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Abstract

Multi-agent systems (MAS) leveraging the impressive capabilities of Large Lan-
guage Models (LLMs) hold significant potential for tackling complex tasks. How-
ever, most current MAS depend on manually designed agent roles and communica-
tion protocols. These manual designs often fail to align with the underlying LLMs’
strengths and struggle to adapt to novel tasks. Recent automatic MAS approaches
attempt to mitigate these limitations but typically necessitate a validation set for
tuning and yield static MAS designs lacking adaptability during inference. We
introduce MAS-ZERO, the first self-evolved, inference-time framework for auto-
matic MAS design. MAS-ZERO employs meta-level design to iteratively generate,
evaluate, and refine MAS configurations tailored to each problem instance, without
requiring a validation set. Critically, it enables dynamic agent composition and
problem decomposition through meta-feedback on solvability and completeness.
Experiments across math, graduate-level QA, and coding benchmarks, using both
closed-source and open-source LLM backbones of varying sizes, demonstrate that
MAS-ZERO outperforms both manual and automatic MAS baselines, achieving
a 7.44% average accuracy improvement over the next strongest baseline while
maintaining cost-efficiency. These findings underscore the promise of meta-level
self-evolution in MAS design.

1 Introduction

While standalone large language models (LLMs) have demonstrated strong performance across
numerous tasks [9, 20, 36], many problems remain too intricate for a single model to solve effec-
tively [38, 14]. To tackle these challenges, the exploration of multi-agent systems (MAS) composed
of multiple LLM agents has gained increasing traction among researchers [19].1 These agents often
assume distinct roles, such as generator or verifier [35], engage in debates offering varied perspectives
[30, 37], and perform assigned subtasks [22].

A fundamental challenge in MAS lies in designing an effective connection and configuration of
these agents to solve a given problem. Initially, MAS were handcrafted, with humans designing
both agent roles and inter-agent communication protocols. However, MAS composed entirely of
such manually designed configurations have faced issues such as poor problem specification and

1Agents in a MAS can interact with external environmental tools e.g., search tools [17], or collaborate with
other agents to address tasks requiring diverse capabilities or multiple steps [23, 5]. This work focuses on the
latter scenario, where each agent within the MAS is an LLM communicating with other LLM agents.
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Figure 1: Scatter plots comparing the Pareto fronts of various GPT-4o-based systems on three benchmarks.
Manual MAS are marked in purple and automatic MAS in blue. MAS-ZERO is highlighted as an orange star.
MAS-ZERO delivers high performance at lower cost than comparable automatic MAS methods, establishing a
new frontier for accuracy vs. cost trade-off.

inter-agent misalignment [3, 31], especially when the MAS agents are not specifically trained with
such configurations.

These shortcomings are understandable, as manually specifying agent roles, communication protocols,
and problem decomposition is difficult when the human designer and the underlying LLMs are not
well aligned. Moreover, manual approaches do not scale well to novel problems, especially as the
problems become more complex. Recent work has explored automatic MAS design, often framing it
as a pruning problem given a fixed and fully connected set of human designed MAS [51, 47, 44] or a
generation problem, where the MAS is generated by a central meta agent that orchestrates system
design [15, 47].

However, these automatic MAS design systems have significant limitations. Most rely on a “training”
phase with labeled validation sets to tune configurations, which are often unavailable in real-world
scenarios and may not generalize. This training, based solely on outcome correctness, provides limited
insight into the system’s internal dynamics. Furthermore, the training often yields a fixed architecture
(i.e., one for the entire problem set) which lacks per-problem adaptability at test time.2 While these
limitations might be less evident on simple tasks such as problems in GSM8K [8] and HumanEval
[6], commonly used for evaluation [15, 44, 47]. Figure 1 demonstrates that existing systems falter on
complex problems requiring multi-step planning and task decomposition. Alarmingly, many methods
show little to no improvement over simple CoT with the base LLM, meaning the integrated system
does not even outperform a single component.

To overcome these limitations, we argue that an effective MAS should satisfy two core desiderata:
(1) automatic design of agent structures aligned with the underlying LLM’s capabilities; and (2)
adaptivity to the specific problem. In this work, we propose a novel automatic inference-time MAS
optimization framework, called MAS-ZERO, which designs MAS with zero supervision, while
satisfying all the aforementioned desiderata. In particular, MAS-ZERO introduces a meta-agent that
iteratively understands the limitations of individual agents and their combinations, and refines the
MAS design accordingly. This process operates entirely at test time without relying on a validation
set, allowing for unique MAS designs per-problem and overcoming the limited adaptivity of prior
work. While this inference-time mechanism does incur higher token usage during testing, it avoids
expensive validation-time optimization and shifts the design effort to the testing phase, where it
can flexibly handle new tasks, and often be more effective [1]. Such a trade-off is inherent to
any inference-time approach and has demonstrated strong potential [24]. Crucially, MAS-ZERO
maintains a self-evolving process to build a compound agentic system, dynamically modifying its
architecture in response to intermediate execution signals, rather than relying on static prompts or
pre-defined templates.

To achieve this, MAS-ZERO tasks a meta-agent with multiple roles. Figure 2 illustrates a conceptual
overview and contrasts MAS-ZERO with both automatic and manual MAS designs. Specifically,
MAS-ZERO involves two key steps:

2[44] uses sub-networks for per-problem adaptivity, but the core MAS structure remains fixed.
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Figure 2: Conceptual comparison of MAS-ZERO, with existing automatic and manual MAS designs. In
manual MAS, “P” indicates the problem. “C” denotes the CoT generator, “A” denotes the majority aggregator in
CoT-SC, “J” denotes the final judge in a debate system, and “R” denotes the reflector in the self-refine system.
MAS-ZERO avoids tuning MAS on validation set by maintaining a self-evolving process that iteratively designs
and evaluates task-specific MAS at inference time.

• Meta-iterations: The meta-agent iteratively conducts two phases: (a) Meta-design: Decomposi-
tion of the given task and generation of a corresponding MAS implementation (as executable code),
allowing the system to adapt dynamically to each new task. (b) Meta-feedback: Evaluating the
generated MAS design for informative meta-level feedback, assessing two key criteria: solvability
(can the current MAS solve the problem?) and completeness (does the current MAS cover all
necessary steps?). Each iteration of this process produces a candidate solution to the task.

• Self-verification: The meta-agent selects the best outcome from the set of all candidate solutions
obtained throughout the meta-iterations.

Evaluations across three datasets covering diverse domains (math, graduate-level QA, and code) and
multiple LLM backbones (including both closed- and open-source models of varying sizes, such as
32B, 70B, and GPT-4o) show that our model outperforms manual and other automatic MAS baselines
by a minimum of 7.44% on average. Furthermore, MAS-ZERO consistently lies on the Pareto frontier
of accuracy and cost (Figure 1), effectively gaining a deeper understanding of both strengths and
weaknesses of the current MAS design over iterations to enhance future designs.

MAS-ZERO also provides insights into MAS design. For example, we observe the “MAS moment”,
where MAS-ZERO learns to decompose a new question and assign appropriate sub-MAS modules
to each sub-question dynamically (see Fig. 4). This type of dynamic assignment would have been
difficult to design manually. We also find that off-the-shelf LLMs, struggle to design effective
MAS when used directly, but with MAS-ZERO, the MAS performance improves significantly;
Additionally, by utilizing a verifier instead of validation set tuning, MAS-ZERO is poised to leverage
future improvements in verification. Despite achieving state-of-the-art (SoTA) with a relatively weak
self-verifier, our analysis indicates significant potential for further gains as stronger verifiers become
available. In summary, our key contributions are:

• We introduce MAS-ZERO, to our knowledge, the first inference-time-only automatic MAS design
framework. It works in a fully self-evolved way by learning from the behavior of the underlying
LLM agents at inference-time, enabling per-instance adaptivity with zero supervision.

3



• We present a new SoTA automatic MAS system that achieves substantial performance gains
over both manually designed and strong automatic baselines, while remaining cost-efficient and
Pareto-optimal across LLMs and domains.

• We evaluate MAS-ZERO on various domains and LLMs, presenting key insights from the self-
evolving process, including the MAS moment, gains from meta-iterations, upper bounds with an
oracle verifier, and generalizability across model strengths and agentic setups.

2 Related Work

Manual MAS design. Building on the success of single-agent systems (e.g., CoT [40], self-
consistency (CoT-SC) [39]), studies have shown that grouping multiple LLM agents into a MAS can
substantially improve individual agent performance. To this end, a variety of human-designed MAS
approaches have been proposed [41, 48, 27]. Representative work includes LLM debate [10], and
self-refine [28]. However, manually designed MAS are often limited in adaptability and scalability.
More importantly, human designers typically do not fully understand the capabilities or limitations of
the LLM agents, and may apply subjective preferences that do not align with optimal agent behavior.
This makes effective MAS design highly challenging, if not impossible, without automation.

Automatic MAS design. We broadly categorize recent work on automatic MAS design into two
families: pruning- and generation-based approaches.3

Pruning-based. This family starts with a fully connected, pre-defined graph where nodes represent
LLM agents or human-designed blocks (e.g., debate), and edges represent information flow. The goal
is to prune the graph to identify the most effective connections. Recent work includes MASS [49]
uses rejection sampling based on validation set performance, while MaAS [44] extends MASS with a
question-wise masking mechanism, allowing different questions to activate different subnetworks.
While these methods are typically easier to train, they are heavily constrained by the pre-defined
structure, which is suboptimal for many tasks.

Generation-based. In this family, a meta-agent LLM generates MAS from scratch, offering greater
flexibility in defining novel agents and architectures compared to pre-defined structures. However, this
expanded design space presents significant learning challenges. Recent efforts including ADAS [15]
and AFlow [47] frames MAS generation as a code generation task. ADAS stores and searches
historical designs based on validation performance, while AFlow enhances this with Monte Carlo
Tree Search. Our framework also adopts a code-based representation for MAS design. Unlike prior
work that uses a potentially unreliable validation set, MAS-ZERO uses self-evolving approach to
infer agent capabilities for meta-level design at inference-time. In addition, MAS-ZERO incorporates
question decomposition into MAS design, allowing it to construct and refine MAS at the sub-task
level, which is not supported by existing automatic MAS systems.

3 MAS-ZERO Framework

As shown in Fig. 3, MAS-ZERO takes a question and a seed set of MAS building blocks (i.e.,
established human-designed blocks like CoT-SC to define the design space) as inputs, ultimately
producing the final answer. These inputs are processed by the central meta-agent, which orchestrates
both the meta-iteration (Sec. 3.1) and self-verification (Sec. 3.2) steps. Importantly, the whole
process is functioned without prior knowledge or internal details of the underlying LLM agents.

3.1 Meta-Iterations Step

Initially lacking knowledge of the underlying LLM agents’ internal capabilities or limitations,
the meta-agent learns the component agents’ potential by observing both sub-task level and finer
agent-level performance. MAS-ZERO achieves this through an iterative process. Each iteration
comprises two main phases: (1) meta-design (Sec. 3.1.1), where the meta-agent decomposes the
given question into sub-tasks and proposes a MAS, based on the building blocks and any available
feedback from prior iterations, to address each sub-task; and (2) meta-feedback (Sec. 3.1.2), where
the meta-agent reviews the proposed MAS and sub-tasks to generate feedback. Such feedback is

3We omit methods that involve updating LLM parameters for MAS design, e.g., [42, 12], since MAS-ZERO
does not require any training. Early methods like DyLAN [25] are discussed in App. B.
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Figure 3: MAS-ZERO overview. MAS-ZERO takes as inputs the question and building blocks
as the seed set of MAS, and solves the task by self-evolving. It operates in two key steps: (1)
Meta-iteration, where the meta-agent designs sub-tasks and their corresponding sub-MAS, while
also providing meta-level feedback on solvability and completeness. (2) Self-verification, where the
meta-agent verifies the final outcome from a set of candidate answers.

based on intermediate outputs and reveals how the current MAS performs across various sub-task
decompositions and configurations, acting as a valuable signal to guide future iterations. Through the
iterative cycle of meta-design and meta-feedback, the MAS is progressively refined to better solve
the question. In each round, the meta-agent can adjust the decomposition or MAS configurations
(e.g., architecture, LLM agent temperature) based on the feedback received (an example is given in
Fig. 4).

3.1.1 Meta-Design Phase

Task decomposition and sub-MAS assignment. Unlike existing work that tackles complex prob-
lems all at once, MAS-ZERO explicitly decomposes the original question into manageable yet
interdependent sub-tasks, and generating or assigning one (or more) agents, referred to as a sub-MAS,
to solve each sub-task. During this phase, the meta-agent not only decomposes questions, but specifies
necessary coordination logic between agents, ensuring specialized yet aligned agents. While the qual-
ity sub-tasks and sub-MAS inherently depends on the capabilities of the underlying LLM-powered
meta-agent, MAS-ZERO is designed to iteratively evaluate and refine both the decomposition and
corresponding sub-MAS designs, which can correct initially imperfect designs, as shown in Fig. 4.

Constraining the search space with building blocks. MAS-ZERO is an iterative approach that
improves upon itself. As such, it is important for designs to not vary extremely between iterations. To
achieve this, MAS-ZERO limits changes to either updating sub-task or updating the sub-MAS w.r.t.
the given building blocks (i.e., CoT, CoT-SC, debate, and self-refine in this work).4 After performing
task decomposition, the meta-agent is restricted to modifying connections between different building
blocks or adjusting building blocks’ parameters (e.g., temperature, number of debate rounds, etc.).
This deliberate constraint, informed by our preliminary experiments, balances exploration with
improvement: The meta-agent should not invent “new” agent roles that closely resemble existing
ones, nor should it simply pruning a fixed architecture. Rather, it is given freedom to analyze and
decompose questions then assign new seed-informed sub-MAS to solve sub-tasks.

4MAS-ZERO uses code structures as representations for each agent. Generating correct MAS code can be
challenging. We provide a code template and utility functions so that the meta-agent only needs to fill in a
specific forward function. We also perform sanity checks, including syntax validation and field consistency.
More details can be found in App. H.
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Figure 4: A “MAS moment”. MAS-ZERO learns to decompose the task into 4 sub-tasks and dynamically
assign appropriate sub-MAS: CoT for the first two, CoT-SC (sampling 5 completions) for the third, and Debate
(2 rounds with a math professor and a graduate teacher as debaters) for the fourth.

Updating the MAS design. Importantly, the meta-design is not a prompting heuristic. Instead, the
meta-agent dynamically adapts its decomposition and sub-MAS assignments over iterations: After
the first meta-design iteration, meta-feedback is collected (detailed in Sec. 3.1.2). In the next iteration,
we perform meta-design again, with meta-feedback as additional context to facilitate self-evolution.

3.1.2 Meta-Feedback Phase

A key challenge in MAS design is that the meta-agent only has access down to the agent-level: It
does not have access to an agent’s internal memory or knowledge. Unlike conventional evaluation
strategies that rely only on final outcome signals, in MAS-ZERO, we propose to use sub-task level
and agent-level signals, i.e., the inputs and outputs to sub-MAS and agents, as proxies for agent
capabilities and limitations. By determining how effective the current MAS is by scrutinizing
interactions between agents and sub-MAS components, the meta-agent obtains a richer look into
both strengths and weaknesses in the overall MAS. To facilitate this, the meta-agent must first obtain
intermediate MAS outputs, from which it can perform this fine-grained, intermediate evaluation.
MAS-ZERO centers two key criteria: solvability (whether the MAS is capable of solving these
sub-tasks) and completeness (whether the generated sub-tasks are sufficient to reach the final answer
to the original question). Targeted feedback from these criteria is then used to guide the next iteration
of meta-design.

Obtaining intermediate outputs. This involves solving each sub-task by executing each sub-MAS,
which itself is comprised of one or more agents, producing a candidate answer to the original question.
This also grants the meta-agent access to two levels of intermediate outputs: One at the sub-task
(sub-MAS) level, and another at the agent level.

Solvability and completeness as meta-reward. Given the above sub-task and agent level outputs,
MAS-ZERO evaluates solvability and completeness. The meta-agent is given agency in determining
each metric, which serve as valuable meta-rewards that to guide the MAS refinement.

• Solvability requires that each sub-task be independently and completely solvable by its sub-MAS,
ensuring that every sub-task yields reliable outputs.5 The ability in recognizing a sub-task is too
difficult ultimately depends on the ability of the underlying LLMs to recognize and abstain, which

5Since MAS-ZERO operates in a self-evolved setting, the meta-agent itself is responsible for assessing
solvability. To aid the meta-agent, we allow each agent to output a special token, [TOO HARD], if it determines
that the assigned sub-task is beyond its current capabilities.
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LLMs GPT-4o Llama3.3-70B Qwen2.5-32B
Methods AIME24 GPQA SWE Avg. AIME24 GPQA SWE Avg. AIME24 GPQA Avg.
CoT 8.33 45.78 9.17 23.26 (↑12.55) 16.67 50.60 2.92 22.09 (↑9.58) 12.50 50.00 45.26 (↑3.69)
CoT-SC 16.67 43.37 — — 29.17 51.20 — — 16.67 49.40 45.27 (↑3.68)
Debate 4.17 46.99 12.50 25.35 (↑10.46) 20.83 50.60 6.67 24.42 (↑7.25) 8.33 49.40 44.21 (↑4.74)
Self-Refine 4.17 46.39 11.67 24.65 (↑11.16) 29.17 54.22 1.67 23.49 (↑8.18) 16.67 50.60 46.31 (↑2.64)
ReConcile 12.50 48.43 — — 33.33 47.17 — — 12.50 47.17 42.79 (↑6.16)

MaAS 12.50 43.37 10.00 23.02 (↑12.79) 33.33 43.98 5.00 21.63 (↑10.04) 20.83 46.99 43.68 (↑5.27)
ADAS × 45.20 × × 8.30 53.60 × × 12.50 47.00 42.64 (↑6.31)
AFlow 20.83 46.99 16.25 28.37 (↑7.44) 33.33 47.59 6.67 23.95 (↑7.72) 33.33 48.80 46.84 (↑2.11)
MAS-ZERO 33.33 50.60 25.83 35.81 37.50 52.41 16.74 31.67 29.17 51.81 48.95

Table 1: Overall results. “Avg.” denotes the weighted average, where weights are based on the number of
samples across benchmarks. “—” denotes non-applicable (e.g., CoT-SC is not applicable to SWE). “×” indicates
ADAS achieved 0% accuracy, despite being tuned on the validation set. “↑” indicates the difference (im-
provement) that MAS-ZERO achieves compared to the baselines. Highlighting indicates manual MAS design ,
automatic MAS design , and our method. SWE is not included for Qwen2.5-32B due to its small maximum
context length (32K). Standard deviations on AIME24 are reported in App. F.

may be imperfect. However, we show via ablations in Sec. 4.2 that such signals serve as reasonable
proxies for solvability and contribute meaningfully to overall performance.

• Completeness requires that the complete set of sub-tasks covers all necessary information from
the original input, ensuring that their answers can produce a correct and comprehensive aggregated
answer to the original task. While an individual sub-task may address only part of the necessary
content, all critical information must be processed and used at some point in the MAS.

Generating feedback. Based on the meta-rewards of solvability and completeness, the meta-agent
generates targeted feedback for specific aspects of the MAS that may require revision: If a sub-task is
identified as not solvable, then during the next meta-design iteration, it can either further decompose
the sub-task or update the corresponding sub-MAS; solvable sub-tasks and corresponding sub-MAS
are left untouched. If the meta-agent finds that the union of sub-tasks misses necessary information, it
can refine how the original problem is decomposed to incorporate any identified missing information.
Overall, this feedback serves a guide for subsequent meta-design iterations, allowing the overall
system to iteratively converge toward an effective decomposition and MAS. Crucially, this entire
process occurs without any evaluation of the final answer produced when executing the MAS, relying
only on analysis of intermediate outputs.

3.2 Self-Verification Step

At each meta-iteration, the MAS is executed to obtain intermediate outputs and a candidate answer
(including CoT and final answer). After multiple rounds, MAS-ZERO must determine which
candidate answer is the most reliable and complete. Relying on the last iteration (or any single
iteration) is suboptimal due to stochastic LLM outputs and ongoing MAS refinement. Instead, MAS-
ZERO formulates verification as a selection problem and tasks the meta-agent with selecting the most
coherent and correct output from the set of candidate answers, which is often more tractable than
independently scoring each output [13, 50], especially for challenging questions where correctness
is hard to assess in isolation. Specifically, MAS-ZERO first ranks candidates by their final answer
frequency. This acts as a prior favoring majority responses, a strategy shown to be effective in prior
work [39]. It then filters out clearly invalid answers (e.g., not among the given options). Finally, it
selects the best answer from the remaining candidates.

4 Experiments

Setup. We consider both the closed-source GPT-4o [29] and the open-source LLMs of various sizes,
Llama3.3-70B [26] and Qwen2.5-32B [32]. To fairly evaluate how well MAS-ZERO performs
relative to the underlying LLM used to construct the MAS system, we always use the same LLM for
both the meta-agent and the individual LLM agents in the MAS.
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Benchmarks. We consider three benchmarks across various domains: AIME24 [2] (math), GPQA-
diamond (GPQA) [33] (graduate-level QA), and SWE-Bench-Lite-Oracle (SWE) [18] (code).6 To
fairly compare with baselines that rely on validation sets, we split each benchmark’s original test set
into 20% for validation and 80% for testing. For other baselines and MAS-ZERO, which do not use
validation sets, we evaluate on the same 80% split.

Baselines. We include four widely used manual MAS baselines: CoT [40], self-consistency (CoT-
SC) [39], debate [10] and self-refine [28], which also serve as the building blocks in MAS-ZERO,
allowing us to clearly observe how our system improves upon the initial configurations. We also
include ReConcile [5], a popular manual MAS. For automatic MAS design, we include SoTA
methods: pruning-based MaAS [44] and generation-based ADAS [15] and AFlow [47]. We focus
on these as they have been shown to outperform other automatic MAS significantly.7

4.1 Overall Results

Performance. Table 1 shows the overall results across all LLMs and benchmarks. On average,
MAS-ZERO achieves the best performance across all LLMs and domains. Below, we summarize the
additional takeaways from the comparison:

MAS-ZERO consistently outperforms all automatic MAS methods. Across all LLM backbones
and benchmarks, MAS-ZERO outperforms SoTA baselines, beating the next best method, AFlow,
by 7.44% in on average with GPT-4o as the backbone. The most sizable improvements come SWE,
with 58% and 149% relative gains over AFlow. The only instance where MAS-ZERO lags is on
AIME24 with the Qwen backbone, where it underperforms AFlow by one sample (out of 24 total).
Notably, we find that the ADAS is unable to perform certain tasks (0% accuracy), despite being given
access to a validation set. Overall, our results highlight the benefit of self-evolving at inference time,
a capability absent in prior automatic MAS.

MAS-ZERO outperforms all manually designed MAS baselines, while others do not. MAS-ZERO
is the only method that always outperforms CoT and reliably outperforms other manually designed
baselines. One caveat is the self-refine baseline on GPQA with Llama3.3, where correct candidates
were generated but ultimately not selected, revealing weaknesses in the Llama backbone’s verification
ability. AFlow, ADAS, and MaAS alarmingly all underperform the simple CoT baseline on multiple
benchmarks, with both ADAS and MaAS on average exhibiting degradation from CoT performance.
AFlow fares slightly better, but has relatively muted gains when compared to MAS-ZERO. These
results suggest that current automatic MAS methods struggle on challenging tasks where MAS-ZERO
offers substantive improvements.

Cost-efficiency. Fig. 1 shows the trade-off between performance and cost for GPT-4o across the three
benchmarks. Cost is estimated using the latest OpenAI API pricing8 and includes both “training”
(if any) and test-time usage. We observe that MAS-ZERO lies on the Pareto front across all
three datasets. It is significantly more cost-efficient than AFlow, MaAS, and ADAS, with the lone

6Note that self-verification does not apply to SWE, as correctness in SWE is determined directly by the
compiler.

7Benchmark statistics and more implementation details can be found in App. E.
8https://openai.com/api/pricing/
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Methods AIME24 GPQA SWE Avg.
MAS-ZERO 33.33 50.60 25.83 35.81

- decompose 20.83 (↓12.50) 45.18 (↓5.42) 23.75 (↓2.08) 31.86 (↓3.95)
- meta-reward 25.00 (↓8.33) 42.17 (↓8.43) 23.33 (↓2.50) 30.70 (↓5.11)

Table 2: Ablations on components in meta-iteration.

LLM o3-mini GPT-4o + Websearch
Methods AIME24 GPQA AIME24 GPQA
CoT 70.00 (↑20.00) 72.22 (↑4.55) 43.33 (↑10.00) 51.52 (↑9.59)
MAS-ZERO 90.00 76.77 53.33 61.11

Table 3: MAS-ZERO with stronger agents.

exception of ADAS on GPQA, where the cost increase comes with a 12% accuracy improvement.
Of automatic MAS frameworks, MAS-ZERO delivers the highest performance at relatively low
cost. While it is expected that automatic MAS methods incur higher costs than manual baselines,
MAS-ZERO delivers substantially better performance, making the trade-off highly favorable.

4.2 Ablation Study and Further Analysis

Ablations. To understand the contribution of individual components in MAS-ZERO, we conduct
ablations on two key parts of the meta-iteration step (other components and steps are not independently
removable): (1) problem decomposition (MAS-ZERO (-decompose)) in the meta-design phase. We
modify the prompt to ask the meta-agent to propose a MAS configuration without attempting to
decompose the question into sub-problems; (2) meta-reward (MAS-ZERO (-meta-reward)) in the
meta-feedback phase. We alter the prompt so that the meta-agent critiques the current MAS without
analyzing the solvability and completeness of each sub-task or LLM agent. Table 2 presents the
ablation results for GPT-4o. We observe that removing either component leads to a significant drop
in performance, indicating that both the problem decomposition and meta-reward mechanisms are
critical to the overall effectiveness of MAS-ZERO.

Gains from meta-iterations. We examine whether performance improves over meta-iterations.
As shown in Fig. 5 (A) for GPT-4o, performance at iteration 0 is notably lower, suggesting that
off-the-shelf LLMs struggle to design effective MAS when used directly. MAS-ZERO progressively
improves performance through meta-iterations, demonstrating a strong self-evolving capability at
inference time by understanding LLM strengths, decomposing problems, and assigning appropriate
sub-MAS.

Establishing upper bound. MAS-ZERO eschews validation-set tuning for self-verification, tasking
the meta-agent with selecting a final answer from the set of candidate responses. This allows MAS-
ZERO to easily accommodate external verifiers. This versatility sets MAS-ZERO up to take advantage
of future improvements in verification, unlike existing automatic MAS frameworks, which have no
straightforward way of integrating a verifier. Fig. 5 (B) illustrates these potential future gains for
GPT-4o. Specifically, when given access to an oracle verifier that outputs “correct” or “incorrect”
based on the ground-truth answer, the performance gap between MAS-ZERO and both manually
designed and automatic MAS widens, with GPQA performance approaching 95%.

Stronger Agents. While MAS-ZERO shows strong performance across various LLMs, we are
further interested in whether it can improve when using even stronger LLMs as agents. We conduct
experiments using a reasoning LLM, o3-mini and tool-augmented LLM, GPT-4o with web-search.
As shown in Table 3, MAS-ZERO consistently outperforms the CoT baselines by a large margin,
indicating that the benefits of MAS-ZERO generalize well across model strengths and agentic
settings.
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5 Conclusion

We presented MAS-ZERO, the first inference-time-only automatic MAS design framework with zero
supervision. Unlike prior work that relies on fixed architectures or validations, MAS-ZERO iteratively
refines MAS for each question. Experiments demonstrate its effectiveness and cost-efficiency.
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A Limitations

While MAS-ZERO demonstrates strong performance and generality across tasks and models, it still
has limitations. There are three potential bottlenecks in MAS-ZERO: meta-design, meta-feedback
and verification. In meta-design, we showed that using building blocks to constrain the design space
can effectively balance exploration and improvement, but it may limit the diversity of emergent
MAS designs. In meta-feedback, MAS-ZERO relies on self-evolved and inference-time signals.
While iterative refinement helps mitigate this, it may occasionally result in noisy feedback. Finally,
in verification, our results show that the current simple self-verifier leaves significant room for
improvement toward the oracle upper bound. These aspects present opportunities for future work,
such as improving verification mechanisms and introducing meta-agent-specific training to enhance
both meta-design and meta-feedback.

B Earlier Related Work

Some prior work treats prompt optimization for individual agents as part of MAS design. Examples
include PromptBreeder [11] and DsPy [21]. More recently, this idea has been extended to broader
automatic MAS design, where prompt optimization is included either as an additional design step or
as part of the search space.

Pruning-based. This line of work has evolved quickly [45, 46, 16]. Earlier examples include
GPTSwarm [51] which optimizes graph structures via reinforcement learning but struggles to repre-
sent workflows with conditional state due to limitations of static graphs. DyLAN [25] uses message
passing to dynamically activate agent compositions, estimating each agent’s contribution based on a
primary trial, AgentSquare [34] leverages a verifier as a performance predictor to guide the pruning.

Generation-based. Earlier methods like AutoAgents [4] and AgentVerse [7] relied on human-
engineered pipelines. EvoAgent [43] later employed evolutionary algorithms to optimize these
pipelines.

C MAS-ZERO Algorithm

In Section 3, we provide examples of the prompt and workflow of MAS-ZERO. Algorithm 1 presents
the detailed algorithm. Note that we merge meta-feedback and meta-design in meta-iterations into a
single Meta_Feedback_Update function in the implementation for simplicity.

D Illustration of Meta-Iteration

Figure D.1 gives an illustration. Given a question, the meta-agent is prompted to decompose the
task and propose a MAS based on the question and building blocks (see Appendix G for the detailed
prompts). The meta-agent then outputs a MAS in the form of code, which can be executed by an
external compiler to obtain intermediate and final outputs for the sub-tasks and agents.

After performing meta-decomposition and executing the MAS code via a compiler, both the resulting
MAS and its intermediate outputs (sub-task samples and agent samples) are used as input to the
meta-feedback phase. We prompted the meta-agent to review the solvability and completeness. Based
on this evaluation, which serves as meta-reward, the meta-agent generates feedback and updates its
design in the next iteration.

E Implementations, Benchmarks and Baselines Details

Implementation details. For MAS-ZERO, we first execute each of the four building blocks designs
before conducting 5 rounds of iterative refinement. This yields 9 candidate answers, from which
our meta-agent selects one final answer. For fair comparison, we sample 9 independent outputs for
CoT-SC and take the majority vote. Similarly, both debate and self-refine are run for 9 rounds. All
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Algorithm 1: MAS-ZERO: Designing Multi-Agent Systems with Zero Supervision

Input: Question Q, building blockss {M(1), . . . ,M(k)}, Meta-agent A, Iterations T
Output: Final Answer y∗

1 Initialize candidate answer listH ← [ ];
2 foreach building blocksM(i) do
3 Y

(i)
0 ← Execute(M(i), Q); // Run each building blocks

4 Append final answer y(i)0 from Y
(i)
0 toH;

5 (Q0,M0)← A.Meta_Design(Q, {M(i)});
// Decompose question into sub-tasks and construct initial MAS

6 for t = 1 to T do
7 Yt ← Execute(Mt−1,Qt−1);

// Run MAS on sub-tasks
8 Extract sub-task outputs {(xsub, ysub)};
9 and agent outputs {(xagent, yagent)} from Yt;

10 (Qt,Mt, yt)← A.Meta_Feedback_Update(
Q,Qt−1,Mt−1,
{(xsub, ysub)}, {(xagent, yagent)},
Constraints = {M(i)});
// Refine sub-tasks and MAS based on feedback

11 Append yt toH;
12 y∗ ← A.Self_Verify(H); // Select final answer via

self-verification
13 return y∗;

Split AIME24 GPQA SWE
Validation 6 32 60
Test 24 166 240

Table E.1: Data size for each split in each dataset.

models are accessed through their respective APIs.9 Temperature for meta-agent is set to 0.5. For
baselines, we strictly use parameters found in original papers and provided code.

Benchmarks Table F.1 shows the detailed statistics for each dataset. We evaluate SWE using its
official code available at https://github.com/SWE-bench/SWE-bench/.

Baselines For the manual MAS baselines, we adapt the implementation from ADAS.
For the automatic MAS baselines, we use the official implementations of ADAS
(https://github.com/ShengranHu/ADAS), AFlow (https://github.com/
FoundationAgents/MetaGPT/tree/main/examples/aflow), and MaAS
(https://github.com/bingreeky/MaAS).

F Standard Deviation for the Experiments

To confirm the statistical significance of the experimental results in Table 1, we repeat the experiment
three times, following [47, 25].

We can see that the MAS can exhibit high variance due to the inherent nature of multi-agent systems:
the variance may be amplified by the interactions among multiple agents [3], and the generated
temperature of the agents are typically non-zero.

9We use TogetherAI API (https://www.together.ai/) for Llama and Qwen.
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Decompose the task and propose initial MAS based on the question and building blocks…

Meta-agent Compiler

Sub-task level outputs{(𝑥!"#, 𝑦!"#)}
Agent level outputs {(𝑥$%&'(, 𝑦$%&'()}

CoT + Answer

Update the MAS and problem decomposition based on the solvability and completeness…

Review the solvability and completeness of the MAS design based on the sub-task 
samples and agent samples…

Prompt

MAS

Question

Meta-agent

Let ABCDEF be a convex equilateral hexagon in which all pairs of opposite sides are parallel. The triangle whose sides 
are extensions of segments AB, CD, and EF has side lengths 200, 240, and 300. Find the side length of the hexagon.

Meta-agent

Prompt

Solvability: The sub-questions are not fully solvable as indicated by the [TOO_HARD]… 
Completeness: The sub-questions does not cover all necessary info…

…..
Sub-tasks

…..

…..

Prompt

Meta-Design

Candidate 1

Meta-Feedback

Meta-Design

Compiler

Candidate 2MAS
…..

Sub-tasks

…..

…..

Meta-Iteration 1

Meta-Iteration 2

…
…

CoT + Answer

Figure D.1: Example pipeline for the meta-iterations in MAS-ZERO.

LLMs GPT-4o Llama3.3 Qwen2.5
CoT ±1.97 ±1.96 ±0.00
CoT-SC ±3.40 ±5.20 ±1.96
Debate ±7.08 ±7.08 ±5.20
Self-Refine ±3.93 ±1.97 ±1.97
ReConcile ±1.97 ±1.96 ±1.97
MAS-ZERO ±5.89 ±3.15 ±5.20

Table F.1: Standard deviations of MAS-ZERO and manual MAS in AIME24.

G Prompt Details

In Section 3.1 and Figure D.1, we use prompts to implement meta-design and meta-feedback. Here,
we provide more details of the prompts in Figures G.1 and G.2. As mentioned in Appendix C, we
merge meta-feedback and meta-design in meta-iterations into a single Meta_Feedback_Update
function. As a result, there are two sets of prompts: one for the initial Meta_Design, and another
for Meta_Feedback_Update used in the meta-iterations.

H Code Template

In Section 3.1, we use a code template to constrain MAS code generation to filling in a specific
forward function. Figure H.1 shows how the utility code is provided. Figures H.2, H.3, H.4, and
H.5 show the implementations of each building blocks.
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Simplified Prompt for Meta_Design

Overview You are an expert machine learning researcher testing various agentic systems. Given a set of
architectures in the archive and the question. Note that architecture can contain multiple agents, and
agent mean a LLM that use for special objectives by specialized setting (instruction, temperature...)
Your objective is to
(1) Perform task decomposition. Specifically, decompose the give question significantly so that the
sub-architecture (or node or block) can perform each of the sub-tasks. The output should be sub-task 1,
sub-task 2, ... sub-task n. Do not solve the task for the sub-architecture and do not leak the expected
answer in your sub-task description/instruction/question (a short-cut like ’output exactly the following...’
is also leakage and should be avoided). Instead, decompose the task that easy enough for the sub-
architecture to solve. You need to justify how these sub-tasks can achieve the final answer to the orginal
questions.
Make sure

1. Include sub-task ID and ’Based on (task i)’ in the instruction of a sub-task. This helps each sub-task
connects to its prerequisite sub-tasks so that there is enough information to solve it.

2. Each sub-task should be specific and detailed enough to solve and to help achieve the final answer to
the given question. The output should be helpful to solve the next sub-task. You need to include
details steps (but not the answer) to the sub-task

3. The answer to the last sub-task should be the same as the answer to the final question, so that the
architecture successfully solve the complex question by solving each of the sub-task.

(2) Given the resulting sub-task 1, sub-task 2, ... sub-task n, design connections between existing blocks
to address each of them. You should structure the architecture as a multi-layered network. Each existing
architecture (or blocks) serves as a node, while connections between them act as edges, forming a
structured hierarchy of interactions. Additionally, you must determine the number of layers in the
network.
For example, if the existing architectures are ’COT, COT_SC, Self-Refine, LLM_debate’ and you
determine that there can be 3 layers. There are 3 resulting sub-task from (1) sub-task 1, sub-task 2,
sub-task 1, sub-task 3:
Example Setup
Resulting sub-tasks: sub-task 1, sub-task 2, sub-task 3, sub-task 4
Available architectures: COT, COT_SC, Self-Refine, LLM_debate
Network with 3 Layers:
Layer 1: COT COT_SC Self-Refine LLM_debate
Layer 2: COT COT_SC Self-Refine LLM_debate
Layer 3: COT COT_SC Self-Refine LLM_debate
Connection Strategies:

1. Linear Connection: Directly link two block to pass information forward.Example: [COT] (address
sub-task 1) -> [LLM_debate] (address sub-task 2) (Single connection and exit)

2. Multi-Layer Connection: A block can appear in multiple layers, forming deeper reasoning structures.
Example: [COT] (address sub-task 1) -> [LLM_debate] (address sub-task 2) -> [COT -> Self-Refine]
(address sub-task 3) (COT appears in both Layer 1 and Layer 3) (the whole [COT -> Self-Refine] is
a sub-task architecture that aims to address sub-task 3)

IMPORTANT:

1. Decomposition itself should not be included in the architecture as the question has been decomposed
at step (1). Do not assign one block to perform all the sub-tasks (if you put all decomposed sub-tasks
into a single instruction for an block, it is very wrong). Instead, assign different block to address
each of the sub-task instead.

2. If your previous attempts in the discovered architecture archive are incorrect (fitness value equals to
0), it means the sub-tasks are still too difficult to the corresponding blocks. Please further decompose
the question to easier sub-tasks.

Your aim is to design an optimal block connection that can perform well on each of the sub-task.
Your code should implement the existing blocks given in the archive (the ’code’ entry of blocks) as
it-is without medication: Do not propose new blocks or modify existing ones and only change the
connections between the given blocks, but block setting like instruction, temperature are allowed to
modify.

Figure G.1: Simplified prompt for Meta_Design.
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Simplified Prompt for Meta_Feedback_Update

Carefully review the proposed new architectures ("code" entry), the answer of each sub-tasks
("sub_tasks" entry) , the answer of each agnets ("agents" entry), the final response ("final_response"
entry), and the ’memory’ (previous final answer extracted from their reponse and the corresponding
fitness score, in the format of a list of dictionary final answer: fitness) in all the history user and assistant
answers. Reflect on the following points:"

1. Solvable: Assess whether all sub-tasks are solvable by the corresponding block via checking
the output answer of each sub-task.

(a) if the answer of the sub-task explicitly contain [TOO_HARD]. This clearly state that
task is too hard, which need to be further decomposed. Consider the suggestion given
after the [TOO_HARD] (you can see the ’Suggestions:’ next to the [TOO_HARD]) and
improve your decomposition accordingly.

(b) If the sub-task answer is incorrect. That means it is not solvable, which need to be
improved. It may because

i. the task is still too difficult for the block, then the sub-task need to be further
decomposed.

ii. some agents in the block is malfunctional or the underlying LLM is too weak to
solve the sub-task alone. This can be determined by checking the agents output to
decide whether it works as expected. If this is the case, then we need to get rid of
the block and use another block in the architecture. There are then two possibilities
(1) the agent in the block is not optimal to solve the sub-task, setting needed to be
improved (instruction, temperature...) (2) the agent architecture in the block is not
optimal, a new block that combine existing blocks in a different way or different
settings need to be proposed

Please justify it is (i), the decomposition issue or (ii) the block and agent issue. It
could also be both. When proposing new sub-task, make sure (1) it is specific and
detailed enough to solve and to help achieve the final answer to the given question. (2)
all information required to answer the question is provided by the previous answers or
the instruction. (3) the related sub-tasks thinking and answers have correctly input to the
current sub-task by adding it to the taskInfo list when calling the agent. (4) The output
should be helpful to solve the next sub-task. Also make sure the sub-task connection is
clearly by clearly state ’Based on the output of sub-task i..’ in the sub-task instruction

2. Completeness Are the sub-tasks include all neccessay information from the irginal query
that can ensure the aggregation of sub-task responses can effectively yild a comprehensive
answer to the user query? Note that while a sub-task might include only part of the neccessary
information, it is not allowable for any particular piece of critical information to be omitted
from all sub-tasks. Make sure the sub-task are connected to the prerequisite sub-tasks so that
there is enough information to solve it.

Now, you need to improve or revise the implementation, or implement the new proposed architecture
based on the reflection.

Figure G.2: Simplified prompt for Meta_Feedback_Update.
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Utility Code

# Named tuple for holding task information
Info = namedtuple('Info', ['name', 'author', 'content', 'prompt', '

sub_tasks', 'agents', 'iteration_idx'])

# Format instructions for LLM response
FORMAT_INST = lambda request_keys: f"Reply EXACTLY with the

following JSON format.\n{str(request_keys)}\nDO NOT MISS ANY
FIELDS AND MAKE SURE THE JSON FORMAT IS CORRECT!\n"

# Description of the role for the LLM
ROLE_DESC = lambda role: f"You are a {role}."

class LLMAgentBase():

def __init__(self, output_fields: list, agent_name: str,
role='helpful assistant', model=None, temperature=

None) -> None:
self.output_fields = output_fields
self.agent_name = agent_name

self.role = role
self.model = model
self.temperature = temperature
# give each instance a unique id
self.id = random_id()

def generate_prompt(self, input_infos, instruction) -> str:
# generate prompt based on the input_infos
# ...

def query(self, input_infos: list, instruction, iteration_idx
=-1) -> dict:
# call generate_prompt and the LLM to get output
# ...

def __repr__(self):
return f"{self.agent_name} {self.id}"

class AgentArchitecture:
"""
Fill in your code here.

def forward(self, taskInfo) -> Union[Info, str]:
Args:
- taskInfo (Info): Task information.

Returns:
- Answer (Info): Your FINAL Answer.

"""

Figure H.1: Utility code.
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Implementation of building blocks (CoT)

def forward(self, taskInfo):
# Instruction for the Chain-of-Thought (CoT) approach
# It is an important practice that allows the LLM to think step

by step before solving the task.
cot_instruction = self.cot_instruction

# Instantiate a new LLM agent specifically for CoT
# To allow LLM thinking before answering, we need to set an

additional output field 'thinking'.
cot_agent = LLMAgentBase(['thinking', 'answer'], 'Chain-of-

Thought Agent', model=self.node_model, temperature=0.0)

# Prepare the inputs for the CoT agent
# The input should be a list of Info, and the first one is

often the taskInfo
cot_agent_inputs = [taskInfo]

# Get the response from the CoT agent
thinking, answer = cot_agent(cot_agent_inputs, cot_instruction)
final_answer = self.make_final_answer(thinking, answer)

# Return only the final answer
return final_answer

Figure H.2: Implementation of building blocks (CoT)
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Implementation of building blocks (CoT-SC)

def forward(self, taskInfo):
# Instruction for step-by-step reasoning
cot_instruction = self.cot_instruction
N = self.max_sc # Number of CoT agents

# Initialize multiple CoT agents with a higher temperature for
varied reasoning

cot_agents = [LLMAgentBase(['thinking', 'answer'], 'Chain-of-
Thought Agent', model=self.node_model, temperature=0.5) for
_ in range(N)]

# Majority voting function to select the most common answer
from collections import Counter
def majority_voting(answers):

return Counter(answers).most_common(1)[0][0]

thinking_mapping = {}
answer_mapping = {}
possible_answers = []
for i in range(N):

thinking, answer = cot_agents[i]([taskInfo],
cot_instruction)

possible_answers.append(answer.content)
thinking_mapping[answer.content] = thinking
answer_mapping[answer.content] = answer

# Ensembling the answers from multiple CoT agents
answer = majority_voting(possible_answers)

thinking = thinking_mapping[answer]
answer = answer_mapping[answer]

final_answer = self.make_final_answer(thinking, answer)

return final_answer

Figure H.3: Implementation of building blocks (CoT-SC)
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Implementation of building blocks (Debate)

def forward(self, taskInfo):
# Instruction for initial reasoning
debate_initial_instruction = self.cot_instruction

# Instruction for debating and updating the solution based on
other agents' solutions

debate_instruction = "Given solutions to the problem from other
agents, consider their opinions as additional advice.

Please think carefully and provide an updated answer. Put
your thinking process in the 'thinking' field and the
updated answer in the 'answer' field. "

# Initialize debate agents with different roles and a moderate
temperature for varied reasoning

debate_agents = [LLMAgentBase(['thinking', 'answer'], 'Debate
Agent', model=self.node_model, role=role, temperature=0.5)
for role in self.debate_role]

# Instruction for final decision-making based on all debates
and solutions

final_decision_instruction = "Given all the above thinking and
answers, reason over them carefully and provide a final
answer. Put your thinking process in the 'thinking' field
and the final answer in the 'answer' field."

final_decision_agent = LLMAgentBase(['thinking', 'answer'], '
Final Decision Agent', model=self.node_model, temperature
=0.0)

max_round = self.max_round # Maximum number of debate rounds
all_thinking = [[] for _ in range(max_round)]
all_answer = [[] for _ in range(max_round)]

# Perform debate rounds
for r in range(max_round):

for i in range(len(debate_agents)):
if r == 0:

thinking, answer = debate_agents[i]([taskInfo],
debate_initial_instruction)

else:
input_infos = [taskInfo] + [all_thinking[r-1][i]] +

all_thinking[r-1][:i] + all_thinking[r-1][i+1:]
thinking, answer = debate_agents[i](input_infos,

debate_instruction)
all_thinking[r].append(thinking)
all_answer[r].append(answer)

# Make the final decision based on all debate results and
solutions

thinking, answer = final_decision_agent([taskInfo] +
all_thinking[max_round-1] + all_answer[max_round-1],
final_decision_instruction)

final_answer = self.make_final_answer(thinking, answer)

return final_answer

Figure H.4: Implementation of building blocks (debate)
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Implementation of building blocks (Self-refine)

def forward(self, taskInfo):
# Instruction for initial reasoning
cot_initial_instruction = self.cot_instruction

# Instruction for reflecting on previous attempts and feedback
to improve

cot_reflect_instruction = "Given previous attempts and feedback
, carefully consider where you could go wrong in your latest
attempt. Using insights from previous attempts, try to

solve the task better."
cot_agent = LLMAgentBase(['thinking', 'answer'], 'Chain-of-

Thought Agent', model=self.node_model, temperature=0.0)

# Instruction for providing feedback and correcting the answer
critic_instruction = "Please review the answer above and

criticize on where might be wrong. If you are absolutely
sure it is correct, output exactly 'True' in 'correct'."

critic_agent = LLMAgentBase(['feedback', 'correct'], 'Critic
Agent', model=self.node_model, temperature=0.0)

N_max = self.max_round # Maximum number of attempts

# Initial attempt
cot_inputs = [taskInfo]
thinking, answer = cot_agent(cot_inputs,

cot_initial_instruction, 0)

for i in range(N_max):
# Get feedback and correct status from the critic
feedback, correct = critic_agent([taskInfo, thinking,

answer], critic_instruction, i)
if correct.content == 'True':

break

# Add feedback to the inputs for the next iteration
cot_inputs.extend([thinking, answer, feedback])

# Reflect on previous attempts and refine the answer
thinking, answer = cot_agent(cot_inputs,

cot_reflect_instruction, i + 1)

final_answer = self.make_final_answer(thinking, answer)

return final_answer

Figure H.5: Implementation of building blocks (self-refine)
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