
A Notation, Assumptions, and Likelihoods in More Detail

A.1 Notation

Let T be a failure time with CDF F . T ’s survival function is defined by F = 1 − F . We denote
failure models by FθT . Let C be a censoring time with CDF G, survival function G, and model GθC .
Under right-censoring, define U = min(T,C), ∆ = 1 [T ≤ C] and we observe (Xi, Ui,∆i). We
use G(t−) to denote P (C ≥ t).

A.2 Assumptions

We assume i.i.d. data and random censoring: T ⊥⊥ C | X [Kalbfleisch and Prentice, 2002]. Deriva-
tions in this work also require the censoring positivity assumption [Gerds et al., 2013]. Let f = dF
(a failure density) and g = dG (a censoring density). Then we assume

∃ε s.t. ∀x∀t ∈ {t ≤ tmax | f(t|x) > 0}, G(t−|x) ≥ ε > 0, (6)
for some truncation time tmax. Truncating at a maximum time is necessary in practice for continuous
distributions because datasets may have no samples in the tails, leading to practical positivity
violations [Gerds et al., 2013]. This truncation happens implicitly for categorical models by choosing
the bins.

To observe censoring events properly, we also require a version of eq. (1) to hold with the roles of F
and G reversed:

∃ε s.t. ∀x∀t ∈ {t ≤ tmax | g(t|x) > 0}, F (t|x) ≥ ε > 0. (7)
tmax should be chosen so that these two conditions hold.

A.3 Likelihoods

As mentioned, we assume data are i.i.d. and censoring is random T ⊥⊥ C | X . Under these
assumptions, the likelihood, by definition [Andersen et al., 2012], is:

L(θT , θC) =
∏
i

[
fθT (Ui)GθC (U−i )

]∆i
[
gθC (Ui)F θT (Ui)

]1−∆i

, (8)

When a failure is observed, ∆i = 1 [Ti ≤ Ci] = 1 so we compute the failure density or mass f
at the observed time Ui = Ti. In this case, the only thing we know about the censoring time is
Ci ≥ Ti = Ui. We therefore compute P (Ci ≥ Ti) = P (Ci ≥ Ui) = 1 −GθC (U−i ) = GθC (U−i ).
Likewise, when a censoring time is observed, ∆i = 0 so we compute the censoring density or mass g
at the observed censoring time Ui = Ci. In this case, the only thing we know about the failure time is
that Ti > Ci. We therefore compute P (Ti > Ci) = P (Ti > Ui) = 1− F (Ui) = F (Ui).

Under the additional assumption of non-informativeness -that F and G don’t share parameters and
therefore θT , θC are distinct- the g/G terms are constant wrt θT and the f/F terms are constant wrt
θC . In this case, when one is modeling failures, they can use the partial failure likelihood:

L(θT )partial =
∏
i

[
fθT (Ui)

]∆i
[
F θT (Ui)

]1−∆i

And when one is modeling censoring they can use the partial censoring likelihood:

L(θC)partial =
∏
i

[
GθC (U−i )

]∆i
[
gθC (Ui)

]1−∆i

A.4 Failure partial likelihood depends on true censoring distribution

We now show that the failure partial likelihood’s scale depends on the true sampling distribution of
censoring times, even if the censoring model has dropped as a constant in the objective. The expected
likelihood is:

E
T∼Fθ∗

T
,C∼Gθ∗

C

U=min(T,C),∆=1[T≤C]

[
fθT (U)1[∆=1]F θT (U)1[∆=0]

]
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The reason is that ∆ and U depend on T and C (therefore on Fθ∗T and Gθ∗C ). We now constructively
show that the failure model’s NLL can vary with the true censoring distribution. Let us consider a
marginal survival analysis problem (no features) and random censoring. The log NLL is:

E
Fθ∗
T
,Gθ∗

C

[∆ log fθT (U)] + E
Fθ∗
T
,Gθ∗

C

[(1−∆) logF θT (U)]

Now consider an Fθ∗T whose support starts at time 1 (e.g. uniform over 1,2,3) and Gθ∗C such that
there is probability ρ that C = 0 and probability 1− ρ that C take a value above the support of T
(e.g. >3). Points are therefore only censored at time 0 or uncensored.

E
Fθ∗
T
,Gθ∗

C

[∆ log fθ∗T (U)] + E
Fθ∗
T
,Gθ∗

C

[(1−∆) logF θ∗T (U)]

= (1− ρ) E
Fθ∗
T

[log fθ∗T (T )] + ρ E
Gθ∗

C

[logF θ∗T (C)]

= (1− ρ) E
Fθ∗
T

[log fθ∗T (T )] + ρ E
Gθ∗

C

[logF θ∗T (0)]

= (1− ρ) E
Fθ∗
T

[log fθ∗T (T )] + ρ E
Gθ∗

C

[log 1]

= (1− ρ) E
Fθ∗
T

[log fθ∗T (T )] + ρ E
Gθ∗

C

[0]

= (1− ρ) E
Fθ∗
T

[log fθ∗T (T )]

This quantity depends on ρ. This shows that the failure model’s NLL depends on the true sampling
distribution of censoring times.

B IPCW Primer

IPCW is a technique for estimation under censoring [Gerds and Schumacher, 2006]. Consider
estimating the marginal mean of T : E[T ] = EX ET |X [T ]. T is not observed for all datapoints.
Instead, we observe U = min(T,C) and ∆ = 1 [T ≤ C]. IPCW reformulates such expectations in
terms of observed data. Using this method, we can show that:

E
X

E
T |X

[T ] = E
X

E
T |X

[
EC|X 1 [T ≤ C]

EC′|X 1 [T ≤ C ′]
T

]

= E
X

E
T |X

E
C|X

[
1 [T ≤ C]

EC′|X 1 [T ≤ C ′]
T

]

= E
T,C,X

[
1 [T ≤ C]

EC′|X 1 [T ≤ C ′]
T

]

= E
T,C,X

[
1 [T ≤ C]

P(C ′ ≥ T |X)
T

]

= E
T,C,X

[
1 [T ≤ C]

G(T−|X)
T

]

= E
U,∆,X

[
∆U

G(U−|X)

]
We have used C ′ in the denominator to emphasize that it is not a function of C in the integral over
the numerator indicator once that expectation is moved out. We have used random censoring to go
from ET |X EC|X to the joint ET,C|X . The last equality changes from the complete data distribution
to the observed distribution and holds because ∆ = 1 =⇒ U = T . This means we can estimate the
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expectation, provided that we know G and that random censoring and positivity (eq. (1)) hold. In
practice, we must learn the censoring distribution, a challenging task as it is also censored.

Graf et al. [1999] develop the IPCW BS. Gerds and Schumacher [2006] extend it to conditional
censoring and Kvamme and Borgan [2019a] specialize to administrative censoring. Gerds et al.
[2013], Wolbers et al. [2014] develop the IPCW concordance. IPCW estimators for several forms of
area under curve (AUC) have been studied in Hung and Chiang [2010a,b], Blanche et al. [2013, 2019],
Uno et al. [2007]. Yadlowsky et al. [2019] derive an IPCW estimator for binary survival calibration.

C Deriving IPCW Brier Scores

We derive the IPCW BS introduced by Graf et al. [1999], Gerds and Schumacher [2006]. In the below
let F-BS be the F model’s BS and let F-BS-CW be its censor-weighted version. The censor-weighted
failure BS:

F-BS-CW(t) = E
T,C

[ (1− Fθ(t))2
1 [T ≤ C]1 [U ≤ t]

Pθ(C ′ ≥ U)
+
Fθ(t)

2
1 [U > t]

Pθ(C ′ > t)

]
where U = min(T,C) and Fθ = Pθ(T ≤ ·), It’s relationship to the regular BS is:

F-BS(t) = E
T

[(
Fθ(t)− 1 [T ≤ t]

)2]
= E

T

[
(1− Fθ(t))2

1 [T ≤ t] + Fθ(t)
2
1 [T > t]

]
= E

T

[ EC 1 [T ≤ C]

EC′ 1 [T ≤ C ′]
(1− Fθ(t))2

1 [T ≤ t] +
EC 1 [C > t]

EC′ 1 [C ′ > t]
Fθ(t)

2
1 [T > t]

]
= E
T,C

[ (1− Fθ(t))2
1 [T ≤ C]1 [T ≤ t]

EC′ 1 [T ≤ C ′]
+
Fθ(t)

2
1 [T > t]1 [C > t]

EC′ 1 [C ′ > t]

]
= E
T,C

[ (1− Fθ(t))2
1 [T ≤ C]1 [T ≤ t]

Pθ(C ′ ≥ T )
+
Fθ(t)

2
1 [T > t]1 [C > t]

Pθ(C ′ > t)

]
= E
T,C

[ (1− Fθ(t))2
1 [T ≤ C]1 [U ≤ t]

Pθ(C ′ ≥ U)
+
Fθ(t)

2
1 [U > t]

Pθ(C ′ > t)

]
= F-BS-CW(t)

The expectation comes out due to T ⊥⊥ C. The last line follows from T ≤ C =⇒ U = T (in the left
term) and 1 [T > t]1 [C > t] = 1 [U > t] (in the right term). Define likewise the failure-weighted
censor BS

G-BS-CW(t) = E
T,C

[ (1−Gθ(t))2
1 [C < T ]1 [U ≤ t]

Pθ(T ′ > U)
+
Gθ(t)

2
1 [U > t]

Pθ(T ′ > t)

]
where Gθ = Pθ(C ≤ ·). The relationship to the censoring distribution’s BS is:

G-BS(t) = E
C

[(
Gθ(t)− 1 [C ≤ t]

)2]
= E

C

[
(1−Gθ(t))2

1 [C ≤ t] +Gθ(t)
2
1 [C > t]

]
= E

C

[ ET 1 [C < T ]

ET ′ 1 [C < T ′]
(1−Gθ(t))2

1 [C ≤ t] +
ET 1 [T > t]

ET ′ 1 [T ′ > t]
Gθ(t)

2
1 [C > t]

]
= E
T,C

[ (1−Gθ(t))2
1 [C < T ]1 [C ≤ t]

ET ′ 1 [C < T ′]
+
Gθ(t)

2
1 [T > t]1 [C > t]

ET ′ 1 [T ′ > t]

]
= E
T,C

[ (1−Gθ(t))2
1 [C < T ]1 [C ≤ t]

Pθ(T ′ > C)
+
Gθ(t)

2
1 [T > t]1 [C > t]

Pθ(T ′ > t)

]
= E
T,C

[ (1−Gθ(t))2
1 [C < T ]1 [U ≤ t]

Pθ(T ′ > U)
+
Gθ(t)

2
1 [U > t]

Pθ(T ′ > t)

]
= G-BS-CW(t)

16



The expectation comes out due to T ⊥⊥ C. The last line follows from C < T =⇒ U = C (in the
left term) and 1 [T > t]1 [C > t] = 1 [U > t] (in the right term).

D Negative Bernoulli Log Likelihood

Negative BLL is similar to BS, but replaces the squared error with negated log loss:

NBLL(t; θ) = E
T,C,X

[
− log(FθT (t | X))1 [T ≤ t]− log(F θT (t | X))1 [T > t]

]
IPCW BLL can likewise be written as [Kvamme et al., 2019]:

F-NBLL-CW(t; θ) = E
T,C,X

[− log(FθT (t | X))∆1 [U ≤ t]
G(U− | X)

+
− log(F θT (t | X))1 [U > t]

G(t | X)

]
E Game Algorithm

Algorithm 2 Following Gradients in Multi-Player Games
Input: Choice of losses `F , `G, learning rate γ
Initialize θTt and θCt randomly for t = 1, . . . ,K − 1
repeat

// for each parameter of each player
for t = 1 to K − 1 do
gTt ← d`tF /dθTt
gCt ← d`tG/dθCt

end for
// for each parameter of each player
for t = 1 to K − 1 do
θTt ← θTt − γgTt
θCt ← θCt − γgCt

end for
until convergence

F Experiments

F.1 Data

Gamma Simulation We draw x from a 32 dimensional multivariate normal N (0, 10I). We
simulate conditionally gamma failure times with mean µt a log-linear function of x with coefficients
for each feature drawn Unif(0, 0.1). The censoring times are also conditionally gamma with mean
0.9 ∗ µt. Both distributions have constant variance 0.05. α, β parameterization of the gamma is
recovered from mean, variance by α = µ2/σ2 and β = µ/σ2. T and C are conditionally independent
given X . Each random seed draws a new dataset.

We report metrics as a function of training size. We use training sizes [200,400,600,800,1000]. We
use validation size 1024 and testing size 2048.

Survival MNIST Survival-MNIST [Gensheimer, 2019, Pölsterl, 2019] draws times conditionally
on MNIST label Y . This means digits define risk groups and T ⊥⊥ X | Y . Times within a digit are
i.i.d. The model only sees the image pixels X as covariates so it must learn to classify digits (risk
groups) to model times. The PyCox package [Kvamme et al., 2019] uses Exponential times. We
follow Goldstein et al. [2020] and use Gamma times. T ’s mean is 10 ∗ (Y + 1) so that lower labels
Y mean sooner event times. We set the variance constant to 0.05. C is drawn similarly but with
9.9 ∗ (Y + 1). Each random seed draws a new dataset.

We report metrics as a function of training size. We use training sizes [512, 1024, 2048, 4096, 8192,
10240]. We use validation size 1024 and testing size 2048.
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Real Data We report results on

• SUPPORT [Knaus et al., 1995] which includes severely ill hospital patients. There are 14
features. we split into 5,323 for training, 1774 for validation, and 1776 for testing.

• METABRIC [Curtis et al., 2012]. There are 9 features. We split into 1,142 for training, 380
for validation, and 382 for testing.

• ROTT [Foekens et al., 2000] and GBSG [Schumacher et al., 1994] combined into one dataset
(ROTT. & GBSG). There are 7 features. We split into 1,339 for training, 446 for validation,
and 447 for testing.

For more description see Therneau [2021], Katzman et al. [2018], Chen [2020].

In the main text, we report results on a subset of these datasets with metrics as a function of training
size. We use training sizes [10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 175, 200].
We use validation size 300 and always use the entire testing set. We standardize all real data with the
training set mean and standard deviation.

F.2 Models

In all experiments except for MNIST, we use a 3-hidden-layer ReLU network. The hidden sizes are
[128, 64, 64] for the Gamma simulation and [128,256,64] for the real data. We output 20 categorical
bins. See appendix G.1 for different choices of number of bins, which did not show any significant
differences in results. For MNIST we first use a small convolutional network and follow with the same
fully-connected network, but using hidden sizes [512,256,64].

F.3 Training

We use learning rate 0.001 in all experiments for all losses using the Adam optimizer. We train for
300 epochs for the simulated data and 200 for the real data. For all data and all losses, this was
enough to overfit on the training data. We use no weight decay or dropout.

F.4 Model Selection

We select the best model on the validation set using the following approach:

1. Save the F and G models from all the epochs in F -set and G-set.

2. Randomly choose a model F̃ in the F -set.

3. Use F̃ as the weight for `G. Find the model G̃ from G-set to minimize `G weighted by F̃ .

4. Use G̃ as the weight for `F . Find the model F̃ from F -set to minimize `F weighted by G̃.
5. Repeat steps 3 and 4 until convergence.

Once converged, we use F̃ and G̃ as our best model to evaluate at the test set. The above approach
plays as similar role as the game. Instead of gradient descent, this time we select a model from a
set to play the game. We first fix F to find the best G based on `G and then fix G to find the best F
based on `F .
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G Ablations

G.1 Changing number of bins on MNIST

Changing number of categorical bins (K) in [10,20,30,40,50]. Cannot directly compare be-
tween two choices of K due to changing meaning of likelihood/BS/Concordance but can com-
pare NLL and BS-Game at each K. Trends similar across all choices of K.
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Figure 9: 10 bins. NLL (Blue). BS-Game (Orange).
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Figure 10: 20 bins. NLL (Blue). BS-Game (Orange).
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Figure 11: 30 bins. NLL (Blue). BS-Game (Orange).
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Figure 12: 40 bins. NLL (Blue). BS-Game (Orange).

H Proof of Summed or Integrated Brier Score to be proper

Proposition 3. Assume we have a list of time t1, . . . , tK . Assume the true distribution for T is
F ∗ = Fθ∗T in eq. (2). We have:

• The summed BS
∑K
i=1BS(ti; θ) is proper, i.e., it has one minimizer at the true parameters

θ∗T .
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Figure 13: 50 bins. NLL (Blue). BS-Game (Orange).

• The integrated BS
∫ tK
t1

BS(t; θ)dt is proper, i.e., it has one minimizer at the true parameters
θ∗T .

Proof. Since BS(t) is proper, it has one minimizer at θ?T , i.e., for θT 6= θ∗T , BS(t; θ?T ) ≤ BS(t; θT )
for all t. Since this holds for all t, we then have:

K∑
i=1

BS(ti; θ
?
T ) ≤

K∑
i=1

BS(ti; θT ).

This means that the summed Brier Score at θ∗T is smaller than at any other θT . The summed BS has
one minimizer at the true parameters θ∗T , i.e., it is proper. Since the BS inequality holds for all t, we
also have ∫ tK

t1

BS(t; θ?T )dt ≤
∫ tK

t1

BS(t; θT )dt

This means that the integrated Brier Score at θ∗T is smaller than at any other θT . The integrated BS
has one minimizer at the true parameters θ∗T , i.e., it is proper.

I Proof of proposition 1

Here we prove that the true solution is a stationary point of the game. We restate the proposition here.
Proposition. Assume ∃θ?T ∈ ΘT ,∃θ?C ∈ ΘC such that F ? = Fθ?T and G? = Gθ?C . Assume the
game losses `F , `G are based on proper losses L and that the games are only computed at times for
which positivity holds. Then (θ?T , θ

?
C) is a stationary point of the game eq. (4).

`F (θ) = LI(FθT ;GθC ), `G(θ) = LI(GθC ;FθT ) (4)

Proof. In `F (θ), by the definition of the IPCW estimator, when θC = θ∗C , LI(FθT ;GθC ) = L(FθT ).
Due to the fact that L is proper, θ∗T is a minimizer for L(FθT ). Then at (θT , θC) = (θ∗T , θ

∗
C), we have

d`F (θ)

dθT

∣∣∣∣θT=θ∗T
θC=θ∗C

=
dLI(FθT ;Gθ∗C )

dθT

∣∣∣∣
θT=θ∗T

=
dL(FθT )

dθT

∣∣∣∣
θT=θ∗T

= 0

Similarly for `G(θ), we have

d`G(θ)

dθC

∣∣∣∣θC=θ∗C
θT=θ∗T

=
dLI(GθC ;Fθ∗T )

dθC

∣∣∣∣
θC=θ∗C

=
dL(GθC )

dθC

∣∣∣∣
θC=θ∗C

= 0

Since the two gradients are zero, the game will stay at the true parameters. Therefore, (θ?T , θ
?
C) is a

stationary point of the game eq. (4).

J Proof of proposition 2

Here we prove that under one construction of the game in algorithm 2, the true solution is the unique
stationary point of the game. We restate the proposition here.
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Proposition. Consider discrete distributions over K times. Let θT = {θT1, · · · , θT (K−1)}, θTt =

Pθ(T = t), FθT (t) =
∑t
k=1 θTk, and likewise for C, θC . Assuming that θ?Tt > 0 and θ?Ct > 0, the

solution (θ?T , θ
?
C) is the only stationary point for the multi-player BS game shown in algorithm 2 for

times t ∈ {1, . . . ,K − 1}

Proof. We show by induction on the time t of the IPCW BS game that the simultaneous gradient
equations are only satisfied at θ̂T = θ?T and θ̂C = θ?C . There is a lot of arithmetic but eventually
it comes down to (1) substitution of one variable for another (2) assuming all previous timestep
parameters are correct (induction) (3) finding the zeros of a quadratic (4) showing that one of the two
solutions is the correct parameter and the other is invalid.

Note: this proof uses the notation that θ̂ is a model parameter and θ? is the correct one.

J.1 BS(1) (base case)

We can compute the expectations defining F-BS-CW(1) and G-BS-CW(1) in closed form. That gives
us:

F-BS-CW(1) = θ?T1(1− θ̂T1)2 + (1− θ?T1)(1− θ?C1)
θ̂2
T1

1− θ̂C1

G-BS-CW(1) =
θ?C1(1− θ?T1)(1− θ̂C1)2

1− θ̂T1

+ (1− θ?T1)(1− θ?C1)
θ̂2
C1

1− θ̂T1

The derivatives are

dF-BS-CW(1)

dθ̂T1

= 2
(1− θ?T1)(1− θ?C1)

1− θ̂C1

θ̂T1 − 2(1− θ̂T1)θ?T1 = 0

dG-BS-CW(1)

dθ̂C1

= 2
(1− θ?T1)(1− θ?C1)

1− θ̂T1

θ̂C1 − 2
(1− θ?T1)(1− θ̂C1)θ?C1

1− θ̂T1

= 0

We can take each derivative equation and write one variable in terms of the other. First, taking
dF-BS-CW/dθ̂T1 and writing θ̂T1 in terms of θ̂C1:

dF-BS-CW(1)

dθ̂T1

= 2
(1− θ?T1)(1− θ?C1)

1− θ̂C1

θ̂T1 − 2(1− θ̂T1)θ?T1 = 0

implies

(1− θ?T1)(1− θ?C1)

1− θ̂C1

θ̂T1 = (1− θ̂T1)θ?T1

(1− θ?T1)(1− θ?C1)

1− θ̂C1

θ̂T1 + θ?T1θ̂T1 = θ?T1( (1− θ?T1)(1− θ?C1)

1− θ̂C1

+ θ?T1

)
θ̂T1 = θ?T1

θ̂T1 =
θ?T1(

(1−θ?T1)(1−θ?C1)

1−θ̂C1
+ θ?T1

)
Now solving for θ̂C1 in the G-BS-CS derivative:

dG-BS-CW(1)

dθ̂C1

= 2
(1− θ?T1)(1− θ?C1)

1− θ̂T1

θ̂C1 − 2
(1− θ?T1)(1− θ̂C1)θ?C1

1− θ̂T1

= 0

implies

(1− θ?T1)(1− θ?C1)

1− θ̂T1

θ̂C1 =
(1− θ?T1)(1− θ̂C1)

1− θ̂T1

θ?C1
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Given 1− θ?T1 6= 0 and 1− θ̂T1 6= 0, we have

(1− θ?C1)θ̂C1 = (1− θ̂C1)θ?C1

which gives us θ̂C1 = θ?C1. Given 1 − θ?T1 6= 0 and 1 − θ̂T1 6= 0, the above derivative equations
jointly imply

θ̂T1 =
(
θ?T1

)( (1− θ?T1)(1− θ?C1)

1− θ̂C1

+ θ?T1

)−1

, θ̂C1 = θ?C1

Substituting θ̂C1 = θ?C1 in the formula for θ̂T1 in terms of θ̂C1, we have

θ̂T1 =
(
θ?T1

)( (1− θ?T1)(1− θ?C1)

1− θ?C1

+ θ?T1

)−1

=
θ?T1

(1− θ?T1) + θ?T1

= θ?T1

Therefore, under the assumptions, for the BS(1) case, we have the only stationary point at the two
true 1st-timestep parameters: θ̂T1 = θ?T1 and θ̂C1 = θ?C1.

J.2 Induction step

We can proceed by induction over timesteps. Claim: given Pθ(T ≤ a) = P ?(T ≤ a) and
Pθ(C ≤ a) = P ?(C ≤ a), a = 1, . . . , k, the stationary point of the game BS(k+1) has to satisfy
Pθ(T = k+ 1) = P ?(T = k+ 1) and Pθ(C = k+ 1) = P ?(C = k+ 1) i.e. θ̂T,k+1 = θ?T,k+1 and
θ̂C,k+1 = θ?C,k+1.We first simplify F-BS-CW.

F-BS-CW(k + 1) = E
T,C

[ (1− Fθ(k + 1))2
1 [T ≤ C]1 [U ≤ k + 1]

Pθ(C ′ ≥ U)
+
Fθ(k + 1)2

1 [U > k + 1]

Pθ(C ′ > k + 1)

]
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We simplify each term of F-BS-CW separately. The left term of F-BS-CW is

E
T,C

(1− Fθ(k + 1))2
1 [T ≤ C]1 [U ≤ k + 1]

Pθ(C ′ ≥ U)

=Pθ(T > k + 1)2 E
T,C

1 [T ≤ C]1 [U ≤ k + 1]

Pθ(C ′ ≥ U)

=Pθ(T > k + 1)2
K∑
a=1

K∑
b=1

P ?(T = a)P ?(C = b)
1 [a ≤ b]1 [min(a, b) ≤ k + 1]

Pθ(C ′ ≥ min(a, b))[
condition 1 [a ≤ b] moves from indicator to sum limits and min(a, b) = a

]
=Pθ(T > k + 1)2

K∑
a=1

K∑
b=a

P ?(T = a)P ?(C = b)1 [a ≤ k + 1]

Pθ(C ′ ≥ a)[
condition 1 [a ≤ k + 1] moves from indicator to sum limit

]
=Pθ(T > k + 1)2

k+1∑
a=1

K∑
b=a

P ?(T = a)P ?(C = b)

Pθ(C ′ ≥ a)

=Pθ(T > k + 1)2
k+1∑
a=1

P ?(T = a)

K∑
b=a

P ?(C = b)

Pθ(C ′ ≥ a)

=Pθ(T > k + 1)2
k+1∑
a=1

P ?(T = a)
P ?(C ≥ a)

Pθ(C ′ ≥ a)[
induction hypothesis: Pθ(C ≤ a) = P ?(C ≤ a), a = 1, . . . , k =⇒ Pθ(C > a) = P ?(C > a), a = 1, . . . , k

]

=Pθ(T > k + 1)2
k+1∑
a=1

P ?(T = a) · 1

=Pθ(T > k + 1)2P ?(T ≤ k + 1)

=(1−
k∑
i=1

θ̂Ti − θ̂T (k+1))
2
k+1∑
i=1

θ?Ti[
induction hypothesis: Pθ(T ≤ a) = P ?(T ≤ a), a = 1, . . . , k

]
=(1−

k∑
i=1

θ?Ti − θ̂T (k+1))
2
k+1∑
i=1

θ?Ti

=(1− p− x)2(p+ t)

∆
=A, where p =

k∑
i=1

θ?Ti, q =

k∑
i=1

θ?Ci, x = θ̂T (k+1), y = θ̂C(k+1)., t = θ?T (k+1)c = θ?C(k+1).
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The right term of F-BS-CW is

E
T,C

Fθ(k + 1)2
1 [U > k + 1]

Pθ(C ′ > k + 1)

=
Fθ(k + 1)2

Pθ(C ′ > k + 1)
E
T,C

1 [U > k + 1][
T and C are independent means 1 [U > z] = 1 [T > z]1 [C > z]

]

=
Fθ(k + 1)2

Pθ(C ′ > k + 1)
P ?(T > k + 1)P ?(C > k + 1)

=
(
∑k+1
i=1 θ̂Ti)

2

1−
∑k+1
i=1 θ̂Ci

(1−
k+1∑
i=1

θ?Ti)(1−
k+1∑
i=1

θ?Ci)[
induction hypothesis: Pθ(T ≤ a) = P ?(T ≤ a) and Pθ(C ≤ a) = P ?(C ≤ a), a = 1, . . . , k

]

=
(
∑k
i=1 θ

?
Ti + θ̂T (k+1))

2

1−
∑k
i=1 θ

?
Ci − θ̂C(k+1)

(1−
k+1∑
i=1

θ?Ti)(1−
k+1∑
i=1

θ?Ci)

=
(p+ x)2

1− q − y
(1− p− t)(1− q − c) , B

where again p =
∑k
i=1 θ

?
Ti, q =

∑k
i=1 θ

?
Ci, x = θ̂T (k+1), y = θ̂C(k+1), t = θ?T (k+1), c = θ?C(k+1).

To summarize, F-BS-CW(k + 1) = A+B:

F-BS-CW(k + 1) = (1− p− x)2(p+ t) +
(p+ x)2

1− q − y
(1− p− t)(1− q − c)

Then we simplify G-BS-CW.

G-BS-CW(k + 1) = E
T,C

[ (1−Gθ(k + 1))2
1 [C < T ]1 [U ≤ k + 1]

Pθ(T ′ > U)
+
Gθ(k + 1)2

1 [U > k + 1]

Pθ(T ′ > k + 1)

]

24



The left term of G-BS-CW

E
T,C

(1−Gθ(k + 1))2
1 [C < T ]1 [U ≤ k + 1]

Pθ(T ′ > U)

=(1−Gθ(k + 1))2 E
T,C

1 [C < T ]1 [U ≤ k + 1]

Pθ(T ′ > U)

=(1−Gθ(k + 1))2
K∑
a=1

K∑
b=1

P ?(C = a)P ?(T = b)
1 [a < b]1 [min(a, b) ≤ k + 1]

Pθ(T ′ > min(a, b))

condition 1 [a < b] moves from indicator to sum limits and min(a, b) = a

=(1−Gθ(k + 1))2
K∑
a=1

K∑
b=a+1

P ?(C = a)P ?(T = b)1 [a ≤ k + 1]

Pθ(T ′ > a)

condition 1 [a ≤ k + 1] moves from indicator to sum limits

=(1−Gθ(k + 1))2
k+1∑
a=1

K∑
b=a+1

P ?(C = a)P ?(T = b)

Pθ(T ′ > a)[
split sum over a into two terms: 1 through k, and k+1, recall b starts at a+1

]

=(1−Gθ(k + 1))2

(
k∑
a=1

K∑
b=a+1

P ?(C = a)P ?(T = b)

Pθ(T ′ > a)
+

K∑
b=k+2

P ?(C = k + 1)P ?(T = b)

Pθ(T ′ > k + 1)

)

=(1−Gθ(k + 1))2

(
k∑
a=1

P ?(C = a)

K∑
b=a+1

P ?(T = b)

Pθ(T ′ > a)
+ P ?(C = k + 1)

K∑
b=k+2

P ?(T = b)

Pθ(T ′ > k + 1)

)

=(1−Gθ(k + 1))2

(
k∑
a=1

P ?(C = a)P ?(T ≥ a+ 1)

Pθ(T ′ > a)
+
P ?(C = k + 1)P ?(T > k + 1)

Pθ(T ′ > k + 1)

)

=(1−Gθ(k + 1))2

(
k∑
a=1

P ?(C = a)P ?(T > a)

Pθ(T ′ > a)
+
P ?(C = k + 1)P ?(T > k + 1)

Pθ(T ′ > k + 1)

)
[

induction hypothesis: Pθ(T ≤ a) = P ?(T ≤ a), a = 1, . . . , k =⇒ Pθ(T > a) = P ?(T > a), a = 1, . . . , k

]

=(1−Gθ(k + 1))2

(
k∑
a=1

P ?(C = a) +
P ?(C = k + 1)P ?(T > k + 1)

Pθ(T ′ > k + 1)

)

=(1−
k∑
i=1

θ̂Ci − θ̂C(k+1))
2

(
k∑
i=1

θ?Ci +
θ?C(k+1)(1− θ

?
T (k+1) −

∑k
i=1 θ

?
Ti)

1−
∑k
i=1 θ̂Ti − θ̂T (k+1)

)
[

induction hypothesis: Pθ(T ≤ a) = P ?(T ≤ a) and Pθ(C ≤ a) = P ?(C ≤ a), a = 1, . . . , k

]

=(1−
k∑
i=1

θ?Ci − θ̂C(k+1))
2

(
k∑
i=1

θ?Ci +
θ?C(k+1)(1− θ

?
T (k+1) −

∑k
i=1 θ

?
Ti)

1−
∑k
i=1 θ

?
Ti − θ̂T (k+1)

)

=(1− q − y)2(q +
c(1− t− p)
1− p− x

)
∆
= C

By symmetry with B, the right term is

E
T,C

Gθ(k + 1)2
1 [U > k + 1]

Pθ(T ′ > k + 1)
=

(q + y)2

1− p− x
(1− q − c)(1− p− t) ∆

= D
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Again using p =
∑k
i=1 θ

?
Ti, q =

∑k
i=1 θ

?
Ci, x = θ̂T (k+1), y = θ̂C(k+1), t = θ?T (k+1), c = θ?C(k+1),

we have
G-BS-CW(k + 1) = C +D

= (1− q − y)2(q +
c(1− t− p)
1− p− x

) +
(q + y)2

1− p− x
(1− q − c)(1− p− t)

The stationary point satisfies
∂G-wt-FBS(k+1)

∂x
=
∂A

∂x
+
∂B

∂x

= −2(1− p− x)(p+ t) + 2
(p+ x)

1− q − y
(1− p− t)(1− q − c)

= 0

∂F-wt-GBS(k+1)
∂y

=
∂C

∂y
+
∂D

∂y

= −2(1− q − y)(q +
c(1− t− p)
1− p− x

) + 2
(q + y)

1− p− x
(1− q − c)(1− p− t) = 0

It’s a system of quadratic equations with two unknowns. The system has analytical solutions. Solving
the above equations for x, y by Mathematica (it is quite a long derivation manually), the solutions are

x = t, y = c

or
x =(1/(−q + q2 + qc))(cp− qcp− qt+ q2t+ ct

− (p(−1 + q + c+ qp− q2p− cp+ qt− q2t− ct))/((−1 + q)(p+ t))

+ (qp(−1 + q + c+ qp− q2p− cp+ qt− q2t− ct))/((−1 + q)(p+ t))

− (t(−1 + q + c+ qp− q2p− cp+ qt− q2t− ct))/((−1 + q)(p+ t))

+ (qt(−1 + q + c+ qp− q2p− cp+ qt− q2t− ct))/((−1 + q)(p+ t)))

y =(−1 + q + c+ qp− q2p− cp+ qt− q2t− ct)/((−1 + q)(p+ t))

To check if this second solution is valid, it would need to be the case that q + y < 1 because we only
consider k + 1 < K. If we ask mathematica to simplify q+y that satisfies the above solution, then
this holds:

q + y =
−1 + q − c(−1 + p+ t)

(−1 + q)(p+ t)

The numerator and the denominator are both negative. If k + 1 < K (we know BS at K is 0 and also
we only have K-1 parameters), the numerator minus denominator =

−1 + q − c(−1 + p+ t)− (−1 + q)(p+ t) = (−1 + q)(1− p− t)− c(−1 + p+ t)

= (−1 + q + c)(1− p− t)
< 0

Therefore,
k∑
i=1

θ?Ci + θ̂C(k+1) = q + y > 1

This is invalid. So
x = t, y = c

is the only solution, i.e., θ̂T (k+1) = θ?T (k+1), θ̂C(k+1) = θ?C(k+1). By induction, we conclude that

θ̂Ti = θ?Ti, θ̂Ci = θ?Ci, i = 1, . . . ,K − 1

By θ̂TK = 1−
∑K−1
i=1 θ̂Ti and θ̂CK = 1−

∑K−1
i=1 θ̂Ci, we have

θ̂TK = θ?TK , θ̂CK = θ?CK
Therefore,

θ̂Ti = θ?Ti, θ̂Ci = θ?Ci, i = 1, . . . ,K
is the only stationary point for the game.
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