
Published in Transactions on Machine Learning Research (08/2023)

A Full Correlations for Analysis

In this section, we show full plots for the analysis in §5.3.1. We show

1. Average L2 norm of all module-states (trained and random weights) (Figure 10).

2. Comparison of average pair-wise correlation of module-states for trained and random weights
(Figure 11).

3. Average pair-wise correlation between L2 norm of all module-states (Figure 12).

4. More in-depth plots of activity and attention coe�cients (Figure 13).

Figure 8: Trained weights. Figure 9: Random weights.

Figure 10: Average L2 norm of module-states. We find that when weights are trained on the task, some
modules are selective for di�erent events. For example, Module 4 is selective for “drop wrong key” and
module 6 is selective for “pickup correct key”. When we use random weights, we see that all modules have
the same activity for all events. This indicates that they have not learned any task-specific activity.

14



Published in Transactions on Machine Learning Research (08/2023)

Figure 11: When looking at trained weights (left), we find that pairs of modules will have high correlation
on some events and high anti-correlation on other events. For example, modules 7 and 2 correlate for drop
wrong object and drop wrong key but anti-correlate pickup wrong object and pickup correct key. If we look
at random weights (right), we see that pairs of modules will either fully correlate (modules 6 and 2), fully
anti-correlate (modules 6 and 1), or have weak/no correlation (modules 6 and 4) for events. Importantly, we
don’t see a significant mixture correlation and anti-correlation like we see with trained weights. This suggests
that the random weights have less task-specific learning/uses by the agent.

15



Published in Transactions on Machine Learning Research (08/2023)

Figure 12: Average pair-wise correlation between L2 norm of module-states.

16



Published in Transactions on Machine Learning Research (08/2023)

Figure 13: Panels (a) and (b) both show that di�erent modules have selective activity on di�erent events. (a)
Module 0 exhibits salient activity when the agent moves around an obstacle. (b) Module 6 shows selective
activity for representing goal information. (c) Module 6 also shifts its attention coe�cients as the agent picks
up the goal key. (d) We generally find that multiple modules activate for an event. Here, modules 3 and
6 show correlated activity for picking up a ball or non-goal key. Videos of the state-activity and attention
coe�cients over test episodes: https://bit.ly/3qCxatr.

17

https://bit.ly/3qCxatr


Published in Transactions on Machine Learning Research (08/2023)

B Additional Experiments

B.1 Generalizing memory-retention to novel spatial compositions of object-dynamics

We use a variant of the the task in §5.1. The main di�erence is that in this setting, the dancers dance in
parallel as opposed to in sequence. This task is no longer a test of memory but only a test of whether the
agent can recognize separate object-motions.

Figure 14: We present the success rate means and standard errors computed using 5 seeds. We find that
FARM more quickly learns and generalizes. The next best performance comes from using an LSTM. These
results indicate that using spatial attention is an impediment to learning to recognize object-motions.

We present results in Figure 15. In the parallel dancing setting, we find that only FARM and the LSTM
can learn these tasks e�ciently. Both baselines that use spatial attention learn more slowly and with higher
variance.

B.2 Generalizing to an unseen number of distractors

We study this with the “Place X next to Y ” task in the BabyAI gridworld (Chevalier-Boisvert et al., 2019)
(Figure 18). The agent is a red triangle. Other objects can be squares, boxes or circles and they can take on 7
colors. The agent receives a partial, egocentric observation of the environment (Figure 18, right) and is given
a synthetic language instruction. The agent gets a reward of 1 if chooses the correct dancer, and 0 otherwise.
During training the agent sees either 0 or 2 distractors. During testing, the agent sees 11 distractors. As the
number of distractors increases, the likelihood a distractor is either (a) confounding with the task objects or
(b) blocks/confuses the agent also increases.

We present results in Figure 15. On the left two panels, we present training results for {0, 2} distractors.
All architectures can learn this task. On the right-most panel, we present test results for 11 distractors.
FARMand an LSTM get comparable performance (¥ 70%). RIMs has the best generalization success rate
(¥ 80%).

18



Published in Transactions on Machine Learning Research (08/2023)

Figure 15: RIMs, which uses spatial attention, better generalizes to more distractors. We show
train and test success rate performance for “Place X next to Y” in the BabyAI environment (10 runs).

19



Published in Transactions on Machine Learning Research (08/2023)

C Unified description of baseline methods

We present a detailed comparison of baseline methods. In Figure 16, we present a schematic of the general
architecture that all methods used. The rest of this section is structured as follows. We first recap the general
architecture used in all methods, which was describe in§4. Both RIMs and FARM share their method for
having modules share information. We describe this in §C.1.1. In §C.1.2, we describe spatial attention vs.
feature attention. In §D, we describe implementation details for these pieces.

Figure 16: Schematic of architecture used by all attention-based methods. The main di�erence
between each method is in (a) the number of modules and (b) the attention function, f

k
att, used to select

information from the observation features. FARM uses n modules and feature attention. RIMs uses n

modules and spatial attention. AAA uses 1 module and spatial attention. An LSTM agent uses 1 module
that updates with (a) observation features (b) the language encoding, and (c) the previous reward and action.

C.1 General Architecture

At each time-step t, each module updates with both observation features and information from other modules.
First, the agent computes observation features with a recurrent observation encoder, Zt = „(ot, Zt≠1).
Afterward, each module creates a query vector by combining its previous module-state with the previous
action and reward, q

k
t≠1

= [hk
t≠1

, at≠1, rt≠1]. The query is used to attend to observation features via a
dynamic feature attention mechanism u

k
t = f

k
att(Zt, q

k
t≠1

). The query is also used to retrieve information
from other modules with a transformer-style attention mechanism ‹

k
t = f

k
share(sA

t≠1
, q

k
t≠1

). (We explain both
attention mechanisms in more detail below). Each module updates with both attention outputs to produce
the next module-state h

k
t = ÷

k(uk
t , ‹

k
t , q

k
t≠1

). If a task additionally has a language description olang (as 2 of our
experiments do), the module update also updates with an embedding of this description, zlang = flang(olang).
Agent state is then defined by the combination of these module-states s

A
t = [h1

t , . . . , h
n
t ]. We summarize the

20



Published in Transactions on Machine Learning Research (08/2023)

computations below:

Zt = „(ot, Zt≠1) obs features (9)
q

k
t≠1

= [hk
t≠1

, at≠1, rt≠1] query (10)
u

k
t = f

k
att(Zt, q

k
t≠1

) obs attention (11)
‹

k
t = f

k
share(sA

t≠1
, q

k
t≠1

) share info (12)
h

k
t = ÷

k(uk
t , ‹

k
t , q

k
t≠1

, zlang) module update (13)
s

A
t = [h1

t , . . . , h
n
t ] agent state (14)

where [·] is an operation that concatenates input vectors into a long vector.

C.1.1 Sharing information (f
k
share)

Both FARM and RIMs have modules that retrieves information from other modules using transformer-
style attention (Vaswani et al., 2017). We define the collection of previous module-states as Ht≠1 =Ë
h

(1)

t≠1
; . . . ; h

(n)

t≠1
; 0

È
œ R(n+1)◊dh , where 0 is a null-vector used to retrieve no information. A module computes

a “retrieval query” to search for information as q
k
r = W

que
k q

k
t≠1

œ R
dh . That module computes “retrieval keys

and values” as K
k = Ht≠1W

key
k œ R

n+1◊dh and V
k = Ht≠1W

val
k œ R

n+1◊dh , respectively. Each module
then retrieves information as follows:

f
k
share(sA

t≠1
, q

k
t≠1

) = softmax
A

q
k
r K

k€

Ô
dh

B
V

k
. (15)

Intuitively, the dot-product inside the softmax is computing n + 1 scores (one for each “key”), which then
form probabilities. The outter dot-product multiplies each “value” by its probability and sums them to
perform soft-selection.

C.1.2 Observation attention (f
k
attn)

We present a diagram of feature attention vs. spatial attention in Figure 17. Below we describe updating
with each type of attention. FARM uses feature attention. RIMs and AAA both use spatial attention.

Updating with Feature Attention. Here, state factors update with “important“ features. We focused on
visual features produced by a CNN, so this corresponds to important convolutional channels. This method
essentially works by applying a learned mask to the convolutional features before updating with them.

Module k transforms its query to a feature mask –
k by projecting the query and applying a sigmoid:

–
k = ‡(W att

k q
k
t≠1

)Rdz (16)

where ‡ is a sigmoid function. Each dimension of the query is bounded between 0 and 1. This essentially
gives an importance for updating with each of the dz features. It then applies this mask to a projection of
the convolutional features and then projects the masked features:

u
k
t = W2(–k

§ W1Zt) œ Rm◊dz (17)

Updating with Spatial Attention (used by RIMs and AAA). Here, state factors update with spatial
positions that contain relevant information. A module computes a “spatial query” to search for observation
information as

q
k
pos = W

pos
k q

k
t≠1

œ R
dq (18)

Observation features are then transformed to “keys” and “values” as Z
key = W

key
k Zt œ Rdq◊m and Z

val =
W

val
k Zt œ Rdv◊m (one for each spatial position). Each key is compared against the query, and the best match

will be selected. First, “soft” selection scores –
k for each position are computed:

–
k = softmax

A
q

k
posZ

key


dq

B
œ Rm (19)

21



Published in Transactions on Machine Learning Research (08/2023)

Figure 17: Feature Attention vs. Spatial Attention. We present a toy illustration of how modules may
attend to di�erent task-relevant objects. Our experiments indicate that modules respond to more abstract
features (such as the presence of a general “obstacle” as in Figure 7). Still, it is illustrative to imagine how
one could use spatial or feature attention to attend to either balls or triangles. When using feature attention,
we get out a matrix that represents where balls or triangles are located across all positions. However, if we use
spatial attention, features across spatial positions are averaged together. While the presence of the objects
can be determined, their spatial location can be lost. While work can mitigate this by adding positional
encodings, the resultant sum will have an average of relevant positional encodings. For the balls, the average
of positional encoding may be a location that does not actually contain balls.

One then obtains an update by doing a weighted sum over the values:

u
k
t =

mÿ

i=1

–
k
i Z

val
:,i (20)

D Implementation details

All neural networks were built using the Jax library (Bradbury et al., 2018), haiku library (?), optax library (?),
and RLAX RL library. In all experiments, training was carried out using a distributed A3C setup (Espeholt
et al., 2018) with discrete actions. We trained all architectures end-to-end with the reinforcement learning
objective via the IMPALA algorithm (Espeholt et al., 2018) and an Adam optimizer (Kingma & Ba, 2015).
For 3D Unity Env experiments, we added an additional Pixel Control loss (Jaderberg et al., 2016) for all
agents. We used a single learner and 256 actors.

Observation encoder. We implement an agent’s observation encoders, „, with a ResNet (He et al., 2016).
If the observation encoder is recurrent (as with FARM and AAA), the ResNet is followed by a Convolutional
LSTM (ConvLSTM) (Shi et al., 2015). Language encoder. Language descriptions are processed as follows.
First, tokens are embedded into word embeddings and then they are fed into a GRU. The last token GRU
embedding is used as the language description zlang. Module update. During update, modules (a) select
information from other modules (RIMs, FARM) ‹

k
t and (b) select observation information to update with

22



Published in Transactions on Machine Learning Research (08/2023)

u
k
t . Modules then use an LSTM to update with the concatenation of (‹k

t , u
k
t , at≠1, rt≠1, h

k
t≠1

), where h
k
t≠1

is
the modules’ previous state. Sharing information. For both FARM and RIMs, we use used multihead-
attention (Vaswani et al., 2017) for sharing information, f

k
share (see column c in Figure 16). For RIMs and

AAA, we add positional emebddings for each spatial position of the convolutional features produced by
the observation encoder. RL predictions. Module states are then concatenated to form the agent’s state
representation, s

A
t = [h1

t , . . . , h
n
t ] and used to compute a policy fi(a|s

A
t ) and estimate the state’s value V (sA

t ).

23



Published in Transactions on Machine Learning Research (08/2023)

E Hyperparamters

Important training hyper-parameters are shown in Table 2, along with the components of the agent’s
architecture that are shared between the di�erent models. The parameter values used for each model
presented in the main paper are shown below in Table 3.

Most hyperparameters (i.e. for our RL algorithm, optimizer, and visual encoder) were tuned using a “vanilla”
IMPALA agent that updated state using an LSTM. This is because all methods leveraged an LSTM to
update state and we wanted to avoid bias towards our architecture. The only di�erence is that in AAA, there
is one LSTM updating state and in RIMs and FARM, there are multiple LSTMs which are simultaneously
being updated.

E.1 Search on gridworld domains

Vanilla IMPALA LSTM agent. We first searched RL algorithm (IMAPALA) and optimizer (Adam)
hyperparameters with an LSTM on the “Place X next to Y” BabyAI task (Chevalier-Boisvert et al., 2019).
We chose this task because our target domains were object-centric gridworlds and this simple object-centric
grid-world acted as a sanity check that our methods worked. We began with default values from our libraries
and performed a random search using the following values: V-trace baseline cost [1.0, .5, 0.1], V-trace entropy
cost [10≠2

, 10≠3
, 10≠4], V-trace “ [1.0, .99, .95], Adam learning rate [10≠3

, 5 ◊ 10≠4
, 2 ◊ 10≠310≠4], LSTM

hidden size [128, 256, 512]. We consistently found that a larger memory had better results.

Once we found good IMPALA and Adam hyperparameters, we searched over agent-state hyperparameters
for each method on the same BabyAI task. Feature Attending Recurrent Modules. We searched over
attention projection dims Wi œ [16, 32], Conv LSTM kernel size [3, 5], and number of modules [2, 4, 8]. We
set the ConvLSTM kernel size to be the same size as the final layer of the preceding ResNet. When using
multihead attention, the number of attention relation heads is also a hyper-parameter. We fixed this to
always be half o� the number of modules. We used a per-module LSTM size of 128 and did not vary this
across experiments. Attention Augmented agent. We used hyper-parameters from their paper but tuned
the following: LSTM hidden size [256, 512], Attention query MLP size [{}, {256}, {256, 256}], number of
attention heads [4, 8]. We consulted the authors about our implementation. Recurrent Independent
Mechanisms. We used hyper-parameters from their paper but tuned the following: LSTM hidden size
[100, 128, 256], Observation/communication head size [32, 64, 128], number of observation/communication
heads [4, 5, 6], number of RIMs [4, 6, 9, 12]. We consulted the authors about our implementation and used
their source code for replication.

Finally, once we had good hyperparameters for agent-state, we applied the architectures to the “Ballet” and
“Keybox” gridworld domains and explored whether increasing agent-state capacity (e.g. LSTM size or number
of LSTMs) improved performance. We tried combinations of LSTM size and number of LSTMs that led
each method to have approximately the same number of parameters. This was to ensure that no method
performed better than the other simply because it had more parameters.

E.2 Search on 3D unity domain

We recompleted our initial search on the RL algorithm (IMAPALA) and optimizer (Adam) hyperparameters.
We searched over the same values as before and additionally searched over a larger MLPs for the policy
and value heads [200, 512], Adam optimizer episilon [10≠7

, 5 ◊ 10≠8
, 10≠8], Adam —1[0.0, .9, .95, .99, .999] and

—2[0.0, .9, .95, .99, .999], and did a small search over the Pixel Control loss scaling [0.1, 0.01, 0.001] and Pixel
Control discount factor [0.9, .99]. After we searched the IMPALA, Adam, and Pixel Control hyperparameters,
we searched over individual architecture hyperparameters again.

24



Published in Transactions on Machine Learning Research (08/2023)

Table 2: Training hyper-parameters and shared network components used in experiments.

Loss Hyper-parameters 3D Unity Env Gridworlds
V-trace baseline cost 1.0 0.5
V-trace entropy cost 10≠4 0.01
V-trace “ 0.95 1.0
V-trace loss scaling 0.1 1.0
Pixel Control loss scaling 0.1 –
Pixel Control loss cell size 4 –
Pixel Control discount factor 0.9 –
Optimizer clipped Adam clipped Adam
Learning rate 2 ◊ 10≠4 10≠4

Max gradient Norm 40.0 40.0
Optimizer epsilon 5 ◊ 10≠8 10≠8

Adam —1 0.0 0.9
Adam —2 0.95 0.999
Shared Network Components
Language encoder GRU GUR
Language encoder hidden sizes 128 128
Language word embedding size 128 128
Image encoder Res-Net Res-Net
Res-Net channels (16, 32, 32) (16, 32, 32)
Res-Net residual blocks (2, 2, 2) (2, 2, 2)
Res-Net stride 2 2
Res-Net kernel size 3 3
Res-Net padding SAME SAME
Image-language-reward-action combination Concatenation Concatenation
Policy Head MLP shapes [512, 46] [200, 7]
Value Head MLP shapes [512, 1] [200, 1]

25



Published in Transactions on Machine Learning Research (08/2023)

Table 3: Model specific parameters. We highlight values that changed across environments in blue.

Model parameter 3D Unity Env Gridworld
Ballet

Gridworld
Keybox

Observation Dims 72 ◊ 96 99 ◊ 99 56 ◊ 56
Feature-Attending Recurrent Modules
Parameters (millions) 5.1 7.1 7.6
Number of modules 4 4 8
Module-state LSTM size 128 128 128

Relation heads

Number of modules
.5 .5 .5

Projection dims W1, W2 16 16 16
ConvLSTM kernel size 3 3 3
ConvLSTM hidden size 32 32 32
LSTM
Parameters (millions) 5.6 7.2 7.6
LSTM size 896 768 1024
Attention Augmented Agent
Parameters (millions) 5.1 6.9 7.5
ConvLSTM kernel size 3 3 3
ConvLSTM output size 128 128 128
LSTM size 704 512 960
Number of attention heads 4 4 4
Attention query MLP size (256, 256) (256, 256) (256, 256)
Positional basis dim 4 4 4
RIMs
Parameters (millions) 5 6.6 7.6
Number of modules 12 9 9
LSTM size 128 128 128
Observation heads 6 6 6
Communication heads 6 6 6
Observation head size 32 32 32
Communication head size 32 32 32
Basis size 4 4 4
Dropout 0.2 0.2 0.2

26



Published in Transactions on Machine Learning Research (08/2023)

F Environments

Figure 18: Place X on Y task in BabyAI environment.

Figure 19: Abstract MDP Environment based on BabyAI.

Figure 20: KeyBox task.

Figure 21: Ballet task.

Figure 22: Additional Environment Images.

27



Published in Transactions on Machine Learning Research (08/2023)

F.1 Ballet

Please refer to Lampinen et al. (2021) for details on this task. Our only di�erence was to use tasks with
{2, 4} dancers during training and tasks with 8 dancers for testing.

F.2 KeyBox

Observation Space. The agent receives a 56 ◊ 56 partially observable, egocentric image of the environment
as in Figure 18, right.

Action Space. The action space is composed of the 7 discrete actions turn left, turn right, go forward, pickup

object, drop object, toggle, and done/no-op.

Reward function. When the agent completes level n, it gets a reward of n/nmax where nmax is the maximum
level the agent can complete. We set nmax = 10 during training. The agent has 50n time-steps to complete a
level.

Table 4: Object and colors available for objects in the KeyBox task.

Set Contains
Shapes ball, key, box
Colors red, green, blue, purple, pink, yellow, white

F.3 3d Unity Environment

For the “place X on Y” experiments in 3D, all pickupable objects were split into two sets O1 = A fi B and all
object to place something on into another two sets O2 = C fi D, as shown in Table 5. Given the challenging
nature of the 3D environment (huge number of possible states, partial observability, language commands,
long credit assignment), we had to employ a set of curriculum tasks in order for the agents to make any
progress on the actual task of interest “Put X on Y”. The agent co-trained on the full set of tasks. This was
possible since we used a distributed A3C setup for our training (Espeholt et al., 2018), where each of the
actors generating the experience was running on one of the possible training levels. The di�erent training
tasks used during training and evaluation are shown in Table 6.

All episodes lasted for a maximum of 120 seconds and an action repeat of 4 was used. The images observations
were rendered at 96 ◊ 72 ◊ 3 and given to the agent along with a text language instruction, where each word
in the instruction was mapped into a continuous vector of size 128 using a fixed vocabulary of maximum size
1000.

Reward function. An agent get’s a reward of 1 if it completed the task and 0 otherwise.

Action Space. The action space for the experiments in 3d Unity Environment was 46 discrete actions that
allow the agent to move its body and change its head direction, to grab objects while moving and manipulate
the held objects by rotating, pulling or pushing the held object. The object is while as long as the agent is
emitting a GRAB action, and dropped in the first instance that a GRAB action is not emitted. The full list
of possible actions in the 3d Unity Environment environment is presented in Table 7.

28



Published in Transactions on Machine Learning Research (08/2023)

Table 5: Object and color set splits for the 3d Unity Environment “Put X on Y” experiments.

Set Contains
Set A (pickupable objects) toilet roll, toothbrush, toothpaste
Set B (pickupable objects) bus, car, carriage, helicopter, keyboard
Set C (support object) stool, tv cabinet, wardrobe, wash basin
Set D (support object) bed, book case, chest, dining, table
Colors red, green, blue, aquamarine, magenta, orange,

purple, pink, yellow, white

29



Published in Transactions on Machine Learning Research (08/2023)

Table 6: Descriptions of all the tasks used during training and evaluation. D refers to number of distractors
and S to the room size.

Task name S D Description

Find X 4 ◊ 4 5 The agent is spawned randomly.
(Set A or B) Room has 3 objects from Set A (or B) and 3 from

C fi D and instructed to go to an object from Set A (or B).
The purpose of these training tasks is to associate objects
from Set A and B with their names and the “find”
instruction with finding them.

Find Y 4 ◊ 4 5 The agent is spawned randomly.
(Set C fi D) Room has 3 objects from Set A (or B) and 3 from

C fi D and instructed to go to an object from Set C fi D.
The purpose of these training tasks is to associate objects
from Set C fi D with their names and the “find”
instruction with finding them.

Lift X 4 ◊ 4 5 The agent is spawned randomly.
(Set A or B) Room has 3 objects from Set A (or B) and 3 from

C fi D and instructed to lift an object from Set A (or B).
The purpose of these training tasks is to associate the “lift”
instruction with lifting the said object.

Put X near Y 3 ◊ 3 0 The agent is spawned randomly.
(X = Set A or B, Room has 1 object from Set A (or B) and 1 from
Y = Set C fi D) C fi D and instructed to put the object from Set A (or B)

near the other. The purpose of these training tasks is to learn to
move one object near another before putting it on it.

Put X on Y 3 ◊ 3 0 The agent is spawned randomly.
(X = Set A or B, Room has 1 object from Set A (or B) and 1 from
Y = Set C fi D) C fi D and instructed to put the object from Set A (or B)

on top of the other. The purpose of these training tasks is to learn to
move one object and place it on top of another.

Put X on Y 4 ◊ 4 4 The agent is spawned randomly.
(X = A, Y = D Room has 3 objects from Set A (or B) and 3 from
or Set D (or C) and instructed to put the object from Set A (or B)
X = B, Y = C) on top of the other. This is the training task most similar to the

test task and requires mastering all the other ones.
Put X on Y (test) 4 ◊ 4 4 The agent is spawned randomly.
(X = A, Y = C Room has 3 objects from Set A (or B) and 3 from
or Set C (or D) and instructed to put the object from Set A (or B)
X = B, Y = D) on top of the other. This is the test task.

30



Published in Transactions on Machine Learning Research (08/2023)

Table 7: 3d Unity Environment action space.

General body movement Fine grain movement
NOOP MOVE_RIGHT_SLIGHTLY
MOVE_FORWARD_FULL MOVE_LEFT_SLIGHTLY
MOVE_BACKWARD_FULL LOOK_RIGHT_MID
MOVE_RIGHT_FULL LOOK_LEFT_MID
MOVE_LEFT_FULL LOOK_DOWN_MID
LOOK_RIGHT_FULL LOOK_UP_MID
LOOK_LEFT_FULL LOOK_RIGHT_SLIGHTLY
LOOK_DOWN_FULL LOOK_LEFT_SLIGHTLY
LOOK_UP_FULL
Fine grained movement with grip General body movement with grip
GRAB + MOVE_RIGHT_MID GRAB
GRAB + MOVE_LEFT_MID GRAB + MOVE_FORWARD_FULL
GRAB + LOOK_RIGHT_MID GRAB + MOVE_BACKWARD_FULL
GRAB + LOOK_LEFT_MID GRAB + MOVE_RIGHT_FULL
GRAB + LOOK_DOWN_MID GRAB + MOVE_LEFT_FULL
GRAB + LOOK_UP_MID GRAB + LOOK_RIGHT_FULL
GRAB + LOOK_RIGHT_SLIGHTLY GRAB + LOOK_LEFT_FULL
GRAB + LOOK_LEFT_SLIGHTLY GRAB + LOOK_DOWN_FULL
GRAB + PULL_CLOSER_MID GRAB + LOOK_UP_FULL
GRAB + PUSH_AWAY_MID
Object manipulation
GRAB + SPIN_RIGHT
GRAB + SPIN_LEFT
GRAB + SPIN_UP
GRAB + SPIN_DOWN
GRAB + SPIN_FORWARD
GRAB + SPIN_BACKWARD
GRAB + PULL_CLOSER_FULL
GRAB + PUSH_AWAY_FULL
PULL_CLOSER_MID
PUSH_AWAY_MID

31


	Introduction
	Related work on generalization in deep RL
	Problem setting
	Architecture: FARM
	Experiments
	Generalizing memory to more object motions
	Generalizing navigation with more 3D objects
	Generalizing to larger maps with more objects
	Analysis of state representations


	Discussion and conclusion
	Full Correlations for Analysis
	Additional Experiments
	Generalizing memory-retention to novel spatial compositions of object-dynamics
	Generalizing to an unseen number of distractors

	Unified description of baseline methods
	General Architecture
	Sharing information (fkshare)
	Observation attention (fkattn)


	Implementation details
	Hyperparamters
	Search on gridworld domains
	Search on 3D unity domain

	Environments
	Ballet
	KeyBox
	3d Unity Environment


