
Appendix

Contents
A Derivation of Data-Constrained Scaling Laws 21

A.1 Analytical properties of compute-optimal point 23

B C4 Scaling Coefficients 24

C Additional Contour Plots 25

D Double Descent 25

E Repeating on Heavily Deduplicated Data 26

F Do Excess Parameters Hurt, Plateau or Help? 27

G Case Study: Galactica 29

H Training Loss 30

I Scaling Curves on the OSCAR Corpus 30

J Validation Loss by Epoch 31

K Evaluation Details 32

L Downstream Repetition Results 33

M Detailed Code Augmentation Results 36

N Filtering Procedure 37

O Detailed Filtering Results 38

P Loss Curves for Complementary Strategies 40

Q Limitations and Future Work 41

R Contributions 41

S Hyperparameters and Setup 42

T Prompts and Samples 44

U Other Experiments 50

V Release of Artifacts 50

W Version Control 50

X Broader Impacts 50

20

A Derivation of Data-Constrained Scaling Laws

Let N be the number of model parameters, D be the training tokens and U be the "unique" training
tokens i.e. the size of the dataset that is to be trained on for one or more epochs. Chinchilla [42] only
deals with non-repeated tokens, thus D = U and we can write their formula (“Approach 3”) as:

L(N,U) = A
N↵ + B

U� + E (7)

where E represents the irreducible loss. A, B, ↵ and � are learned parameters.

We now want to generalize this expression to multiple epochs where tokens are repeated. We repeat
the data RD times, where RD = 0 corresponds to the base case of a single epoch. We let D0 be the
“effective data size”: the number of unique data needed to get the same value as repeating U unique
tokens for RD repeats. Hence, if RD = 0, the effective data is the same as the total data processed.
Intuitively, each time a sample is repeated, it is worth less as the model has already learned some of
its information. Assume that each time a model trains on a token, it learns a 1 � � fraction of the
information in it for some constant 0  �  1. (Thus, if � = 0 repeated tokens are as good as new
ones, and if � = 1, repeated tokens are worth nothing.) In other words, we expect the decrease in
value of each repetition to be proportional to the value of the prior repetition, which is equivalent to
exponential decay. As we would like to sum up the value of all repetitions, we temporarily assume an
integral number of repeats and express it as a geometric series:

D0 = U + (1� �)U + (1� �)2U + · · ·+ (1� �)RDU (8)

We know that the sum S of a geometric series with a common ratio r is:

S =
a(1� rn)

1� r
(9)

where a is the first term and n the number of terms in the series. As r = (1� �) and a = (1� �)U :

D0 = U + U
RDX

k=1

(1� �)k = U + (1� �)U (1�(1��)RD)
� (10)

Note that Equation 10 can also be used with a non-integer number of repetitions. We can directly use
Equation 10 as our effective data and learn � but for convenience and interpretability, we redefine it
in terms of the number of epochs beyond which repeating does not help. Note that as more data is
repeated, the right-hand side tends to (1��)U

� , as limRD!1(1� (1� �)RD) = 1. Let R⇤
D = 1��

� ,
hence D0 “plateaus” at U +R⇤

DU as RD goes to infinity.

If we assume � to be small, 1� � tends to one and we can approximate 1/R⇤
D = �

1�� ⇡ �.

Next, define ex in terms of its Taylor series expansion:

ex = 1 + x+
x2

2!
+

x3

3!
+ · · · ⇡ 1 + x (11)

If x is small later terms become increasingly small, thus ex ⇡ 1 + x. As we have assumed � to be
small, let x = ��, which yields

(1 + x) = (1� �) ⇡ e�� ⇡ e�1/R⇤
D (12)

Now inserting (1 � �)/� = R⇤
D and (1 � �)RD = e(�1/R⇤

D)RD into Equation 10 we get our final
equation representing the effective data:

D0 = U + U ·R⇤
D · (1� e�RD/R⇤

D) (13)

21

where U and RD are given while R⇤
D is a learned constant. If no repeats are done, the second

part of the sum is zero and the term simplifies to the single-epoch scaling laws from Equation 7.
While RD ⌧ R⇤

D, the second term is approximated as U · RD and for RD � R⇤
D, it plateaus at

U ·R⇤
D. Hence R⇤

D corresponds to the number of times we can repeat tokens before seeing sharply
diminishing returns.

Let us consider a concrete example to show that Equation 13 is a very good approximation of
Equation 10 and make the equations more intuitive. Suppose repeated data retains 75% of its value
(� = 0.25) and we train on a single token or data unit (U = 1) for five epochs, i.e. we repeat it four
times (RD = 4). In that case Equation 10 yields D0 = U +(1� �)U (1�(1��)RD)

� = 1+ (0.75) ⇤ 4 ⇤
(1�0.754) = 3.05. Thus despite training for 5 total units (4 of which are repetitions), we only get the
value equivalent to 3.05 units. As we have defined R⇤

D = (1� �)/�, the corresponding R⇤
D value is 3.

Setting R⇤
D = 3 in Equation 13 yields D0 = U+U ·R⇤

D ·(1�e�RD/R⇤
D) = 1+3⇤(1�e�4/3) = 3.21.

Due to our approximations, the results are not the same, i.e. 3.21 is slightly higher than 3.05. However,
note that the data term is additionally raised to a power of � = 0.353 (see Equation 7; Appendix B),
thus the actual difference calculated as ((3.210.353)/(3.050.353)) � 1 is a mere 1.8% despite this
relatively large � of 0.25. Equation 13 has the benefit that we can interpret R⇤

D as the number of
repetitions beyond which repeating yields sharply diminishing returns and flattens out soon after.
Consider RD = 100 then D0 = 1+3 ⇤ (1� e�100/3) = 3.99. No matter how many repeats are done
the effective data will never exceed 4 i.e. it plateaus at U +R⇤

DU as RD tends to infinity.

Similarly, we consider repeating parameters. Symmetric to seeing the same data, excess parameters
learn the same features and do not add any value in the extreme. For the Chinchilla equation
(Equation 7) increasing parameters from 1 billion to 10 billion yields the same absolute decrease in
loss regardless of whether the dataset is a single token or 1 billion tokens. However, intuition and our
data (Appendix F) suggest that in the first case, adding parameters should not decrease loss at all, as
the additional 9 billion parameters cannot possibly learn anything from the single token that the first
1 billion parameters have not already learned. Thus, to allow excess parameters to decay to adding
nothing, we also replace N with a symmetric version of Equation 13 yielding our final equation:

L(UN , UD, RN , RD) =
A

(UN + UNR⇤
N (1� e

�RN
R⇤

N))↵
+

B

(UD + UDR⇤
D(1� e

�RD
R⇤

D))�
+ E

(14)

We define UN , as the number of "unique" parameters that provide an optimal fit for UD. Additional
parameters decay with a symmetric version of the expression for repeated data. RN is the number
that the "unique" parameters are repeated i.e. RN = max{(N/UN)� 1, 0}. If R⇤

N = 1, additional

parameters do not decay at all and (UN + UNR⇤
N (1 � e

�RN
R⇤

N)) reduces to N . We compute UN

from UD by setting Dopt = UD and rearranging Equation 3 to map from Dopt to Nopt. UN is then
min{Nopt, N}. This is equivalent to the following:

UN = min{((UD ·G)�/↵) ·G,N} where G =

✓
↵A

�B

◆ 1
↵+�

(15)

Equation 14 is a generalization of Equation 7: It provides the same estimates for optimal model and
data size in the single epoch case, but allows for decay in the value of parameters and tokens, thus
generalizing to training for multiple epochs and with excess parameters. It can thus be used as a
direct replacement of Equation 7. If R⇤

N and R⇤
D are unknown, one can simply set them to infinity by

default, which will make Equation 14 completely equivalent to Equation 7.

To learn the parameters R⇤
N and R⇤

D, we largely follow the approach from [42]. We fix a, b, e, ↵, �
to the values learned on C4 in Appendix B and minimize:

min
R⇤

N ,R⇤
D

X

Run i

Huber�
⇣

LSE
�
a� ↵ log(U i

N + U i
NR⇤

N (1� e
�Ri

N
R⇤

N)),

b� � log(U i
D + U i

DR⇤
D(1� e

�Ri
D

R⇤
D)), e

�
� logLi

⌘
(16)

22

We use the LBFGS algorithm to find local minima of the objective above, started on a grid of
initialization given by: R⇤

N 2 {0., 4., . . . , 20.} and R⇤
D 2 {0., 4., . . . , 20.}. We fit on 182 samples

with parameters varying from 7 million up to 9 billion and epochs ranging from 1 to 500. We removed
outliers referenced in Appendix F from our fitting, as our formulas do not allow for excess parameters
or excess epochs to negatively impact performance. We assume excess parameters or epochs only
cause performance to plateau but never to worsen. However, it is difficult to identify all samples
where excess parameters or epochs hurt, as for some data budgets we only train a single model, thus
we do not know if the loss of that model is already in the range where it starts to increase again.
Further, there are samples where loss initially increases and then decreases as a function of epochs
(double descent, see Appendix D), which further contributes to noise in the fitting. Nevertheless, we
are able to get a fairly stable fit resulting in R⇤

N = 5.309743 and R⇤
D = 15.387756. Since R⇤

D > R⇤
N ,

excess parameters decay faster. Hence, the data-constrained efficient frontiers in Figures 1,3 suggest
scaling compute allocated to epochs faster than to parameters. This value of R⇤

D yields � ⇡ 6 ⇤ 10�2

(0.19 for R⇤
N), which respects the assumption that � is small. Inserting these learned parameters and

the parameters from Appendix B, and simplifying Equation 15 yields the precise formulation we use
to predict loss (L) given unique tokens (UN), parameter repetitions (RN) and data repetitions (RD):

L(UD, RN , RD) =
521

(UN + 5.3 · UN (1� e
�RN
5.3))0.35

+
1488

(UD + 15.4 · UD(1� e
�RD
15.4))0.35

+ 1.87

where UN = UD · 0.051
(17)

Table 1: Comparison of different versions of our parametric fit. All versions are fitted on the
same 182 samples. We report the fitting loss and the R2 on those samples. No decay corresponds to
assuming Chinchilla holds for repeated data without modification necessary. For Equation 10, we use
the same equation for D and N renaming the � to R⇤

D and R⇤
N .

Parametric Fit R⇤
D R⇤

N Loss R2

No decay - - - 0.1430
Equation 14 but only decay N - 713.0015 0.0241 0.1671
Equation 14 but only decay D 2.9157 - 0.0169 0.7395

Equation 14 15.3878 5.3097 0.0158 0.7810
Equation 10 for both N and D 0.0104 0.3676 0.0155 0.8062
Equation 18 for both N and D 0.0105 0.3676 0.0155 0.8061

We experiment with different versions of our formula and display the learned values in Table 1. No
decay or decaying only D or N of Equation 14 leads to worse loss and R2 than Equation 14. Thus, it
is important to decay both the value of excess parameters and data repetitions. We also consider an
explicit exponential where D0 =

PRD

k=0 U ⇤ e�R⇤
Dk, hence from Equation 9 it follows:

D0 = U 1�(e�R⇤
D)RD+1

1�e�R⇤
D

(18)

This explicit decay, Equation 10, and Equation 14 all yield similar results with R2 around 80. Equa-
tion 14 fits the data slightly worse than Equation 10, likely due to our approximations. Nevertheless,
we use Equation 14 throughout as it has fewer terms, and we find it easier to interpret.

A.1 Analytical properties of compute-optimal point

In our case, consider the setting of a fixed compute budget C and a fixed budget of unique tokens UD

implying a set of unique parameters UN . Let RD denote the number of times we repeat data (we
assume that we are in the multi-epoch regime and hence RD > 0).

Write UD = cUN (for Chinchilla c ⇡ 20). When RD ⌧ R⇤
D and RN ⌧ R⇤

N , our scaling agrees
with Chinchilla, and so the point (UN , UD), corresponding to RD = RN = 0 is on the optimal
compute curve. Increasing RD by ✏ corresponds to increasing the number of tokens by ✏UD = ✏cUN ,

23

log$

log
%

Chinchilla Curve

At this point a parameter
is worth 1 − (as much as

token for the loss

Same compute cost across
dashed blue lines

∇ℒ ∝ (1,1 − .)

∇ℒ
∝ (
1,1
)

In this regime,
multiplicative factor in
parameters and tokens

worth same for loss

reach
≈ "!∗

reach
≈ "#∗

Figure 7: A cartoon of how the compute-optimal tradeoff deviates from Chinchilla as we increase the
number of epochs. Initially the model size and tokens processed grow proportionally (RN = RD)
but since R⇤

N < R⇤
D, at some point adding parameters offers worse returns compared to increasing

the number of tokens processed, and hence we deviate from the Chinchilla curve.

while increasing RN by ✏ corresponds to increasing the number of parameters by ✏UN . For small
positive RD, RN , our curve agrees with Chinchilla and so we need to increase RN , RD by the same
amount to maintain the proportionality. Hence up to some value r > 0, the optimal compute curve
corresponds to RN = RD = r. Our curve differs from Chinchilla when r gets closer to either R⇤

N or
R⇤

D. At this point, we start to see sharply diminishing returns.

In our setting, R⇤
D > R⇤

N which means that we reach the point r ⇡ R⇤
N first. At this point, each added

parameter is worth less (specifically worth e�r/R⇤
N), than an added data point, despite them having

equal computational cost. Hence processing more tokens will be more effective than increasing the
number of parameters, and we expect the optimal compute curve to break away from proportionality.
This is indeed what we see.

B C4 Scaling Coefficients

While Hoffmann et al. [42] have shown that the equal scaling of model parameters and training
tokens holds across different training datasets, the precise ratios vary considerably across datasets
and approaches. For example given the Gopher [89] compute budget of 5.76⇥ 1023 FLOPs, their
parametric loss function fitted on MassiveWeb predicts an optimal allocation of 40 billion parameters.
Meanwhile, if the training dataset is C4 [90] their IsoFLOP approach predicts 73 billion parameters
to be optimal, almost twice as much. However, for C4, which is our training dataset, they do not
provide the coefficients necessary to compute loss with their parametric loss function. Based on their
IsoFLOP training runs on C4, they only provide the information that for C4, compute (C) allocated to
data (D) and parameters (N) should be scaled exactly equally for optimality, i.e. a = b = 0.5 in the
relationship Nopt / Ca and Dopt / Cb. This corresponds to ↵ = � in the parametric loss function
(Equation 2). Thus, we use this information together with the methodology and C4 data points from
[42] to fit the parametric loss function. We tie the parameters ↵ and � to be equal and optimize

min
a,b,e,↵,�

X

Run i

Huber�
⇣

LSE
�
a� ↵ logNi, b� � logDi, e

�
� logLi

⌘
(19)

where LSE is the log-sum-exp operator and Ni, Di and Li the model size, dataset size and loss of the
ith run, and � = 10�3. We fit on 54 samples on a grid of initialization given by: ↵ 2 {0., 0.5, . . . , 2.},
� 2 {0., 0.5, . . . , 2.}, e 2 {�1.,�.5, . . . , 1.}, a 2 {0, 5, . . . , 25}, and b 2 {0, 5, . . . , 25}. Our fit
results in a = 6.255414, b = 7.3049974, e = 0.6254804, ↵ = � = 0.3526596. Exponentiating a,
b and e to get A, B and E and inserting all learned coefficients into Equation 2 then allows us to
compute loss (L) as a function of parameters and data:

24

L(N,D) = 1.87 +
521

N0.353
+

1488

D0.353
(20)

To verify the accuracy of our fit, we benchmark the predictions with those of the IsoFLOP C4 curves
in [42]. Following [42], we can compute the optimal number of parameters Nopt and tokens Dopt for
our fit using:

Nopt(C) = G

✓
C

6

◆a

, Dopt(C) = G�1

✓
C

6

◆b

where G =

✓
↵A

�B

◆ 1
↵+�

, a =
�

↵+ �
, and b =

↵

↵+ �

(21)

Given the Gopher compute budget of C = 5.76 ⇥ 1023 our fitted parameters predict an optimal
allocation of Nopt = 70.0 billion parameters and Dopt = 1.37 trillion tokens. This is very close
to the 73 billion parameters and 1.3 trillion tokens predicted by the IsoFLOP curves on C4 from
[42] and thus we consider it a good fit. We use these fitted parameters rather than the MassiveWeb
parameters for all computations involving Chinchilla scaling laws.

C Additional Contour Plots

Figure 8 contains additional empirical isoLoss contours for 400 million and 1.5 billion unique tokens.
Results show that like in Figure 3 significantly lower loss can be achieved by increasing parameters
and epochs beyond what is compute-optimal at a single epoch. The lowest loss is also achieved by
allocating more extra compute to repeating data rather than to adding parameters.

Figure 8: Empirical isoLoss curves for 400 million and 1.5 billion unique tokens. 34 models
trained on 400 million unique tokens and 37 models trained on 1.5 billion unique tokens with varying
parameters and epochs.

D Double Descent

Prior work has reported double descent phenomena when repeating data, where the loss initially
increases and then decreases again as the model is trained for more epochs [75, 40]. In Figure 9, we
plot the loss curves of several models trained for varying epochs on 100 million tokens. We find
double descent phenomena with the loss of all models increasing at 200 epochs before decreasing

25

again. This contributes to additional noise in the fitting of our functions in Appendix A, as our
functional form assumes loss to be monotonically decreasing as epochs increase. Thus, we remove
most such examples from the fitting.

Figure 9: Double descent. Each dot is a model trained on 100 million unique tokens. Loss initially
increases at 200 epochs and then decreases again; this is known as epoch-wise double descent [75].

E Repeating on Heavily Deduplicated Data

To investigate whether Figure 3 is dependent on the inherent amount of duplicates in the selected 100
million tokens, we train several models on a deduplicated version of C4 (see Appendix N). We plot
the performance of the models trained on the deduplicated C4 versus the regular C4 in Figure 10. All
models are evaluated on the same validation dataset from the regular C4. Regardless of deduplication
we find 59 epochs to be optimal and the overall trend to be very similar. Together with our results
on OSCAR (Appendix I), this suggests that our work generalizes to different datasets with different
inherent amounts of duplicates.

Figure 10: Optimal loss on deduplicated data. 146 million parameter models trained on 100 million
unique tokens that are either directly from C4 or undergo additional deduplication. Each dot is a
single model. While deduplication results in a higher test loss, the optimal number of epochs remains
the same whether or not deduplication is performed (see also Figure 3).

26

F Do Excess Parameters Hurt, Plateau or Help?

Figures 3, 8 suggest that excess parameters (or epochs) can harm performance. We hypothesize
that this is due to suboptimal hyperparameters and could be prevented with better regularization.
Thus, we expect with optimal regularization hyperparameters excess parameters would never hurt,
but performance would merely plateau, as in extreme cases regularization could just take the form of
removing the excess parameters. One approach to selecting optimal hyperparameters is µP [127].
We compare excessively large models trained with a data constraint of DC = 100 million tokens
in Figure 11 across µP, our default hyperparameters (Appendix S) and scaling law predictions.
Surprisingly, µP leads to even higher test loss than our default hyperparameters. Nevertheless, we
find that also with µP excessive parameters hurt: The models with more than 2 billion parameters
have significantly higher validation loss after training than the models with 200 million to 1 billion
parameters when trained on only 100 million tokens. However, µP only covers hyperparameters such
as the learning rate, but not explicit regularization hyperparameters like dropout rates, which we
hypothesize would prevent this behavior. Thus, our proposed scaling equations predict loss to plateau,
as seen in the straight line. As the compute-optimal parameter count for 100 million tokens is around
7 million, all depicted models have a significant amount of excess parameters and data-constrained
scaling laws predict their losses to be all the same (R⇤

N ⌧ RN). Meanwhile, the default Chinchilla
scaling law [42] predicts loss to continue decreasing as parameters are added, which is in stark
contrast to the empirical data.

If one wants to incorporate excess parameters hurting performance into the scaling law equations, one
could consider (a) Modifying the exponential decay formulation introduced in Appendix A such that
instead of the value of repeated data decaying to 0 it decays to a large negative value (b) decaying the
exponents ↵ and � in Equation 7 instead of D and N . Decaying the exponents to 0 has the effect
of more repetitions eventually hurting performance as lim↵!0 D↵ = 1 and the same for �. Thus,
initially as D and N increase loss decreases, but ultimately the decay of ↵ and � pushes D and N
back to 1 resulting in loss to increase. Specifically, approach (b) could take the form of:

L(N,D,RN , RD) = E +
A

N↵⇤max(0,1�(RN/R⇤
N))

+
B

D�⇤max(0,1�(RD/R⇤
D))

(22)

Like the equations in Appendix A this formulation also reduces to the Chinchilla scaling laws in the
base case of RD = 0 or RN = 0. As the exponents decrease with more repetitions adding parameters
or epochs becomes less beneficial. Eventually, the decay in ↵ or � causes loss to increase again as it
pushes N or D back down to 1. We fit this formula using the same approach outlined in Appendix A
but including samples where excess parameters or epochs hurt (296 total samples). We use a grid of
initialization given by: R⇤

N 2 {0., 2000., . . . , 100000.} and R⇤
D 2 {0., 2000., . . . , 100000.}. This

results in R⇤
D = 26530.611 and R⇤

N = 2040.8163. R⇤
N is significantly lower resulting in excess

parameters hurting faster than excess epochs, which is in line with empirical data from Figure 3.
We visualize Figure 3 with the predictions from this alpha-beta decay formulation in Figure 12.
Expected parameters eventually hurt resulting in circle-shaped contours. Due to the very high R⇤

D
the area where epochs start to hurt is outside of the boundaries of Figure 12. While the predicted
optimal allocation (efficient frontier) is similar to Figure 3, the predicted return from repeated data
differs significantly. The alpha-beta decay formulation incorrectly predicts returns to diminish
significantly slower as seen by the longer efficient frontier and the smaller distance in contours early
on as compared to Figure 3. Beyond its potentially useful properties, we do not have a rigorous
mathematical justification for this alpha-beta decay formulation which could be the cause of the
incorrect return predictions.

Ultimately, we settle on our exponential decay formulation from Appendix A that does not allow
excess parameters or epochs to hurt, as preventing such behavior is trivial by stopping training (in the
case of epochs hurting) or removing excess parameters (in the case of model parameters hurting).
Further, accurately predicting how much loss increases in the limit is not very useful, as in practice
one would want to stop training when it’s expected to plateau anyways.

27

Figure 11: Empirical and predicted losses of LLMs trained on 100 million tokens for a single
epoch. Excess parameters empirically hurt performance, but this may be due to a lack of regularization.
Thus, our scaling formula predicts loss to plateau, while Chinchilla predicts loss to improve. By
decaying the exponent ↵ (and �) instead, one can allow excess parameters to hurt.

Figure 12: IsoLoss contours for 100 million unique tokens with contours predicted by parametric
decay of alpha and beta. The same models from Figure 3 with the contour predictions being done
by the alpha-beta decay formulation introduced in Appendix F.

28

G Case Study: Galactica

Figure 13: Optimal compute allocation for Galactica. Efficient frontier assuming repeated data is
worth the same as new data (Chinchilla scaling laws) and data-constrained efficient frontier assuming
a unique token budget of 106 billion tokens like for the Galactica models [108]. For optimal compute
allocation according to our proposed data-constrained scaling laws, the 120 billion Galactica model
should have been significantly smaller and trained for more epochs.

The Galactica models [108] are the only publicly known LLMs that explicitly trained for a significant
number of epochs prior to this work. They trained their models on 106 billion unique tokens for
4.25 epochs. Our findings on Return from repeated data agree with their conclusion that multiple
epochs are beneficial, however, we find that even more epochs can be beneficial and a small spike in
validation loss does not justify stopping training (Appendix J). Meanwhile, our findings on Allocation
significantly deviate from Galactica. Figure 13 visualizes the Galactica models with our predicted
efficient frontier in the same style as Figure 1. The creators of Galactica decided to train a 120 billion
parameter model on 450 billion tokens, a significant overallocation to parameters even in Chinchilla
terms (black efficient frontier). This decision was likely driven by the intuition that repeated data
is worth less, thus one should spend more compute on parameters. However, our empirical data
contradicts this. Parameters learning from repeated data are worth even less than repeated data, thus
one should overallocate to epochs, not parameters. Our data-constrained scaling laws thus predict
that a better model could have been trained by allocating significantly more FLOPs to epochs rather
than parameters for the largest Galactica model with 120 billion parameters. Specifically, 40 billion
parameters trained for 1.35 trillion tokens (12.75 epochs) would have been optimal according to
data-constrained scaling laws. Note that these scaling laws have been fitted on C4, which is not
the dataset used to pre-train Galactica. The Galactica models are pre-trained on a predominantly
scientific dataset, which includes code data among other data sources. Results from [42] show that
there are differences in the scaling coefficients when training on C4 as compared to GitHub code,
however, the overall allocation trend is the same. Thus, while we expect a smaller model trained for
more epochs to be better than the 120 billion parameter model, the optimal allocation is unlikely to
be exactly 40 billion parameters and 1.35 trillion tokens.

29

H Training Loss

Hoffmann et al. [42] use training loss as their core metric. However, when repeating data for multiple
epochs, training loss is a bad metric as models will overfit to the limited data available as shown in
Figure 14. Thus, we use loss on a held-out test set as our key performance metric.

Figure 14: Training loss smoothed with exponential moving average smoothing and a weight of
0.999. Models trained on fewer unique tokens (more epochs) have better training loss as they overfit.

I Scaling Curves on the OSCAR Corpus

To ensure our findings are not dataset-dependent, we train models with the same configurations from
Figure 4 on the OSCAR corpus [83]. OSCAR is considered noisier than C4 [90] due to its less
stringent duplication. Figures 15,16 depict the validation and training loss of these models. We find
the trend to be the same as for models trained on C4: While models with fewer repeats have better
loss, differences for a few repeats are insignificant.

Figure 15: Validation loss during training for models trained on OSCAR. Models trained on
tokens that are repeated for multiple epochs have consistently worse loss.

30

Figure 16: Training loss for models trained on OSCAR smoothed with exponential moving
average smoothing and a weight of 0.999. Models trained on fewer unique tokens (more epochs)
have better training loss as they overfit.

J Validation Loss by Epoch

Figure 17: Validation loss during training visualized by epochs. Loss progresses smoothly
throughout training. There are temporary spikes for 8.7 billion parameter models, commonly at the
start of a new epoch.

Taylor et al. [108] decided to early-stop pre-training of the Galactica models due to a small increase
in validation loss at the start of the fifth epoch. In Figure 17 we plot the validation loss curves of our
isoFLOP models as a function of epochs. We do find small increases in validation loss when models
enter a new epoch. For example, upon entering the third and fourth epoch, the 7-epoch 8.7 billion

31

parameter OSCAR model shows loss spikes. However, these are temporary and loss continues to go
down smoothly thereafter. Thus, we hypothesize that the Galactica models could have attained better
performance by continuing pre-training beyond the loss spike experienced at the beginning of the
fifth epoch.

K Evaluation Details

Table 2: Setup for computing validation loss during training. At every Evaluation Interval, loss is
computed on Evaluation Tokens many tokens from the validation set. The evaluation tokens vary
with the interval, i.e. the evaluation tokens at 100 steps are not the same as at 200 steps. However, the
tokens do not vary across data budgets for the same FLOP budget (Figure 4). For example, N = 2.8
billion parameter models with DC = 55 billion tokens are evaluated on the same data as models with
DC = 28 billion tokens at each evaluation interval.

FLOP budget Parameters Evaluation Interval Evaluation Tokens

9.3⇥ 1020 2.8B 100 105 million
2.1⇥ 1021 4.2B 1000 105 million
9.3⇥ 1021 8.7B 1000 2.1 million

Loss evaluation For all models trained on C4, the final test loss is computed on the same 210
million tokens from the C4 validation set after training. For held-out evaluation during training, such
as in Figure 4, the configurations are displayed in Table 2. The small number of evaluation tokens for
the 8.7 billion parameter models likely contributes to the loss spikes for 8.7 billion parameter models
seen in Figure 4. Thus, we smooth the validation loss curves of 8.7 billion parameter models with
exponential moving average smoothing and a weight of 0.85. For training OSCAR, configurations
are the same, however, the validation split used is a held-out part from the OSCAR training split, as
there is no official validation split for OSCAR. All training loss curves for C4 and OSCAR models
are smoothed with exponential moving average smoothing and a weight of 0.999.

Downstream evaluation We provide statistics of all downstream evaluation datasets in Table 3.
We use the evaluation-harness frameworks from BigScience and EleutherAI [32] to evaluate models
on 19 evaluation datasets. For each dataset, a maximum of 3000 samples are evaluated with 0,1,2,3,4
and 5 few-shots [15] to produce six scores which are then averaged. We normalize scores to range
from the random baseline of each task to 1 and report them as percentages. For example, if random
guessing produces 50% accuracy and the maximum accuracy possible is 100%, then a raw accuracy
of 55% would be normalized to 10%, and a raw accuracy of 45% would be normalized to -10%
since it is worse than random. This is done to give all tasks the same weight. Otherwise average
performance would heavily depend on generative tasks, where the random baselines are 0. Prompts
are sourced from GPT-3 [15] and PromptSource [5] and detailed in Appendix T. We note that our
evaluation is in no means comprehensive and a larger benchmarking would be helpful [102, 73].
However, by training five seeds for most models benchmarked, always averaging 0-5 fewshots, and
ensuring maximum data overlap for repeated data (§4) we significantly reduce uncertainty.

32

Table 3: Downstream evaluation datasets. We evaluate on 19 datasets: The first 14 are evaluated
using accuracy (ANLI counted as three), the next 4 using ROUGE-2 f-measure [59] and bAbI using
exact match.

Dataset Split(s) Samples Baseline URL

ANLI [79] dev_r1,2,3 3000 33.3 hf.co/datasets/anli
ARC-Easy [22] test 1172 25.0 hf.co/datasets/ai2_arc
ARC-Challenge [22] test 2376 25.0 hf.co/datasets/ai2_arc
BoolQ [21] validation 3270 50.0 hf.co/datasets/boolq
CB [25] validation 56 33.3 hf.co/datasets/super_glue
Copa [92] validation 100 50.0 hf.co/datasets/super_glue
HellaSwag [129] test 10003 25.0 hf.co/datasets/hellaswag
PiQA [12] validation 1838 50.0 hf.co/datasets/piqa
RTE [24, 114] validation 277 50.0 hf.co/datasets/super_glue
SciQ [120] test 1000 25.0 hf.co/datasets/sciq
StoryCloze 2016 [69] test 1871 25.0 hf.co/datasets/story_cloze
WinoGrande XL [93] test 1267 50.0 hf.co/datasets/winogrande

E2E NLG [29] test 4693 0.0 hf.co/datasets/e2e_nlg_cleaned
XSUM [77, 34] test 11334 0.0 hf.co/datasets/GEM/xsum
WebNLG EN [17, 34] test 5150 0.0 hf.co/datasets/GEM/web_nlg
WikiLingua EN [53, 34] sampled_test 3000 0.0 hf.co/datasets/GEM/wiki_lingua

bAbI [122] test 19000 0.0 hf.co/datasets/Muennighoff/babi

L Downstream Repetition Results

In Tables 4-9 we report downstream results of all models trained on C4 [90] and OSCAR [83]
according to the configurations in Figure 4. All scores are from the final checkpoints at the end of
training. OSCAR is a noisier dataset than C4 due to less filtering, thus models trained on C4 generally
perform better. Notably, models trained on C4 completely fail on bAbI [122], while OSCAR models
are able to perform better than random. This is likely due to code data being present in OSCAR,
which enables state-tracking capabilities like for code augmented models in §7. For C4 the creators
strictly removed all data that resembles code [90]. There are no significant differences between
models trained for a single epoch and models trained for up to 4 epochs. Even models trained for
more epochs (and thus on less unique data) have similar performance.

Table 4: Results for 2.8B parameter models trained on repeated data on C4 for 55B total tokens.
Scores are normalized averages of 0-5 few-shots and reported as percentages. We report mean/std.
err. across five different models, each trained with a different random seed.

Data Budget 55B 28B 18B 14B 11B 9B 4B 1.25B

Epochs 1 2 3 4 5 7 14 44

ANLI R1 0.4 ± 1.6 0.7 ± 0.8 0.3 ± 0.5 -0.3 ± 1.8 0.4 ± 1.8 0.4 ± 0.7 0.0 ± 0.9 -0.6 ± 0.6
ANLI R2 0.9 ± 0.4 1.4 ± 0.8 0.8 ± 0.8 1.1 ± 0.7 0.5 ± 0.7 0.6 ± 1.0 1.1 ± 1.1 2.7 ± 1.6
ANLI R3 1.7 ± 0.5 1.2 ± 0.4 0.4 ± 0.5 1.9 ± 0.7 0.6 ± 1.0 0.8 ± 0.8 1.7 ± 0.7 0.7 ± 1.7
ARC-Challenge 1.6 ± 1.0 0.9 ± 0.5 1.2 ± 0.6 1.1 ± 0.6 1.1 ± 1.2 1.3 ± 0.5 0.3 ± 0.6 -2.9 ± 1.0
ARC-Easy 44.5 ± 0.5 44.9 ± 0.4 44.7 ± 0.7 44.3 ± 0.4 44.0 ± 0.5 44.2 ± 0.9 41.4 ± 0.2 28.9 ± 0.7
BoolQ 18.8 ± 3.4 16.2 ± 5.2 16.1 ± 2.7 19.7 ± 1.8 15.0 ± 3.8 16.9 ± 3.2 13.1 ± 4.9 -2.1 ± 4.7
CB 20.0 ± 4.7 17.4 ± 6.4 14.6 ± 5.1 17.5 ± 4.2 12.3 ± 12.2 14.4 ± 7.5 21.6 ± 8.4 21.3 ± 5.6
COPA 49.7 ± 3.5 50.3 ± 3.4 49.9 ± 2.3 50.1 ± 2.5 50.9 ± 1.2 48.1 ± 2.4 43.5 ± 3.1 33.3 ± 1.9
HellaSwag 24.7 ± 0.3 24.6 ± 0.2 24.3 ± 0.1 24.3 ± 0.0 24.3 ± 0.3 24.1 ± 0.1 22.8 ± 0.2 16.7 ± 0.4
PiQA 47.9 ± 0.6 47.6 ± 0.8 47.3 ± 0.3 47.6 ± 0.6 47.6 ± 0.7 47.0 ± 0.2 45.6 ± 0.5 37.0 ± 0.4
RTE 5.1 ± 4.0 2.5 ± 4.5 8.4 ± 2.6 6.0 ± 2.5 5.1 ± 1.6 2.3 ± 3.9 7.8 ± 2.5 2.6 ± 4.3
SciQ 83.2 ± 0.6 82.5 ± 0.6 82.7 ± 1.1 81.9 ± 0.6 81.9 ± 0.8 81.6 ± 0.9 78.5 ± 1.1 59.3 ± 1.6
StoryCloze 2016 58.7 ± 0.2 58.7 ± 0.5 58.5 ± 0.3 58.3 ± 0.3 58.5 ± 0.6 58.4 ± 0.3 56.7 ± 0.5 52.0 ± 0.6
WinoGrande XL 11.6 ± 0.8 10.8 ± 1.1 10.9 ± 1.3 10.6 ± 0.5 11.1 ± 0.9 10.6 ± 0.9 6.4 ± 1.3 2.9 ± 1.3

E2E NLG 17.0 ± 1.4 17.7 ± 0.5 17.0 ± 1.2 16.9 ± 1.1 15.1 ± 2.3 13.3 ± 2.2 14.9 ± 0.9 9.8 ± 0.9
XSUM 2.4 ± 0.1 2.4 ± 0.1 2.5 ± 0.1 2.3 ± 0.2 2.4 ± 0.1 2.4 ± 0.1 2.1 ± 0.1 1.6 ± 0.1
WebNLG EN 5.3 ± 0.1 5.5 ± 0.2 5.4 ± 0.1 5.4 ± 0.1 5.1 ± 0.1 5.4 ± 0.2 5.1 ± 0.3 2.9 ± 0.2
WikiLingua EN 3.0 ± 0.1 3.1 ± 0.1 2.9 ± 0.1 2.9 ± 0.3 2.9 ± 0.2 2.9 ± 0.1 2.6 ± 0.1 2.0 ± 0.2

bAbI 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

Average 20.9 ± 0.4 20.4 ± 0.3 20.4 ± 0.2 20.6 ± 0.2 19.9 ± 0.9 19.7 ± 0.2 19.2 ± 0.5 14.1 ± 0.4

33

https://hf.co/datasets/anli
https://hf.co/datasets/ai2_arc
https://hf.co/datasets/ai2_arc
https://hf.co/datasets/boolq
https://hf.co/datasets/super_glue
https://hf.co/datasets/super_glue
https://hf.co/datasets/hellaswag
https://hf.co/datasets/piqa
https://hf.co/datasets/super_glue
https://hf.co/datasets/sciq
https://hf.co/datasets/story_cloze
https://hf.co/datasets/winogrande
https://hf.co/datasets/e2e_nlg_cleaned
https://hf.co/datasets/GEM/xsum
https://hf.co/datasets/GEM/web_nlg
https://hf.co/datasets/GEM/wiki_lingua
https://hf.co/datasets/Muennighoff/babi

Table 5: Results for 2.8B parameter models trained on repeated data on OSCAR for 55B total
tokens. Scores are normalized averages of 0-5 few-shots and reported as percentages. We report
mean/std. err. across five different models, each trained with a different random seed.

Data Budget 55B 28B 18B 14B 11B 9B 4B 1.25B

Epochs 1 2 3 4 5 7 14 44

ANLI R1 -0.3 ± 0.5 -0.6 ± 1.3 0.2 ± 0.6 0.3 ± 1.1 0.2 ± 1.2 -0.1 ± 1.1 -0.1 ± 0.5 -0.7 ± 1.3
ANLI R2 1.0 ± 1.0 1.1 ± 0.3 1.7 ± 0.8 2.3 ± 0.8 1.4 ± 1.0 0.8 ± 0.7 1.0 ± 0.7 2.3 ± 0.7
ANLI R3 0.4 ± 0.8 0.5 ± 0.5 -0.2 ± 0.8 -0.1 ± 1.0 1.1 ± 0.6 0.7 ± 0.4 -0.2 ± 0.9 0.5 ± 1.2
ARC-Challenge -1.4 ± 0.8 -0.6 ± 0.8 -1.7 ± 0.1 -1.6 ± 0.7 -1.6 ± 0.6 -1.4 ± 0.5 -1.9 ± 0.8 -5.0 ± 1.1
ARC-Easy 39.7 ± 0.3 39.6 ± 0.8 39.5 ± 0.6 39.3 ± 0.5 38.7 ± 0.6 38.7 ± 0.4 36.9 ± 0.4 25.4 ± 0.7
BoolQ 12.8 ± 4.4 7.8 ± 3.8 7.9 ± 3.8 3.3 ± 5.4 0.2 ± 3.0 2.3 ± 6.1 -2.1 ± 2.4 7.4 ± 6.1
CB 19.7 ± 5.1 15.4 ± 7.3 13.2 ± 5.1 12.6 ± 2.6 21.7 ± 3.6 15.4 ± 3.7 16.2 ± 5.2 9.7 ± 5.7
COPA 42.7 ± 2.2 39.5 ± 2.2 40.9 ± 2.0 41.5 ± 2.1 38.5 ± 2.4 40.4 ± 2.4 38.6 ± 2.6 28.5 ± 3.1
HellaSwag 16.3 ± 0.1 16.3 ± 0.2 16.3 ± 0.2 16.1 ± 0.2 16.0 ± 0.1 15.9 ± 0.2 15.0 ± 0.2 11.7 ± 0.1
PiQA 41.2 ± 0.7 41.4 ± 0.5 40.3 ± 0.4 40.6 ± 0.5 40.3 ± 0.9 39.8 ± 0.6 38.8 ± 1.1 31.0 ± 0.4
RTE 3.9 ± 1.1 2.1 ± 1.6 2.3 ± 3.3 1.6 ± 3.0 0.5 ± 2.1 2.9 ± 2.5 0.9 ± 3.4 -3.2 ± 2.7
SciQ 83.2 ± 0.6 82.4 ± 0.6 82.1 ± 0.9 82.6 ± 0.7 81.5 ± 0.9 80.5 ± 0.6 76.5 ± 1.3 57.7 ± 1.8
StoryCloze 2016 52.8 ± 0.3 52.9 ± 0.4 52.6 ± 0.3 53.0 ± 0.4 52.3 ± 0.4 52.4 ± 0.4 51.8 ± 0.7 47.9 ± 0.5
WinoGrande XL 5.8 ± 0.9 4.4 ± 1.4 4.5 ± 0.3 4.2 ± 1.3 4.5 ± 0.6 4.1 ± 0.7 1.7 ± 1.2 0.8 ± 1.3

E2E NLG 20.3 ± 0.3 19.9 ± 0.5 19.9 ± 0.7 20.9 ± 0.9 19.7 ± 0.7 20.4 ± 0.6 19.1 ± 0.8 14.2 ± 0.7
XSUM 3.0 ± 0.1 2.9 ± 0.0 2.9 ± 0.3 2.9 ± 0.2 2.9 ± 0.1 2.8 ± 0.3 2.6 ± 0.2 1.8 ± 0.1
WebNLG EN 8.8 ± 0.4 8.3 ± 0.6 8.5 ± 0.3 8.4 ± 0.6 8.1 ± 0.2 8.2 ± 0.2 7.2 ± 0.3 3.3 ± 0.3
WikiLingua EN 2.9 ± 0.1 3.1 ± 0.2 3.1 ± 0.1 3.0 ± 0.1 3.1 ± 0.1 3.2 ± 0.3 2.7 ± 0.2 1.7 ± 0.2

bAbI 15.5 ± 1.0 15.7 ± 1.1 15.3 ± 0.8 15.1 ± 1.5 15.9 ± 1.1 16.2 ± 0.9 14.3 ± 0.6 6.6 ± 0.6

Average 19.4 ± 0.5 18.5 ± 0.2 18.4 ± 0.4 18.2 ± 0.4 18.2 ± 0.4 18.1 ± 0.4 16.8 ± 0.5 12.7 ± 0.7

Table 6: Results for 4.2B parameter models trained on repeated data on C4 for 84B total tokens.
Scores are normalized averages of 0-5 few-shots and reported as percentages. We report mean/std.
err. across five different models, each trained with a different random seed.

Unique Tokens 84B 42B 28B 21B 17B 12B 6B 1.9B

Epochs 1 2 3 4 5 7 14 44

ANLI R1 -1.0 ± 0.3 -0.7 ± 1.1 -0.7 ± 1.0 -0.4 ± 1.1 0.4 ± 0.8 0.5 ± 1.1 0.1 ± 0.9 0.2 ± 0.9
ANLI R2 0.8 ± 0.5 0.8 ± 0.8 0.0 ± 1.4 0.5 ± 0.7 0.5 ± 0.9 0.3 ± 1.0 0.7 ± 0.7 2.5 ± 1.0
ANLI R3 1.1 ± 0.7 0.8 ± 0.9 0.3 ± 0.8 1.4 ± 1.1 1.3 ± 0.9 2.3 ± 0.2 1.3 ± 0.2 1.6 ± 1.2
ARC-Challenge 5.3 ± 0.6 5.1 ± 0.9 5.2 ± 2.0 6.0 ± 0.8 4.7 ± 0.8 3.1 ± 0.4 2.9 ± 1.0 -1.3 ± 1.0
ARC-Easy 49.2 ± 0.9 50.4 ± 1.2 47.4 ± 4.5 49.4 ± 0.7 48.7 ± 1.5 44.9 ± 0.7 45.0 ± 1.2 31.9 ± 0.9
BoolQ 18.2 ± 4.0 19.6 ± 5.1 22.1 ± 1.0 20.4 ± 3.6 18.4 ± 6.0 18.4 ± 3.9 18.9 ± 2.6 -3.3 ± 7.1
CB 12.0 ± 7.2 8.5 ± 9.2 7.9 ± 10.4 19.6 ± 7.3 17.8 ± 7.3 15.1 ± 5.8 17.5 ± 3.5 19.5 ± 6.6
COPA 59.1 ± 5.4 57.7 ± 3.5 56.7 ± 2.0 55.5 ± 2.4 56.8 ± 1.8 58.9 ± 1.7 48.7 ± 3.3 34.9 ± 3.4
HellaSwag 27.8 ± 4.8 30.2 ± 0.5 29.8 ± 0.9 29.9 ± 0.7 28.5 ± 1.1 29.0 ± 0.5 27.0 ± 1.2 19.7 ± 0.5
PiQA 50.6 ± 0.5 50.8 ± 0.5 48.6 ± 3.4 50.9 ± 0.7 50.3 ± 1.3 49.5 ± 0.4 47.6 ± 1.2 39.5 ± 1.3
RTE 5.6 ± 3.1 2.6 ± 3.9 7.2 ± 2.7 7.0 ± 3.2 8.8 ± 5.3 9.3 ± 3.6 3.0 ± 4.3 2.6 ± 4.2
SciQ 84.6 ± 3.9 86.1 ± 1.3 84.4 ± 3.7 85.9 ± 0.7 86.2 ± 0.8 79.0 ± 0.7 81.1 ± 1.4 65.3 ± 1.1
StoryCloze 2016 61.1 ± 3.7 62.6 ± 0.2 61.9 ± 2.2 62.6 ± 0.4 61.8 ± 0.8 61.5 ± 0.8 60.1 ± 0.7 53.9 ± 0.5
WinoGrande XL 17.0 ± 2.6 17.8 ± 1.4 16.5 ± 1.8 17.1 ± 1.8 14.9 ± 1.5 15.9 ± 1.2 11.8 ± 1.5 3.9 ± 0.8

E2E NLG 18.2 ± 1.2 18.8 ± 0.8 17.8 ± 1.5 16.0 ± 2.2 15.9 ± 2.5 13.8 ± 1.3 15.7 ± 0.9 11.2 ± 1.4
XSUM 2.9 ± 0.2 3.0 ± 0.2 2.8 ± 0.3 2.9 ± 0.2 2.9 ± 0.2 1.0 ± 0.4 2.4 ± 0.1 1.8 ± 0.1
WebNLG EN 4.8 ± 2.0 5.7 ± 0.2 5.4 ± 0.3 5.6 ± 0.2 5.4 ± 0.5 5.5 ± 0.1 5.4 ± 0.2 3.4 ± 0.3
WikiLingua EN 3.3 ± 0.5 3.6 ± 0.1 3.4 ± 0.1 3.4 ± 0.1 3.3 ± 0.1 1.4 ± 0.6 3.0 ± 0.1 2.2 ± 0.1

bAbI 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

Average 22.1 ± 1.7 22.3 ± 0.9 21.9 ± 1.2 22.8 ± 0.5 22.5 ± 0.6 21.6 ± 0.5 20.6 ± 0.6 15.2 ± 1.0

34

Table 7: Results for 4.2B parameter models trained on repeated data on OSCAR for 84B total
tokens. Scores are normalized averages of 0-5 few-shots and reported as percentages. We report
mean/std. err. across five different models, each trained with a different random seed.

Unique Tokens 84B 42B 28B 21B 17B 12B 6B 1.9B

Epochs 1 2 3 4 5 7 14 44

ANLI R1 -0.9 ± 0.5 -0.8 ± 1.1 -0.9 ± 1.4 -0.4 ± 0.4 -0.1 ± 1.2 0.3 ± 1.1 -0.5 ± 0.8 1.1 ± 1.3
ANLI R2 0.7 ± 0.9 0.7 ± 1.1 1.3 ± 1.0 1.5 ± 1.1 1.7 ± 1.3 0.9 ± 0.8 0.9 ± 1.0 1.7 ± 1.3
ANLI R3 0.4 ± 0.6 0.6 ± 0.4 0.7 ± 0.3 0.4 ± 0.8 0.7 ± 1.2 0.6 ± 1.2 0.7 ± 0.5 0.8 ± 1.2
ARC-Challenge 1.3 ± 0.5 1.8 ± 0.5 1.6 ± 0.7 2.4 ± 1.1 1.6 ± 0.7 2.0 ± 0.7 1.6 ± 0.5 -2.1 ± 0.5
ARC-Easy 45.5 ± 0.8 45.1 ± 1.2 44.8 ± 0.9 44.8 ± 0.6 45.0 ± 1.0 43.9 ± 0.7 40.7 ± 0.7 28.0 ± 0.9
BoolQ 14.5 ± 1.9 15.1 ± 4.6 10.8 ± 5.1 12.5 ± 1.9 6.7 ± 4.0 10.1 ± 4.2 -0.0 ± 6.9 -4.3 ± 7.2
CB 21.3 ± 2.3 19.2 ± 3.8 12.9 ± 6.4 16.9 ± 3.4 15.1 ± 9.4 17.8 ± 3.6 15.0 ± 8.1 11.2 ± 4.1
COPA 43.1 ± 3.0 42.5 ± 3.7 44.4 ± 1.1 43.0 ± 3.4 41.8 ± 2.3 44.6 ± 2.7 40.3 ± 3.0 34.9 ± 4.9
HellaSwag 21.1 ± 0.2 21.0 ± 0.2 20.9 ± 0.1 20.7 ± 0.2 20.5 ± 0.3 20.3 ± 0.1 19.3 ± 0.1 14.5 ± 0.2
PiQA 45.3 ± 0.9 44.8 ± 0.7 44.8 ± 0.9 44.4 ± 0.6 44.3 ± 0.6 43.9 ± 0.5 42.2 ± 0.9 34.0 ± 0.8
RTE 4.2 ± 2.8 1.5 ± 2.4 -1.1 ± 3.9 -2.5 ± 3.9 5.3 ± 1.8 4.4 ± 1.9 1.6 ± 2.2 -1.0 ± 2.4
SciQ 86.6 ± 0.7 86.5 ± 0.5 86.0 ± 0.2 86.3 ± 1.0 85.4 ± 0.8 84.7 ± 0.4 82.0 ± 1.4 62.9 ± 2.5
StoryCloze 2016 56.5 ± 0.6 56.8 ± 0.6 56.5 ± 0.7 55.8 ± 0.3 55.9 ± 0.2 56.0 ± 0.3 54.5 ± 0.7 49.3 ± 0.2
WinoGrande XL 9.7 ± 1.4 9.0 ± 1.8 9.5 ± 0.7 8.9 ± 1.0 7.8 ± 1.2 7.4 ± 1.4 6.8 ± 1.4 2.1 ± 1.0

E2E NLG 21.4 ± 1.3 21.9 ± 0.4 21.2 ± 1.0 21.8 ± 0.6 21.0 ± 0.9 20.5 ± 0.7 20.9 ± 1.0 16.0 ± 0.6
XSUM 3.6 ± 0.2 3.5 ± 0.2 3.5 ± 0.2 3.5 ± 0.2 3.5 ± 0.3 3.2 ± 0.5 3.0 ± 0.2 1.9 ± 0.1
WebNLG EN 9.9 ± 0.4 9.7 ± 0.8 9.3 ± 0.6 9.7 ± 0.5 9.3 ± 0.7 9.4 ± 0.3 8.9 ± 0.5 3.8 ± 0.4
WikiLingua EN 3.9 ± 0.1 3.8 ± 0.2 3.6 ± 0.3 3.7 ± 0.2 3.6 ± 0.2 3.7 ± 0.1 3.3 ± 0.2 2.1 ± 0.2

bAbI 15.0 ± 7.5 19.0 ± 1.2 18.8 ± 1.4 18.5 ± 1.4 19.2 ± 0.6 18.1 ± 1.4 14.5 ± 1.5 9.6 ± 1.7

Average 21.2 ± 0.2 21.1 ± 0.4 20.4 ± 0.3 20.6 ± 0.5 20.4 ± 0.5 20.6 ± 0.2 18.7 ± 0.5 14.0 ± 0.6

Table 8: Results for 8.7B parameter models trained on repeated data on C4 for 178B total
tokens and a data-constrained compute-optimal 6.3B model. Scores are normalized averages of
0-5 few-shots and reported as percentages. The two models with 25 billion unique tokens are the ones
depicted in Figure 1 (right). The data-constrained compute-optimal variant (6.3 billion parameters)
performs better by using fewer parameters and repeating more data.

Parameters 8.7B 6.3B

Unique Tokens 178B 88B 58B 44B 35B 25B 13B 4B 25B

Epochs 1 2 3 4 5 7 14 44 9.7

ANLI R1 -0.9 -1.2 -4.2 0.7 -1.3 0.1 1.2 2.1 -0.9
ANLI R2 -0.4 -1.2 -0.2 0.2 -0.4 -0.1 0.4 2.2 1.0
ANLI R3 0.7 0.5 0.7 1.8 0.4 1.6 2.0 4.0 2.6
ARC-Challenge 12.2 11.9 10.5 12.2 10.6 11.8 8.3 2.2 12.7
ARC-Easy 58.5 58.0 56.9 57.4 56.7 58.5 52.9 37.4 57.2
BoolQ 26.1 31.8 31.3 30.3 28.8 28.5 27.9 4.1 30.6
CB 7.6 12.9 -15.2 17.9 14.3 -22.8 -12.1 17.4 6.2
COPA 68.0 64.7 62.3 66.3 63.3 70.0 57.0 45.0 66.0
HellaSwag 37.8 37.8 37.3 37.4 37.1 37.5 36.1 27.5 38.1
PiQA 55.9 55.6 54.7 56.5 55.8 53.9 52.4 45.7 54.3
RTE 14.1 11.4 11.0 8.7 15.9 -2.6 -1.8 -3.2 7.7
SciQ 90.4 91.1 90.7 90.0 89.8 89.8 87.9 72.9 90.3
StoryCloze 2016 68.3 67.3 67.2 67.6 67.8 66.8 66.2 58.9 68.4
WinoGrande XL 26.3 27.7 26.5 29.0 26.1 23.5 18.1 10.0 27.0

E2E NLG 20.5 17.9 18.7 20.0 17.2 17.7 17.4 11.2 16.9
XSUM 3.6 3.3 3.8 3.8 3.5 3.0 3.3 2.0 3.8
WebNLG EN 5.3 5.8 5.9 5.6 5.8 5.2 5.7 4.9 5.3
WikiLingua EN 4.1 4.2 4.2 4.1 4.2 4.0 3.5 2.7 4.0

bAbI 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Average 26.2 26.3 24.3 26.8 26.1 23.5 22.4 18.3 25.9

35

Table 9: Results for 8.7B parameter models trained on repeated data on OSCAR for 178B total
tokens. Scores are normalized averages of 0-5 few-shots and reported as percentages.

Unique Tokens 178B 88B 58B 44B 35B 25B 13B 4B

Epochs 1 2 3 4 5 7 14 44

ANLI R1 -1.3 -2.3 -0.5 -1.8 0.1 -0.3 2.6 -0.4
ANLI R2 0.8 3.2 -0.2 -1.3 1.0 0.2 1.5 0.5
ANLI R3 1.1 1.2 1.3 0.9 2.8 -0.4 1.1 -0.1
ARC-Challenge 6.9 6.7 6.9 3.8 6.6 4.8 4.0 -0.9
ARC-Easy 50.2 51.6 51.2 51.0 51.9 50.8 47.0 33.0
BoolQ 18.4 11.7 19.4 22.4 17.5 20.8 7.6 4.1
CB 11.2 13.4 16.1 19.6 21.4 25.0 9.8 20.1
COPA 46.7 53.0 52.0 53.7 51.0 53.3 48.7 41.7
HellaSwag 27.4 27.2 26.8 26.8 27.3 26.7 25.5 19.6
PiQA 49.2 49.3 50.1 48.7 48.1 47.2 45.6 37.0
RTE -0.5 1.1 0.2 1.2 10.2 3.2 -3.0 -7.8
SciQ 88.1 88.0 88.4 87.9 87.9 87.4 86.3 64.6
StoryCloze 2016 61.6 61.1 60.2 60.6 61.3 59.0 58.8 52.7
WinoGrande XL 17.6 16.3 15.4 13.7 13.9 12.8 10.8 -0.6

E2E NLG 23.3 24.2 22.2 22.9 23.1 22.1 22.9 16.8
XSUM 4.2 3.8 3.9 3.8 4.3 4.0 3.2 2.4
WebNLG EN 9.9 10.1 10.0 10.5 9.5 9.9 10.7 5.2
WikiLingua EN 4.3 4.0 4.1 3.7 4.3 4.2 4.0 2.7

bAbI 20.4 20.6 21.7 21.4 21.1 21.3 19.4 10.7

Average 23.1 23.4 23.6 23.7 24.4 23.8 21.4 15.9

M Detailed Code Augmentation Results

We report tabular results for replacing part of C4 or OSCAR with code for 4.2 billion parameter
and 2.8 billion parameter models in Tables 10-11. We find that training on up to 50% of Python
data maintains performance on all natural language tasks while enabling huge performance gains
on state-tracking (bAbI) for C4. For OSCAR gains are less clear, which is likely due to OSCAR
containing code [83], while code data was explicitly filtered out for C4 [90].

Table 10: Results for code-augmentation for 4.2B parameter models. Models trained on a mix of
natural language (C4) and Python (The Stack). Scores are normalized averages of 0-5 few-shots and
reported as percentages. We report mean/std. err. across five different models, each trained with a
different random seed.

% of Python pre-training data (remainder is C4)

Dataset (#) 0 10 20 30 40 50 60 70 80 90

ANLI R1 -1.0 ± 0.3 -0.7 ± 0.6 0.5 ± 0.6 -0.2 ± 1.1 -1.5 ± 0.7 -0.7 ± 1.1 -1.1 ± 0.9 -1.2 ± 1.1 -1.4 ± 0.7 -1.4 ± 0.6
ANLI R2 0.8 ± 0.5 0.4 ± 0.8 0.3 ± 1.0 0.6 ± 0.5 0.5 ± 0.6 0.3 ± 0.6 0.8 ± 0.7 0.4 ± 0.5 0.1 ± 1.2 1.0 ± 0.3
ANLI R3 1.1 ± 0.7 0.6 ± 0.5 0.5 ± 0.6 0.2 ± 0.4 0.3 ± 0.5 0.2 ± 0.5 0.3 ± 0.2 -0.1 ± 0.3 -0.0 ± 0.2 -0.1 ± 0.2
ARC-Challenge 5.3 ± 0.6 6.4 ± 1.0 5.2 ± 2.4 4.3 ± 1.4 5.2 ± 0.8 5.2 ± 0.5 2.6 ± 0.4 1.7 ± 0.5 -0.4 ± 0.4 -3.0 ± 0.4
ARC-Easy 49.2 ± 0.9 52.4 ± 1.1 49.6 ± 3.7 48.1 ± 4.1 50.1 ± 1.0 49.7 ± 0.3 48.0 ± 0.5 45.6 ± 0.5 43.3 ± 0.4 37.7 ± 0.7
BoolQ 18.2 ± 4.0 10.5 ± 12.0 16.3 ± 5.2 17.8 ± 3.3 13.4 ± 3.4 14.8 ± 2.1 12.5 ± 8.9 12.1 ± 6.6 7.2 ± 6.7 10.7 ± 7.3
CB 12.0 ± 7.2 20.3 ± 2.7 14.4 ± 7.1 16.5 ± 1.2 22.3 ± 3.1 22.1 ± 4.8 19.4 ± 4.8 23.8 ± 3.3 23.8 ± 4.1 23.4 ± 2.4
COPA 59.1 ± 5.4 56.4 ± 4.9 46.7 ± 8.7 50.2 ± 3.7 52.7 ± 2.5 50.1 ± 4.5 46.5 ± 1.9 43.1 ± 4.2 39.2 ± 3.7 35.9 ± 4.9
HellaSwag 27.8 ± 4.8 29.4 ± 0.4 25.7 ± 4.8 27.0 ± 1.7 26.3 ± 2.4 26.3 ± 0.6 25.0 ± 0.1 22.6 ± 0.1 19.5 ± 0.2 14.7 ± 0.1
PiQA 50.6 ± 0.5 50.8 ± 0.6 48.6 ± 3.0 48.2 ± 2.8 48.7 ± 0.7 48.4 ± 1.0 47.1 ± 0.7 45.6 ± 0.3 43.4 ± 0.9 39.0 ± 0.8
RTE 5.6 ± 3.1 7.3 ± 3.4 4.4 ± 4.7 6.1 ± 2.6 9.1 ± 4.0 8.1 ± 5.9 7.7 ± 5.3 4.0 ± 2.1 6.2 ± 2.1 4.6 ± 2.5
SciQ 84.6 ± 3.9 87.1 ± 0.2 84.6 ± 4.8 86.9 ± 1.2 86.9 ± 1.2 87.9 ± 0.9 87.6 ± 0.6 87.0 ± 0.2 86.0 ± 0.2 84.5 ± 0.6
StoryCloze 2016 61.1 ± 3.7 62.0 ± 0.6 59.0 ± 4.8 60.8 ± 1.5 59.9 ± 1.9 60.0 ± 0.7 59.0 ± 0.4 57.2 ± 0.5 54.9 ± 0.4 51.0 ± 0.3
WinoGrande XL 17.0 ± 2.6 17.4 ± 2.1 14.9 ± 4.4 15.2 ± 2.0 15.7 ± 1.2 14.2 ± 1.0 13.5 ± 1.3 10.7 ± 1.3 9.1 ± 0.6 5.3 ± 1.3

E2E NLG 18.2 ± 1.2 21.8 ± 1.6 15.9 ± 8.6 23.3 ± 0.6 21.5 ± 3.8 23.9 ± 0.6 23.7 ± 0.6 23.7 ± 0.5 24.3 ± 0.7 24.0 ± 0.9
XSUM 2.9 ± 0.2 3.2 ± 0.5 3.4 ± 0.3 3.3 ± 0.3 3.6 ± 0.6 3.4 ± 0.2 3.5 ± 0.2 2.9 ± 0.3 2.8 ± 0.4 2.7 ± 0.2
WebNLG EN 4.8 ± 2.0 9.5 ± 0.7 10.2 ± 1.1 10.5 ± 0.7 10.4 ± 0.8 10.4 ± 0.6 9.9 ± 0.4 10.0 ± 0.5 9.3 ± 0.6 9.2 ± 0.2
WikiLingua EN 3.3 ± 0.5 4.0 ± 0.1 4.0 ± 0.2 4.2 ± 0.1 4.3 ± 0.3 4.2 ± 0.2 4.4 ± 0.3 4.1 ± 0.2 3.9 ± 0.2 3.6 ± 0.3

bAbI 0.0 ± 0.0 12.5 ± 6.7 13.8 ± 7.2 15.8 ± 8.2 17.4 ± 9.2 23.2 ± 1.2 23.4 ± 2.0 24.3 ± 1.4 23.2 ± 1.0 24.6 ± 1.8

Average 22.1 ± 1.7 23.7 ± 0.7 22.0 ± 3.0 23.1 ± 1.1 23.5 ± 1.0 23.8 ± 0.5 22.8 ± 1.0 22.0 ± 0.6 20.8 ± 0.5 19.3 ± 0.3
Average (no bAbI) 23.4 ± 1.8 24.4 ± 0.7 22.5 ± 2.8 23.5 ± 0.8 23.9 ± 0.9 23.8 ± 0.5 22.8 ± 1.0 21.8 ± 0.6 20.6 ± 0.6 19.1 ± 0.4

36

Table 11: Results for code-augmentation for 2.8B parameter models. Models trained on a mix of
natural language (C4) and Python (The Stack). Scores are normalized averages of 0-5 few-shots and
reported as percentages. We report mean/std. err. across five different models, each trained with a
different random seed.

% of Python pre-training data (rest is C4) % of Python pre-training data (rest is OSCAR)

Dataset (#) 0 10 20 30 40 50 0 10 20 30 40 50

ANLI R1 0.4 ± 1.6 -1.5 -0.9 -1.0 -0.7 -2.4 -0.3 ± 0.5 0.0 -0.6 -1.6 -2.4 -1.7
ANLI R2 0.9 ± 0.4 0.7 0.0 0.1 -0.1 0.1 1.0 ± 1.0 1.2 -0.1 -0.0 0.0 0.8
ANLI R3 1.7 ± 0.5 0.6 -0.7 -0.2 0.4 0.0 0.4 ± 0.8 -0.4 -0.2 -1.7 -0.8 -0.5
ARC-Challenge 1.6 ± 1.0 4.2 1.7 1.5 0.2 -0.2 -1.4 ± 0.8 -0.7 -1.4 -3.4 -2.3 -3.1
ARC-Easy 44.5 ± 0.5 46.4 46.5 45.4 43.6 42.7 39.7 ± 0.3 39.8 38.7 39.1 37.3 37.6
BoolQ 18.8 ± 3.4 15.7 19.0 13.4 16.0 4.4 12.8 ± 4.4 3.3 12.5 10.6 5.8 8.5
CB 20.0 ± 4.7 22.8 10.7 20.5 17.4 15.2 19.7 ± 5.1 14.7 15.6 19.6 22.8 17.0
COPA 49.7 ± 3.5 46.3 49.3 46.3 42.7 40.0 42.7 ± 2.2 42.7 41.0 42.7 35.7 38.0
HellaSwag 24.7 ± 0.3 24.1 23.3 22.3 21.9 20.9 16.3 ± 0.1 15.7 15.9 15.5 15.1 13.7
PiQA 47.9 ± 0.6 46.9 47.7 45.1 46.2 45.5 41.2 ± 0.7 41.6 39.9 40.5 38.8 38.6
RTE 5.1 ± 4.0 8.8 7.7 5.1 7.8 10.8 3.9 ± 1.1 2.2 4.3 1.1 3.7 -1.7
SciQ 83.2 ± 0.6 83.3 85.3 84.8 83.2 83.7 83.2 ± 0.6 82.4 83.5 82.8 83.3 83.2
StoryCloze 2016 58.7 ± 0.2 59.3 57.9 56.9 56.5 56.0 52.8 ± 0.3 52.0 52.2 52.0 51.8 50.9
WinoGrande XL 11.6 ± 0.8 13.0 10.7 9.3 8.2 9.6 5.8 ± 0.9 3.2 5.6 5.8 4.6 3.9

E2E NLG 17.0 ± 1.4 19.8 21.1 20.2 22.1 21.0 20.3 ± 0.3 21.9 20.7 20.5 20.7 21.1
XSUM 2.4 ± 0.1 2.7 2.0 2.2 2.0 2.3 3.0 ± 0.1 2.8 3.1 3.4 3.1 2.9
WebNLG EN 5.3 ± 0.1 9.1 8.0 8.5 8.5 9.1 8.8 ± 0.4 8.7 9.6 9.1 8.7 9.4
WikiLingua EN 3.0 ± 0.1 3.2 3.2 3.6 3.3 3.7 2.9 ± 0.1 3.3 3.6 3.5 3.4 3.5

bAbI 0.0 ± 0.0 4.6 14.2 14.2 14.8 15.1 15.5 ± 1.0 16.6 17.2 17.2 17.7 15.9

Average 20.9 ± 0.4 21.6 21.4 21.0 20.7 19.9 19.4 ± 0.5 18.5 19.0 18.8 18.3 17.8
Average (without bAbI) 22.0 ± 0.5 22.5 21.8 21.3 21.1 20.1 19.6 ± 0.5 18.6 19.1 18.9 18.3 17.9

N Filtering Procedure

Perplexity filtering We follow the approach of [54] to perform perplexity filtering and reuse their
artifacts - a SentencePiece tokenizer [52] and a KenLM 5-gram language model [37] trained on
Wikipedia introductions and available to download from their repository.4 We compute the model’s
perplexity on all OSCAR and C4 samples and only select samples that fall within a certain percentile
threshold. For example, to select the top 25%, we only select samples with perplexity lower than the
25th percentile. Figure 18 provides a visual representation of perplexity distribution for respective
datasets, highlighting the relevant percentile thresholds.

Deduplication We perform deduplication leveraging the suffix array-based approach proposed
by Lee et al. [55]. We remove any document with at least a 100-character span overlapping with
any other document in the corpus. We deduplicate the full C4 dataset. In the case of OSCAR, the
memory requirements of the deduplication procedure make performing the full dataset deduplication
infeasible. Instead, we select a 25% subset of the full OSCAR and build a suffix array for this subset.
We experiment with leveraging the 25% OSCAR suffix array in two ways. First, we deduplicate the
selected subset. This is very strict and preserves less than 5% of the full OSCAR. Subsequently, we
use the 25% suffix array to deduplicate the full OSCAR, i.e. we remove any document which has at
least a 100-character span overlapping with the 25% subset we selected. This is more permissive and
allows us to preserve 31% of the original dataset. We refer to the latter as expanded in Table 12 and it
is used for the training of the 4.2 billion parameter model in Table 14, while the smaller deduplicated
version of OSCAR is used for the 2.8 billion parameter model.

ROOTS filter In addition, we benchmark with the filtering procedure from the ROOTS corpus [54].
It applies the following set of filters:

• Discarding documents with too few words
• Discarding documents with overly repeated character- and word-n-grams
• Discarding documents with too many special characters

4https://github.com/bigscience-workshop/data-preparation/tree/main/preprocessing/
training/01b_oscar_cleaning_and_filtering

37

https://github.com/bigscience-workshop/data-preparation/tree/main/preprocessing/training/01b_oscar_cleaning_and_filtering
https://github.com/bigscience-workshop/data-preparation/tree/main/preprocessing/training/01b_oscar_cleaning_and_filtering

• Discarding documents with too few grammatical function words (e.g. “of”, “and”)
• Discarding documents with too many flagged words
• Discarding documents with a low fasttext language identification score
• Perplexity filtering

Figure 18: Perplexity histograms for respective datasets. For demonstration purposes, we use 100,000
random samples of each dataset.

Table 12: Sizes of filtered datasets.

Base Dataset Filter Tokens after filtering

C4 Deduplication 21 billion
C4 Perplexity Top 25% 44 billion
C4 Perplexity Top 50% 89 billion
C4 Perplexity 25-75% 89 billion
OSCAR Deduplication 9 billion
OSCAR Deduplication-expanded 94 billion
OSCAR Perplexity Top 25% 80 billion
OSCAR ROOTS 99 billion

O Detailed Filtering Results

In Table 13, we report detailed perplexity filtering results on C4 and OSCAR. For C4, perplexity
filtering is only effective at 4.2B parameters. Meanwhile, for OSCAR, which is noisier than C4,
perplexity filtering seems effective both for 2.8B and 4.2B parameters. Table 14 contains deduplication
results and results for the ROOTS filter. Deduplication does not improve downstream performance
for C4 while being effective for OSCAR which has significantly more noise. Applying the ROOTS
filter on OSCAR is not better than the unfiltered OSCAR on our benchmark, but might have other
beneficial effects, such as reducing obscenity, templated messages, or repetition, depending on the
final use case.

38

Table 13: Results for perplexity-filtering. The training data is perplexity filtered according to the
given percentile, e.g. 25% corresponds to the top 25% percent of examples with the lowest perplexity.
The resulting dataset sizes are in Table 12. The data is repeated until it matches 55B tokens for
2.8B parameter and 84B tokens for 4.2B parameter models. Scores are normalized averages of 0-5
few-shots and reported as percentages. For unfiltered models we report mean/std. err. across five
different models, each trained with a different random seed.

Training Data C4 OSCAR

Parameters 2.8B 4.2B 2.8B 4.2B

Percentile All 25% 50% All 25% 50% 25-75% All 25% All 25%

ANLI R1 0.4 ± 1.6 -0.1 0.9 -0.5 ± 1.4 -0.0 -0.7 -0.8 -0.3 ± 0.5 -0.4 -0.4 ± 1.2 -2.2
ANLI R2 0.9 ± 0.4 -0.2 -0.7 0.0 ± 1.3 -0.4 -0.0 1.1 1.0 ± 1.0 1.7 1.0 ± 0.9 0.7
ANLI R3 1.7 ± 0.5 0.5 1.4 0.7 ± 0.5 0.7 2.9 0.4 0.4 ± 0.8 1.7 1.2 ± 0.5 2.1
ARC-Challenge 1.6 ± 1.0 3.3 2.9 4.2 ± 1.6 10.2 9.3 7.9 -1.4 ± 0.8 3.3 1.8 ± 0.8 6.3
ARC-Easy 44.5 ± 0.5 47.3 47.7 48.1 ± 4.8 55.8 53.7 51.0 39.7 ± 0.3 46.8 45.7 ± 0.6 51.8
BoolQ 18.8 ± 3.4 17.1 17.7 22.4 ± 3.3 27.7 23.5 24.5 12.8 ± 4.4 11.8 12.4 ± 5.9 22.2
CB 20.0 ± 4.7 16.1 13.8 9.3 ± 16.6 24.6 22.3 12.5 19.7 ± 5.1 17.0 23.9 ± 3.8 20.1
COPA 49.7 ± 3.5 55.7 56.0 55.3 ± 3.8 60.7 66.0 61.0 42.7 ± 2.2 44.0 41.1 ± 3.0 49.3
HellaSwag 24.7 ± 0.3 24.7 26.0 29.4 ± 1.3 30.7 32.7 33.1 16.3 ± 0.1 19.0 21.0 ± 0.2 23.3
PiQA 47.9 ± 0.6 43.4 45.8 48.8 ± 3.8 47.9 52.2 52.1 41.2 ± 0.7 38.3 45.0 ± 0.6 44.4
RTE 5.1 ± 4.0 5.7 7.3 6.9 ± 3.1 11.9 2.2 10.3 3.9 ± 1.1 -1.2 2.2 ± 4.3 7.0
SciQ 83.2 ± 0.6 82.4 82.8 86.3 ± 1.1 88.6 87.4 88.4 83.2 ± 0.6 84.0 86.3 ± 0.6 86.5
StoryCloze 2016 58.7 ± 0.2 61.1 61.2 62.8 ± 0.5 65.5 65.6 65.1 52.8 ± 0.3 57.9 57.2 ± 0.6 60.2
WinoGrande XL 11.6 ± 0.8 15.3 14.3 18.7 ± 1.0 24.9 22.3 18.7 5.8 ± 0.9 9.7 10.1 ± 1.0 14.8

E2E NLG 17.0 ± 1.4 16.1 16.8 17.9 ± 0.7 18.8 17.8 19.2 20.3 ± 0.3 19.5 21.6 ± 0.7 22.6
XSUM 2.4 ± 0.1 2.6 3.0 3.0 ± 0.3 3.9 3.2 3.0 3.0 ± 0.1 3.2 3.7 ± 0.2 2.7
WebNLG EN 5.3 ± 0.1 4.8 5.1 5.6 ± 0.3 5.4 5.7 5.2 8.8 ± 0.4 6.9 9.3 ± 0.5 10.6
WikiLingua EN 3.0 ± 0.1 3.2 3.3 3.6 ± 0.2 3.4 3.5 3.4 2.9 ± 0.1 3.4 4.0 ± 0.1 3.8

bAbI 0.0 ± 0.0 0.0 0.0 0.0 ± 0.0 0.0 0.0 0.0 15.5 ± 1.0 14.5 19.3 ± 1.0 17.2

Average 20.9 ± 0.4 21.0 21.3 22.2 ± 1.4 25.3 24.7 24.0 19.4 ± 0.5 20.1 21.4 ± 0.5 23.3

Table 14: Results for filtering with deduplication and the ROOTS filters. The resulting dataset
sizes are in Table 12. The data is repeated until it matches 55B tokens for 2.8B parameter and 84B
tokens for 4.2B parameter models. Scores are normalized averages of 0-5 few-shots and reported as
percentages. For unfiltered models we report mean/std. err. across five different models, each trained
with a different random seed.

Training Data C4 OSCAR

Parameters 2.8B parameters 4.2B parameters 2.8B parameters 4.2B parameters

Method All Dedup. All Dedup. All Dedup. ROOTS All Dedup.-exp. ROOTS

ANLI R1 0.4 ± 1.6 -0.2 -0.5 ± 1.4 -0.8 -0.3 ± 0.5 -2.1 -1.7 -0.4 ± 1.2 -1.8 1.2
ANLI R2 0.9 ± 0.4 1.1 0.0 ± 1.3 -0.1 1.0 ± 1.0 2.0 0.7 1.0 ± 0.9 -0.5 -0.3
ANLI R3 1.7 ± 0.5 1.8 0.7 ± 0.5 0.4 0.4 ± 0.8 0.4 0.2 1.2 ± 0.5 0.8 -0.3
ARC-Challenge 1.6 ± 1.0 0.6 4.2 ± 1.6 3.9 -1.4 ± 0.8 2.6 -0.9 1.8 ± 0.8 6.8 0.6
ARC-Easy 44.5 ± 0.5 43.0 48.1 ± 4.8 46.8 39.7 ± 0.3 44.6 42.3 45.7 ± 0.6 51.0 47.1
BoolQ 18.8 ± 3.4 1.5 22.4 ± 3.3 2.2 12.8 ± 4.4 3.4 13.4 12.4 ± 5.9 13.0 7.0
CB 20.0 ± 4.7 0.4 9.3 ± 16.6 0.9 19.7 ± 5.1 25.4 14.3 23.9 ± 3.8 25.0 28.1
COPA 49.7 ± 3.5 57.0 55.3 ± 3.8 60.0 42.7 ± 2.2 47.3 37.7 41.1 ± 3.0 55.3 43.0
HellaSwag 24.7 ± 0.3 25.1 29.4 ± 1.3 30.7 16.3 ± 0.1 22.8 17.6 21.0 ± 0.2 26.3 22.4
PiQA 47.9 ± 0.6 49.1 48.8 ± 3.8 53.4 41.2 ± 0.7 45.1 41.9 45.0 ± 0.6 48.5 46.3
RTE 5.1 ± 4.0 3.2 6.9 ± 3.1 0.1 3.9 ± 1.1 6.1 5.8 2.2 ± 4.3 1.1 8.9
SciQ 83.2 ± 0.6 80.4 86.3 ± 1.1 82.2 83.2 ± 0.6 82.6 83.1 86.3 ± 0.6 88.5 86.4
StoryCloze 2016 58.7 ± 0.2 61.8 62.8 ± 0.5 65.2 52.8 ± 0.3 58.1 54.3 57.2 ± 0.6 61.6 58.6
WinoGrande XL 11.6 ± 0.8 13.3 18.7 ± 1.0 19.7 5.8 ± 0.9 12.7 5.6 10.1 ± 1.0 16.2 11.0

E2E NLG 17.0 ± 1.4 15.6 17.9 ± 0.7 14.2 20.3 ± 0.3 20.5 20.5 21.6 ± 0.7 2.4 22.6
XSUM 2.4 ± 0.1 2.1 3.0 ± 0.3 2.5 3.0 ± 0.1 3.2 3.1 3.7 ± 0.2 4.6 3.8
WebNLG EN 5.3 ± 0.1 4.3 5.6 ± 0.3 4.4 8.8 ± 0.4 7.4 7.4 9.3 ± 0.5 9.7 9.4
WikiLingua EN 3.0 ± 0.1 3.2 3.6 ± 0.2 3.2 2.9 ± 0.1 3.0 3.1 4.0 ± 0.1 4.3 4.0

bAbI 0.0 ± 0.0 0.0 0.0 ± 0.0 0.0 15.5 ± 1.0 17.2 14.3 19.3 ± 1.0 21.1 18.0

Average 20.9 ± 0.4 19.1 22.2 ± 1.4 20.5 19.4 ± 0.5 21.2 19.1 21.4 ± 0.5 22.8 22.0

39

P Loss Curves for Complementary Strategies

Figure 19: Validation loss of models trained on a mix of natural language (C4) and Python data.

Figure 20: Validation and training loss of models trained with different data strategies. Training
loss is smoothed with exponential moving average smoothing and a weight of 0.999. Downstream
performance of the models is in Figure 6.

To compare complementary data strategies in §7, we have used downstream performance on natural
language tasks detailed in Appendix K instead of loss. This is because validation loss gives an unfair
advantage to models trained on a larger fraction of data from the same distribution. For example,
when making up for missing natural language data with code, models that are trained on more code
will have better validation loss on code data while having worse loss on the natural language data as
seen in Figure 19: The model pre-trained on 90% of Python code data and 10% of C4 has the highest
C4 validation loss, but the lowest Python validation loss.

Models trained on deduplicated or perplexity-filtered data have higher validation loss as the held-out
validation data has not gone through the same filtering steps. Thus, its distribution more closely
resembles the training data of models trained on the unfiltered data resulting in worse validation
loss for the two filtering strategies in Figure 20 (left). Meanwhile, for training loss in Figure 20
(right) the model trained on perplexity-filtered data has the lowest loss. Its training data has been
filtered to the top 25% of examples with the lowest perplexity (Appendix N) thus high loss examples
have been explicitly filtered out from the training data resulting in low training loss. The model
trained on deduplicated data has the highest validation and training loss. This is because commonly

40

repeated sequences have been filtered out from its training data. Thus, when encountering these
common sequences in the unfiltered validation set, its loss is comparatively high as other models
have likely simply memorized them. Similarly, fewer repeated sequences during training results in
higher training loss as unseen sequences are harder to predict.

Q Limitations and Future Work

Repeating fractions of the data In this work we focus on repeating the entire unique dataset for
several epochs. Alternatively, one can repeat only a fraction of the dataset. For example, repeating
10% of the dataset for 10 epochs while repeating the rest only for a single epoch as done by Hernandez
et al. [40]. To predict loss in that scenario, one may need to adapt our scaling laws with an additional
parameter to account for the fraction that is repeated and possibly a parameter that captures at what
point in training the data is repeated. Repeating earlier in training when most model weights are still
randomly initialized is likely to cause less damage than later in training. Adapting our parametric fit
to make concrete scaling predictions for such scenarios is an exciting future research direction.

Sensitivity to hyperparameters The returns from additional epochs may heavily depend on
hyperparameters such as learning rate, dropout, or the optimizer choice. It is likely that increasing
the learning rate, for example, would lead to diminishing returns from additional epochs kicking in
earlier. In this work, we have fixed most hyperparameters to commonly used values for the training
of LLMs and leave such explorations to future work.

Other datasets The optimal data strategy is dependent on the dataset at hand and we cannot give
universally applicable filtering recommendations. By looking into C4 and OSCAR, we have covered
two of the most commonly used English text datasets. Our findings on both datasets were overall in
agreement with each other. We have highlighted some of the differences, such as deduplication being
more effective on OSCAR due to it being more noisy than C4. Further, we have focused on large-scale
pre-training datasets. There is a lot of research on the optimal fine-tuning dataset and methodology
for LLMs [94, 62, 128, 85, 117, 68, 116, 134, 115, 36, 125, 72, 63]. More investigations of resolving
data-constraints when fine-tuning LLMs may be of interest for future work.

Other modalities or architectures Our work focuses on text datasets and uses the GPT transformer
architecture [88]. Prior work has experimented with many variations to the GPT or transformer
architecture [27, 104, 96], as well as scaling laws for non-text datasets [1]. Overall, variations of the
GPT or transformer architecture have proven very robust and generalizable to other domains [43, 18,
70, 66, 71, 104, 26]. Nonetheless, it may be of interest for future work to test the applicability of our
findings in this work to different data modalities or model architectures.

Other strategies There are numerous strategies to solve data constraints not covered in this
work that are worth exploring. Like we have shown for Python, future research may consider to
what extent augmenting with a natural language (e.g. Chinese) improves performance in another
language (e.g. English) and what is the best language to choose [61, 124]. Similarly, while we have
looked at deduplication and perplexity filtering, other filtering strategies, such as popularity-based
filters [3, 133] and toxicity filters [33, 38, 64, 87, 86] are worth exploring.

R Contributions

Niklas Muennighoff led experiments, analysis, writing, and the overall project. He implemented,
trained and evaluated all models.

Alexander M. Rush contributed to framing, results analysis, and paper writing.

Boaz Barak contributed to formal and experimental analysis as well as paper writing.

Teven Le Scao provided guidance, led data choices and preprocessing, and contributed to framing
and writing.

Aleksandra Piktus created perplexity and deduplication datasets and contributed to writing.

Nouamane Tazi contributed to enabling high-performance training on AMD hardware.

41

Sampo Pyysalo contributed to enabling high-performance training and early repetition experiments.

Thomas Wolf provided guidance on experimental design and contributed to paper writing.

Colin Raffel provided guidance on experimental design and contributed to paper writing.

S Hyperparameters and Setup

For all training runs we use 1% of tokens for linear warm-up of the learning rate to a maximum
learning rate of 2e-4 that is decayed to 2e-5 following a cosine schedule. We use a batch size of 256
for models with fewer than 2 billion parameters, 512 for models with 2 - 5 billion parameters and
1024 for models with more than 5 billion parameters. All models are trained in bfloat16 precision
using the Adam optimizer [48] with eps = 1e � 8, beta1 = 0.9. For beta2, we found a value of
0.95 to result in slightly lower final loss and fewer loss spikes than the default value of 0.999 in
implementations such as PyTorch. However, except for models with FLOP budgets of C = 9.3⇥1020

and 2.1⇥ 1021, we always use beta2 = 0.999. We use a dropout rate of 0.1, a weight decay rate of
0.1 and clip gradients at 1.0. These hyperparameter choices are largely based on prior work [42, 110]
and performance on test runs. As none of our hyperparameter choices is particularly exotic, we
expect our setup to generalize to many other setups. In Table 15 we list the model architectures we
use. They are an extended version of the architectures from [42]. We calculate model parameters
following [78], which includes embedding parameters:

P = 12lh2

✓
1 +

13

12h
+

V + s

12lh

◆
(23)

where P is the final parameter count, l are layers, h is the hidden dimension, V = 50257 the
vocabulary size and s = 2048 the sequence length. We find the parameter counts reported in
Chinchilla [42] to be significantly different than our calculations, especially at larger scales. We
report both in Table 15, but we use our parameter estimates everywhere in this work. Further, we
have corrected the number of heads of the 3,530 and 4,084 million parameter models from [42] to
obey the relationship d_model = kv_size · n_heads.

To train our models, we have forked the Megatron-DeepSpeed [91, 99] framework and adapted it
for ROCm to enable training on AMD GPUs. We have made our training code publicly available at
https://github.com/TurkuNLP/Megatron-DeepSpeed. Models are trained using data, tensor
and pipeline parallelism on up to 256 AMD Instinct MI250X GPUs distributed across up to 64 nodes
on the LUMI supercomputer located in Finland. As of June 2023, LUMI is the largest supercomputer
in Europe and ranks third worldwide with a performance of around 310 PFLOPs.5 We trained models
in parallel using up to 2,200 nodes at a single point in time (equivalent to around 8,800 GPUs or
17,600 GCDs or 86% of all GPUs on LUMI). We have used a total of around 3 million GPU hours.
The cluster is powered 100% by renewable energy (hydroelectricity) and its waste heat is used
for heating the nearby city reducing the city’s carbon emissions by up to 20%. Thanks to the low
temperatures in Finland, relatively little cooling for the cluster is required further reducing its impact
on the environment. As of June 2023, it ranks as the seventh greenest supercomputer.6

5https://www.top500.org/lists/top500/2023/06/
6https://www.top500.org/lists/green500/2023/06/

42

https://github.com/TurkuNLP/Megatron-DeepSpeed

Parameters (millions) d_model ffw_size kv_size n_heads n_layers
This work Chinchilla

7 - 128 512 32 4 3
14 - 224 896 32 7 4
20 - 288 1152 32 7 5
38 - 448 1792 32 7 6
52 44 512 2048 64 8 8
66 57 576 2304 64 9 9
83 74 640 2560 64 10 10
97 90 640 2560 64 10 13

112 106 640 2560 64 10 16
125 117 768 3072 64 12 12
146 140 768 3072 64 12 15
168 163 768 3072 64 12 18
182 175 896 3584 64 14 14
201 196 896 3584 64 14 16
220 217 896 3584 64 14 18
255 251 1024 4096 64 16 16
280 278 1024 4096 64 16 18
305 306 1024 4096 64 16 20
421 425 1280 5120 128 10 18
480 489 1280 5120 128 10 21
502 509 1408 5632 128 11 18
539 552 1280 5120 128 10 24
574 587 1408 5632 128 11 21
619 632 1536 6144 128 12 19
645 664 1408 5632 128 11 24
704 724 1536 6144 128 12 22
789 816 1536 6144 128 12 25
865 893 1792 7168 128 14 20
981 1018 1792 7168 128 14 23

1096 1143 1792 7168 128 14 26
1215 1266 2048 8192 128 16 22
1364 1424 2176 8704 128 17 22
1366 1429 2048 8192 128 16 25
1517 1593 2048 8192 128 16 28
1535 1609 2176 8704 128 17 25
1650 1731 2304 9216 128 18 24
1706 1794 2176 8704 128 17 28
1905 2007 2304 9216 128 18 28
2160 2283 2304 9216 128 18 32
2179 2298 2560 10240 128 20 26
2494 2639 2560 10240 128 20 30
2809 2980 2560 10240 128 20 34
3090 - 2688 10752 128 22 34
3263 3530 2688 10752 128 21 36
3574 3802 2816 11264 128 22 36
3900 4084 2944 11776 128 23 36
4239 4516 3072 12288 128 24 36
6355 6796 3584 14336 128 28 40
8672 9293 4096 16384 128 32 42

10912 11452 4352 17408 128 32 47
11455 12295 4608 18432 128 36 44
12220 12569 4608 18432 128 32 47
13601 13735 4864 19456 128 32 47
14917 14940 4992 19968 128 32 49
15056 16183 5120 20480 128 40 47

Table 15: Model architectures. We list the architectures of all models trained as part of this work.
Many shown models have been trained multiple times on different amounts of unique data and for
varying epochs.

43

T Prompts and Samples

The following figures illustrate the prompts with samples from each evaluation dataset. Prompts stem from
PromptSource [5] or GPT-3 [15]. All data comes from the ground truth datasets in this section, and no generations
are shown here.

Context ! Edmond (or Edmund) Halley, FRS (pronounced ; 8 November
[O.S. 29 October] 1656 – 25 January 1742 [O.S. 14
January 1741]) was an English astronomer, geophysicist,
mathematician, meteorologist, and physicist who is best
known for computing the orbit of Halley’s Comet. He was
the second Astronomer Royal in Britain, succeeding John
Flamsteed.
Question: Edmond Halley was born outside of the United
Kingdom. True, False, or Neither?
Answer:

Correct Answer ! Neither
Incorrect Answer ! True
Incorrect Answer ! False

Figure 21: Formatted dataset example from ANLI R1 evaluated using accuracy as described in
Appendix K.

Context ! The 1970 Swedish Open was a combined men’s and women’s
tennis tournament played on outdoor clay courts held in
Båstad, Sweden and was part of the Grand Prix circuit of the
1970 Tour. It was the 23rd edition of the tournament and
was held from 2 July through 12 July 1970. Dick Crealy and
Peaches Bartkowicz won the singles titles.
Question: Dick Crealy and Peaches Bartkowicz beat eachother
in the 1970 Swedish Open. True, False, or Neither?
Answer:

Correct Answer ! False
Incorrect Answer ! True
Incorrect Answer ! Neither

Figure 22: Formatted dataset example from ANLI R2 evaluated using accuracy as described in
Appendix K.

Context ! Tokyo - Food group Nestle is seeking to lure Japanese
holiday shoppers with a taste for fine snacking with a
gold-wrapped Kit Kat chocolate bar. The single finger Kit
Kat is wrapped in a thin layer of gold leaf. Only 500 of
the bars go on sale from Dec. 29 with a price tag of around
2,016 yen ($16). The Kit Kat chocolate bar made its debut
in Japan in 1973 and since then a variety of flavors – from
green tea to wasabi – have been produced.
Question: Japanese like kit kat. True, False, or Neither?
Answer:

Correct Answer ! True
Incorrect Answer ! False
Incorrect Answer ! Neither

Figure 23: Formatted dataset example from ANLI R3 evaluated using accuracy as described in
Appendix K.

44

Context ! An astronomer observes that a planet rotates faster after a
meteorite impact. Which is the most likely effect of this
increase in rotation?

Correct Answer ! Planetary days will become shorter.
Incorrect Answer ! Planetary years will become longer.
Incorrect Answer ! Planetary gravity will become stronger.

Figure 24: Formatted dataset example from ARC-Challenge evaluated using accuracy as described in
Appendix K.

Context ! To express the distance between the Milky Way galaxy and
other galaxies, the most appropriate unit of measurement is
the

Correct Answer ! light-year.
Incorrect Answer ! meter.
Incorrect Answer ! kilometer.
Incorrect Answer ! astronomical unit.

Figure 25: Formatted dataset example from ARC-Easy evaluated using accuracy as described in
Appendix K.

Context ! Radio wave – Radio waves are a type of electromagnetic
radiation with wavelengths in the electromagnetic spectrum
longer than infrared light. Radio waves have frequencies as
high as 300 gigahertz (GHz) to as low as 30 hertz (Hz). At
300 GHz, the corresponding wavelength is 1 mm, and at 30 Hz
is 10,000 km. Like all other electromagnetic waves, radio
waves travel at the speed of light. They are generated
by electric charges undergoing acceleration, such as time
varying electric currents. Naturally occurring radio waves
are emitted by lightning and astronomical objects.
Question: do radio waves travel at the speed of light?
Answer:

Correct Answer ! yes
Incorrect Answer ! no

Figure 26: Formatted dataset example from BoolQ evaluated using accuracy as described in Ap-
pendix K.

Context ! A: Okay. So Frank, what, uh, type of, uh, budget do you or
your family have? B: Well, uh I don’t know that we really
have a budget.
Question: he and his family really have a budget. True,
False or Neither?
Answer:

Correct Answer ! False
Incorrect Answer ! True
Incorrect Answer ! Neither

Figure 27: Formatted dataset example from CB evaluated using accuracy as described in Appendix K.

Context ! The computer was expensive to fix therefore

Correct Answer ! I bought a new one.
Incorrect Answer ! I got it repaired.

Figure 28: Formatted dataset example from COPA evaluated using accuracy as described in Ap-
pendix K.

45

Context ! Canoeing: Two women in a child are shown in a canoe while a
man pulls the canoe while standing in the water, with other
individuals visible in the background. The child and a
different man

Correct Answer ! sit in a canoe while the man paddles.
Incorrect Answer ! are then shown paddling down a river in a boat while a

woman talks.
Incorrect Answer ! are driving the canoe, they go down the river flowing side

to side.
Incorrect Answer ! walking go down the rapids, while the man in his helicopter

almost falls and goes out of canoehood.

Figure 29: Formatted dataset example from HellaSwag evaluated using accuracy as described in
Appendix K.

Context ! Question: How to sleep in proper posture?
Answer:

Correct Answer ! Sleep straight with a pillow under your head.
Incorrect Answer ! Sleep straight with a pillow over your head.

Figure 30: Formatted dataset example from PiQA evaluated using accuracy as described in Ap-
pendix K.

Context ! As spacecraft commander for Apollo XI, the first manned
lunar landing mission, Armstrong was the first man to walk
on the Moon. "That’s one small step for a man, one giant
leap for mankind." With these historic words, man’s dream of
the ages was fulfilled.
Question: Neil Armstrong was the first man who landed on
the Moon. True or False?
Answer:

Correct Answer ! True.
Incorrect Answer ! False.

Figure 31: Formatted dataset example from RTE evaluated using accuracy as described in Appendix K.

Context ! The electromagnetic spectrum encompasses a very wide range
of wavelengths and frequencies. Visible light is only a
very small portion of the spectrum with wavelengths from
400-700 nm.
Question: With wavelengths from 400-700 nm, what kind of
light represents only a very small portion of the spectrum?
Answer:

Correct Answer ! visible light.
Incorrect Answer ! ultraviolet light.
Incorrect Answer ! invisible light.
Incorrect Answer ! sunlight.

Figure 32: Formatted dataset example from SciQ evaluated using accuracy as described in Ap-
pendix K.

46

Context ! Bob went to the gas station to fill up his car. His tank
was completely empty and so was his wallet. The cashier
offered to pay for his gas if he came back later to pay.
Bob felt grateful as he drove home.
Answer:

Correct Answer ! Bob believed that there were good people in the world.
Incorrect Answer ! Bob contemplated how unfriendly the world was.

Figure 33: Formatted dataset example from StoryCloze evaluated using accuracy as described in
Appendix K.

Correct Context ! Johnny likes fruits more than vegetables in his new keto
diet because the fruits:

Incorrect Context ! Johnny likes fruits more than vegetables in his new keto
diet because the vegetables:

Target Completion ! are saccharine.

Figure 34: Formatted dataset example from WinoGrande evaluated using accuracy as described in
Appendix K.

Context ! Given the following data about a restaurant:
name : The Wrestlers
eatType : pub
food : Japanese
priceRange : cheap
area : riverside
near : Raja Indian Cuisine

Generate some text about this restaurant.

Target ! The Wrestlers offers Japanese food and pub with cheap price near
Raja Indian Cuisine in riverside.

Figure 35: Formatted dataset example from E2E NLG evaluated using ROUGE as described in
Appendix K.

47

Context ! Article: The artificial intelligence system - LipNet - watches video
of a person speaking and matches the text to the movement of their
mouths with 93% accuracy, the researchers said.
Automating the process could help millions, they suggested.
But experts said the system needed to be tested in real-life
situations.
Lip-reading is a notoriously tricky business with professionals only
able to decipher what someone is saying up to 60% of the time.
"Machine lip-readers have enormous potential, with applications in
improved hearing aids, silent dictation in public spaces, covert
conversations, speech recognition in noisy environments, biometric
identification and silent-movie processing," wrote the researchers.
They said that the AI system was provided with whole sentences so
that it could teach itself which letter corresponded to which lip
movement.
To train the AI, the team - from Oxford University’s AI lab - fed it
nearly 29,000 videos, labelled with the correct text. Each video was
three seconds long and followed a similar grammatical pattern.
While human testers given similar videos had an error rate of 47.7%,
the AI had one of just 6.6%.
The fact that the AI learned from specialist training videos led some
on Twitter to criticise the research.
Writing in OpenReview, Neil Lawrence pointed out that the videos had
"limited vocabulary and a single syntax grammar".
"While it’s promising to perform well on this data, it’s not really
groundbreaking. While the model may be able to read my lips better
than a human, it can only do so when I say a meaningless list of
words from a highly constrained vocabulary in a specific order," he
writes.
The project was partially funded by Google’s artificial intelligence
firm DeepMind.

Summary:

Target ! Scientists at Oxford University have developed a machine that can
lip-read better than humans.

Figure 36: Formatted dataset example from XSUM evaluated using ROUGE as described in Ap-
pendix K.

Context ! I will verbalize an abstract representation of a sentence in natural
language. To do so, I will first show the representation and
then the natural language. The text needs to include all of the
information in the representation.
Brandon_Carter | almaMater | University_of_Cambridge,
University_of_Cambridge | chancellor | David_Sainsbury,_Baron_Sainsbury_of_Turville,
Brandon_Carter | birthPlace | England, University_of_Cambridge |
viceChancellor | Leszek_Borysiewicz

Target ! The University of Cambridge is the alma mater of Brandon Carter,
who was born in England. David Sainsbury, also known as the Baron
Sainsbury of Turville, and Leszek Borysiewicz are respectively the
chancellor and vice chancellor of the University of Cambridge.

Figure 37: Formatted dataset example from WebNLG evaluated using ROUGE as described in
Appendix K.

48

Context ! Attributes are placed within the tag itself, making additional
alterations to the ëlement contentb̈etween the start and end tag.
They never stand alone. They are written in the format name=v̈alue,̈
where name is the name of the attribute (for instance c̈olor)̈, and
value describes this specific instance (for instance r̈ed)̈. You’ve
actually seen attributes before, if you followed the tutorial in
the basic HTML section. tags use the src attribute, anchors
use the name attribute, and links use the href attribute. See
how those all follow the ___=_̈__f̈ormat? Making a table, or chart,
requires several different tags. Play with these tags, or learn
about HTML tables in more detail. Start with table tags around
the entire table:<table></table> Row tags around the contents
of each row: <tr> Column headers in the first row: <th> Cells
in subsequent rows: <td> Here’s an example of how it all fits
together:<table><tr><th>Column 1: Month</th><th>Column 2: Money
Saved</th></tr><tr><td>January</td><td>$100</td></tr></table> You’ve
already learned the <head> tag, which shows up at the start of each
document. Besides the <title> tag, it can include the following
types of tags: Meta tags, which are used to provide metadata
about a web page. This data can be used by search engines when
the robot scours the internet to locate and list websites. To
make your website more visible on search engines, use one or more
<meta> start tags (no end tags necessary), each with exactly one
name attribute and one content attribute, for example: <meta
name=d̈escriptionc̈ontent=ẅrite a description here>̈; or <meta
name=k̈eywordsc̈ontent=ẅrite a list of keywords, each separated by a
comma>̈ <link> tags are used to associate other files with the page.
This is mainly used to link to CSS stylesheets, which are made using
a different type of coding to alter your HTML page by adding color,
aligning your text, and many other things. <script> tags are used to
link the page to JavaScript files, which can cause the page to change
as...

TL;DR in English:

Target ! Learn about attributes. Experiment with HTML tables. Learn the
miscellaneous head tags. Play around with HTML found on websites.
Learn more advanced web design from comprehensive guides.

Figure 38: Formatted dataset example from WikiLingua evaluated using ROUGE as described in
Appendix K.

Context ! John travelled to the kitchen. Sandra moved to the kitchen. Daniel
went to the kitchen. John journeyed to the hallway. Mary journeyed
to the bedroom. Mary journeyed to the kitchen. Mary travelled to
the bedroom. Sandra travelled to the bedroom. John went to the
office. John went back to the kitchen. Where is Mary?

Target ! bedroom

Figure 39: Formatted dataset example from bAbI evaluated using exact match as described in
Appendix K.

49

U Other Experiments

UL2 We experimented with the UL2 objective [106, 107] for a causal model but did not find it to outperform
regular causal language modeling on our evaluation tasks. This may stem from UL2 being better suited as an
Encoder-Decoder model or from mistakes in our UL2 implementation.

The Pile We have also trained several models on The Pile [31] and found similar trends as for OSCAR and
C4. We make these models publicly available.

V Release of Artifacts

We open-source all of our models and code under Apache 2.0 licenses. Our filtered datasets are released
with the same licenses as the datasets they stem from. All material can be found at: https://github.com/
huggingface/datablations.

W Version Control

V3 → V4:

• Added comparison of different fits in terms of loss and R2 in Table 1
• Small writing improvements

V2 → V3:

• Added loss curves of complementary strategies in Appendix P
• Fixed OSCAR validation plot in Appendix I
• Clarified the usage of smoothing in training and validation plots in Appendix K
• Added more references

V1 → V2:

• Added experiments decaying alpha and beta to allow excess epochs or paramters to hurt in Appendix F
• Added Galactica case study in Appendix G
• Added more details on the calculation of UN given UD in Appendix A
• Added hyperparameter sensitivity limitation in Appendix Q
• Added more detail on how score normalization is done in Appendix K
• Mentioned modification of number of heads in Appendix S

X Broader Impacts

Large Language Models carry potential risks such as outputting offensive language, propagating social biases,
and leaking private information [119, 8]. By publicly releasing all of our models and providing new insights to
improve the scaling of LLMs we may contribute to the further proliferation of these harms. However, we note
that there are already much larger and more capable models freely available [14, 13, 95, 11] that can be used
in such harmful ways. Thus, we consider the open-source release of our models and research to significantly
outweigh its downsides.

50

https://github.com/huggingface/datablations
https://github.com/huggingface/datablations

	Introduction
	Background
	Method: Data-Constrained Scaling Laws
	Parametric Fit

	Experimental Setup
	Results: Resource Allocation for Data-Constrained Scaling
	Results: Resource Return for Data-Constrained Scaling
	Results: Complementary Strategies for Obtaining Additional Data
	Related Work
	Conclusion
	
	Derivation of Data-Constrained Scaling Laws
	Analytical properties of compute-optimal point

	C4 Scaling Coefficients
	Additional Contour Plots
	Double Descent
	Repeating on Heavily Deduplicated Data
	Do Excess Parameters Hurt, Plateau or Help?
	Case Study: Galactica
	Training Loss
	Scaling Curves on the OSCAR Corpus
	Validation Loss by Epoch
	Evaluation Details
	Downstream Repetition Results
	Detailed Code Augmentation Results
	Filtering Procedure
	Detailed Filtering Results
	Loss Curves for Complementary Strategies
	Limitations and Future Work
	Contributions
	Hyperparameters and Setup
	Prompts and Samples
	Other Experiments
	Release of Artifacts
	Version Control
	Broader Impacts

