

(
κ6

T 2

)1/3

+ κ2(1− τµ)2(Q+1) + κ4(1− µγ)Idec

)

To reach an ϵ stationary point, we choose Q = O(κ log(κϵ)), Idec = O(κ log(κϵ)) and T =

O(κ3ϵ−1.5) number of iterations.

19

Proof. By Lemma C.7, and combine with Lemma C.4 and Lemma C.5 to have:

E[h(xt+1)] ≤ E[h(xt)]−
Iηηg
2

E∥∇h(xt)∥2 −
ηηg
4

I∑
i=1

E
∥∥∥∥Eξ[∆̄x̂t,i]

∥∥∥∥2 + Iη2η2gL̄G
2
2

2bxM
+ IηηgG

2
1

+
ηηg
M

M∑
m=1

I∑
i=1

(
L̂2E∥y(m)

Idec
− y(m)

x ∥2 + κ2L2E∥ŷ(m)
i − y(m)

x ∥2
)

≤ E[h(xt)]−
Iηηg
2

E∥∇h(xt)∥2 −
ηηg
4

I∑
i=1

E
∥∥∥∥Eξ[∆̄x̂t,i]

∥∥∥∥2 + Iη2η2gL̄G
2
2

2bxM
+ IηηgG

2
1

+
IL̂2ηηg(1− µγ)Idec

M

M∑
m=1

E
∥∥∥∥y(m)

0 − y
(m)

x(m)

∥∥∥∥2 + 2IL̂2ηηgγσ
2

µby
+

2I3κ2L2η3ηgσ
2

by

+
3Iκ2L2ηηg

M

M∑
m=1

E∥ŷ(m)
0 − y(m)

x ∥2 + 6I2κ2L2η3ηg
M

M∑
m=1

I∑
i=1

∥∇f (m)(ŷ
(m)
i)∥2

By Algorithm 1, we have ŷ
(m)
0 = y

(m)
Idec

, then we have:

E[h(xt+1)] ≤ E[h(xt)]−
Iηηg
2

E∥∇h(xt)∥2 −
ηηg
4

I∑
i=1

E
∥∥∥∥Eξ[∆̄x̂t,i]

∥∥∥∥2 + Iη2η2gL̄G
2
2

2bxM
+ IηηgG

2
1

+
I(3κ2L2 + L̂2)ηηg(1− µγ)Idec

M

M∑
m=1

E
∥∥∥∥y(m)

0 − y
(m)

x(m)

∥∥∥∥2 + 2IL̂2ηηgγσ
2

µby

+
6Iκ2L2ηηgγσ

2

µby
+

6I2κ2L2η3ηg
M

M∑
m=1

I∑
i=1

∥∇f (m)(ŷ
(m)
i)∥2 + 2I3κ2L2η3ηgσ

2

by

Assume that ∥y(m)
0 − y

(m)

x(m)∥2 ≤ C0 for some constant C0, and use Assumption 3.2. We sum over
t ∈ [T] to obtain:

1

T

T∑
t=1

(Iηηg
2

E∥∇h(xt)∥2 +
ηηg
4

I∑
i=1

E∥Eξ[∆̄x̂t,i]∥2
)

≤ h(x1)

T
+

Iη2η2gL̄G
2
2

2bxM
+ IηηgG

2
1 + I(3κ2L2 + L̂2)ηηg(1− µγ)IdecC0 +

2IL̂2ηηgγσ
2

µby

+
6Iκ2L2ηηgγσ

2

µby
+ 6I3κ2L2η3ηgCf +

2I3κ2L2η3ηgσ
2

by

Then we divide by (Iηηg)/2 on both sides and have:

1

T

T∑
t=1

(
E∥∇h(xt)∥2 +

1

2I

I∑
i=1

E∥Eξ[∆̄x̂t,i]∥2
)

≤ 2h(x1)

TIηηg
+

ηηgL̄G
2
2

bxM
+ 12I2κ2L2η2Cf +

4I2κ2L2η2σ2

by

+
4(3κ2L2 + L̂2)γσ2

µby
+ 2G2

1 + 2(3κ2L2 + L̂2)(1− µγ)IdecC0

Next, we denote constant Cη =
(
12κ2L2Cf+

4κ2L2σ2

by

)
and Cγ = 4(3κ2L2+L̂2)σ2

µby
, and set ηg = 1

2IL̄
,

then we have:

1

T

T∑
t=1

(
E∥∇h(xt)∥2 +

1

2I

I∑
i=1

E∥Eξ[∆̄x̂t,i]∥2
)

≤ 4L̄h(x1)

Tη
+

ηG2
2

2IbxM
+ CηI

2η2 + Cγγ + 2G2
1 + 2(3κ2L2 + L̂2)(1− µγ)IdecC0

20

Then we choose

η = min

(
1,

(
8IbxML̄h(x1)

TG2
2

)1/2

,

(
4L̄h(x1)

CηI2T

)1/3)
, γ = min

(
1

2L
,

(
1

CγT

)1/2)
Then we obtain:

1

T

T∑
t=1

(
E∥∇h(xt)∥2 +

1

2I

I∑
i=1

E∥Eξ[∆̄x̂t,i]∥2
)

≤ 4L̄h(x1)

T
+

(
2G2

2L̄h(x1)

IbxMT

)1/2

+

(
16I2CηL̄

2h(x1)
2

T 2

)1/3

+

(
Cγ

T

)1/2

+ 2G2
1 + 2(3κ2L2 + L̂2)(1− µγ)IdecC0

Finally, since L̂ = O(κ2) , L̄ = O(κ3) and µγ = O(κ−1). Suppose we choose I = O(1), then
Cη = O(κ2), Cγ = O(κ5), and use G1 = κ(1− τµ)Q+1Cf in Proposition C.3, we have:

1

T

T∑
t=1

(
E∥∇h(xt)∥2 +

1

2I

I∑
i=1

E∥Eξ[∆̄x̂t,i]∥2
)

= O

(
κ3

T
+

(
κ5

T

)1/2

+

(
κ6

T 2

)1/3

+ κ2(1− τµ)2(Q+1) + κ4(1− µγ)Idec

)
and to reach an ϵ stationary point, we choose Q = O(κ log(κϵ)), Idec = O(κ log(κϵ)) and T =

O(κ5ϵ−2) number of iterations.

21

	Introduction
	Related Works
	Separating Communication and Learning in Federated Learning
	Convergence Analysis

	Application of FedSep to Real-world FL Problems
	Communication-efficient Federated Learning
	Model-Heterogeneous Federated Learning

	Numerical Experiments
	Experiments for Communication-Efficient Federated Learning
	Experiments for Model-Heterogeneous Federated Learning

	Conclusion
	More Experimental Results
	Communication-efficient FL
	Model-Heterogeneous FL

	More Related Works
	Proof for the convergence of Algorithm 1
	Lower Problem Solution Error
	Descent Lemma
	Proof of Convergence Theorem

