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ABSTRACT

The accumulation of data in the machine learning setting is often presented as a
panacea to address its many modeling problems—including issues with correct-
ness, robustness, and bias. But when does adding more data help, and when does
it hinder progress on desired model outcomes? We model data accumulation from
multiple sources and present analysis of two practical strategies that result the ad-
dition of more data degrading overall model performance. We then demonstrate
empirically on three real-world datasets that adding training data can result in
reduced overall accuracy and reduced worst-subgroup performance while intro-
ducing further accuracy disparities between subgroups. We use a simple heuristic
for determining when the accumulation of more data may worsen the issues the
additional data is meant to solve. We conclude with a discussion on considera-
tions for data collection and suggestions for studying data composition in the age
of increasingly large models.

1 INTRODUCTION

The accumulation of data (labeled or unlabeled) in machine learning is often touted as the reliable
solution to many of its modeling problems. The benefits of more data on performance have been
observed across many domains including tabular (Chen et al., 2018), language (Brown et al., 2020),
vision (Chen et al., 2020), and multi-modal data (Wang et al., 2021). Beyond accuracy, increas-
ing dataset size has also been shown to improve adversarial robustness (Carmon et al., 2019) and
robustness against distribution shift (Miller et al., 2021). Furthermore, when adding more data also
improves subgroup representation, group-level disparities in classification can also be reduced (Rolf
et al., 2021). However, practically acquiring more data for training involves much more than a naive
increase in the number of training samples. In this work, we define this goal of acquiring more
training data examples as data accumulation. In practical situations, those engineering the system
scale sources to supplement an existing training set – thus data accumulation must not only consider
dataset size but also how the composition of the accumulated data changes with scale. Even though
such considerations are common knowledge in practical machine learning engineering (Shankar
et al., 2022), these challenges still remain relatively under-explored theoretically and empirically by
the machine learning research community.

Moreover, dataset qualities do not exist in isolation; algorithmic techniques have been developed
for addressing dataset limitations in the distribution shift and supervised domain adaptation litera-
ture (Kouw & Loog, 2018). However, current works in these areas narrowly focus on model-based
interventions to improve model performance and are thus inadequate for precisely characterizing
the effects of a broader set of dataset properties on model outcomes. Acknowledging the reality that
there is often agency in the design and composition of the training dataset is an opportunity to de-
sign downstream model properties through decision-making about the data. In fact, our paper joins
a growing line of work focused on data interventions (Gadre et al., 2023; Marion et al., 2023; Comp-
ton et al., 2023). Data accumulation is thus a data-oriented alternative perspective to complement
current work which remains narrowly anchored to model improvements.

In this paper, we take a pragmatic approach to data accumulation and construct scenarios that more
explicitly factor in corresponding changes to data composition (Figure 1). Motivated by statistics
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Figure 1: Illustrative pipeline of how we consider the effects of data composition on data scaling
properties. We hope to understand cases where the addition of more data in model training leads to
a degradation in overall model performance.

literature on the performance penalties incurred by scaling data under sampling bias (Meng, 2018),
we explore how this phenomenon may arise in the machine learning setting. We take a principled
approach by first formalizing models of data accumulation which gives intuition for why increasing
the dataset size may not be sufficient to guarantee better performance. We then test our theoretical
models of data composition by examining the effects of increasing training dataset size on real-world
tabular datasets for predicting census income, restaurant review sentiment, and medical outcomes.

Our contributions are as follows. In this work, we:

1. Model realistic case studies of data composition changes in data accumulation: We
present models for data composition changes that occur due to common strategies at uni-
lateral increases to dataset size (ie. scaling up training set size). We motivate and formalize
cases of data accumulation from a single-source and multi-source setting.

2. Analyze data accumulation impacts on downstream performance: We theoretically
demonstrate how data scaling can lead to worse model outcomes and present a simple
heuristic to determine when to add more data. We show that under differing sampling
regimes, there are scenarios where data accumulation can worsen model performance.

3. Demonstrate empirical results on the trade-offs between scale and data composition:
We discuss the performance impact of two different practical strategies for data accumula-
tion in the multi-source setting — a sequential data addition case and that of scaling up a
mixture of data sources. We illustrate on 3 real-world datasets how the mechanism through
which data accumulation occurs impacts model properties.

Most importantly, we hope for this work to be a critical starting point in formalizing the complex
dynamics underlying data decision-making as part of the machine learning process. The details of
data practices are often overlooked by the machine learning research community altogether, despite
its key role in determining the nature of model outcomes (Paullada et al., 2021). We hope this work
can be a strong starting point for a deeper investigation by the machine learning community into
more principle-based foundations of meaningful data practices.

2 RELATED WORK

Data scaling laws influence model outcomes “Scaling laws” more broadly refer to how increases
in model “size” lead to improved performance. Typically, model size is described in terms of the
number of model parameters, compute, and other measured factors characterizing the model (Ka-
plan et al., 2020; Bahri et al., 2021). Data “scaling laws” (Zhang et al., 2020; Bansal et al., 2022;
Zhai et al.) specifically reveal the way in which training on larger and larger datasets yields im-
proved performance. Furthermore, adding more data has been suggested as a way to improve the
fairness of a model (Chen et al., 2018).
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Figure 2: Our work on data accumulation characterizes training data properties interact with scale
and how they impacted model outcomes. This study is data-centric and is orthogonal but compli-
mentary to model-based interventions provided in adjacent directions such as domain adaptation.

Data composition influences model outcomes However, the composition of training data, at
any size, has been shown to influence model outcomes. Data properties such as data diversity,
redundancy, and noise can all contribute to model performance, robustness, fairness, and effi-
ciency Mitchell et al. (2022). These data properties are typically determined by how the data is
collected. For example, Rolf et al. (2021) suggests sampling directly from group-specific distribu-
tions in order to improve model performance on certain under-represented subgroups.

Prior work in domain adaptation and distribution shift has also considered data composition inde-
pendent of size (Kouw & Loog, 2018; Gulrajani & Lopez-Paz, 2020; Yang et al., 2023). However,
in these works, training data is often considered to be set in stone and imposed as a pre-existing and
static constraint. Thus, many of the challenges incurred by data composition are typically addressed
with algorithmic interventions rather than data-centric decision-making.

Realistic data scaling impacts data composition When realistically increasing the size of a train-
ing dataset, compositional changes in the data can be introduced. Thus, a more pragmatic perspec-
tive to data scaling that factors in changes to overall data composition is required – we call this
process data accumulation (Figure 2). In surveys, sampling bias exacerbates mis-estimation error
as the sample size increases, as observed in settings estimating vaccine uptake (Bradley et al., 2021)
and election polling (Meng, 2018).

Thus far, relatively few works in machine learning have critically examined the effect of increasing
training data size while factoring in the potential changes to data induced by scaling. In the im-
age classification setting, recent work found that performance heavily depends on the pre-training
source data (Nguyen et al., 2022) and spurious correlations may be introduced when combining
data sources (Compton et al., 2023). Using a theoretical model, Hashimoto (2021) looks at data as
a fixed mixture of different sources (e.g., different categories of Amazon reviews) to characterize
excess loss as dataset size increases.

3 TWO MODELS FOR DATA SCALING

Much of the past work on the impact of data scaling on model performance assumes a single-
source setting, where data from a single data sampling process is scaled up, and the distribution
of the dataset remains fixed. It is under this setting that many claims on data scaling are typically
considered. However, in most practical settings, data accumulation occurs in a multi-source setting,
where the final training dataset is pieced together from multiple distinct data sampling processes. In
order to practically increase the size of the training set, data from multiple sources are collected and
combined. Unlike the single source setting, there is not one static scaled-up data collection process
– instead the resultant larger dataset is a mixture of multiple data sources, and thus presents more
complex data composition changes as the dataset size increases.

In this paper, we specifically consider two practical approaches of this multi-source setting: the
SEQUENTIAL case and the MIXTURE case. We consider the following scenarios: 1) enlarging the
dataset by sampling from a mixture of fixed sources and 2) sequentially adding data across different
sources for model training. The key observation we make in this paper is how overall and subgroup
performance can vary as we increase the sample size n in both of these scenarios.
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Preliminaries Let {x, y}n ∼ D be data generated from some underlying distribution. Let
DS1

, ..., DSm
be a series of empirical distributions sampled with varying types of sampling bias

from the underlying distribution D; these empirical source distributions are finite and are different
fixed sizes ns1 , ..., nsm . The training distribution of sized n, Dtrain,n, is composed of these m
sources. The deployment distribution Dtest, where we hope to achieve good performance, is sam-
pled directly from D without any sampling bias. We define δ : P(X ,Y) × P(X ,Y) → R≥0 as a
divergence between distributions.

Mixture Case (MIXTURE) In the mixture case, Dtrain,n comes from a mixture of sources:
Dtrain,n =

∑m
i=1 αiDSi

. Here, the coefficients αi ∈ [0, 1] (
∑

i αi = 1) specify what propor-
tion of data points are sampled from each source. Given a fixed vector α and a dataset size n,
n× αi data points are included from each distribution Dsi ; the ratio of sources is independent of n.
Since the ratio of sources is fixed, we also expect the divergence between train and test distributions
δ(Dtrain,n, Dtest) to remain constant as n increases.

Sequential Case (SEQUENTIAL) In the sequential case, the training data is a strictly increasing

collection of the underlying sources: D̂train,n = (
⋃k−1

i=1 D̂Si
) ∪ n−

∑k−1
i=1 nsi

nSk
D̂Sk

1. Here, k is set

to the source index such that
∑k−1

i=1 nsi < n ≤
∑k

i=1 nsi . In other words, for a desired dataset
size n, we start by adding data from the first source and continue to add data from sources se-
quentially until we reach n. This addresses the common scenario where acquiring more data incurs
additional cost; all data from existing sources are used before a new source is introduced. The re-
sulting distribution can also be viewed as a mixture of source distributions where α depends on n:

Dtrain,n =
∑k

i=1 αiDSi
where αi =

nsi

n for i < k and αm =
n−

∑k−1
i=1 nsi

nsm
.

A key observation we make is that δ(Dtrain,n, Dtest) in the sequential case will actually depend on
the number of samples.

Example 3.1. Consider a training set of two sources: DS1 a small high-quality dataset, DS2 a large
lower-quality dataset. We can model the divergence between train and test distributions as follows
if δ composed linearly:

δ(Dtrain,n, Dtest) =

{
δ(DS1 , Dtest) if n ≤ |DS1 |
|DS1

|
n δ(DS1

, Dtest) + (1− |DS1
|

n )δ(DS2
, Dtest) otherwise

While we cannot assume that divergences compose linearly, we can limit our scope to
f−divergences and use the convexity of this class of divergences to show that in the SEQUENTIAL
case, δ(Dtrain,n, Dtest) might increase with n.

Lemma 3.2. Let Dtrain,n be constructed in the SEQUENTIAL case from k sources: DS1
, ..., DSk

,
then if δ(DSk

, Dtest)− cn
nsk

≥ δ(Dtrain,n, Dtest) :

δ(Dtrain,n, Dtest) ≥ δ(Dtrain,n−nsk
, Dtest)

where δ belongs to the family of f-divergences and c is a divergence-dependent constant where
δ(Dtrain,n, Dtest) + c =

∑m
i=1

nsi

n δ(DSi
, Dtest).

Lemma 3.2 gives a relationship between the new data source and the test set that would cause the
divergence between train and test distributions can increase with n in the SEQUENTIAL case2. In
a fixed dataset size setting, Acuna et al. (2021) relates increased divergence to empirical risk for
f−divergences in particular by giving a generalization bound. Prior works have also considered dif-
ferent discrepancy measures including L1 distance (Ben-David et al., 2006), H∆H divergence (Ben-
David et al., 2010), margin disparity discrepancy (Zhang et al., 2019). In conjunction with Lemma
3.2, these results from prior works give an intuition for a larger empirical risk upper bound when
the divergence between train and test distributions increases. However, what remains unanswered is
whether this bound remains while the training set size increases.

1D̂ denotes the set of examples or data points in the distribution D
2See proof in the appendix
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DATASET NUMBER OF ROWS OUTCOME SOURCE SUBGROUP

Folktables
(Ding et al., 2021)

1,664,500 Binary Income
Level

State Race

Yelp (Yelp, 2023) 6,990,280 Multi-Class
Review Stars

State Restaurant
Category

MIMIC-IV
(Johnson et al., 2020)

197,756 Binary
Readmission

Admission
Type

Race

Table 1: Dataset overview for experiments.

Using the two cases of data accumulation, we can reason about what we might observe empirically
even if we do not have an oracle divergence metric. As the training dataset size increases in the MIX-
TURE case, we would expect δ(Dtrain,n, Dtest) to remain constant and the training loss to decrease.
Thus, we expect the upper bound of the test loss to become tighter as the dataset size grows. How-
ever, in the SEQUENTIAL case, if there is a combination of sources that causes δ(Dtrain,n, Dtest) to
grow faster than the decrease in the training set risk, this upper bound becomes looser and we may
see an increased test set risk.

3.1 CRITERIA FOR REJECTING MORE DATA

We consider the SEQUENTIAL case where a practitioner may have trained on some data Dtrain to
obtain some predictor fDtrain

, and encounters another data source Di. The question is whether it
would be beneficial to enlarge the dataset and train on Dnext = Dtrain∪Di in order to best perform
on the test distribution that we care about Dtest. More formally, we are concerned with the excess
risk under some proper loss function l from adding more data:

L(fDtrain
, fDnext

, Dtest) = E(x,y)∼Dtest
[l(fDtrain

(x), y)− l(fDnext
(x), y)]

If L(fDtrain , fDnext , Dtest) > 0, we would want to incorporate the additional data to achieve a
lower risk on the test distribution. Otherwise, we would reject the additional data in order to not
increase risk on the test distribution or to avoid incurring extra costs for data access and model
training while not improving the risk. Practically, finding fDnext

already requires training a model
based on an additional dataset. To avoid this, we suggest a rejection criterion based on access to
the existing data mode Dtrain, the additional data Dnext, and the test distribution Dtest. While in
reality the test set cannot be accessed, we assume we can use some part of the training set (e.g.,
the Ds1 ) that is similar to the test distribution). Prior works have suggested that measuring excess
Kullbeck-Leibler (KL) divergence between train and test distributions correlates with the resulting
loss (Xie et al., 2023b). We also use the excess KL as a heuristic:

∆KL(Dtrain, Dnext, Dtest) = δKL(Dnext||Dtest)− δKL(Dtrain||Dtest) (1)

4 EXPERIMENT SETUP

Datasets For our investigation, we study three real-world tasks and datasets, chosen because of
their rich feature sets and the open-access availability. Dataset details can be found in Table 1. See
appendix for code, additional experiments and details, and synthetic data experiments.

Models and Evaluation We consider the scenario where the initial dataset of interest comes from
a single data source, i.e., Source A, with limited training examples (e.g., South Dakota (SD) in
Folktables). We also consider at least one second available data source, i.e., Source B, from which
additional training examples can be drawn. The experimental goal is to investigate the effects of
manipulating training data composition on model outcomes as measured on a test set sampled ex-
clusively from the initial dataset Source A (e.g., SD) – which we call the reference test set. Further
experiments are also evaluated on a generalized test set, which is randomly sampled from a mixture
of all available data sources.

To observe data accumulation in the MIXTURE case, Source A and Source B are sampled at a fixed
ratio from a combined dataset of Source A and Source B in order to increase the training set size.
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Figure 3: Folktables results on Source A reference test set in the SEQUENTIAL case over 5 trials on
(a) accuracy, (b) accuracy disparity, and (c) worst subgroup accuracy. Source A from South Dakota
and Source B from California is added once South Dakota data has been exhausted.
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Figure 4: Folktables results on Source A reference test set in the MIXTURE case over 5 trials for
(a) accuracy, (b)accuracy disparity, and (c) worst subgroup accuracy. The mixture is the same ratio
as the final dataset for the SEQUENTIAL case in Figure 3) (75% CA and 25% SD)

In the SEQUENTIAL case, we start by adding training data from Source A and then from Source B
when all points from Source A have been included.

We consider a variety of different models: logistic regression (LR), gradient boosting (GB) (Fried-
man, 2001), k-Nearest Neighbors (kNN), XGBoost (XGB) (Chen & Guestrin, 2016), and MLP
Neural Networks (NN). Let f denote the model we are evaluating and let g be a group function
that maps each data point to a subgroup, we evaluate the following metrics over Dtest: Accu-
racy: (E(x,y)∼Dtest

[f(x) = y]), Disparity: The difference between the best and worst-performing
subgroups (maxg′ E(x,y)∼Dtest

[f(x) = y|g(x) = g′] − ming′ E(x,y)∼Dtest
[f(x) = y|g(x) = g′]),

and Worst group accuracy: The accuracy on the worst-performing subgroup and the metric
of interest in studying subpopulation shifts in the distribution shift literature (Koh et al., 2021)
(ming′ E(x,y)∼Dtest

[f(x) = y|g(x) = g′]).

5 RESULTS AND ANALYSIS

Single Source Datasets Benefit from Data Scaling Properties We consider the initial stage of
the SEQUENTIAL case—prior to sampling from any additional data sources—to be equivalent to a
single-source data setting. We find that increasing the dataset size in this single source setting yields
improved performance (Figure 3a). Consistently, maximum accuracy is achieved when the most
data points in a single source are used. Single source data increases also improve worst-subgroup
performance, as demonstrated in prior literature (Sagawa et al., 2019). For some models, increases
in data slightly improve disparity (e.g., XGB disparity drops from 17.0% to 13.6%) while for other
models even within the single source setting do little to minimize the differences between subgroup
disparity3.

3Results with confidence intervals and additional results in larger n for single source scaling are available
in the appendix
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Figure 5: Yelp results on Source A reference test set in the SEQUENTIAL case over 5 trials on (a)
accuracy, (b) accuracy disparity, and (c) worst subgroup accuracy. Source A is from New Jersey and
Source B is from Pennsylvania.
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Figure 6: MIMIC-IV results on Source A reference test set in the SEQUENTIAL case over 5 trials on
(a) accuracy, (b) accuracy disparity, and (c) worst subgroup accuracy. Source A is from admission
type URGENT and Source B is from EW. EMER.

Multi-source Dataset Scaling Can Lead to Worse Outcomes on a Reference Test Set In the
SEQUENTIAL case (Figure 3a, 5a, 6a), we observe that adding additional data from a separate
source, thereby quadrupling the size of the training set, leads to a dip in performance on a reference
test set of interest, in addition to worse fairness metrics and worse robustness. For the Folktables
dataset (Figure 3a), this dip is observed empirically as a statistically significant reduction of test
accuracy for all models except XGB (e.g., LR: -2.5%; GB: -2.6%; kNN: -3.5%, NN: -2.7%). This
reduction in performance occurs when additional data is added from source B (nB = 12000) once
source A (nA = 4000) is exhausted; the training data size has tripled. Decreases to worst subgroup
performance were also significant and observed in all models except XGB (e.g., LR: -3.5%; GB:
-2.3%; kNN: -2.3%, NN: -2.7%). We did not observe a significant decrease in disparity with the
addition of more data.

In the MIXTURE case (Figure 4), we find that scaling a fixed mixture of sources yields monotoni-
cally improved performance on the reference test set—i.e., there is no observed dip in performance,
and the increase of the dataset size is correlated with increasing test accuracy, and better worst sub-
group performance. From n = 4000 to 16000, we see test accuracy consistently improve for all
models (e.g., XGB:+1.8%; kNN:+1.5%) and we see worst subgroup performance also consistently
improve across all models. As in the SEQUANTIAL case, we do not see a significant impact of data
scaling on subgroup disparities due to the high variance in worst and best subgroup size in the test
set. However, comparing the MIXTURE case to the SEQUENTIAL over the same range of n before all
data is added, the accuracy achieved on the reference dataset for the best n in the SEQUENTIAL case
remains consistently above the maximum accuracy in the MIXTURE case. At nmax for SEQUEN-
TIAL case, test accuracy is higher (LR: 78.0%, GB: 79.8%, XGB: 80.8%, kNN: 75.8%, NN:76.7%)
than nmax for the MIXTURE case (LR: 80.6%, GB:82.3%, XGB:81.0%, kNN:79.4%, NN: 79.6%).

Multi-source Dataset Scaling Can Lead to Better Generalization In (Figure 5b, 6b, 7a), we see
that increases to the training dataset, even from sources of different distribution, still yield improve-
ments on a generalized test set, sampled from all available sources (e.g., For N = 50/4000/16000,
LR: 72.7% / 76.8% / 78.4%; GB: 70.4% / 78.9% / 80.2%; XGB: 72.1% / 79.5% / 80.5%; NN: 70.8%
/ 77.4% / 77.9%). This indicates that increasing dataset size across sources yields improvements to
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Figure 8: The relationship between Excess KL and the resulting accuracy drop from increasing for
a) logistic regression (LR), b) gradient boosting (GB), c) XGBoost (XGB), d) K-Nearest Neighbor
(kNN) and e) Neural Network (NN). We observe a statistically significant correlation between Ex-
cess KL (Equation 1) and accuracy drop across all 5 models where we observe significant decreases
in model performance.

model generalization, even if this may not translate to improved performance on the reference test
set of interest.

5.1 PERFORMANCE VIA THE LENS OF A PRACTICAL DIVERGENCE

In Section 3, we presented two models: SEQUENTIAL and MIXTURE. We will now connect our
empirical results to our proposed theoretical models of data accumulations.

Divergence comparison: SEQUENTIAL VS MIXTURE The first step is to empirically validate
that our specific choice of divergence, KL divergence, increases in the SEQUENTIAL setting as the
training set size grows. We approximate densities through kernel density estimation with a Gaussian
kernel on scaled PCA projections (3 components). Figure 7b compares the KL divergence between
the training set and test set at different values of n (data size) for the Folktables Income dataset.
In the SEQUENTIAL case, scaling up n results in an increase in train-test divergence while in the
MIXTURE case, this divergence remains static.

Translating Divergence to Accuracy The next step is to validate that increased train-test diver-
gence translates into a reduction in accuracy. We find a significant negative correlation between the
KL divergence between the train and test dataset with the resulting model accuracy for 3 out of 5
models; as train-test divergence increases, test accuracy decreases. Figure 7c shows this correlation
for the 3 algorithms where we observe a significant correlation. There was also a negative correla-
tion between for Gradient Boosted Trees (GB). We did not observe a decrease in performance for
XGBoost (XGB), thus such a correlation for the XGB model is not expected.

Excess KL and Rejecting More Data Finally, we validate our proposed heuristic of excess
KL (∆KL) for deciding when to include more data (Section 3.1). If ∆KL is larger than 0
there is a significant distribution shift in the larger dataset and there is thus likely to be an
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increase or flat-lining of loss. We consider a large set of states as additional data sources:
some are closer to South Dakota (e.g., Minnesota) while others are very distant (e.g., Florida).
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Figure 9: Accuracy on source A when
different additional sources are used.

When comparing excess KL between the new bigger
training distribution and the original dataset relative to
the reference dataset, we find a significant negative cor-
relation between accuracy change and excess KL across
different states for all the classifiers. These results show
that excess KL is indeed a reasonable heuristic for esti-
mating the accuracy drop induced by additional data. Fur-
thermore, the relative ordering of source states in terms of
accuracy drop remains consistent across classifiers. How-
ever, the scale of accuracy drop for XGB is an order of
magnitude smaller than other classifiers. Our results sug-
gest that more data, albeit from a different distribution,
does not affect XGB adversely to the same degree.

If we replace California with a different state to be the
additional data source based on excess KL, we observe
better performance as more data (Figure 9). Surprisingly, using Louisiana alone is as helpful as using
a mixture of states near South Dakota (e.g., Nebraska and Iowa). Ultimately, the best improvement
in performance comes from using South Dakota data from future years (2015-2018) but this source
is only slightly better than using a state across the country (e.g. Louisiana) from the same year 4

6 DISCUSSION

We present two practical cases of data accumulation from multiple sources. We observe a decline or
flat-lining in overall accuracy and worst subgroup accuracy when we add data in the SEQUENTIAL
case in 3 real world datasets. Since the SEQUENTIAL case can be widespread, we urge caution when
enlarging training datasets in real-world data collection. We use excess KL divergence as a heuristic
for estimating when adding more data might be undesirable. Ultimately, we expect the trade-off
between a smaller high-quality data set and a larger low-quality dataset to be model-dependent.
Nevertheless, our results motivate practitioners, particularly in high-stakes applications, to carefully
consider the costs and benefits of adding more data.

Limitations & Future Work For future work, there are many opportunities to investigate data-
driven performance trade-offs under more complex data accumulation and data curation schemes,
including cases involving data pruning (Sorscher et al., 2022; Hooker et al., 2020) and synthetic
data (Nikolenko, 2019) or settings that are a combination of the MIXTURE and SEQUENTIAL set-
tings we present. Our work focuses on the tablular data setting – many of the claims made around
data scaling laws relate to the context of large language models (Kaplan et al., 2020; Bansal et al.,
2022), computer vision models (Zhai et al.) and image-text models (Nguyen et al., 2022) in an
over-parameterized regime (Nakkiran et al., 2021), involving much more complex and expressive
algorithms (ie. transformers, convolution neural nets). The data scaling claims in the tabular and
small-scale setting we investigate may be sufficient illustrations of possible data dynamics but fall
short of painting a complete picture of a general law for data accumulation, if one were to exist.

Conclusion Data decision-making is a critical factor in the effective execution of machine learning
– yet little is understood of how practical data curation and collection strategies ultimately impact
model outcomes. This work is an initial inquiry into what is often an overlooked aspect of the
machine-learning process. We challenge long-held assumptions around data scaling, revealing the
complexity in enlarging dataset size in the practical setting and discussing how this complexity could
yield scenarios in which this assumption, that more data is all you need, no longer holds. We hope
this can be a vehicle towards more thorough future modeling and investigations into the practical
data decision-making process that underscores much of the model behavior in deployed systems.

4Our metric can also be applied to mixtures of sources added sequentially. We add a discussion of this in
the appendix.
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Figure 10: The power of more data: scaling properties for single source South Dakota Folktables
data
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Figure 11: Different choices of source B based on excess KL

A ADDITIONAL EXPERIMENTS AND RESULTS

A.1 SCALING FOLKTABLES DATA

Since much of prior work is in deep learning models such as language models and vision pre-
training, we first establish the potential of more data. Looking at different training set sizes from
a single source of Califonia in Figure 10, we see that the addition of more data improves overall
model performance, reduces disparities between groups, and improves worst group accuracy.

Similarly, we test the effect of scaling by expanding South Dakota data by adding data from more
years. In Figure 12, we augment data found in South Dakota by adding data from previous years
and observe the same phenomenon of more data improving overall model accuracy and worst group
accuracy.

We also include the effect of adding more data from different possible source B datasets. We con-
sider the states which had low empirical excesses KL (Figure 11
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Figure 12: The power of more data: scaling properties for single source California Folktables data
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Figure 13: AUC for Folktables results on Source A reference test set in the SEQUENTIAL case
over 50 trials for (a) changes in AUC with increasing data, (b) changes in AUC disparity across
subgroups, and (c) worst case subgroup AUC. source A from South Dakota and Source B from
California is added once South Dakota data has been exhausted.
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Figure 14: AUC for Folktables results on Source A reference test set in the MIXTURE case over 30
trials for (a) changes in AUC with increasing data, (b) changes in AUC disparity between subgroups,
and (c) worst subgroup AUC.

A.2 AUC RESULTS AND THRESHOLD OPTIMIZED ACCURACY

In our main results, we study accuracy with the threshold at 0.5. We conduct additional experiments
on AUC for both the SEQUENTIAL (Figure 13, 15, 16) and MIXTURE (Figure 14) cases. In the
MIXTURE case, AUC climbs steadily as the data is added. In contrast, AUC stagnates and decreases
(with the exception of XGB) in the SEQUENTIAL case. When looking at subgroup disparity, the
curves are a lot noisier and difficult to compare.

In addition to AUC, we also compare accuracy with dynamic threshold selection (i.e. using Youden
Index). One threshold was selected using a held out validation set for the entire population. In this
setting, we again observe statistically significant decreases in accuracy for models in the SEQUEN-
TIAL setting.
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Figure 15: AUC for MIMIC-IV results on Source A reference test set in the SEQUENTIAL case
over 50 trials for (a) changes in AUC with increasing data, (b) changes in AUC disparity across
subgroups, and (c) worst case subgroup AUC.
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Figure 16: AUC for MIMIC-IV results on Source A reference test set in the SEQUENTIAL case
over 50 trials for (a) changes in AUC with increasing data, (b) changes in AUC disparity across
subgroups, and (c) worst case subgroup AUC.
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Figure 17: Accuracy (with threshold selection) for Folktables results on Source A reference test
set in the SEQUENTIAL case over 50 trials for (a) changes in accuracy (with threshold selection)
with increasing data, (b) changes in accuracy (with threshold selection) disparity across subgroups,
and (c) worst case subgroup accuracy (with threshold selection). source A from South Dakota and
Source B from California is added once South Dakota data has been exhausted.
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Figure 18: Accuracy (with threshold selection) for Folktables results on Source A reference test
set in the MIXTURE case over 30 trials for (a) changes in accuracy (with threshold selection) with
increasing data, (b) changes in accuracy (with threshold selection) disparity between subgroups, and
(c) worst subgroup accuracy (with threshold selection).
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A.3 ADDITIONAL SEQUENTIAL EXPERIMENTS

Sequentially Adding Data Across Years We also examine the sequential setting with respect to
the year of data collection. This scenario might arise when an organization may want to train on the
current year’s data but the dataset size is insufficient. Data from previous years might then be added.
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Figure 19: Test time overall accuracy, disparity, and worst group accuracy of a model trained on
2018 South Dakota Income dataset evaluated on 2014-2017 South Dakota Income dataset.
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Figure 20: Folktables results on Source A reference test set in the SEQUENTIAL case over 5 trials
for (a) changes in accuracy with increasing data, (b) changes in accuracy disparity across subgroups,
and (c) worst case subgroup performance. Source A from 2018 SD and Source B from 2016 SD is
added once 2018 data has been exhausted.

A.4 DETAILED MAIN PAPER RESULTS

Please see Section 5 of the main paper for a summary of main results and analysis.

One observation to elaborate on is that it requires much more data from the MIXTURE case to match
the performance of a model trained on less data that more closely matches the distribution of the test
set—a result we expect from our theoretical model. For instance, for LR trained on Folktables, at N
= 4000, which is the maximum size for the single-source setting, accuracy is 80.6% compared to a
75.2% test accuracy for a similar model in the MIXTURE case. Following the SEQUENTIAL strategy
though, at N = 14000, that test accuracy drops to 79.1% with the addition of data points from
another Source B, while the MIXTURE case test accuracy remains fairly stagnant with the scaling of
the mixture, to 74.9%. These effects are influenced by modeling decisions - for example, for the GB
and XGB models, there is a larger observed performance drop from scaling in the SEQUENTIAL case
(GB: 82.6% to 80.9%; XGB: 81.7% to 80.7%) and a larger performance improvement from scaling
in the MIXTURE case (GB: 75.5% to 76.7%; XGB: 74.8% to 77.3%), though overall absolute best
performance is still observed in the sequential case.

A.5 TOY EXPERIMENTS

Before running real-world experiments, we first tested our concept on synthetic data. We consider
two source A and source B where yA(x) = sin(x) and yB(x) = − sin(x). D̂1 is sized nA = 10

comes from source A and D̂2 is sized nB = 90 comes from source B. The training set D̂train =

D̂1 ∪ D̂2 while the test set comes from just source A.
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Folktables SEQUENTIAL Setting Results
NTrain 50 (95% CI) 4000 (95% CI) 16000 (95% CI)

Test Accuracy
LR 0.774 ± 0.005 0.806 ± 0.003 0.780 ± 0.003
GB 0.735 ± 0.010 0.823 ± 0.002 0.797 ± 0.003
XGB 0.753 ± 0.008 0.810 ± 0.002 0.810 ± 0.002
NN 0.766 ± 0.005 0.794 ± 0.003 0.767 ± 0.002
KNN 0.759 ± 0.008 0.794 ± 0.002 0.759 ± 0.002

Maximum Subgroup Disparity
LR 0.204 ± 0.043 0.168 ± 0.013 0.174 ± 0.018
GB 0.166 ± 0.019 0.140 ± 0.014 0.150 ± 0.016
XGB 0.170 ± 0.019 0.137 ± 0.012 0.139 ± 0.013
NN 0.170 ± 0.017 0.175 ± 0.018 0.165 ± 0.022
KNN 0.162 ± 0.017 0.146 ± 0.016 0.125 ± 0.015

Worst-Subgroup Accuracy
LR 0.694 ± 0.047 0.788 ± 0.007 0.753 ± 0.012
GB 0.711 ± 0.016 0.799 ± 0.010 0.776 ± 0.011
XGB 0.733 ± 0.014 0.787 ± 0.008 0.789 ± 0.009
NN 0.735 ± 0.017 0.772 ± 0.012 0.745 ± 0.012
KNN 0.745 ± 0.009 0.767 ± 0.013 0.744 ± 0.007

Folktables MIXTURE Setting Results
NTrain 50 (95% CI) 4000 (95% CI) 16000 (95% CI)

Test Accuracy
LR 0.728 ± 0.012 0.776 ± 0.003 0.780 ± 0.003
GB 0.690 ± 0.015 0.792 ± 0.003 0.797 ± 0.003
XGB 0.715 ± 0.015 0.790 ± 0.003 0.808 ± 0.002
NN 0.748 ± 0.012 0.764 ± 0.003 0.766 ± 0.003
KNN 0.701 ± 0.018 0.744 ± 0.004 0.758 ± 0.003
Maximum Subgroup Disparity
LR 0.190 ± 0.026 0.167 ± 0.018 0.174 ± 0.018
GB 0.184 ± 0.024 0.156 ± 0.016 0.146 ± 0.016
XGB 0.179 ± 0.022 0.155 ± 0.014 0.144 ± 0.013
NN 0.169 ± 0.019 0.172 ± 0.020 0.161 ± 0.023
KNN 0.176 ± 0.022 0.125 ± 0.018 0.126 ± 0.015

Worst-Subgroup Accuracy
LR 0.689 ± 0.022 0.752 ± 0.012 0.754 ± 0.012
GB 0.660 ± 0.023 0.771 ± 0.011 0.776 ± 0.011
XGB 0.691 ± 0.018 0.769 ± 0.009 0.785 ± 0.010
NN 0.733 ± 0.013 0.741 ± 0.012 0.745 ± 0.014
KNN 0.680 ± 0.020 0.725 ± 0.009 0.744 ± 0.006

Table 2: Summary of model results at key checkpoints of training set size NTrain. We consider three
models: logistic regression (LR), gradient boosting (GB), and XG-Boost (XGB). These results are
for models trained on the Folktables dataset. At NTrain = 4000, in the SEQUENTIAL setting, data
from an additional Source B is added to the samples from Source A. For all NTrain in the MIXTURE
setting, Source A and B are sampled at a 75:25 ratio. All performance numbers are reported on a
test set from Source A.

17



Under review as a conference paper at ICLR 2024

2 0 2
x

4

2

0

2

4

y

Toy Data

yB(x)
yA(x)
train1
deploy1

20 40 60 80 100
n

0

5

10

15

20

M
SE

MSE Error on Dtest 
 in the Sequential Setting

deploy loss
train loss

20 40 60 80 100
n

0

5

10

15

20

M
SE

MSE Error on Dtest 
 in the Mixture Setting

deploy loss
train loss

Figure 21: Toy experiments where in the sequential case, we see error on the test set getting worst
as the size of the training examples in creases in the Sequential Setting

2.5 0.0 2.5

4

2

0

2

4
n=10

2.5 0.0 2.5

n=20

2.5 0.0 2.5

n=30

2.5 0.0 2.5

n=40

2.5 0.0 2.5

n=50

2.5 0.0 2.5
4

2

0

2

4
n=60

2.5 0.0 2.5

n=70

2.5 0.0 2.5

n=80

2.5 0.0 2.5

n=90

2.5 0.0 2.5

n=100

yB(x)
yA(x)
D_train
y(x)

Learned function with increasing n

Figure 22: Visualization of learn function as the number of training data points increases. We see
that ŷ becomes closer to yB(x) as more data points are added from D̂2 in the sequential Setting.

B EXTENSIONS TO NOTIONS OF DATA QUALITY

The canonical model of data in machine learning assumes that empirical data are sampled iid from
an underlying distribution. There are several consequences of these given conditions, most notably
the following assumptions:

• Test and training set data distributions are identical.
• Training data distribution remains consistent as the dataset size increases.

However, something that is not as often considered is how the training set distribution changes as
dataset size increases, at times becoming increasingly divergent from a fixed test distribution. In this
work, we specifically investigate this phenomenon.

B.1 SOURCES OF SAMPLING BIAS

Not all cheap data is equally bad and not all distributions are equally shifted. In this paper, we
discuss sampling bias issues incurred via data accumulation. Here, we awknowledge some common
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sources of sampling bias that may arise when the following types of data are favored in the data
sampling process:

1. Easy-to-access data: Machine learning datasets are often amassed using data that is readily
available on the internet or even data that is collected without consent. In the healthcare
domain, publicly available datasets from a few select hospitals may dominate the training
set for a specific task.

2. Complete data: Parts of datasets with missing features may be discarded. Individuals may
be included in surveys only if a survey is filled out in its entirety. Differential knowledge of
family medical history may impact which health records are used to identify and develop
certain diagnostic tools.

3. Unambiguous data: Data points with multiple or conflicting labels may be discarded. Out-
lier or ambiguous images or text data may be discarded to bolder the statistical robustness
of the resultant classifier.

C DETAILED RELATED WORK

C.1 DATA SCALING

“Scaling laws” more broadly refer to how increases in model “size” lead to improved performance.
Typically, model size is described in terms of the number of model parameters, compute and other
measured factors characterizing the model (Kaplan et al., 2020; Bahri et al., 2021). Data “scaling
laws” (Zhang et al., 2020; Bansal et al., 2022; Zhai et al.) specifically reveal the way in which
training on larger and larger datasets yield improved performance. For instance, in (Touvron et al.,
2023), large language models trained on datasets with at least 1T tokens beats out models with an
order of magnitude more parameters.

Looking at scaling laws for multiple sources in particular, (Hashimoto, 2021) model data as coming
from k sources q1, ..., qk where p =

∑
k∈[k] qkpk is the training data; these sources could be different

categories of amazon reviews. They measure the resulting excess loss on some test distribution that
arises from training with a specific data mixture of n datapoints pn,q:

L(n, q) = El(θ̂(pn,q, x, y))− inf
θ
El(θ;x, y)

In their experiments, they find that L(n, q) only decreases as n increases; even when q does not
match the test distribution well. But they propose an estimation technique based on optimal experi-
mental design which estimates the excess loss based on dataset size n and composition q.

C.2 THE LIMITATIONS OF MORE DATA

Unfortunately, more data can also lead us astray. (Meng, 2018) present a model which decomposes
estimation error into three components: data quality, data quantity, and problem difficulty:

θ̂ − θ = ρR,θ ×

√
1− f

f
× σθ

where R is a binary random variable representing whether an individual responded, θ is the quantity
of interest we are trying to estimate, and f captures how much of the underlying population (i.e.
f = 1 corresponds to the entire population while f = 0 corresponds to no data). ρR,θ represents
data quality; if R corresponded to a perfected random sample, this correlation between θ and R

should be zero.
√

1−f
f represents error arising from data quantity; if we survey the entire popu-

lation f = 1, the error would be zero. σθ captures problem difficulty and would be zero if θ is a
constant. Furthermore, (Meng, 2018) shows that data quality cannot be compensated by more data
when sampling is biased and not truly probabilistic, estimation error scales according to

√
N the

population size and not the sample size. Looking at a Z−score for the estimation of θ:

Zn,N =
θ̄n − θ̄N√
VSRS(θ̄n)

=
√
N − 1ρR,θ

19



Under review as a conference paper at ICLR 2024

Here we see that while the Z-score should go to zero under random sampling (ρR,θ ≈ 0), the
sampling error can scale according to the population size

√
N when there is sampling bias. If we

rewrite the above equations with respect to the effective sample size by setting the mean squared
error of SRS (simple random sampling) estimator equal to the mean squared error of our biased
sampling:

neff ≤ f

1− f

1

Eρ2R,θR
=

n

1− f

1

NEρ2R,θR

When Eρ2R,θR decreases at a rate of O(1), the effective sample size neff decreases rapidly. In other
words, the actual effective sample size depends crucially on data quality.

C.3 REPRESENTATION MATTERS (ROLF ET AL, 2021)

Does collecting more data from underrepresented groups help? In Rolf et al, the key mechanism of
change is the allocation of the proportion of groups in the dataset, which the model practitioner can
either choose directly or learn for the optimal loss. This assumes the ability to sample directly from
the group-specific distribution. The work also maps the approach to importance weighting (reweight
training samples with respect to group distributions) and group distributional robust optimization
(minimizes the maximum empirical risk over all groups).

We can formulate this as a function of the group proportions of the training data. For dataset S =
{xi, yi, gi}ni=1 where features xi, label yi, and discrete group gi for groups G − {1, . . . , |G|} are
measured. The population prevalence γg = P(X,Y,G)∼D[G = g] is related to the ability to empirical
allocation of groups in the data αg = 1

n

∑n
i=1 I[gi = g].

Sampling from allocation α is defined as independently sampling of |G| disjoint datasets Sg and
concatenating according to S(α, n) =

⋃
g∈G Sg with

Sg = {xi, yi, g}
ng

i=1, (xi, yi) ∼iid Dg

C.4 MORE DATA CAN BE HELPFUL FOR FAIRNESS SOMETIMES (CHEN ET AL, 2018)

The paper focuses on many different ways to improve fairness of a model, one of which may be
adding more training data. As relevant to this group, error due to variance (as opposed to statistical
bias and statistical noise) can be estimated via a distribution learning curve. An assumption of the
model is therefore that any new data will be from the same distribution as the training data, on which
the learning curve is estimated.

Unfairness can be defined as Γ(Ŷ , n) := |γ0(Ŷ , n) − γ1(Ŷ , n)| for predictions Ŷ , sample size n,
and group-specific unfairness γ. Based on prior empirical studies, these type II learning curves can
be approximated as asymptotic inverse power-law γa(Ŷ , na) = αan

−βa
a + δa.

However, when subgroups are difficult to identify, the role of data is less known. Recent work by
Izzo et al. (2023) presents data-driven strategies for finding subpopulations based on groups where
a linear relationship exists between features and the label. While this approach does not explicitly
add more data, the composition of data here is imperative for understanding downstream outcomes.

Given an unbalanced dataset, subsampling (reducing the dataset size as a result) has been shown to
achieve better worst-group performance than empirical risk minimization on the entire dataset (Ar-
jovsky et al., 2022).

C.5 RELATIONSHIP TO DOMAIN ADAPTATION, DISTRIBUTION SHIFT, AND TRANSFER
LEARNING

Domain Adaptation The field of domain adaption provides another lens to view the problem of
overcoming data quality challenges. Domain Adaption is concerned with the problem of training
models with source data and performing well on a target domain (Kouw & Loog, 2018; Zhuang
et al., 2020). In Unsupervised Domain Adaptation, the majority of the work in the area, labeled
source domain data, and unlabeled target domain data are available for training(Wilson & Cook,
2020). In Supervised Domain Adaptation, only a few or scarce samples from the target dataset and
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Figure 23: Overview of components of data composition. The domain adaptation literature consid-
ers a fixed Dtrain = {DSource, DTarget} and develops model-based techniques to achieve good
performance on Ddeploy = DTarget regardless of data properties (Kouw & Loog, 2018). Works
in the area of distribution shift assume some difference in similarity between Dtrain and Ddeploy

measure drop in performance and worst-group performance (a subset of fairness metrics (Koh et al.,
2021).

the source dataset are fully labeled(Motiian et al., 2017). In this setting, the target domain can be
thought of as high-quality data, and the source domain can be thought of as low-quality data (Kouw
& Loog, 2018).

A related area of literature concerned with shifts in data quality is distributional robustness and dis-
tribution shift. Worst subgroup performance (subpopulation shift) and overall performance (domain
generalization) on an out-of-distribution dataset are metrics presented in the domain adaptation lit-
erature aimed at measuring distribution shift (Koh et al., 2021). Methods for domain generalization
have been critiqued as no better than empirical risk minimization (Gulrajani & Lopez-Paz, 2020).
Spurious correlation and unseen data shift observed by Wiles et al. (2021) can be thought of as a
fine-grained analysis of barriers for domain generalization. Subpopulation shift, the type of distri-
bution shift, describes a difference in subgroup prevalence between training and unseen datasets that
might result in compromised worst group performance (Yang et al., 2023). Works in this area con-
sider a fixed dataset for training(e.g. In- & Out-of-Distribution) to develop algorithmic interventions
and give theoretical guarantees based on a uniform sample size or asymptotic results. Little is known
about how sample size and data composition contribute to distributional differences themselves.

Data Composition A recent line of work has looked beyond shifts in train and test distributions
and instead asked the question of how properties of datasets such as size, diversity, noise, redun-
dancy, and similarity affect model outcomes. Data Composition is a broader framework for how data
impacts outcomes rather than algorithmic interventions to achieve certain model outcomes (Figure
23). For example, Nguyen et al. (2022) study vision-language models and how combining datasets
and increasing dataset size impacts overall performance and distributional robustness. In fact, Gadre
et al. (2023) introduces a common task where given a fixed set of models, the goal is to find the best
subset of training data. Table 3 summarizes existing work in data composition in terms of dataset
domain, data properties measured and model outcomes of interest.

D DATASET DETAILS

D.1 FOLKTABLES ACSINCOME

Folktables ACSIncome dataset (Ding et al., 2021) is a binary classification task to predict the income
of an American adult using 10 census features. Our data sources include data from 2014 12 states:
Nebraska (NE), Iowa (Iowa), Minnesota (MN), Ohio (OH), Pennsylvania (PN), Michigan (MI),
Texas (TX), Louisiana (LA), Georgia (GA), Florida (FL), California (CA), South Carolina (SC),
Washington (WA), Massachusetts (MA); chosen for a mixture of demographic composition and
population. We consider subgroups defined by race.
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Domain Data Properties Model Outcomes

Nguyen et al. (2022) Vision-Language Noise, Size Robustness
Xie et al. (2023a) Language Diversity Performance, Efficiency
Marion et al. (2023) Language Redundancy Performance
? Language Redundancy Performance
Gadre et al. (2023) Multi-modal Size, Similarity, Redundancy Performance

Our Work Tabular Data Similarity, Size Performance, Fairness (Dis-
parity), Robustness (Worst
Group)

Table 3: Summary of Existing Work in Data Composition

D.2 YELP REVIEWS

The Yelp dataset contains crowd-sourced reviews of businesses from states across Canada and the
US. The data sources are defined by state, and subgroups are defined by restaurant category. We
predict the number of review stars as a multi-class prediction problem using business features review
text, totaling 134,092 features.

D.3 MIMIC-IV CLINICAL RECORDS

The Medical Information Mart for Intensive Care (MIMIC)-IV database contains intensive care unit
(ICU) patient data between 2008-2019 from the Beth Israel Deaconess Medical Center (BIDMC).
We predict binary patient readmission using diagnosis codes extracted from the patient record. There
are 9 possible admission types, including urgent care, surgical same-day, and emergency ambulatory
observation. Subgroups are patient self-reported race. We predict 15-day patient readmission, and
we use 49,469 diagnosis codes recorded in the clinical record as features. The disparity subgroup is
the self-reported race group at the time of admission.

E EXPERIMENTAL DETAILS

The investigated scenario is one in which a data modeler has data for one constrained setting of
limited training examples, and relies on an external data source or set of sources to supplement the
training dataset with additional examples.

Dataset sources are defined by a single sampling process from a general available population of data
points. Each distinct sampling process is considered a separate data source.

We refer to data accumulation as the process of increasing the size of a dataset, often for model
training. Note that this constitutes a slightly different context from simpler notions of data scaling,
which typically involves collecting more samples from a single data sampling process, i.e. scaling up
data collection from a single source. Data accumulation includes data scaling but could also involve
other approaches to increase dataset size – it thus represents a more generalized notion of increasing
dataset size via a variety of available strategies. In this work, we investigate the performance of
model performance in two cases of data accumulation (i.e. single-source case and multi-source
case) and for two settings of the multi-source case (i.e. SEQUENTIAL and MIXTURE setting).

In the single-source setting, training dataset size is collected from a single sampling process from
the general population. In order to increase dataset size, the amount of data collected via this process
is increased - this is effectively equivalent to much of the prior work on data scaling. In the multi-
source setting, training data is collected via a combination of samples sourced from distinct sampling
processes. This means the final training set is effectively an amalgamation of data from more than
one dataset source.

Generally, there are at least two settings for the multi-source case, as described in Figure. The
SEQUENTIAL setting involves the addition of data from new sources as the overall dataset size
increases. The MIXTURE setting includes scaling up a fixed ratio of a mixture of data from more
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than one source. One can also imagine a combination of both settings where the ratio of the mixture
setting changes as the dataset size increases.

F PROOFS

Proof for Lemma 3.1

Lemma F.1. Let Dtrain,n be constructed in the SEQUENTIAL case from k sources: DS1
, ..., DSk

,
then if δ(DSk

, Dtest)− cn
nsk

≥ δ(Dtrain,n, Dtest)

δ(Dtrain,n, Dtest) ≥ δ(Dtrain,n−nsk
, Dtest)

where δ belongs to the family of f-divergences and c is a divergence-dependent constant where
δ(Dtrain,n, Dtest) + c =

∑m
i=1

nsi

n δ(DSi
, Dtest).

Proof. Without loss of generality, the last source in the composition of Dtrain,n is partially used, we
define the size of the last source as simply nk and forget that there is unused data in the last source.
Thus we can simply the overall training distribution as Dtrain,n =

∑k
i αiDSi where αi = ni

n .
Furthermore, let n be the total number of examples with k sources and let n′ = n− nk be the total
number of examples with k − 1 sources.

By convexity of δ (Jenson’s):

δ(Dtrain,n′ , Dtest)

≤
k−1∑
i

ni

n′ δ(DSi
, Dtest)

=

k−1∑
i

ni

n′
n

n
δ(DSi

, Dtest)

=
n

n′

k−1∑
i

ni

n
δ(DSi , Dtest)

=
n

n′

( k∑
i

ni

n
δ(DSi

, Dtest)−
nk

n
δ(DSk

, Dtest)
)

Since δ(Dtrain,n, Dtest) ≤
∑k

i
ni

n δ(DSi
, Dtest) then for some constant c:

=
n

n′

(
δ(Dtrain,n, Dtest) + c− nk

n
δ(DSk

, Dtest)
)
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Thus we need the following condition to be true:

n

n′

(
δ(Dtrain,n, Dtest)+

c− nk

n
δ(DSk

, Dtest)
)
≤ δ(Dtrain,n, Dtest)

n

n′

(
c− nk

n
δ(DSk

, Dtest)
)
≤ (1− n

n′ )δ(Dtrain,n, Dtest)

n

n′

(
c− nk

n
δ(DSk

, Dtest)
)
≤ (

n′ − n

n′ )δ(Dtrain,n, Dtest)

n
(
c− nk

n
δ(DSk

, Dtest)
)
≤ (n′ − n)δ(Dtrain,n, Dtest)

n

n′ − n

(
c− nk

n
δ(DSk

, Dtest)
)
≥ δ(Dtrain,n, Dtest)

n

n− n′

(nk

n
δ(DSk

, Dtest)− c
)
≥ δ(Dtrain,n, Dtest)

nk

n− n′ δ(DSk
, Dtest)−

cn

n− n′ ≥ δ(Dtrain,n, Dtest)

since nk = n− n′

δ(DSk
, Dtest)−

cn

nk
≥ δ(Dtrain,n, Dtest)

This final condition gives tells us that δ(DSk
, Dtest) must be at least larger than δ(Dtrain,n, Dtest

in order for the resulting divergence after adding source k to be larger. How much larger depends on
c which we can think of as the convexity constant of the divergence for f-divergences.

Theorem F.2. (Acuna et al., 2021) For l : Y × Y → [0, 1] ∈ domϕ∗, every h in some hypothesis
class H :

E(x,y)∼Dtest
[l(h(x), y)] ≤ E(x,y)∼Dtrain,n

[l(h(x), y)] + δϕh,H(Dtrain,n,Dtest) + λ

where ϕ∗ is the Fenchel conjugate of a convex, lower semi-continuous function ϕ that satis-
fies ϕ(1) = 0, δϕh,H is a discrepancy upper bounded by a corresponding f-Divergence, and λ
is the sum of risk from the ideal joint hypothesis h∗ over the train and test distributions (i.e.
λ = E(x,y)∼Dtest

[l(h∗(x), y)] + E(x,y)∼Dtrain,n
[l(h∗(x), y)])
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