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Abstract

How does feature learning happen during the training of a neural network? We1

developed an accelerated pipeline to synthesize maximally activating images ("pro-2

totypes") for hidden units in a parallel fashion. Through this, we were able to3

perform feature visualization at scale and to track the emergence and development4

of visual features across the training of neural networks. Using this technique, we5

studied the ‘developmental’ process of features in a convolutional neural network6

trained from scratch using SimCLR with or without color jittering augmentation.7

After creating over one million prototypes with our method, tracking and compar-8

ing these visual signatures showed that the training with color-jitter augmentation9

led to constantly diversifying high-level features, while no color-jittering led to10

more diverse low-level features but less development of high-level features. These11

results illustrate how feature visualization can be used to understand hidden training12

dynamics under different training objectives and data distribution.13

1 Introduction14

The neural representation of images is often analyzed in a multi-dimensional vector space (4; 16;15

7; 18), formed by the activation of neurons. Usually, the representations are analyzed in this neural16

space, for example, the representation of different object categories form "object manifolds" within17

the space(4; 6). An alternative perspective is to think about neural representation in their domain18

i.e. on the image manifold (29; 26). From this perspective, the tuning of each neuron is a function19

(i.e. landscapes) on the manifold, with peaks and troughs. The peaks of the landscape correspond to20

images that highly activate these neurons. Note that, the axes of the neural vector space are the tuning21

functions of these neurons, thus the highly activating images could be deemed as the meaning of these22

axes. Through this paper, we call the activation maximizing images for each neuron a "prototype"23

((23)). Thus, obtaining the prototypes for all units in a neural network could provide a full basis set24

for understanding the representation of this network.25

Feature visualization has been a prominent technique for finding and synthesizing prototypes in deep26

artificial neural networks (20; 21; 10), and the biological brain (22; 28; 12). But normally, these27

methods were applied to one unit at a time, hard for application at scale.28

In this work, we developed an accelerated pipeline to extract "prototypes" in a parallel fashion.29

Through this, we were able to apply feature visualization on a large scale, tracking the emergence30

and change of "prototypes" across the whole training process of neural networks – creating a visual31

signature for each network checkpoint. We leveraged this method to study the ‘development’ of32

features in a convolutional neural network trained from scratch via self-supervised learning. The33

preliminary results illustrate how different training objectives and data distribution led to different34

"development" dynamics of these prototypes.35
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2 Methods36

2.1 Feature Visualization at Scale37

Our method is based on (19; 27; 25), where feature visualization is performed within the latent38

space of a pretrained generative adversarial network (GAN)(8). This GAN can be regarded as the39

natural image prior or the regularizer for the optimization, which counteracts the adversarial artifacts40

(20). For each target unit, we optimize its activation using a hybrid of CMA-ES (14) and gradient41

optimization: we performed 10s of CMA steps to search for an initialization that evoked non-zero42

activation in the unit, then we performed 100s of gradient ascent steps to visualize the features. We43

implemented both CMA and Adam optimization in a more paralleled fashion, which enables feature44

visualization for each and every channel in a layer in one run. This method increased our overall45

throughput by 33 fold (details in Sec. 6.2).46

2.2 Experiment Setup for Self-Supervised Learning47

For all our experiments, we used ResNet18(15) as our neural network architecture and trained it with48

a popular self-supervised learning algorithm (SimCLR, (2)) on STL10 (5) dataset for 100 epochs.49

These algorithms train a neural network to associate different augmented views of the same image as50

similar representations, and those of different images as dissimilar ones. One key component of this51

method is the augmentation pipeline, which determines what type of transformation should the neural52

network be invariant to. Here we had two training conditions with different augmentation pipelines53

and tested their effect on the development process of prototypes. 1) Color jitter (abbreviated as54

clrjit), the default augmentation pipeline of SimCLR; 2) Keep Color (keepclr), the same pipeline55

with color jittering and random grayscale augmentation disabled, which keeps the original color of56

the image. As the two conditions exposed the neural networks to different image statistics and pushed57

them with different objectives, we’d like to see if we can understand these differences better through58

the lens of prototype distribution.59

Specifically, we completed three training runs of ResNet18 from scratch with random seeds 1,2,360

with color jittering and keep color augmentations; resulting in 6 training sequences of 101 epochs61

neural network checkpoints. For each checkpoint, we performed prototype extraction twice (details62

in Sec.6.1). Thus, all these prototypes can be indexed by (training condition, run number, evolution63

repeat, epoch number, layer, channel).64

We evaluated the quality of their representations using the linear probe protocol (see Sec.6.1), namely65

fitting a linear classifier to see how well it classifies the test set images. The models trained with color66

jittering augmentation have far higher classification accuracy (70.0± 0.3%) than the models without67

(49.8± 0.3%) (Fig.4). This is consistent with the original observations of the importance of color68

augmentation in SimCLR (Fig.5 in (2)). From this perspective, the clrjit models have better feature69

representations for object classification. We want to dissect this difference of representation quality70

and link it back to the development of prototypes.71

3 Results72

3.1 Visual difference of the prototypes between conditions73

How do the learned features differ between the two training conditions? We first visually inspected74

the distribution of prototypes in each layer for the two conditions (Fig.1).75

For the color jittering condition (Fig.1a), in layer 1, the prototypes masked with their respective76

receptive fields primarily captured patterns like black stripes on a white background (a1-1,1-31),77

and solid colors like Prussian blue (a1-2), white/off-white, black, and partial cyan, red, and green78

shades. In the second layer, more square-circle figures like squircles (a2-1,2-3) were observed along79

with intricate patterns like thick lines and irregular line figures that somewhat resembled a cracked80

earth texture or an abstract glass painting texture (a2-2,2-4). In layer 3, the features became finer, as81

high-frequency textures were observed (a3-1), along with black and white squircles (a3-2), rectangles82

(a3-3), and grids (a3-4). In layer 4, high-frequency textures (a4-1) were observed as well as distorted83

grid-like structures (a4-2). Few prototypes showed a gradient of colors resembling fur-like (a4-3) and84

watercolor textures (a4-4).85

11-based row-col index in the grid a of Fig.1, same convention below
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(a) SimCLR with color jittering (clrjit) (b) SimCLR without color jittering (keepclr)
Figure 1: Example prototypes for networks trained with color jittering (clrjit) and without (keepclr)

Figure 2: Dynamics of prototypes diversity during training.

In contrast, in the keep color condition (Fig.1 b), in layer 1, a vibrant array of colors were observed86

including magenta / pink (b1-1), green (b1-2), red, blues, cyan, and yellow along with colorful stripes87

(b1-4). In layer 2, high-frequency textures (b2-4) were present along with colored gemstone-like88

shapes embedded in high-frequency textures (b2-1,b2-2,b2-3). In higher layers (layer 3 and layer89

4), there were a significant number of high-frequency textures present mainly in the warm hues like90

oranges and reds (row3,4). These texture patterns are perceptually more similar to each other than91

the ones in color-jittering conditions.92

3.2 Developmental process of prototypes during training93

(a)

(b)

(c)

(d)
Figure 3: Development of prototypes through training for color jittering (clrjit) condition, layer 3.
Columns denote 0,10,20,... to 90 epoch; Rows denote Units 1, 2, 12, and 98 (0-based index).
So how do the neural networks arrive at these features? We visualized the prototypes during training94

epochs as a row. For instance, for these example units in layer3 of a clrjit network (Fig.3, see Fig.895
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for keepclr condition), it can be seen that each of these units goes through an initial stage of rapid96

erratic change, and then settles down to a primitive version of the final feature at around epoch 30,97

then elaborate this primitive form until the end. The latter half of epochs have more similarities98

between each other for each unit than the initial epochs however each of these individual units keeps99

diversifying with respect to each other throughout the training process as seen in Fig.2.100

3.3 Distance structure between prototypes101

Next, we quantified our perception by computing the distance structure between prototypes to102

understand their distribution and dynamics during training. We computed the Mean Squared Error103

(MSE) and Cosine distance in both pixel space and the embedding space of some pre-trained networks104

(detail in Sec.6.4). Further, we computed the prototype similarity with the images masked by their105

functional receptive field mask (Sec.6.3) to focus on the central feature.106

We quantified the diversity of prototypes during training: for each epoch, we computed the pairwise107

distance matrix between prototypes of all channels, and then computed the mean distance between108

prototype pairs (Fig. 2). We found salient differences between the two training conditions (color109

jitter, keep color), and consistencies between repeated training runs and prototype evolutions. Here110

we showed results with ResNet50 as our embedding model and MSE as the distance metric. For111

layer 1, the diversity dropped drastically in the first few epochs, and then grew to a stable level. In112

the end, keepclr condition led to more diverse prototypes than clrjit. For layer 2, after the initial113

drop of diversity, the prototypes diversify again, and keepclr condition led to slightly higher diversity.114

However, for layers 3 and 4, the keepclr condition increased prototype diversity early on and then115

they plateaued; in contrast, the clrjit condition led to a constant increase in prototype diversity without116

plateau. When the cosine distance is used instead of MSE (Fig.5), a shift is observed in the dynamics,117

albeit the diverging trend between conditions remained similar to the MSE result. The consistency of118

the color-jittering networks being at the top tends to demonstrate how these networks develop more119

diverse prototypes through their evolutions. Further observations about the rate of change and the120

stability of prototype across re-evolution are noted in Sec. 7.2121

This observation is intriguing. We interpreted it as follows, the color jittering augmentation constantly122

drives the network to find higher-level visual features to solve the instance classification task; while123

without color jittering, slightly more diverse lower-level features (layer1,2) suffice to solve the task.124

Intuitively, when SimCLR training doesn’t randomly augment the color (keepclr), one simple way to125

find views of the same image is to look for similar color palettes. Thus, it’s intuitive that the keepclr126

network needs to be more sensitive to image colors (Fig. 1). In comparison, with color jittering, the127

network cannot rely on color matching as a reliable strategy, and it needs to discover higher-level128

form consistencies, which may drive the diversification of deeper layer features.129

4 Related Work130

Understanding self-supervised representation Self-supervised learning (SSL) has been popular131

in vision for feature learning. In these paradigms, the pre-training uses different objectives to learn132

features and these features are directly used in the downstream application, with little fine-tunings.133

But what is a good feature representation? Usually, these features were evaluated based on the134

performance of the downstream task. One open question is to understand and evaluate representations135

learned by models without using a downstream task. Many works analyzed the representation136

similarity of SSL networks and supervised networks (13). Recent works have creatively used137

generative models to understand the "interpretation" of the same image by pre-trained networks to138

show their different biases (1).139

5 Discussion140

It has been noticed that the randomly initialized neural networks have lower dimensional represen-141

tations, i.e. the activations of hidden units are more correlated across populations; and supervised142

training increased the dimensionality of the representation, and the increase is more salient in deeper143

layers (Fig. H.1A, (9)). In the other perspective, the units become less correlated to each other during144

training, which is consistent with our finding that the prototypes of the units become more and more145

diverse during training.146

Prototype diversity seems like a promising proxy for the richness of neural representation, however,147

it may not be the full story, these prototypes need to be related to the training and testing distribution148

of images in a meaningful way to have high quality. Thus, one deep and open question is to elucidate149

the relationship between these prototypes and the training distribution of the network (11).150
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6 Extended Method222

6.1 Details for Self-Supervised Learning223

We used a popular self-supervised learning pipeline for training neural networks, SimCLR (2). We224

used the implementation in lightly-ai (24).225

Augmentations We tested two augmentation conditions, 1) the default stochastic augmentation226

pipeline with color jittering, 2) the same pipeline with color jittering and random grayscaling disabled227

(cj_prob=0.0, random_gray_scale=0.0)228

Model Architecture For the model backbone, we used the ResNet18 model (15), with 128d229

projection head.230

Dataset For computational feasibility, we experimented with the SimCLR algorithm on the STL10231

dataset (5) with the 96-pixel resolution, a classic testbed for self-supervised learning. Where the232

unlabeled training set has 100000 images, the training set has 500 images for each of the 10 classes233

and the testing set has 800 images for each of the 10 classes. The 10 classes are airplane, bird, car,234

cat, deer, dog, horse, monkey, ship, and truck, where 4 of those are animate man-made vehicles, and235

6 of those are animate species.236

Training hyperparameters For all models, we trained 100 epochs with Stochastic Gradient237

Descent with Cosine Annealing learning rate (lr = 6× 10−2,momentum = 0.9, weight_decay =238

5× 10−4)239

Evaluation For evaluation, we used the linear probe protocol: We fixed all parameters of the240

CNN and used it to map images from the training and test set to feature vectors. Here no image241

augmentation was used, only RGB value normalization. Then we fit a linear classifier based on the242

training set features and evaluated the classifiers on the test set features. We used three ways to fit the243

linear classifier: Logistic regression (LogisticRegression from sklearn), Linear Support Vector244

Classifier (LinearSVC from sklearn), and gradient descent (Adam) on Cross Entropy Loss.245

6.2 Scalable methods for synthesizing prototypes246

This work requires a huge amount of highly activating images (prototypes) to be synthesized, so we247

developed a more scalable way to synthesize them efficiently. Specifically, we parallelized the hybrid248

of CMA-ES (14; 17) and gradient optimization (3) to optimize the images for each channel in a layer249

independently. for the major layers in each convolutional neural network.250

As a concrete example, we need to synthesize, 101× (64 + 128 + 256 + 512) = 96960 prototypes251

for all channels for each epoch of a training run in ResNet18. This will take around 269hrs on a252

single GPU using the previous non-parallelized CMA-ES algorithm per channel pipeline. Using our253

current method, it takes only 8hrs on a single GPU, which is a 33 times speed up. Using this method,254

we synthesized over 1 million prototypes in a reasonable time.255

6.3 Methods for computing receptive field of units256

We used gradient-based receptive field mapping for hidden units. We denote the hidden unit as257

f : RH×W×C → R,x 7→ r. We sample random white noise patterns x with image shape and then258

send the noise pattern through the neural network, and compute the gradient of f .259

Mraw = Ex∼Unif [0,1]H×W×C∇xf(x) (1)

We averaged this gradient across 200 samples of x and then took the sum of squares over the channel260

C dimension as a H ×W spatial mask. Finally, we fit this mask with a 2D Gaussian function, and261

the fitted mask is denoted as Mfit. This Gaussian mask was called the receptive field mask and was262

used to mask the prototypes and highlight the central features.263
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6.4 Methods for comparing image similarity264

For comparing the image similarity across prototypes generated by various networks, we used this265

approach in the pixel space and the embedding space. In the pixel space, the images were directly used266

to compute the distance matrices. In the embedding space, the activations of ten pre-trained neural267

networks and the receptive field masks for the prototype’s network’s layer. The method to calculate the268

receptive field size and mask is mentioned in subsection 6.3. The image dataset of prototypes for one269

network had subdirectories for several layers spanning the network, each subdirectory corresponding270

to one layer in the network had images corresponding to each neuron/channel in that layer. Each271

of these subdirectories had a corresponding receptive field size and a receptive field mask. Each of272

these subdirectories containing images was sent into the ten pre-trained neural networks which were,273

ResNet50, ResNet101, ResNet152, InceptionV3, VGG16, VGG19, DenseNet121, DenseNet169,274

DenseNet201 and MobileNetV2. From here, the activations from the last fully connected layer of275

the network, like the ’avgpool’ layer from ResNet50 were chosen for each network to extract the276

activations. These were then used to compute the distance matrices.277

Note that, we used the receptive field mask to mask the prototype image, before computing their278

similarity. Because of this, the similarity or distance value might not be comparable across layers, as279

the units in different layers have different sizes of receptive field masks, thus the different masked280

prototypes will have different amounts of black backgrounds.281
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7 Extended Results282

7.1 Linear Probe Evaluation of Learned Features283

Figure 4: Linear feature evaluation of representation during SimCLR training. A. Test set
accuracy during SimCLR training, Each panel corresponds to one way of fitting the linear readout
layer: Logistic regression, Linear Support Vector Classifier, and gradient optimization (Adam) on
Cross Entropy. B. Final test set accuracy for the self-supervised models, separated by whether they
used color jittering augmentation.

7.2 Additional observations on the distance structure of prototypes284

Aside from prototype diversity, we also examined the rate of prototype change during training:285

we computed the distances between the prototype of the same unit c during neighboring epochs286

Ep and Ep+ 1. We averaged the distance for channels in each layer and showed it across epochs287

and networks (Fig.6). We can see, that all the networks experienced a transient peak at the first288

step, showing the drastic change of representation between randomly initialized network to network289

after one training epoch. Here we also saw clrjit networks experienced a higher rate of change of290

prototypes in layers 3 and 4, which might be the cause of their higher diversity.291

Finally, we examined the consistency of prototype across repeated Evolution. This is related to the292

overall geometry of the landscape, i.e. how multimodal is tuning of the unit We computed the distances293

between the prototype of the same channel c for the two extractions. We averaged the distance for294

channels in each layer and showed it across epochs and networks (Fig.7). Generally, the distance295

between prototypes of the same channel (repeated evolution) is smaller than the distance between296

prototypes of different channels (cf. Fig.2). Intriguingly this distance between re-evolved prototypes297

is increasing through the training process, especially for the deeper layers of the models trained with298

color jittering. This highlights that for the same unit, repeated evolution led to increasingly different299

prototypes during training — thus the tuning functions of neurons are becoming more multimodal300

during training. This increase in multimodality may also benefit the final quality of representation.301

Figure 5: Dynamics of prototypes diversity during training. Cosine distance metric, resnet50
embedding
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Figure 6: Speed of prototype change during training.

Figure 7: Similarity of prototype between repeated evolution.

7.3 Developmental process of prototypes during training (keepclr)302

(a)

(b)

(c)

(d)
Figure 8: Development of prototypes through training without color jittering (keepclr) condition,
layer 3. Columns correspond to 0,10,20,... to 90 epoch; Rows correspond to Units 71, 93, 211, and,
248 (0-based index)
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