
A Measuring human performance on CIFAR-100 vs CIFAR-10 OOD task

While the typical accuracy a human reaches is often known for classification tasks, there is a lack
of such benchmark for near-OOD detection. We decided to measure human performance on the
task of distinguishing CIFAR-100 and CIFAR-10. To do that, we wrote a simple graphical user
interface (GUI) where a user is presented with a fixed number of images randomly chosen from the
in-distribution and out-of-distribution test sets (CIFAR-10 and 100 in our case). The user then clicks
on the images they believe belong to the in-distribution. To make this easier, we allow the user to
choose the images belonging to the individual classes of the in-distribution. An example of our GUI
is shown in Figure 8.

Figure 8: Graphical User Interface (GUI) for human benchmarking of near-OOD detection. The user
clicks on images belonging to any of the 10 in-distribution CIFAR-10 classes. The user is shown
20 images at a time, and once they are done with their selection, they press a key and a new group
of randomly chosen images (equal probability of CIFAR-10 and CIFAR-100) is shown. The figure
shows 3 randomly chosen groups of 20 images, together with user-selected CIFAR-10 images framed
by the color corresponding to their selected class.

In the case of CIFAR-10 and CIFAR-100 distributions (selecting the classes of CIFAR-10), the user
clicks on all images belonging to each of the 10 classes: airplane, automobile, bird, cat, deer, dog,

frog, horse, ship, truck. This is done without any exposure to the training set or examples of any of the
classes, based only on the class names and using the fact that people are generally very familiar with
the semantic concept of these labels. Coincidentally, this is quite similar to the kind of familiarity
large pre-trained transformers gain by the breath of their pre-training.

We calculated the AUROC for the CIFAR-10 / CIFAR-100 task on their test sets, where choosing any
of the 10 classes was acceptable as a valid CIFAR-10 selection by the user. The results are shown in
Table 6. The average AUROC weighted by the number of images in each trial is AUROC 95.90%.

B Visualizing the effect of outlier exposure on fine-tuned pre-trained models

Figure 9 shows the outlier score on near-OOD task. Intuitively, the embeddings obtained by fine-
tuning a pre-trained transformer are well-clustered, so just a handful of known outliers can signifi-
cantly improve OOD detection.

15



Table 6: Author’s results on CIFAR-100 vs CIFAR-10 distinguishing task.
Date Number of images AUROC

April 7 2021 1140 96.14%
April 25 2021 1700 95.67%
April 27 2021 940 96.03%

Figure 9: The effect of outlier exposure (CIFAR-10) on ViT a model fine-tuned on CIFAR-100.
Each panel shows the same two-dimensional PCA cut of the space of embeddings. Examples of 2
in-distribution (CIFAR-100) classes (black plus signs = "bus", yellow crosses = "pickup truck"), and 1
out-of-distribution (CIFAR-10) class (red dot = "automobile"). The left-most plot shows Mahalanobis
OOD score as the color coding. The more OOD outlier exposure (second to left to right), the better
aligned the OOD probability contours with the underlying classes.

C Additional results for visual OOD detection

We tested our OOD detection on several more tasks in addition to CIFAR-{10, 100} ! CIFAR-
{100, 10} in Table 1. We used the Describable Textures dataset (DTD, or Textures in our tables)
[Cimpoi et al., 2014], Places365-Standard (Places365 in our tables) [Zhou et al., 2017] and SVHN
Netzer et al. [2011] datasets as provided by tensorflow datasets.8 In all cases we use the test set of
each dataset.

Besides the area under the receiver operating characteristic curve (AUROC), we also evaluate OOD
performance using the area under the precision-recall curve (AUPRC) and the false positive rate
at N% true positive rate (FPRN), as in Hendrycks et al. [2018]. Since our goal is to detect OOD,
we treat OOD test set as the positive set and in-distribution test set as the negative set. AUROC
and AUPRC are threshold independent, evaluating the overall OOD performance across multiple
thresholds. AUROC is also sample size independent, while AUPRC is sensitive to detect imbalance
between positive and negative sets. FPRN computes the false positive rate at which N% of OOD
data is recalled. As a common practice, we set N = 95.

Table 7: ImageNet-21k pre-trained Vision Transformer fine-tuned on the in-distribution training set.
More datasets in addition to Table 1.

In-
distribution

fine-tuned
test

accuracy

Out-
distribution

Maha.
AUROC "

Maha.
AUPRC"

Maha.
FPR95#

MSP
AUROC"

MSP
AUPRC"

MSP
FPR95#

CIFAR-100 91.71%

CIFAR-10 96.23% 96.32% 18.73% 92.13% 92.57% 37.73%
Textures 99.03% 96.53% 4.27% 96.28% 99.22% 17.30%
SVHN 97.80% 98.87% 8.42% 97.15% 93.61% 13.05%

Places365 93.95% 99.78% 29.22% 88.37% 39.57% 51.02%

CIFAR-10 98.70%

CIFAR-100 98.52% 98.70% 6.89% 97.79% 97.72% 9.76%
Textures 99.97% 99.83% 0.05% 99.59% 99.92% 1.73%
SVHN 99.58% 99.82% 1.90% 98.77% 97.75% 4.03%

Places365 98.51% 99.95% 4.54% 97.14% 50.92% 10.13%

The additional results are shown in Table 7. SVHN and Textures are far-OOD tasks and our methods
achieve AUROC of around 98% or higher. Places365 is a harder OOD task, see the discussion in

8https://www.tensorflow.org/datasets
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[Winkens et al., 2020] where they compute Confusion Log Probability (CLP) score for different
OOD datasets and demonstrate that CIFAR-100 vs CIFAR-10 and CIFAR-* vs Places365 are more
difficult OOD detection tasks than CIFAR-* vs SVHN and CIFAR-* vs Textures. On CIFAR-100 vs
Places365, we achieve 93.9% (Winkens et al. [2020] report 82%) and on CIFAR-10 vs Places365, we
achieve 98.5% (Winkens et al. [2020] report 95%).

To ensure that the approach works when training using high-resolution images, we also fine-tuned
using ImageNet2012 and used Places365 as OOD. We are not aware of results using Mahalanobis
distance for this dataset pair, but “Scaling Out-of-Distribution Detection for Real-World Settings”
report 79% using MSP and 83% for MaxLogit (un-normalized logit) for ResNet-101. Using pre-
trained ViT, we achieve 82.79% for MSP, 89.43% for MaxLogit, both of outperform the previously
reported numbers. For completeness, we achieve 87.35% AUROC for Mahalanobis distance. See
results in Table 8.

Table 8: ImageNet-21k pre-trained Vision Transformer fine-tuned on ImageNet-2012.

In-
distribution

fine-tuned
test

accuracy

Out-
distribution

Maha.
AUROC "

MSP
AUROC"

MaxLogit
AUROC"

ImageNet-1k 83.97% Places365_small 87.35% 82.79% 89.43%

C.1 Scaling of OOD performance with in-distribution test accuracy

In this section, we evaluate the relationship between fine-tuned in-distribution test accuracy and
OOD detection performance. We looked at intermediate checkpoints during fine-tuning and observed
the dependence of the in-distribution test accuracy and OOD detection performance (AUROC). We
focused on the CIFAR-100 fine-tuning and the CIFAR-100 vs CIFAR-10 OOD detection task as it
was the most challenging widely used benchmark we studied. The results are shown in Figure 10. We
observe that the higher the in-distribution test accuracy, the higher the OOD detection AUROC. For the
Vision Transformer, fine-tuning with and without augmentation leads to the same relationship between
accuracy and OOD detection performance. However, we found that training with augmentation
leads to a slower convergence. We found that the scaling relationship we identified on ViT-B_16
holds remarkably well even for large ViT models, such as ViT-L_16 as shown in Figure 10. As
shown in Table 9, larger ViT models such as ViT-L_16 and ensemble of ViT models further improve
OOD detection, improving the AUROC from 96.23% to approximately 98.11%, establishing a new
state-of-the-art on this task.

Table 9: ImageNet-21k pre-trained ViT fine-tuned on the in-distribution training set.

Model In-
distribution

fine-tuned
test

accuracy

Out-
distribution

Mahalanobis
AUROC

MSP
AUROC

ViT-B_16 CIFAR-100 90.95% CIFAR-10 95.53% 91.89%
R50+ViT-B_16 CIFAR-100 91.71% CIFAR-10 96.23% 92.08%

ViT-L_16 CIFAR-100 94.73% CIFAR-10 97.98% 94.28%
ViT ensemble CIFAR-100 — CIFAR-10 98.11% 95.15%

C.2 Additional results for zero-shot OOD detection using CLIP

In Table 10 we extend the zero-shot OOD detection results for CLIP in Table 5 by using the names of
the in-distribution classes and comparing them to the the opposite of concatenated with the same
names. The performance is above random, but not significant compared to even using just the
in-distribution names, as shown in Table 5.

C.3 Qualitative analysis of OOD detection using ViT

In this section we present some qualitative failure cases of OOD detection. The results for the
CIFAR-100 (in-distribution) vs CIFAR-10 (out-distribution) experiment are shown in Figure 11. For
the CIFAR-10 images that are mistakenly classified as in-distribution (CIFAR-100), the top images
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Figure 10: The dependence of OOD performance on in-distribution test accuracy for ViT models
fine-tuned on CIFAR-100. Square markers represent different checkpoints during fine-tuning (lower
accuracy corresponds to fewer steps of fine-tuning). The purple markers represent larger ViTs from
Steiner et al. [2021]. The higher the accuracy on the in-distribution, the better the OOD performance.
The blue linear fit uses only the square datapoints, but intersects the purple datapoints (large ViTs)
well, suggesting a robust scaling.

Table 10: Zero-shot OOD detection using image-text multi-modal models. In Table 5 we show the
performance of CLIP in the zero-shot OOD regime with candidate labels that are the names of the
classes of the in-distribution, and optionally the names of the classes of the out-distribution dataset.
In this table we present results using the names of the in-distribution classes as compared to the

opposite concatenated with the same names.

Distribution 1 Distribution 2 Labels 1 Labels 2 AUROC

CIFAR-100 CIFAR-10 CIFAR-100 names "the opposite of"
+CIFAR-100 names 61.37%

CIFAR-10 CIFAR-100 CIFAR-10 names "the opposite of"
+CIFAR-10 names 71.894%

are actually mislabeled images from the CIFAR-10 test set (a fox labeled as a cat, and a kangaroo
labeled as a deer). They are followed by automobiles and trucks (both CIFAR-10 classes) that are
seen as buses and streetcars (similar CIFAR-100 classes). In those cases, the distinction could be
unclear even to a human.

We show several qualitative failure cases for the CIFAR-100 (in-distribution) vs SVHN (out-
distribution) experiment in Figure 12. The out-distribution images that are most like CIFAR-100
(Figure 12a) are numbers "2", "5" and "6" written in an especially wiggly font, sometimes with
plastic-like filler, giving them a very worm-like quality that the model perceives. The last image
we show gets perceived as a cloud, likely due to its deep blue background and low resolution. In
Figure 12b we show the images from the in-distribution that have the closest embedding vector to the
SVHN mistakes. They do look very similar.

Overall the mistakes our models make are semantically meaningful to a human. For CIFAR-10, they
contain mislabeled examples of the CIFAR-10 test set that should not have been included in the first
place, or genuine imperfect categories such as automobile, truck, bus, and streetcar, which are even
harder to distinguish in the 32⇥32 resolution. For SVHN, the mistakes we get are also very plausible
to a human.

Figure 13 and Figure 14 show examples of the most confusing pairs of (OOD class (CIFAR-10),
in-distribution class (CIFAR-100)). We looked at the OOD examples with the lowest Mahalanobis
distances, e.g. the ones that are the most in-distribution-like to the network at hand (ViT fine-tuned on
the CIFAR-100 train set). Going from the smallest distance up, we sorted these images based on the
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(a) OOD images (CIFAR-10) closest to the in-distribution (CIFAR-100).

(b) The in-distribution (CIFAR-100) images with the closest embedding vector to images in Figure 11a.

Figure 11: CIFAR-100 (in-distribution) vs CIFAR-10 (out-distribution): Images from the out-
distribution that reached the lowest Mahalanobis distances from the in-distribution (Figure 11a) and
the in-distribution images with the most similar embedding vectors (Figure 11b). The comparison to
the closest in-distribution images demonstrates that OOD detection in these particular cases might be
failing due to the limitations of the labelling in the original dataset and genuine semantic ambiguity
of some classes. The first two images in Figure 11a do not belong to CIFAR-10 and have likely been
included by accident.

(a) OOD images (SVHN) closest to the in-distribution (CIFAR-100).

(b) The in-distribution (CIFAR-100) images with the closest embedding vector to images in Figure 12a.

Figure 12: CIFAR-100 (in-distribution) vs SVHN (out-distribution): Images from the out-distribution
that reached the lowest Mahalanobis distances from the in-distribution (Figure 12a) and the in-
distribution images with the most similar embedding vectors (Figure 12b). The most similar images
demonstrate that the some of the digits genuinely look like worms.

tuple of which CIFAR-10 class the OOD image came from, and which class the CIFAR-100 test set
image that has the most similar embedding vector to it belongs. We show examples that come from
classes related to vehicles in Figure 13, and to animals in Figure 14. Some of the least-OOD-like
CIFAR-10 examples shown are literal mistakes, and they should not have been included in CIFAR-10
at all (e.g. the first column "truck" being actually a tractor in Figure 13, or the first column "cat" in
Figure 14 being actually a fox). Many of the classes have a genuine semantic overlap, especially
among the vehicles. For example, the CIFAR-10 class "automobile" has a large number of vans, that
are also included in the CIFAR-100 class "bus". The CIFAR-10 class "truck" and the CIFAR-100
class "pickup truck" share equally mutually similar vehicles.

D Additional results for genomics OOD detection

We report additional results for genomics in Table 11 and Table 12.
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Table 11: Genomics OOD detection using pre-trained BERT and fine-tuned on the in-distribution
training set. The error bars shown are standard deviations over 3 runs.

Model Test Accuracy Mahalanobis MSP
AUROC" AUPRC" FPR95# AUROC" AUPRC" FPR95#

1D CNN [Ren et al., 2019] 85.93±0.11% 64.75±0.73% 60.25±0.82% 77.76±0.84% 65.84±0.46% 62.24±0.31% 89.79±0.18%
BERT pre-train and fine-tune 89.84±0.00% 77.49±0.04% 78.79±0.06% 68.22±0.13% 73.53±0.03% 73.86±0.03 85.39±0.07%

Table 12: Few-shot outlier exposure for genomics OOD. The numbers here correspond to Figure 6.
The error bar is the standard deviation of 3 runs.

# OOD examples
per class

w/o fine-tuning
ignore outlier label

w/o fine-tuning
use outlier label

w/ fine-tuning
ignore outlier label

w/ fine-tuning
use outlier label

1 75.32±1.14% 74.95±0.87% 84.36±0.60% 82.21±1.10%
2 75.67±0.50% 76.01±0.19% 84.81±0.83% 83.74±0.47%
5 77.84±1.06% 77.67±0.71% 86.54±0.58% 85.94±0.28%
10 77.81±1.37% 79.00±0.69% 87.02±0.45% 86.49±1.43%

100 80.21±0.14% 82.17±0.33% 87.94±0.62% 88.49±0.51%

20



Figure 13: CIFAR-100 (in-distribution) vs CIFAR-10 (out-distribution), hard to distinguish pairs
of classes involving vehicles: The plots show pairs of images, top row from the out-distribution
(CIFAR-10) and the bottom row having the closest embedding vector to it from the in-distribution
(CIFAR-100), for pairs of classes for which OOD images are the closest to the in-distribution
(=hardest to distinguish). Our examples show that there is a genuine semantic overlap between some
CIFAR-10 and CIFAR-100 classes that limits the OOD performance of any model.
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Figure 14: CIFAR-100 (in-distribution) vs CIFAR-10 (out-distribution), hard to distinguish pairs
of classes involving animals: The plots show pairs of images, top row from the out-distribution
(CIFAR-10) and the bottom row having the closest embedding vector to it from the in-distribution
(CIFAR-100), for pairs of classes for which OOD images are the closest to the in-distribution
(=hardest to distinguish). Our examples show that there is a genuine semantic overlap between some
CIFAR-10 and CIFAR-100 classes that limits the OOD performance of any model.
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