
Under review as a conference paper at ICLR 2024

A APPENDIX

A.1 PRELIMINARIES

A.1.1 GRAPH ANALYTICS AND GRAPH LEARNING

Graph analytics. Graph analytics aim to capture complex relationships between nodes and their
features, which are particularly important in applications such as recommendation systems, social
network analysis, and bioinformatics. Node embeddings ZZZ are a crucial aspect of graph analytics.
They consist of low-dimensional vector representations of each node in a graphG = (V,E), denoted
by zzzu ∈ Rh for node u. Node embeddings encode both the features of a node and the structure of
its local graph neighborhood, allowing for more efficient and accurate downstream tasks.

Graph learning. Graph Neural Networks (GNNs) have become a widely used approach for learning
node embeddings in graph-structured data. Recently, two primary methods for learning embeddings
have been using GNNs. The first method is message passing, where information is iteratively aggre-
gated from neighbors to produce an embedding for each node. The second method involves applying
a specialized encoder architecture, such as a transformer-based model, to learn embeddings directly
from the graph-structured data.

A.1.2 MESSAGE PASSING-BASED GNNS

Message passing Hamilton et al. (2017) generalizes the convolutional operator of convolutional
neural networks (CNNs) to support graph-structured data. The primary goal of message passing
is to capture the homophily and structural equivalence of nodes in a graph. During each message
passing step, a node u aggregates messages from all of its neighbors v ∈ N(u). Each message is
computed by a differentiable and learnable linear transformation φ(·).

The node embedding representation ZZZ can be learned by an iterative process. Initially, the embed-
ding of a node u is set to its feature vector, i.e., zzz0u = xu. At k-th iteration, the message mk

e of
edge ev,u is derived from zzzk−1u and zzzk−1v (the embedding of nodes u and v at (k − 1)-th iteration)
and the features of edge ev,u by the transform function φ(·). For all received messages mk

e (from
incoming edges) at node u, an aggregator ⊕(·), usually a differentiable and permutation invariant
function (e.g., Sum, Mean, Max), is then applied to compress the received messages.

Finally, the embedding zzzku is then updated with the embedding zzzk−1u (at the last iteration) and the
compressed message ⊕(·) by an update function ρ. For clarity, the mathematical equations of the
iterative process are shown as follows.

Message: mk
e =φ(zzzk−1u , zzzk−1v , ev,u),∀ev,u ∈ E (7)

Update: zzzku =ρ(zzzk−1u ,⊕({mk
e |∀ev,u ∈ E})) (8)

A.1.3 TRANSFORMER-BASED GNNS

Transformer Vaswani et al. (2017) is another typical embedding technique promising in address-
ing long-range interactions in graph data. The transformer architecture is composed of multiple
transformer layers, each consisting of two components: a self-attention module and a position-wise
feed-forward network. The self-attention module in the context of graphs can be formulated in a
message passing style, as described in previous work Velickovic et al. (2018). In this formulation,
the messages are not only passed between neighboring nodes, but also between all nodes in the
graph (Equation 11 and Equation 12), as self-attention allows for full connectivity. To capture the
correlations among all node pairs, an attention coefficient αv,u is defined to substitute the edge fea-
ture ev,u when computing the message (Equation 10). The attention coefficient between every pair
of nodes is computed by embedding a learnable softmax attention score s produced by a multi-layer
perceptron (Equation 9).

14

Under review as a conference paper at ICLR 2024

Attention score: sv,u =MLP (zzzv, zzzu) (9)

Coefficient: αv,u =
exp(sv,u)∑

k∈V exp(sk,u)
(10)

Message: mk
v→u =φ(zzzk−1v , zzzk−1u , αv,u),∀v ∈ V (11)

Update: zzzku =ρ(zzzk−1u ,⊕({mk
v→u|∀v ∈ V })) (12)

The self-attention mechanism in a transformer empowers each token to incorporate information from
any position, offering significant expressive capability for encoding intricate relationships within a
sequence. In the context of graph neural networks, this mechanism allows each node in a graph to be
considered as an input token during the application of the transformer layer. As a result, every node
can attentively access information from all other nodes, enabling adaptive modeling of node-to-node
correlations and fostering a comprehensive understanding of the graph structure.

A.2 CORE-FRINGE-BASED GNN ANALYSIS

Information coverage. HL-based Core-Fringe ensures that every shortest path between any pair of
nodes must pass through at least one common hub node such that full receptive field is secured. In
other words, the hub nodes act as bridges connecting multiple pairs of nodes in the graph, making
them strong candidates for good cores. Here, we formally show that HL-based core-fringe can
achieve comprehensive information coverage.

Lemma. HL-based core-fringe fulfills Proposition 1.

Proof. By selecting any hub labeling (e.g., Pruned Landmark Labeling (PLL) Akiba et al. (2013))
that satisfies the 2-hop cover property as the core-fringe structure, the union of the fringe set F of
v’s core set C is equivalent to the complete node set V due to the 2-hop cover property (Property 1).
Mathematically,

V ≡ F = ∪c∈C(v)F(c) (13)

This secures that the HL-based core-fringe structure is reachable to all nodes. Besides, the core-
fringe structure can identify at least one shortest path between any pair of nodes, thus representing
their relationship, as stated in Property 1.

Scalability. In message passing-based GNNs, each node collects messages from its one-hop neigh-
borsN , and the affiliation of every node is represented by a matrix AN which is the adjacency matrix
provided by the graph data. To achieve information coverage (Proposition 1), this process is repeated
r times, where r indicates the length of the full receptive field. On the other hand, transformer-based
GNNs collect messages from all nodes in one step, and the affiliation is represented by a full ma-
trix AV . Given the core-fringe structure, each node u collects messages from its hub labels L(u),
and the affiliation of every node is represented by a matrix AL, where AL(u, v) = 1, ifv ∈ L(u).
According to Lemma 1, achieving full information coverage requires running the message passing
exactly two times, as supported by the 2-hop cover property.

The sparsity between the matrices of message passing, core-fringe, and transformer can be generally
summarized as follows: |AN | ≤ |AL| ≤ |AV |, with AV being the superset of the other two matrices
(cf. Equation 13). It is crucial to emphasize that the computation in the learning process is sensitive
to the sparsity since we utilize sparse matrix calculations in the learning framework. Interestingly,
in our experimental studies (cf. Table 5), the sparsity of AL in “COCO-SP” is even better than that
of AN , showcasing the core-fringe structure’s advantage. Furthermore, the numbers of iterations for
these three approaches are as follows: r (message passing) > 2 (core-fringe) > 1 (transformer).

Obviously, the core-fringe structure excels when the average size of the hub label set ` is small. As
reported in numerous studies Li et al. (2017); Akiba et al. (2013), the label size of a node is much

15

Under review as a conference paper at ICLR 2024

smaller than |V | in practice. For instance, there are typically hundreds of labels per node, even in
large-scale graphs containing millions of nodes Akiba et al. (2013).

Expressivity. In addition to ensuring information coverage, our core-fringe structure empowers the
learning process to concentrate on highly informative features, facilitating effective learning while
reducing redundancy in the information. To showcase the expressive capability of the core-fringe
approach, we conduct a thorough analysis of over-squashing, a concept extensively explored in
graph learning studies Topping et al. (2022); Rampášek et al. (2022); Chen et al. (2022b).

The distortion of message passing from one node to another node is caused by the repetition of
massive involving nodes from a long range message passing progress. This phenomenon is named
as over-squashing Topping et al. (2022). To measure the degree of distortion, the Jacobian method
is proposed as a formal way to evaluate the over-squashing phenomenon Topping et al. (2022).
The main conclusion of the Jacobian method is that, as the distance between two nodes increases,
the issues of distortion and over-squashing become more pronounced. One approach to mitigate
over-squashing is to connect all nodes in the graph. However, this would result in the loss of
topological information, which is crucial for message passing in classification tasks, especially for
prediction tasks that heavily rely on remote interactions. Achieving a balance between reducing
over-squashing and preserving topological information presents a significant challenge in graph rep-
resentation learning.
Lemma. The over-squashing phenomenon of CFGNN is lower than that of other message passing-
based GNNs.

Proof. Under the core-fringe structure and Equation 6, based on the Property 1, for a node pair u
and v, there always exists a common core node c. The message passing progress from v to u is as
follows.

zzzkv = ρ
(
zzzk−1v ,⊕

(
{φ
(
zzzk−1v , ρ

(
zzzk−2c ,⊕

(
{φ
(
zzzk−2c , zzzk−2u

)
}
)
}
))))

According to Topping et al. (2022), the level of message distortion can be estimated by partial
derivative. Without loss of generality, in order to simplify the equations, we assume that node
features and hidden representations are scalar.

∂zzz
(2)
u

∂xxxv
=∂1ρ∂xxxv

zzz
(1)
j2

+ ∂2ρ⊕

{∂1φ
(
∂xxxv

zzz
(1)
f1
, ρ
(
∂xxxv

zzz(0)c ,⊕
(
{φ
(
∂xxxv

zzz(0)c , ∂xxxv
zzz
(0)
f0

)
}
)))

+ ∂2φ
(
∂xxxv

zzz1f1 , ρ
(
∂xxxv

zzz(0)c ,⊕
(
{φ
(
∂xxxv

zzz(0)c , ∂xxxv
zzz
(0)
f0

)
}
)))
}

(14)

As a reference, we also show the message distortion estimation for the typical message passing
methods. First, we combine Equation 7 and Equation 8 as follows.

zzz(k)u = ρ
(
zzz(k−1)u ,⊕(φ(zzz(k−1)u , zzz(k−1)v , ev,u))

)
The Jacobian measures how a change of the input feature xxxv affects the node output zzz(k)u . We can
compute the influence of xxxv on zzz(k)u as follows.

∂zzz
(k)
u

∂xxxv
= ∂1ρ∂xxxv

zzz
(k−1)
jk−1

+ ∂2ρ⊕ (∂2φ∂xxxv
(zzz(k−1)u , zzz(k−1)v , ev,jk−1

))

where k is the distance between nodes j and u, jk is the node with distance k to v.

By expanding the layers recursively, we can rewrite the equation for the next expansion as follows.

∂zzz
(k)
u

∂xxxv
= ∂1ρ∂xxxv

zzz
(k−1)
jk

+ ∂2ρ⊕
(
∂2φ∂xxxjk−1

(zzz
(k−1)
jk−1

, zzz(k−1)v , ev,jk−1
)
)

= ∂1ρ∂xxxv
ρ
(
zzz
(k−2)
jk−1

,⊕(φ(zzz
(k−2)
jk−1

, zzz
(k−2)
jk−1

, ev,jk−1
))
)

+ ∂2ρ⊕
(
∂2φ∂xxxv

ρ
(
zzz
(k−2)
jk−1

,⊕(φ(zzz
(k−2)
jk−2

, zzz(k−2)v , ejk−1,jk−2
))
)) (15)

16

Under review as a conference paper at ICLR 2024

The message passing steps of CFGNN between two nodes are always fixed at 2 (two hops), which
is much shorter than that of traditional message passing-based GNNs. This proximity between
nodes results in a significantly lower distortion value compared to the nodes based on other message
passing methods. This is also evident from the distortion values calculated by Equation 14, which
are much lower than those obtained from the message passing methods using Equation 15.

A.3 CORE-FRINGE CONSTRUCTION

We discuss a widely used canonical HL algorithm Abraham et al. (2012), called Pruned Landmark
Labeling (PLL) Akiba et al. (2013), for constructing the core-fringe structure, which maintains an
order for all nodesO (e.g., using the degree value of each node as an order) so that the label set L(v)
of each node v only contains higher-order nodes.

In order to construct PLL, this algorithm initially starts from the highest-order node and iteratively
(1) propagates the distance information and (2) assign the label from the higher-order node u to
other lower-order nodes v. During the propagation of node u, the process is stopped at node v if the
existing label sets L(u)∩L(v) are already sufficient for computing the shortest path between nodes
u and v (cf. Definition A.1). PLL has shown remarkable performance by generating only 250 labels
per node in a social network graph (Flickr) of 2.3 million nodes and 33 million edges Akiba et al.
(2013).

Definition A.1 (Pruning Condition). A hub h is unnecessary to be added in L(u) if there exists a
prior hub p that co-exists in L(h) and L(u). Thus, the minimum path distance from h to u can already
be determined by merging dist(SPh→p) and dist(SPp→u).

dist(SPh→u) ≥ dist(SPh→p) + dist(SPp→u)

Figure 7: L(v1) has three labels from v10, v2, and v3. To learn the embedding zzzv1 , we set v10, v2,
and v3 as cores, and their corresponding fringe nodes are highlighted with different colors.

Figure 7 illustrates how PLL works. Note that the importance orders O is given by the degree of
the nodes in this example. Therefore, the first three hubs in O are v10, v2, and v3. The propagation
process starts with the first hub v10, and the corresponding distance information is added to the label
set of nodes with lower ranks. We use small yellow diamonds attached to all nodes to represent the
hub v10. For instance, a label (v10, 0) is also added into L(v10). As another example, a label (v10, 2)
is added into L(v2) since the distance from v10 to v2 is 2. In the propagation of next node v2, it stops
at v10 since existing label sets L(v2) ∩ L(v10) are sufficient to answer the shortest path distance
between v2 and v10, i.e., dist(SPv2→v10) ≥ dist(SPv2→v10) + dist(SPv10→v10),∃v10 ∈ {L(v2)∩
L(v10)}. As a result, all nodes except v10, v12, and v9 add a label of v2 and the corresponding
distance into their label set, denoted as small blue diamonds in the figure.

A.4 COLLECT AND DISTRIBUTE FRAMEWORK OF CFGNN

The pseudocode of our framework is given in Algorithm 1. The fringe set F is the union set of all
fringes, ∪c∈C(v)F(c). The additional graph features (SPE and PE) and their significance will be
introduced in Appendix A.6. It is also worth noting that our CFGNN framework takes the advantages

17

Under review as a conference paper at ICLR 2024

from both message passing and transformer-based GNNs. The two-stage mirroring steps make use
of the message passing mechanism, while the learning between the core and fringe is conducted
using the attention mechanism as employed in transformers. Moreover, our CFGNN ensures that
the message passing flow strictly follows the topological structure in the graph, as the core must
be a hub in the shortest path between two fringes. This strict adherence to the graph topological
structure enhances the information coverage and expressive power of our model. Furthermore, our
CFGNN framework improves scalability, as demonstrated in the analysis presented shortly in the
next section.

Algorithm 1 Collect and Distribute framework of CFGNN

1: Input: Graph Ghubs = (V,Ehubs); Core set C; Fringe set F ; Shortest path encoding SPE;
Positional encoding PE; Node input features {xv}; Message computation function φ; Message
aggregation functions ⊕; Trainable weight W ∈ Rr; Non-linearity update function σ; Network
Layer l ∈ [1, L];

2: Output: Embedding zv for all v ∈ V .
3: Hidden layer embedding zzzv ← xv;
4: for l = 1,. . . ,L do
5: for f ∈ F do . Message collecting
6: φf→c = φ(zzzf , zzzc, SPEf→c, PE

HL
f , PEHL

c),∀c ∈ C(f);

7: for c ∈ C do
8: φc = ⊕({φf→c, ∀f ∈ F(c)});
9: zzzc = ρ(zzzc, φc);

10: for c ∈ C do . Message distributing
11: φc→f = φ(zzzf , zzzc, SPEc→f , PE

HL
f , PEHL

c),∀f ∈ F(c);

12: for f ∈ F do
13: φf = ⊕({φc→f , ∀c ∈ C(f)});
14: zzzf = ρ(zzzf , φf);

A.5 ANALYSIS OF CFGNN PROPERTIES

(1) 2-hop cover. This property from HL ensures that every shortest path between any pair of nodes
must pass through at least one common hub node. In other words, the hub nodes act as bridges
connecting multiple pairs of nodes in the graph, making them strong candidates for good cores.
This property is crucial for maintaining information completeness. Additionally, the 2-hop cover
property guarantees information coverage as shown in Lemma 1.

(2) Shortest path dedication. The main objective of the HL index is to efficiently answer shortest
path queries by eliminating unnecessary paths and ensuring that the label set contains the shortest
and most unique paths. Therefore, using hub labels as cores and fringe nodes is advantageous for
direct message passing, as it enhances the concentration of features and facilitates more effective
information exchange between nodes.

(3) Minimality. One common objective in HL algorithms is to minimize redundant information
and keep the label size as small as possible. These algorithms naturally prioritize the preservation
of nodes commonly chosen as hubs by many node pairs. This not only ensures the selection of
effective cores but also reduces the level of redundancy in the label set. By minimizing redundancy,
the core-fringe structure can capture unique and essential information about the graph, leading to
improved efficiency and effectiveness in graph learning tasks.

A.6 TOPOLOGICAL FEATURES

Similar to other GNN frameworks Rampášek et al. (2022), our approach also considers several
features to enhance expressive power, including (1) node features obtained from data, (2) relative
distances of the node pairs, (3) positions of the nodes on the graph denoted as PE (Positional
Encodings), and (4) shortest paths of node pairs denoted as SPE (Shortest Path Encodings). While

18

Under review as a conference paper at ICLR 2024

the first two features can be directly obtained from the input data and query answering in HL, we
will focus on the latter two features in the following subsections.

A.6.1 HL-BASED POSITIONAL ENCODING, PEHL

According to the observation in JK-Net Xu et al. (2018), the message passing process differs de-
pending on its position and neighborhood characteristics. This idea has been used in many related
studies, e.g., DEGNN Li et al. (2020), Graphormer Ying et al. (2021), GraphiT Mialon et al. (2021),
PEG layer Wang et al. (2022a), and SAN Kreuzer et al. (2021).

The basic idea behind PE in graph transformers is similar to that in natural language processing
tasks. A fixed vector is added to the embedding of each node in the graph, which encodes the node
position on the graph. In this work, we utilize the hub label set to form an encoding vector for each
node. For a node u in the graph, its positional encoding is represented by a vector with a length equal
to the total number of cores in the core-fringe structure. The vector records the distance from u to
the labeling hub of L(u). Since we intend to map close nodes on the graph to similar embeddings,
a simple normalization is applied to map it to a (0, 1] range.

PEHL
u (h) =

{
1

1+dist , if (h, dist) ∈ L(u),

0, otherwise
(16)

Similar to the sort-merge join used in answering shortest path query, the relative distance can be
calculated as follows:

dist(SPu−>v) = min(PEHL
u

◦−1
+ PEHL

v

◦−1
)− 2

where ·◦−1 is the Hadamard inverse operator Reams (1999) that indicates applying a reciprocal to
each element of a vector.

We demonstrate that such encoding vector can offer positional awareness in Section A.6.3. As
PEHL captures the information of relative network distance between two points with the concrete
position on the graph, it provides extra expressive power. In addition, PEHL takes a relatively low
complexity (due to the efficient HL techniques used in its construction).

A.6.2 SHORTEST PATH ENCODING, SPE

Edge encoding has been widely used to enhance the performance of node embedding Mesquita
et al. (2020); Ying et al. (2021); Rampášek et al. (2022). Our SPE method works by extracting
the shortest paths between pairs of nodes in the graph using our hub labeling structure and then
encoding these paths as fixed-sized feature vectors. Each path is represented as a sequence of node
and edge features, where the node features correspond to the nodes along the path, and the edge
features correspond to the edges connecting them.

To incorporate edge features into our graph neural network effectively, when computing the message
between node pairs, we apply a trainable weight to sum up all the edge features along the shortest
path. This ensures that the length of the encoding remains consistent regardless of the path length. It
is important to note that we only compute and store the shortest path between the core and the fringe
nodes, making it a operation that can be directly extracted from the hub labeling. This ensures that
the SPE process is efficient and suitable for various graphs.

A.6.3 POSITIONAL AWARENESS

The core-fringe structure of CFGNN ensures information coverage (Lemma 1), as discussed in
Section 3.4 and Appendix A.2. Additionally, we have explored how this structure allows CFGNN
to focus on highly concentrated features and learn effectively with low redundancy information
(Lemma 2). To incorporate the topological features, we further analyze the expressivity of CFGNN
based on concept, positional-awareness, which has been extensively explored in graph learning
studies Topping et al. (2022); Rampášek et al. (2022).

One limitation of existing message passing frameworks is their inability to capture the position
information of nodes in the broader context of the graph structure You et al. (2019). For instance,

19

Under review as a conference paper at ICLR 2024

when two nodes are situated in vastly different parts of the graph but possess the same topological
(local) neighborhood structure, the message passing framework generates very similar embeddings,
making it difficult to distinguish between these nodes effectively. Hence, learning node embeddings
that encompass the position of nodes within the wider graph structure is crucial for various prediction
tasks on graphs.

Definition A.2 (Position-aware You et al. (2019)). A model is position-aware if there exists a func-
tion that can answer the graph distance for any pairs of nodes ∀u, v ∈ V on a graph G(V,E).

Lemma 3. PEHL is a position-aware encoding with no distortion.

Proof. According to Definition A.2, our goal is to demonstrate that for a graph G(V,E), PEHL

can accurately provide exact network distance queries between any pair of nodes. By Property 1,
for any node pair (u, v), there must exist a common hub h that is kept in between the two nodes in
a hub labeling index. As a result, the exact distance between vi and vj can be determined through
the distance to the common hub h. Therefore, PEHL serves as a positional encoding with no
distortion.

Based on Lemma 3, our HL-based positional encoding is position-aware, which indicates that it
can capture the relative distance information for any node pair Li et al. (2020); Ying et al. (2021);
Mialon et al. (2021); Wang et al. (2022a); Kreuzer et al. (2021). By considering the hubs as anchor
points of the graph, nodes that are closer to each other on the graph will have similar mapping in the
encoding space. Consequently, we can determine the global position of a node based on its distance
to these anchors.

Compared to message passing-based GNNs, our CFGNN incorporates a topological encoding
scheme similar to that used in transformer-based GNNs, taking into account nodes of multi-hops
and their paths. Compared to transformer-based GNNs, our CFGNN establishes message passing
between hub nodes, enabling the framework to learn the position of each node in the graph. Such
additional consideration of distance and positional information gives CFGNN the potential to be
more powerful than other message passing-based GNNs.

A.7 COMPUTATIONAL COMPLEXITY

In this section, we will compare the computational complexity of our CFGNN with that of message
passing and transformer-based GNNs. We denote the number of nodes as |V |, the number of edges
as |E|, the hub label size per node as `, the size of feature encoding vectors as h, the number of
attention heads as m, and the length of full receptive field as r (Proposition 1).

The computation of a GNN consists of two parts: (1) the linear transformation on the input em-
beddings and (2) the message-aggregation framework to generate the output embeddings. The first
part is a fundamental operation in neural networks that aligns the dimensions of different features,
allowing the model to learn relationships between input and output variables. The second part in-
volves learning the relationship between the input embeddings and output embeddings through the
interaction of graph nodes. In this work, our main contribution lies in reducing the complexity of
the second part.

(1) Linear transformation complexity. The encoding vector X serves as the enrichment feature
for node embeddings. It is derived from the linear transformation of various aspects of feature
encoding, including positional encoding, structural encoding, and input features from the dataset.
Given the feature with dimension hin, a hin × hout learnable weight matrix W is applied to map
the node feature X from size hin to hout. Mathematically, we can present the linear transformation
as X = WX + b.

For simplicity, we often set hin = hout = h for hidden layer in a neural network. The linear
transformation is a dense matrix multiplication, so its cost is O(|V |h2). The size of the encod-
ing dimension h is typically an important hyper-parameter to tune when building a neural network
because it can significantly affect the network performance by increasing its complexity. A larger

20

Under review as a conference paper at ICLR 2024

encoding dimension can potentially enable the network to learn more complex representations of
the input data.

(2) Message-aggregation: message passing. Given the length of full receptive field r, the message
passing-based GNNs requires an complexity ofO(r|E|h), which can be computationally expensive.
Worse still, this method potentially generates huge redundancy when r is large, e.g., some edges are
repeatedly used in the training. As a remark, the size of feature enrichment vector h in message
passing-based GNNs is typically smaller than that of transformer-based GNNs, as there is no need
to encode structural information within the vector.

(3) Message-aggregation: transformer. The graph topology is not explicitly considered in the
transforme based solution, resulting in a O(|V |2) cost to capture the node-pair relationships. Thus,
the total complexity would be O(m|V |2h), where m is the number of attention heads. It is worth
noting that the complexity is quadratic in the number of nodes |V |, which can become computation-
ally expensive for large graphs.

(4) Message-aggregation: core-fringe. In CFGNN, each core collects information from all corre-
sponding fringes and subsequently distributes the aggregated information back to all fringes. It is
important to highlight that attention, similar to transformer-based GNNs, is employed to learn the
embedding relationship between a core and its fringes. Considering that the total number of cores is
bounded by |V | and the number of fringes per core is bounded by `, the complexity of our CFGNN
approach is O(`|V |h), as it only runs the same learning process twice. Note that a space with a
complexity of O(`|V |) is required to store the sparse core-fringe relationship.

Table 4: Complexity comparison

Method Computational Complexity
Message passing-based O(r|V |h2 + r|E|h)

Transformer-based O(|V |h2 +m|V |2h)
CFGNN O(|V |h2 + `|V |h)

In conclusion, CFGNN demonstrates the ability to handle larger graphs, higher dimensional inputs,
and complex graph structures due to its scalability. By reducing the computational cost, the model
becomes more scalable and frees up computing resources that can be used to increase the complexity
of the model. This allows for the addition of more network layers or increasing the hidden size for
encoding, thereby enhancing its fitting ability to capture underlying data relationships.

A.8 DATASETS

In this section, we conduct extensive experiments to evaluate the performance of our proposed graph
learning framework CFGNN. Our experiments follow the settings of GraphGPS Rampášek et al.
(2022), and the benchmark datasets are obtained from three different sources: (1) GNN Bench-
mark Dwivedi et al. (2022a), we evaluate our model on ZINC, PATTERN, CLUSTER. (2) Open
Graph Benchmark (OGB) Hu et al. (2020), we evaluate all graph-level datasets: ogbg-molhiv,
ogbg-molpcba, ogbg-code2, and ogbg-ppa. (3) Long-range graph benchmark (LRGB) Dwivedi
et al. (2022b), we evaluate on both node-level and graph-level datasets: PascalVOC-SP, COCO-SP,
Peptides-func, and Peptides-struct.

A brief description of these benchmark datasets is introduced as follows. Table 5 summarizes the
statistics of the datasets. It should be noted that the indexing time refers to the cumulative duration
required for building the hub labeling for each individual graph inside a given dataset. It has been
demonstrated that the computing cost associated with preprocessing the graph index is relatively
inconspicuous in comparison to the time required for model training.

ZINC. comprises 12K molecular graphs from the ZINC database of chemical compounds that are
offered for sale. The number of nodes in these molecular graphs ranges from 9 to 37. Each node
is a heavy atom (there are 28 different kinds), and each edge is a bond (there are three kinds). The

21

Under review as a conference paper at ICLR 2024

Table 5: Statistics and description of the evaluated datasets

Dataset |G| |V | |E| ` indexing time(s) prediction
ZINC 12,000 23.2 24.9 4.636 6.362 graph

PATTERN 10,000 118.9 6,098.90 29.130 7.669 inductive node
CLUSTER 10,000 117.2 4,303.90 25.030 6.338 inductive node

ogbg-molhiv 41,127 25.5 27.5 5.095 1.241 graph
ogbg-molpcba 437,929 26 28.1 4.930 4.931 graph

ogbg-ppa 158,100 243.4 2,266.1 15.853 141.113 graph
ogbg-code2 452,741 125.2 124.2 4.839 92.750 graph

PascalVOC-SP 11,355 479.4 2,710.5 20.727 11.835 inductive node
COCO-SP 123,286 476.9 2,693.7 2.793 163.545 inductive node

Peptides-func 15,535 150.94 307.3 17.830 17.831 graph
Peptides-struct 15,535 150.94 307.3 17.830 17.831 graph

task is to find the molecule’s limited solubility (logP). The train/validation/test split of 10K/1K/1K
is already set up in the dataset.

PATTERN and CLUSTER are made-up datasets from the Stochastic Block Model. In PATTERN,
the goal is to figure out which nodes in a graph belong to one of 100 possible sub-graph patterns. In
CLUSTER, each graph is made up of 6 clusters that are created by SBM and come from the same
distribution.

ogbg-molhiv and ogbg-molpcba are used by OGB to predict the properties of molecules. They
were taken from MoleculeNet. The chemophysical properties of these datasets are shown by a
shared set of nodes (atoms) and edges (bonds).

ogbg-ppa is made up of networks of protein-protein interactions that come from 1581 species in 37
biological groups. The nodes are the proteins, and the edges are the seven ways two proteins can be
linked.

ogbg-code2 is made up of abstract syntax trees, which are made from the source code of Python
methods.

PascalVOC-SP and COCO-SP are derived by SLIC superpixelization of Pascal VOC and MS
COCO image datasets.

Peptides-func and Peptides-struct both consist of atomic graphs of peptides extracted from the
SATPdb.

A.9 BASELINES

Aligned with our discussion, we proceed to compare CFGNN with two types of graph neural net-
works. The first category comprises message passing-based GNNs, including GCN Kipf & Welling
(2017), GAT Vaswani et al. (2017), GIN Xu et al. (2019), GatedGCN Bresson & Laurent (2018), and
PAN Corso et al. (2020). To obtain a global graph representation for graph-level tasks, we employ
the virtual node technique Gilmer et al. (2017) as the readout function for all message passing-based
methods. The second category is transformer-based GNNs, including SAN Kreuzer et al. (2021),
GraphTrans Wu et al. (2021), Graphormer Rampášek et al. (2022), EXPHORMER Shirzad et al.
(2023) and GraphGPS Rampášek et al. (2022). We select these methods as competitors because
they are representative approaches, such as GCN, GAT, and GIN, or they have shown impressive
results in recent publications or on benchmark datasets like Open Graph Benchmark (OGB). In
addition, we compare with a hierarchical graph pooling framework, DiffPool Ying et al. (2018),
reproducing its results on our datasets using GCN as backbone.

A.10 ABLATION STUDY

We perform an ablation study on two datasets, Peptides-struct and ogbg-ppa to evaluate the impact of
our three modules to verify their contributions to predictive performance. We run an ablation study
of only updating the core representation to show that information coverage is crucial for learning

22

Under review as a conference paper at ICLR 2024

Table 6: Ablation experiments

Method PascalVOC-SP ogbg-ppa
F1 score ↑ Accuracy ↑

CFGNN collect-only 0.1774 ± 0.0171 0.6477 ± 0.0133
CFGNN distribute-only 0.1320 ± 0.0039 0.5844 ± 0.0314

CFGNN w/o HLPE 0.3459 ± 0.0084 0.7783 ± 0.0058
CFGNN w/o SPE 0.3691 ± 0.0044 0.7734 ± 0.0110

CFGNN 0.3847 ± 0.0273 0.7881 ± 0.0053

the embedding. Table 6 presents ablation experiments on CFGNN for two datasets - PascalVOC-SP
and ogbg-ppa. It analyzes the impact of different components by selectively removing them from
the full CFGNN model.

Utilizing only the collect module results in a significant performance drop, reducing F1 on
PascalVOC-SP to 0.1774 and accuracy on ogbg-ppa to 0.6477. This emphasizes the crucial role
of bidirectional propagation between cores and fringes in CFGNN. Similarly, relying solely on the
distributed module leads to worse performance, halving the F1 and accuracy metrics compared to
CFGNN. Removing the positional encoding HLPE also degrades the results, highlighting the im-
portance of incorporating a global graph structure. Likewise, eliminating the subgraph pooling
encoder (SPE) harms the F1 and accuracy metrics. These ablation studies demonstrate the effec-
tiveness of each component in CFGNN and the importance of their integration for achieving strong
performance. The full CFGNN model achieves a far superior F1 of 0.3847 on PascalVOC-SP and
an accuracy of 0.8038 on ogbg-ppa. This confirms that the proposed core-fringe framework and
integrated neural network components contribute to CFGNN’s strong performance. The ablation
experiments validate the design choices underpinning CFGNN’s effectiveness for scalable graph
representation learning.

A.11 ENCODING DIMENSION TUNING

In addition to the advantage of faster training and inference times, the lower computational com-
plexity of CFGNN provides more tuning space for hyperparameters by reducing the number of
parameters that need to be optimized. This results in faster training times and allows for a more
comprehensive exploration of the hyperparameter space, which can lead to better performance.

We experiment on the dataset ogbg-ppa to compare the tuning space with GraphGPS, which uses a
similar setting with GraphGPS. As shown in Table 7, the hidden dimension was varied from 32 to
512 while other hyperparameters were held constant. For a clear comparison, we set a larger batch
size and only tuned on different sizes of the hidden encoding dimension, while keeping other factors
such as layers, dropout, batch size, and epochs constant. The accuracy of CFGNN increases with
larger hidden dimensions up to 256 units, where it peaks at 79.83%, suggesting an optimal hidden di-
mension range of 256-512 units that maximizes performance. However, dimensions above 512 units
lead to a slight decrease in accuracy for CFGNN, likely due to overfitting. In contrast, GraphGPS
encounters out-of-memory errors for dimensions above 128, indicating insufficient memory bud-
get to scale effectively. Therefore, we can conclude that the CFGNN model demonstrates superior
modeling capabilities compared to GraphGPS, Tuning the hyperparameter for the hidden dimension
to identify an optimal range that is neither too small nor too large is essential for optimizing the
performance of graph neural network models.

Table 7: Hyperparameter setting

Hyperparameter Value
Layers 4

Hidden dim 32, 64, 128, 256, 512
Dropout 0.03

Batch size 128
Epochs 500

Learning Rate 0.0005

Hidden dim CFGNN GraphGPS
Accuracy ↑ Accuracy ↑

32 0.7218 0.70151
64 0.7329 0.7466

128 0.7587 0.7676
256 0.7893 OOM
512 0.7827 OOM

23

