
Discovering Multiple Solutions from a Single Task
in Offline Reinforcement Learning

Takayuki Osa 1 2 Tatsuya Harada 1 2

Abstract
Recent studies on online reinforcement learning
(RL) have demonstrated the advantages of learn-
ing multiple behaviors from a single task, as in the
case of few-shot adaptation to a new environment.
Although this approach is expected to yield sim-
ilar benefits in offline RL, appropriate methods
for learning multiple solutions have not been fully
investigated in previous studies. In this study, we
therefore addressed the problem of finding mul-
tiple solutions from a single task in offline RL.
We propose algorithms that can learn multiple so-
lutions in offline RL, and empirically investigate
their performance. Our experimental results show
that the proposed algorithm learns multiple quali-
tatively and quantitatively distinctive solutions in
offline RL.

1. Introduction
The benefits of discovering diverse solutions have been
demonstrated in literature pertaining to online reinforce-
ment learning (RL), as in the cases of few-shot adaptation to
changes in the environment (Kumar et al., 2019) and compo-
sition of complex motion by sequencing different behavioral
styles (Kumar et al., 2020a). For example, a locomotion
task may encompass multiple motion styles using different
postures. Although the discovery of diverse solutions in
offline RL is expected to be equally beneficial in practice,
it has not been fully investigated in previous studies. Ac-
cordingly, we address the problem of discovering diverse
solutions in offline RL.

The primary challenge of learning multiple solutions in
offline RL is the problem of learning the latent skill space.
In the case of online RL, diverse behaviors are typically
modeled with a latent-conditioned policy wherein the value

1The University of Tokyo, Japan 2RIKEN Center for Ad-
vanced Intelligence Project. Correspondence to: Takayuki Osa
<osa@mi.t.u-tokyo.ac.jp>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

Figure 1. Sequential snapshots of multiple locomotion behaviors
obtained by proposed method for the hopper agent.

of the latent variable is stored alongside the state action
pairs during the data collection process. Although offline
RL employs a dataset containing the state-action pairs, this
dataset does not contain information that indicates the skill
type, such as the value of the latent variable. Therefore,
it is essential to learn the latent skill representations in an
unsupervised manner.

In this study, we introduce a novel algorithm designed to un-
cover multiple solutions through the unsupervised learning
of latent skill representations. We developed our algorithm
to tackle the challenge of identifying multiple solutions in
offline RL through a coordinate ascent approach, resem-
bling the expectation-maximization (EM) algorithm. In our
algorithm, we iteratively update a policy conditioned on
latent variables to capture multiple behaviors, along with a
posterior distribution that models latent skill representations.
To evaluate our algorithm, we constructed datasets that con-
tain diverse behaviors using the D4RL framework (Fu et al.,
2020), with locomotion tasks based on MuJoCo (Todorov
et al., 2012). The experimental results demonstrate that the
proposed algorithm discovers multiple solutions as shown in
Figure 1, and that few-shot adaptation to new environments
can be performed by learning multiple behaviors in offline
RL.

1

Discovering Multiple Solutions from a Single Task in Offline RL

2. Background
2.1. Related Work

In literature pertaining RL, it is known that multiple optimal
policies may elicit the optimal value function (Sutton &
Barto, 2018). The discovery of diverse solutions has been
actively investigated in the evolutionary computation com-
munity, with such algorithms often referred to as quality-
diversity (QD) algorithms (Chatzilygeroudis et al., 2021;
Cully & Demiris, 2018; Parker-Holder et al., 2020; Pugh
et al., 2016). These QD algorithms can be adapted to offline
RL settings by learning dynamics models as proposed in
(Hein et al., 2018a;b). In the context of online RL, stud-
ies such as (Kumar et al., 2020b; Osa et al., 2022; Sharma
et al., 2020) reported that multiple solutions can be obtained
from a single task, enabling few-shot adaptation to new
environments and composition of complex behavior by se-
quencing learned behaviors. Recent studies on robotics have
also reported that multiple solutions frequently manifest in
robotics problems (Osa, 2022; Toussaint et al., 2018).

The task of learning latent representations of the state-action
space is closely related to that of discovering multiple so-
lutions in RL. Recent studies pertaining to offline RL have
investigated the leveraging of latent representations of the
state-action space (Chen et al., 2022; Zhou et al., 2020; Osa
et al., 2023), revealing this task to improve the stability of
the learning process. The study by (Ajay et al., 2021) pro-
posed a framework to learn primitive skills from offline data
and utilize them for downstream tasks. Although the focus
of the study presented by (Ajay et al., 2021) is utilizing the
primitive skills for downstream tasks, their work is relevant
to ours in a sense that how to extract multiple behaviors in of-
fline RL is investigated. Liu et al. (2023) recently proposed
a framework to leverage expert demonstrations in offline RL.
While the framework proposed by Liu et al. (2023) is not
specifically designed for finding multiple behaviors, they
also demonstrated that multiple behaviors can be found by
their method in a unsupervised manner.

Our algorithm utilizes coordinate ascent, drawing inspira-
tion from the EM algorithm (Bishop, 2006). While the
policy update in the E-step can be perceived as an extension
of MPO (Abdolmaleki et al., 2018) or AWAC (Nair et al.,
2020), it is essential to note that our algorithm distinguishes
itself by the alternate updating of the latent-conditioned
policy and posterior distribution. This distinctive approach
represents a novel algorithm designed specifically for learn-
ing multiple solutions in offline RL, setting it apart from
existing methodologies.

A concurrent work by Mao et al. (2024) recently addressed
the problem of finding multiple solutions in offline RL and
proposed a method called Stylized Offline RL (SORL). Mao
et al. (2024) formulated the problem of finding multiple

solutions in offline RL as a clustering problem, where the
latent variable that characterizes the behavior style is dis-
crete, and the number of solutions obtained by SORL is
finite. In contrast, our formulation is more general in the
sense that the latent variable can be either continuous or dis-
crete. While we report results based on the continuous latent
variable in this study, the discrete latent variable can also
be learned using techniques such as the Gumbel-softmax
trick (Jang et al., 2017; Maddison et al., 2017).

2.2. Reinforcement Learning

In RL, we consider a Markov decision process (MDP) that
consists of a tuple (S,A,P, r, γ, d) where S is the state
space, A is the action space, P(st+1|st,at) is the transition
probability density, r(s,a) is the reward function, γ is the
discount factor, and d(s0) is the probability density of the
initial state. A policy π(a|s) : S × A 7→ R is defined as
the conditional probability density over actions given the
states. The aim of RL is to learn a policy that maximizes the
expected return E[R0|π] where Rt =

∑T
k=t γ

k−tr(sk,ak).

In offline RL, it is assumed that the learning agent is pro-
vided with a fixed dataset, D = {(si,ai, ri, s

′
i)}Ni=1, com-

prising states, actions, rewards, and next states collected by
an unknown behavior policy β(a|s). For convenience, we
denote by dβ(s) the state distribution obtained by executing
the behavior policy β. The objective of offline RL is to
obtain a policy that maximizes the expected return using D
without online interactions with the environment during the
learning process.

2.3. Latent-Conditioned Policy

A latent-conditioned policy π(a|s, z) is typically used to
model multiple behaviors with a single model, as demon-
strated by prior studies on online RL (Kumar et al., 2020b;
Sharma et al., 2020). Here, the latent variable z, which
may be continuous or discrete, is used to control the
behavior type of the latent-conditioned policy π(a|s, z).
We assumed that the value of the latent variable is sam-
pled at the beginning of an episode and fixed until the
episode’s end. When the dataset contains multiple behav-
iors, we assume that the behavior policy can be written as
β(a|s) =

∫
β(a|s, z)p(z)dz, where p(z) is the prior dis-

tribution of the latent variable, and the value of z controls
the behavior style of the behavior policy. As the value of
z is unknown, the primary challenge of learning multiple
behaviors in offline RL is to estimate the latent representa-
tions.

In the context of online RL, a latent-conditioned action-
value function is typically estimated to evaluate the quality
of different behaviors. The latent-conditioned action-value

2

Discovering Multiple Solutions from a Single Task in Offline RL

function is defined as

Qπ(s,a, z) = Eπ [R|s,a, z] , (1)

which models the expected return when taking action a
under state s with the latent variable z, and then following
policy π. The value of the latent variable z corresponds
to a type of the behavior encoded in the latent-conditioned
policy π. Similarly, a latent-conditioned state-value function
is defined as

V π(s, z) = Eπ [R|s, z] , (2)

which models the expected return when starting from state
s with the latent variable z, and then following policy π.
In our work, we consider the advantage function given by
Aπ(s,a, z) = Qπ(s,a, z)− V π(s, z).

3. Algorithm to Learn Diverse Behaviors in
Offline RL

When a latent-conditioned policy is trained in an online RL
manner, the value of the latent variable is known during the
rollout, being stored alongside states, actions, and rewards.
However, in the context of offline RL, we assume that the
value of the latent variable corresponding to a state-action
pair is unknown. To train a latent-conditioned policy, it is
therefore essential to estimate the value of the latent variable
in an unsupervised learning manner. In addition, as the
performance of the latent-conditioned policy relies on the
learned latent representations, the encoder that estimates
the latent variable corresponding to a state-action pair must
reflect the behavior of the policy. Therefore, it is essential
to jointly train the latent-conditioned policy and encoder.

In this section, we describe our method for obtaining la-
tent representations of the state action space, and explain
how to train a latent-conditioned policy using the learned
representations.

3.1. Problem Formulation

To acquire multiple solutions, we train a latent-conditioned
policy πθ(a|s, z) parametrized by vector θ. Concurrently,
we train a posterior distribution qϕ(z|s,a) parametrized
by vector ϕ to learn latent skill representations. Our ob-
jective in solving a given task is to optimize πθ(a|s, z)
and qϕ(z|s,a) to maximize the expected return. In addi-
tion, we also maximize the mutual information between
the latent variable and the state-action pair, Iπ(z; s,a), to
enhance the diversity of the behavior encoded in the policy.
Moreover, to mitigate the generation of out-of-distribution
actions in offline RL, we impose a constraint based on the
Kullback-Leibler (KL) divergence between the policy πθ
and the behavior policy β. Consequently, we formulate the
problem of discovering multiple solutions in offline RL as
the following optimization problem:

max
π,q

(
Es∼dβ ,a∼πθ,z∼qϕ [Aπ(s,a, z)] + λIπ(z; s,a)

)
(3)

s.t. Es∼dβ ,z∼qϕ [DKL (πθ(·|s, z)||β(·|s, z))] ≤ ϵπ, (4)

where λ is a coefficient to balance the weight on each
term. The proposed algorithm addresses maximization
of the first term in (3) through a procedure resembling
the EM algorithm. In the E-step, we update the latent-
conditioned policy πθ(a|s, z) based on the posterior distri-
bution qϕ(z|s,a). In the M-step, we update the posterior
distribution qϕ(z|s,a) given the latent-conditioned policy
πθ(a|s, z). Subsequently, both πθ(a|s, z) and qϕ(z|s,a)
are updated to maximize the variational lower bound of
the mutual information Iπ(z; s,a). Our algorithm can be
viewed as a form of coordinate ascent, wherein the latent-
conditioned policy πθ(a|s, z) and the posterior distribution
qϕ(z|s,a) are alternately updated. In the following section,
we provide a detailed description of each step.

3.2. E-Step

Given the encoder qϕ(z|s,a), we solve the following opti-
mization problem in E-step:

max
π

Es∼dβ ,a∼πθ,z∼qϕ [Aπ(s,a, z)] (5)

s.t. Es∼dβ ,z∼qϕ [DKL (πθ(·|s, z)||β(·|s, z))] ≤ ϵπ. (6)

The KL divergence constraint in (6) encourages the policy
close to the data distribution, enabling us to avoid generating
out-of-distribution actions. In addition, when a dataset con-
tains diverse behaviors, the constraint in the above problem
maintains the diversity of the learned policy π.

The solution to this problem is given in a nonparametric
form as

π∗(a|s, z) = 1

Zπ
β(a|s, z) exp

(
1

απ
Aπ(s,a, z)

)
, (7)

where Zπ is the partition function. To approximate the
nonparametric solution in (7) with a parameterized model,
we minimize the KL divergence between π∗(a|s, z) in (7)
and πθ(a|s, z):

Es,z [DKL (π
∗(a|s, z)||πθ(a|s, z))] . (8)

The minimizer of the above KL divergence can be obtained
by maximizing the weighted log-likelihood:

LE-step(θ)

= Es,a∼dβ ,βEz∼q [Wπ(s,a, z) log πθ(a|s, z)] , (9)

where the weight Wπ(s,a, z) is given by

Wπ(s,a, z) = exp

(
1

απ
Aπ(s,a, z)

)
. (10)

3

Discovering Multiple Solutions from a Single Task in Offline RL

The derivation of (7) and (9) is presented in Appendix A.
According to the derived results, the latent-conditioned pol-
icy is updated using (9) in the E-step. The policy update in
(9) can be understood as an extension of MPO (Abdolmaleki
et al., 2018) or AWAC (Nair et al., 2020).

3.3. M-Step

In the M-step, we introduce a constraint on the update of
the posterior distribution qϕ to enhance the stability of the
learning process. Specifically, we impose an upper bound on
the KL divergence between qϕ before and after the update.
Denoting the parameter of the posterior distribution before
the update as ϕold, the optimization problem in the M-step
can be expressed as follows:

max
q

Ez∼q [A
π(s,a, z)] (11)

s.t. DKL
(
q(z|s,a)||qϕold

(z|s,a)
)
≤ ϵq. (12)

The constraint in (12) can be viewed as a trust region con-
straint. As in the optimization problem in the E-step, the
solution to this problem is given in a nonparametric form as

q∗(z|s,a) = 1

Zq
qϕold

(z|s,a) exp
(

1

αq
Aπ(s,a, z)

)
,

(13)

where Zq is the partition function. In the M-step, the param-
eterized posterior distribution qϕ is trained to approximate
the optimal posterior distribution q∗(z|s,a) as defined in
(13). Although the solution in (13) is independent of the
distributions of s and a, we train our model with respect to
dβ(s) and π(a|s). This choice is motivated by our objective
to obtain a solution for the problem described in (4).

Given a dataset D sampled from pβ(s,a) = dβ(s)β(a|s)
and πθ, we update qϕ(z|s,a) to approximate the density
induced by the optimal posterior distribution. Assuming
p(z|s) = p(z), we approximate π(a|s) as

dβ(s)π(a|s) = dβ(s)

∫
πθ(a|s, z)p(z)dz. (14)

Denoting pβ,π(s,a) = dβ(s)π(a|s), we minimize the fol-
lowing KL divergence to update the parameterized posterior
distribution qϕ(z|s,a):

E(s,a)∼pβ,π [DKL (q
∗(z|s,a)||qϕ(z|s,a))] (15)

The minimizer of the above KL divergence is given by the
weighted log-likelihood:

Lposterior(ϕ) = E(s,a)∼pβ,πEz∼qϕold
[Wq log qϕ(z|s,a)] ,

(16)

where the weight Wq(s,a, z) is given by

Wq(s,a, z) =
1

Zq
exp

(
1

αq
Aπ(s,a, z)

)
. (17)

While the form of the solution in (16) is analogous to that
in (9), the temperature parameters απ and αq are different
because they are separately derived from constraints in (6)
and (12). Thus, απ and αq should be tuned separately in
practice.

In addition, to assure the consistency between the trained
posterior distribution and policy, we also train the posterior
distribution so as to approximate the density induced by
the optimal policy in (7). For this purpose, we introduce a
likelihood pψ(s,a|z) parameterized with a vector ψ.

Given a posterior distribution q(z|s,a), the density p∗(s,a)
induced by the optimal policy in (7) is given by

p∗(s,a) = dβ(s)π∗(a|s) (18)

=

∫
dβ(s))p(z|s)π∗(a|s, z)dz (19)

=

∫
dβ(s)p(z|s)β(a|s, z) 1

Zπ
exp

(
1

απ
Aπ(s,a, z)

)
dz

(20)

=
1

Zπ

∫
dβ(s)β(a|s)q(z|s,a) exp

(
1

απ
Aπ(s,a, z)

)
dz

(21)

The result in (21) indicates that the density p∗(s,a) can
be approximated by 1) sampling the latent variable z with
q, 2) set the importance weight with exp

(
1
απ

Aπ(s,a, z)
)

,
and 3) marginalize over the latent variable z.

To train the parameterized posterior distribution and likeli-
hood, we use the variational lower bound used in variational
autoencoder (VAE) (Kingma & Welling, 2014), which is
given by

log p(si,ai) ≥ℓϕ,ψ(si,ai) (22)
=−DKL (qϕ(z|si,ai)||p(z))

+ Ez∼qϕ [log pψ(si,ai|z)] . (23)

Combining (21) and (23), we maximize the following ob-
jective:

E(s,a)∼p∗ [log p(s,a)]

= E(s,a)∼dβ ,βEz∼q [Wπ(s,a, z) log p(s,a)] (24)

≥ E(s,a)∼dβ ,βEz∼q [Wπ(s,a, z)ℓϕ,ψ(s,a)] (25)

≈ 1

N ·Nz

N∑
i=1

Nz∑
j=1

Wπ(si,ai, zj)ℓϕ,ψ(si,ai) (26)

:= Lw-vae(ϕ,ψ) (27)

where Wπ(s,a, z) is given as in (10).

Based on the result in (16) and (27), we maximize the fol-
lowing objective function in the M-step:

LM-step(ϕ,ψ) = Lposterior(ϕ) + Lw-vae(ϕ,ψ). (28)

4

Discovering Multiple Solutions from a Single Task in Offline RL

3.4. Learning the Latent Skill Space via Mutual
Information Maximization

Herein, we discuss how to maximize the mutual information
term in (4). For this purpose, we utilize the variational
lower bound of the mutual information. We consider mutual
information I(z; s,a) between the latent variable z and a
state-action pair (s,a) as

I(z; s,a) =

∫∫∫
p(s,a, z) log

p(s,a, z)

p(s,a)p(z)
dzdads.

(29)

The variational lower bound of I(z; s,a) is then given as
follows (Barber & Agakov, 2003; Osa et al., 2022):

I(z; s,a) ≥ E(s,a,z)∼p [log q(z|s,a)] +H(z), (30)

where H(z) is the entropy of the latent variable z. As
H(z) is independent of the policy, encoder, and decoder
parameters, only the first term of the right-hand side in (30)
must be maximized.

As we maximize the lower bound with respect to
pπ(s,a, z) = dβ(s)p(z|s)π(a|s, z), we maximize the fol-
lowing term:

Linfo(θ,ϕ) = E(s,a,z)∼pπ [log qϕ(z|s,a)]

=

∫
dβ(s)p(z|s)πθ(a|s, z) log q(z|s,a)dzdads (31)

As shown by previous studies (Kumar et al., 2020b; Osa
et al., 2022), maximizing the variational lower bound
of mutual information I(z; s,a) encourages the latent-
conditioned policy to generate different actions for different
values of the latent variable. Consequently, the diversity
of actions is enhanced by maximizing this term. Addition-
ally, when maximizing Eã∼πθ

[log qϕ(z|s, ã)], the encoder
qϕ(z|s,a) recovers the value of the latent variable from the
state and action generated by the latent-conditioned policy
πθ(a|s, z). Thus, the encoder is updated to learn latent
representations that are consistent with the behavior of the
latent-conditioned policy.

Combining the objectives for the M-step and mutual infor-
mation maximization, we jointly update the policy, posterior
distribution, and likelihood by maximizing the following
objective function with the regularization based on mutual
information maximization:

LM-info(ϕ,ψ,θ) = LM-step(ϕ,ψ) + λLinfo(θ,ϕ), (32)

where λ is a constant that balances the two terms.

3.5. Practical Algorithm

The proposed algorithm, referred to as Learning Diverse
Behaviors in Offline RL (DiveOff), is summarized in Algo-
rithm 1. We initialize the posterior qϕ and likelihood pψ

Algorithm 1 Learning Diverse Behaviors in Offline RL
(DiveOff)

Input: dataset D = {(si,ai, ri, s
′
i)}Ni=1

Initialize the policy πθ , critic Qwj
for j = 1, 2, posterior

qϕ(z|s,a), and likelihood pψ(s,a|z)
Train the posterior qϕ(z|s,a), and likelihood pψ(s,a|z)
with D using the standard VAE loss
for t = 1 to T do

Sample a minibatch {(si,ai, s
′
i, ri)}Ni=1 from D

Sample the latent variable zi ∼ qϕ(z|si,ai)
Compute the target value:
yi = r + γminj=1,2 Qwj

(si,a
′, zi),

where a′ ∼ πθ(a
′|s′i, zi)

Update the critic:
N−1

∑N
i=1

(
yi −Qwj

(si,ai, z)
)2

for j = 1, 2
if t mod dinterval = 0 then

Update the policy by maximizing LE-step(θ) in (9)
Update the policy, posterior, and likelihood by max-
imizing LM-info(ϕ,ψ,θ) in (32)

end if
end for

using the standard VAE objective function. We then iterate
the E-step and M-step described in the previous section to
update the policy and posterior distribution. Whereas Algo-
rithm 1 is described assuming that the critic is trained with
double-clipped Q-learning (Fujimoto et al., 2018), alterna-
tive methods can be employed, such as expectile regression
as in IQL.

4. Experiments
To analyze the performance of the proposed method, we
initially assess it on a two-dimensional toy task. Following
this, we conduct evaluations on locomotion tasks in Mujoco,
utilizing our original datasets that encompass a wide range
of diverse behaviors.

4.1. Evaluation on Toy Task

To visualize the behavior of the proposed method in a simple
task, we evaluated the performance of our method in a path
planning problem on two dimensional space. In this toy
task, the agent is represented as a point mass, the state is the
position of the point mass in two-dimensional space, and the
action is the small displacement of the point mass. The blue
circle denotes the starting position, and the agent receives
the reward if it reaches the red circle. Figure 2(a) shows the
data samples in the dataset. Figure 2(b) shows the multiple
solutions learned by the proposed method. The proposed
method may not necessarily cover all solutions, but it can
be confirmed that multiple solutions have been discovered
by the proposed approach.

5

Discovering Multiple Solutions from a Single Task in Offline RL

(a) Task setting and
data samples.

(b) Trajectories gen-
erated by the pro-
posed method.

(c) The latent vari-
able learned with the
proposed method.

Figure 2. Path planning task on two-dimensional space.

Figure 2(c) shows the latent variable learned by the pro-
posed method, which learns the latent variable consistent
with trajectories or type of solutions. In (c), the color indi-
cates the mean of the latent variable, µ, where the posterior
distribution q(z|s,a) is given by Gaussian N (µ,σ). The
colors are separately assigned along the vertical axis, be-
cause the vertical positions characterize the behavior of
the latent-conditioned policy. This result indicates that the
proposed method learns the latent representations that are
consistent with the types of solutions.

4.2. Performance on D4RL Tasks with Diverse
Behaviors

4.2.1. DATASETS WITH DIVERSE BEHAVIORS

We constructed datasets that contain diverse locomotion
behaviors based on the D4RL framework. To emphasize
the existence of diverse solutions, we modified the velocity
term of the reward function from that in the original tasks
in the D4RL framework, as in (Kumar et al., 2020a):

rvel = min
(
(xt − xt−1)/∆t, vmax

)
, (33)

where xt represents the horizontal position of the agent at
time t, and vmax is a constant term that defines the upper
bound of rvel. We refer to tasks with the above reward term
as xxVel, e.g., Walker2dVel. To construct datasets with
diverse locomotion behaviors, a latent-conditioned policy
was trained with the method presented in (Osa et al., 2022),
and we collected samples by executing the trained policy
with random values of the latent variable. We repeated
this process five times with different random seeds, and
aggregated the collected samples into a dataset. Following
the convention of the D4RL framework, we prepared four
different types of datasets based on the policy level used
to collect samples: “expert,” “medium-expert,” “medium,”
and “medium-replay.” We describe the tasks in detail in
Appendix B. Codes and videos are available in https://
takaosa.github.io/project_diveoff.html.

4.2.2. COMPARISON WITH BASELINE METHODS

As a baseline method, we evaluated CLUE, which was pro-
posed by Liu et al. (2023). To investigate the effect of the
components of the proposed algorithm, we devised several
methods for comparison ourselves and compared them with

the proposed method. The proposed policy update rule pre-
sented in (10) can be combined with other methodologies
for learning the latent representations. We refer to baseline
methods based on (10) as AWAC-L. As a baseline method
for learning the latent representations, we evaluated meth-
ods based on VAE. In a baseline method using VAE, VAE
was trained with a given dataset D. The latent variable es-
timated by VAE is augmented with the state as s̃ = [s, z],
and the policy that takes in s̃ was trained with AWAC-L. We
refer to this baseline method as AWAC-L+VAE. We also
evaluated a variant of AWAC-L+VAE where we trained the
critic with the expectile regression as in IQL (Kostrikov
et al., 2022). We refer to this variant of AWAC-L+VAE as
IQL-L+VAE. In our implementation of baseline methods
except IQL-L, we used the double-clipped Q-learning as in
TD3+BC (Fujimoto & Gu, 2021). In our implementation of
AWAC-L+VAE and IQL-L+VAE, VAE was implemented
with two hidden fully-connected layers.

As a variant of the AWAC-L+VAE, we also evaluated VAE
with LSTM layers, which can consider temporal sequences
for learning the latent representations. We refer to this
variant of AWAC-L+VAE as AWAC-L+VAE with LSTM.
In OPAL proposed by Ajay et al. (2021), the latent variables
are learned with a recurrent neural network using a VAE-like
loss function, and the latent-conditioned policy learned. In a
sense that the latent variable encodes temporal information,
AWAC-L+VAE with LSTM is similar to OPAL. The state
normalization was employed in all the methods, including
the proposed methods.

In the context of online RL, maximizing the mutual infor-
mation between the state and latent variables is a prevalent
approach to obtain diverse behaviors. As a baseline, we
evaluated a variant of AWAC that maximizes the mutual
information term in addition to the task reward as in (Kumar
et al., 2020b; Sharma et al., 2020). When introducing a
model that approximates the posterior distribution q(z|s),
we can consider the auxiliary reward term given by

rinfo = log qψ(z|s), (34)

where qψ(z|s)is the approximated posterior distribution.
The auxiliary reward term in (34) was used in DIAYN (Ey-
senbach et al., 2019), and it was later used by Kumar et al.
(2020b); Sharma et al. (2020). We refer to the variant of
AWAC-L+VAE that maximizes the reward term in (34) as
AWAC-L+VAE+DIAYN.

To assess the impact of the components in our proposed
method, we conducted an evaluation on a variant of Dive-
Off. In this variant, the posterior distribution was trained
as part of a VAE, and the objective function in (28) was re-
placed with the standard VAE loss. We denote this variant as
DiveOff+VAE. In DiveOff+VAE, the posterior distribution
and the policy are alternately updated. SORL proposed by

6

https://takaosa.github.io/project_diveoff.html
https://takaosa.github.io/project_diveoff.html

Discovering Multiple Solutions from a Single Task in Offline RL

Table 1. Normalized scores of methods that train latent-conditioned policies. WK = Walker2dVel, HP = HopperVel, HC = HalfcheetahVel,
AN=AntVel. Best results are denoted in bold.

TD3+BC CLUE AWAC-L
+ VAE

IQL-L +
VAE

AWAC-L
+ VAE W/

LSTM

AWAC-L
+ VAE +
DIAYN

DIVEOFF
W/ VAE
(OURS)

DIVEOFF
(OURS)

D
IV

.-
E

X
P. WK 75.5±31.9 59.1±6.7 79.9±35.1 43.5±38.7 82.2±26.7 86.7±15.5 77.2 32.7 93.3±9.9

HP 94.6±11.5 39.5±17.8 98.6±3.0 4.9±3.8 94.0±3.8 98.0±3.3 99.7±0.6 81.2 33.8
HC 97.6±0.2 95.8±0.8 96.5±0.4 94.0±5.3 96.6±0.2 96.3±0.5 97.0±0.2 96.8±0.3
AN 98.5±2.8 78.2±7.8 94.5±1.1 97.2±3.4 95.4±0.4 86.8±5.4 95.8±0.8 95.4±1.2

D
IV

.-
E

X
P.

-
M

E
D

.

WK 96.5±7.0 54.7±15.3 93.7±9.1 42.0±27.4 62.9±6.9 97.1±2.2 95.8±5.9 80.5 17.7
HP 92.1±14.0 74.8±22.8 94.8±7.2 89.3±23.4 79.7±24.3 78.7±36.5 94.8±9.2 98.4±4.7
HC 97.1±4.2 96.2±0.4 96.0±0.5 91.8±14.2 96.9±0.2 96.2±0.7 96.3±0.2 96.1±0.6
AN 96.2±3.8 79.2±10.6 84.8±6.2 95.3±3.0 87.4±3.8 82.1±6.3 89.8±0.6 88.5±1.9

D
IV

.-
M

E
D

. WK 77.0±13.7 47.4±14.2 84.6±4.9 74.3±23.2 57.3±15.9 74.8±11.1 79.1±19.3 67.9±17.4
HP 88.1±9.0 65.0±7.2 93.1±5.3 87.1±9.1 82.2±15.6 92.4±6.3 94.5±3.4 83.1±18.0
HC 92.3±2.3 92.3±3.0 93.4±0.3 93.5±4.0 93.0±0.4 93.3±0.6 93.3±0.4 93.2±0.5
AN 64.3±64.1 66.3±5.4 80.5±2.4 92.7±0.9 76.5±5.1 75.3±5.7 81.8±2.6 81.1±2.3

D
IV

.-
M

E
D

.-
R

E
P.

WK 80.6±28.4 17.5±13.0 26.8±9.3 88.3±9.7 43.5±26.8 51.4±5.9 27.5±29.0 39.3±11.6
HP 67.9±23.1 93.3±7.4 96.6±5.8 101.0±0.1 6.6±3.9 58.9±42.4 99.1±3.9 101.0±0.1
HC 93.2±0.6 89.9±2.5 91.1±3.0 92.7±0.7 92.2±0.7 89.3±3.8 80.4±25.0 89.8±6.4
AN 91.9±3.2 18.5±3.8 34.6±2.3 94.6±0.8 35.5±1.6 34.7±3.0 33.9±2.3 32.9±2.9

Mao et al. (2024) iterates the clustering and policy improve-
ment, without advantage-based weights in the clustering. In
this sense, DiveOff+VAE can be interpreted as a variant of
SORL. To quantify the diversity of the learned solutions, we
employed the diversity metric used by Parker-Holder et al.
(2020). We provide details on how to compute the diversity
score in Appendix C. In the following, we report the mean
and standard deviation over the 10 test episodes and five
seeds unless otherwise stated. The value of the latent vari-
able was sampled from the uniform distribution U(−1, 1) at
the beginning of the test episodes. The latent variable was
continuous and two-dimensional in this experiment.

The normalized scores attained by the proposed method’s
variants are listed Table 1. Our algorithm consistently
achieved high d4rl scores, demonstrating the stability of
the learning process. A comparison with baseline meth-
ods that learn a single solution is provided in Appendix D.
The results of a variant of DiveOff based on the expectile
regression as in IQL is also provided in Appendix E.

As outlined in Table 2, our algorithm demonstrated a high
diversity score. Notably, our method stands out as the sole
approach capable of achieving both a high diversity score
and a high d4rl score across tasks. Furthermore, the con-
trast between DiveOff+VAE and DiveOff underscores the
efficacy of our proposed methodology in learning latent
skill representations, thereby enhancing the diversity of the
acquired policy.

While it was demonstrated that diverse behaviors can be
learned with CLUE, the performance on the training tasks
were not stable, compared with DiveOff. It is worth not-

ing that CLUE was originally developed to leverage expert
demonstrations in offline RL, and it is not specifically de-
signed to discover multiple solutions from a single task in
offline RL. When CLUE is applied to unsupervised RL, Liu
et al. (2023) proposed to use the discrete latent represen-
tation, learned by a clustering algorithm such as K-means.
However, unlike our method, important information such
as the Q-values is not incorporated with such latent repre-
sentations. Therefore, it is natural that DiveOff outperforms
CLUE in our problem setting.

The comparison between AWAC-L+VAE+DIAYN and Di-
veOff with VAE in Tables 1 and 2 indicates the effect of
strategies for maximizing mutual information. DIAYN is
a prevalent method to encourage the diversity of behaviors
in online RL, maximizing an auxiliary reward given by the
lower bound of the mutual information between the state
and latent variables. The results indicate that our strategy
proposed in Section 3.4 is more suitable for our framework
than DIAYN.

The comparison between AWAC-L+VAE and AWAC-
L+VAE with LSTM shows that the use of LSTM in the
posterior distribution does not improve performance in our
problem setting. While AWAC-L+VAE with LSTM demon-
strated reasonable performance with the ”diverse-expert”
datasets, the performance with ”diverse-medium” and
”diverse-medium-replay” datasets was relatively worse. The
“diverse-medium” and “diverse-medium-replay” datasets do
not contain expert behaviors, and it is considered that the
“stitching” capability is more crucial for learning from these
datasets.

7

Discovering Multiple Solutions from a Single Task in Offline RL

Table 2. Diversity scores of methods that train latent-conditioned policies. WK = Walker2dVel, HP = HopperVel, HC = HalfcheetahVel,
AN=AntVel. Best results are denoted in bold. The results for cases where the D4RL scores fall below 20.0 compared to the best score
are presented in gray text. The results for cases where the D4RL scores are the best among the compared methods are presented with
underlines.

CLUE AWAC-L
+ VAE

IQL-L +
VAE

AWAC-L
+ VAE W/

LSTM

AWAC-L
+ VAE +
DIAYN

DIVEOFF
+ VAE
(OURS)

DIVEOFF
(OURS)

D
IV

.-
E

X
P. WK 0.95±0.10 0.13±0.12 0.20±0.40 0.35±0.36 0.48±0.33 0.18±0.34 0.22±0.23

HP 0.99±0.01 0.65±0.33 0.06±0.08 0.55±0.28 0.54±0.33 0.28±0.32 0.88±0.11
HC 0.99±0.01 0.96±0.06 0.20±0.15 0.62±0.38 0.90±0.16 0.85±0.11 0.77±0.24
AN 0.71±0.32 0.20±0.34 0.02±0.02 0.19±0.32 0.03±0.03 0.06±0.09 0.09±0.11

D
IV

.-
E

X
P.

-
M

E
D

.

WK 0.98±0.02 0.38±0.39 0.432±0.38 0.81±0.23 0.21±0.22 0.29±0.26 0.75±0.20
HP 0.99±0.01 0.05±0.07 0.36±0.39 0.23±0.22 0.21±0.40 0.31±0.36 0.88±00.19
HC 0.99±0.01 0.72±0.20 0.40±0.48 0.81±0.22 0.62±0.26 0.65±0.30 0.96±0.04
AN 0.42±0.25 0.38±0.27 0.04±0.05 0.18±0.28 0.407±0.22 0.38±0.29 0.61±0.27

D
IV

.-
M

E
D

. WK 0.99±0.01 0.25±0.25 0.43±0.38 0.44±0.29 0.31±0.25 0.34±0.37 0.36±0.33
HP 0.99±0.01 0.46±0.28 0.79±0.25 0.60±0.34 0.61±0.36 0.45±0.33 0.79±0.34
HC 0.99±0.01 0.52±0.25 0.05±0.04 0.73±0.25 0.57±0.32 0.75±0.22 0.81±0.13
AN 0.84±0.17 0.56±0.35 0.02±0.04 0.15±0.23 0.56±0.31 0.38±0.29 0.65±0.26

D
IV

.-
M

E
D

.-
R

E
P.

WK 0.81±0.33 0.00±0.00 0.36±0.40 0.39±0.48 0.32±0.39 0.01±0.02 0.01±0.01
HP 0.99±0.01 0.00±0.02 0.00±0.00 0.46±0.39 0.78±0.27 0.00±0.00 0.02±0.03
HC 0.98±0.02 0.01±0.03 0.14±0.16 0.04±0.08 0.01±0.02 0.00±0.00 0.00±0.00
AN 0.33±0.41 0.24±0.21 0.0±0.0 0.43±0.47 0.40±0.49 0.42±0.48 0.06±0.12

Figure 3. Sequential snapshots of locomotion behaviors obtained
by DiveOff on the walker2dvel-diverse-expert task.

Notably, the methods evaluated in this study often failed to
extract diverse behaviors from the “diverse-medium-replay”
datasets. While it is believed that the “diverse-medium-
replay” data may have the most diverse actions, the diversity
of successful states is considered to be much less than that of
the “diverse-expert” dataset. If the successful states are not
diverse, the actions within those states are also not diverse. It
is considered that this characteristic of the ”diverse-medium-
replay” datasets is attributed to the failure observed in these
datasets.

As a qualitative result, Figure 3 visualizes the locomotion
behaviors obtained by DiveOff on the walker2dvel-diverse-
expert tasks. Here, the agent performed one-leg hopping
when z = [−1.8,−1.8], and walked with two legs when
z = [1.8, 1.8]. As the policy is conditioned on a continuous
latent variable, we can continuously change the locomotion
behavior by manipulating the latent variable’s value.

A limitation of this study is that the learned behavior varies
with different random seeds. This is a common charac-
teristic in existing deep reinforcement learning algorithms.
However, we posit that addressing this issue could be fea-
sible if it were possible to learn all learnable behaviors.
Consequently, there is room for future development of algo-
rithms with the potential to acquire a more diverse range of
behaviors.

4.3. Few-shot Adaptation to Unseen Tasks

The purpose of the few-shot adaptation experiment was to
demonstrate that learning multiple behaviors from a single
task in a training environment allows us to perform few-shot
adaptation to a new environment by selecting a usable be-
havior from behaviors obtained in the training environment.
We prepared two environments for the few-shot adaptation
experiment shown in Figure 4. The embodiment of the
agent, such as lengths of links, is changed on these tasks.

In the few-shot adaptation experiment, policies trained in
offline RL were adapted to a test environment different from
the one used for training. The protocol of the few-shot adap-
tation experiment was based on the one reported in (Kumar
et al., 2020b). Given a latent-conditioned policy trained
via offline RL, we sampled the value of the latent variable
uniformly and executed the latent-conditioned policy in a
test environment with the sampled value of the latent vari-
able. In this phase, we tested each policy only once and
evaluated the policy with K different values of the latent
variable. In (Kumar et al., 2020b), K is called the budget for

8

Discovering Multiple Solutions from a Single Task in Offline RL

Table 3. Results of few-shot adaptation with the hopper agent.

TRAIN.
DATASET

TEST
AGENT

AWAC-L
+ VAE

AWAC-L
+ VAE +
DIAYN

DIVEOFF
W/ VAE
(OURS)

DIVEOFF
(OURS)

DIV.-EXP. LOWKNEE 766.4±631.4 817.7±623.8 1374.76±663.6 764.7±330.1
LONGHEAD 1139.7±468.0 1440.6±563.7 1363.06±423.0 1401.1±458.9

DIV.-EXP.-
MED.

LOWKNEE 1898.8±54.1 1689.5±304.2 1950.46±37.0 1892.8±161.7
LONGHEAD 1645.3±543.2 1498.2±727.3 1948.96±46.9 988.6±597.0

DIV.-
MEDIUM

LOWKNEE 1176.4±619.8 1797.9±166.7 1626.66±274.7 1359.1±380.0
LONGHEAD 1587.8±235.1 1737.9±88.7 1652.26±285.6 1859.5±154.0

DIV.-MED.-
REPL.

LOWKNEE 1593.2±439.9 1142.4±469.4 1780.16±336.1 1594.1±321.3
LONGHEAD 1492.4±453.2 1146.1±584.8 1958.26±33.1 1941.8±62.2

(a) Hopper-
LowKnee.

(b) Hopper-
LongHead.

Figure 4. Tasks for few-shot adaptation. Links modified from the
original agent are indicated as blue.

few-shot adaptation, and we set K = 25 in our experiment.
The latent variable was continuous and two-dimensional
in this experiment, and we uniformly sampled the value of
the latent variable during the adaptation phase. Additional
details pertaining these tasks are provided in Appendix F.

The results of the few-shot adaptation experiments are sum-
marized in Table 3. The proposed methods outperformed
baseline methods in this experiment. These results correlate
with the diversity scores shown in Table 2, demonstrating
that the proposed method successfully enables few-shot
adaptation to new environments by learning diverse behav-
iors from a single task in offline RL. These results also
indicate that the proposed method discovers more diverse
behaviors than the compared baseline methods.

5. Conclusions
In this study, we tackled the challenge of obtaining multiple
solution in offline RL. We introduced a novel algorithm
designed to learn diverse behaviors from individual tasks in
offline RL, resembling a coordinate ascent approach akin to
the EM algorithm. Experimental results illustrate that our
proposed algorithm effectively learns multiple solutions in
offline RL and that our method learn more diverse solutions
than baseline methods. Additionally, the findings suggest
that the acquired multiple behaviors enables few-shot adap-
tation to new environments with limited test samples. While
we have presented a framework for formulating the prob-
lem of learning multiple solutions in offline RL, there is
still room for improvement in enhancing the diversity of

behaviors. We hope to inspire future work to investigate al-
ternative approaches to discover diverse solutions in offline
RL.

Impact Statement
This study was undertaken with the aim of contributing to
the field of reinforcement learning. Reinforcement learning
has various applications in society, and its impact is con-
sidered diverse. However, regarding this study, we believe
there are no notable ethical issues or concerns.

Acknowledgements
This work was partially supported by JST Moonshot R&D
Grant Number JPMJPS2011, CREST Grant Number JP-
MJCR2015, JSPS KAKENHI Grant Number JP23K18476
and Basic Research Grant (Super AI) of Institute for AI and
Beyond of the University of Tokyo.

References
Abdolmaleki, A., Springenberg, J. T., Tassa, Y., Munos, R.,

Heess, N., and Riedmiller, M. Maximum a posteriori
policy optimisation. In Proceedings of the International
Conference on Learning Representations (ICLR), 2018.

Ajay, A., Kumar, A., Agrawal, P., Levine, S., and Nachum,
O. Opal: Offline primitive discovery for accelerating
offline reinforcement learning. In Proceedings of the
International Conference on Learning Representations
(ICLR), 2021.

Barber, D. and Agakov, F. The im algorithm : A variation-
alapproach to information maximization. In Advances in
Neural Information Processing Systems (NeurIPS), vol-
ume 16, pp. 201–208, 2003.

Bishop, C. M. Pattern recognition and machine learning.
Springer, 2006.

Chatzilygeroudis, K., Cully, A., Vassiliades, V., and Mouret,

9

Discovering Multiple Solutions from a Single Task in Offline RL

J.-B. Quality-diversity optimization: A novel branch
of stochastic optimization. In Black Box Optimization,
Machine Learning, and No-Free Lunch Theorems, 2021.

Chen, X., Ghadirzadeh, A., Yu, T., Wang, J., Gao, Y., Li, W.,
Liang, B., Finn, C., and Zhang, C. Lapo: Latent-variable
advantage-weighted policyoptimization for offline rein-
forcement learning. In Advances in Neural Information
Processing Systems (NeurIPS), 2022.

Cully, A. and Demiris, Y. Quality and diversity optimization:
A unifying modular framework. IEEE Transactions on
Evolutionary Computation, 22(2):245–259, 2018. doi:
10.1109/TEVC.2017.2704781.

Deisenroth, M. P., Neumann, G., and Peters, J. A survey on
policy search for robotics. Foundations and Trends®in
Robotics, 2013.

Eysenbach, B., Gupta, A., Ibarz, J., and Levine, S. Diversity
is all you need: Learning skills without a reward func-
tion. In Proceedings of the International Conference on
Learning Representations (ICLR), 2019.

Fu, J., Kumar, A., Nachum, O., Tucker, G., and Levine,
S. D4rl: Datasets for deep data-driven reinforcement
learning. arXiv, 2020.

Fujimoto, S. and Gu, S. S. A minimalist approach to offline
reinforcement learning. Advances in Neural Information
Processing Systems (NeurIPS), 34:20132–20145, 2021.

Fujimoto, S., van Hoof, H., and Meger, D. Addressing
function approximation error in actor-critic methods. In
Proceedings of the International Conference on Machine
Learning (ICML), pp. 1587–1596, 2018.

Hein, D., Udluft, S., and Runkler, T. A. Interpretable poli-
cies for reinforcement learning by genetic programming.
Engineering Applications of Artificial Intelligence, 76:
158–169, 2018a.

Hein, D., Udluft, S., and Runkler, T. A. Generating in-
terpretable fuzzy controllers using particle swarm opti-
mization and genetic programming. In Proceedings of
the Genetic and Evolutionary Computation Conference
Companion, 2018b.

Jang, E., Gu, S., and Poole, B. Categorical reparameter-
ization with Gumbel-softmax. In Proceedings of the
International Conference on Learning Representations
(ICLR), 2017.

Kingma, D. P. and Welling, M. Auto-encoding variational
bayes. In Proceedings of the International Conference on
Learning Representations (ICLR), 2014.

Kostrikov, I., Nair, A., and Levine, S. Offline reinforcement
learning with implicit q-learning. In Proceedings of the
International Conference on Learning Representations
(ICLR), 2022.

Kumar, A., Zhou, A., Tucker, G., and Levine, S. Stabilizing
off-policy q-learning via bootstrapping error reduction.
In Advances in Neural Information Processing Systems
(NeurIPS), volume 32, pp. 11784–11794, 2019.

Kumar, A., Zhou, A., Tucker, G., and Levine, S. Con-
servative Q-learning for offline reinforcement learning.
In Advances in Neural Information Processing Systems
(NeurIPS), volume 33, pp. 1179–1191, 2020a.

Kumar, S., Kumar, A., Levine, S., and Finn, C. One solution
is not all you need: Few-shot extrapolation via structured
MaxEnt RL. In Advances in Neural Information Pro-
cessing Systems (NeurIPS), volume 33, pp. 8198–8210,
2020b.

Liu, J., Zu, L., He, L., and Wang, D. Clue: Calibrated
latent guidance for offline reinforcement learning. In Pro-
ceedings of the Conference on Robot Learning (CoRL),
volume 229, pp. 906–927, 2023.

Maddison, C. J., Mnih, A., and Teh, Y. W. The concrete
distribution: A continuous relaxation of discrete random
variables. In Proceedings of the International Conference
on Learning Representations (ICLR), 2017.

Mao, Y., Wu, C., Chen, X., Hu, H., Jiang, J., Zhou, T., Lv,
T., Fan, C., Hu, Z., Wu, Y., Hu, Y., and Zhang, C. Styl-
ized offline reinforcement learning: Extracting diverse
high-quality behaviors from heterogeneous datasets. In
Proceedings of the International Conference on Learning
Representations (ICLR), 2024.

Nair, A., Gupta, A., Dalal, M., and Levine, S. AWAC:
Accelerating online reinforcement learning with offline
datasets. arXiv, arXiv:2006.09359, 2020.

Osa, T. Motion planning by learning the solution manifold
in trajectory optimization. The International Journal of
Robotics Research, 41(3):291–311, 2022.

Osa, T., Tangkaratt, V., and Sugiyama, M. Discovering
diverse solutions in deep reinforcement learning by max-
imizing state-action-based mutual information. Neural
Networks, 152:90–104, 2022.

Osa, T., Hayashi, A., Deo, P., Morihira, N., and Yoshiike,
T. Offline reinforcement learning with mixture of de-
terministic policies. Transactions on Machine Learning
Research, 2023.

10

Discovering Multiple Solutions from a Single Task in Offline RL

Parker-Holder, J., Pacchiano, A., Choromanski, K., and
Roberts, S. Effective diversity in population based rein-
forcement learning. In Advances in Neural Information
Processing Systems (NeurIPS), volume 33, pp. 18050–
18062, 2020.

Peters, J., Mulling, K., and Altün, Y. Relative entropy
policy search. In n Proceedings of the Twenty-Fourth
AAAI Conference on Artificial Intelligence (AAAI), 2010.

Pugh, J. K., Soros, L. B., and Stanley, K. O. Quality di-
versity: A new frontier for evolutionary computation.
Frontiers in Robotics and AI, 3(40), 2016.

Sharma, A., Gu, S., Levine, S., Kumar, V., and Hausman,
K. Dynamics-aware unsupervised discovery of skills. In
Proceedings of the International Conference on Learning
Representations (ICLR), 2020.

Sutton, R. S. and Barto, A. G. Reinforcement Learning: An
Introduction. The MIT Press, Second edition, 2018.

Todorov, E., Erez, T., and Tassa, Y. Mujoco: A physics
engine for model-based control. In 2012 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems,
pp. 5026–5033, 2012.

Toussaint, M. A., Allen, K. R., Smith, K. A., and Tenen-
baum, J. B. Differentiable physics and stable modes for
tool-use and manipulation planning. In Proceedings of
Robotics: Science and Systems Foundation, 2018.

Zhou, W., Bajracharya, S., and Held, D. Plas: Latent action
space for offline reinforcement learning. In Proceedings
of the Conference on Robot Learning (CoRL), volume
155, pp. 1719–1735, 2020.

11

Discovering Multiple Solutions from a Single Task in Offline RL

A. Derivation of the latent-conditioned policy update
We can show the relationship between (7) and (8) in the main manuscript by extending the results presented in (Peters
et al., 2010; Deisenroth et al., 2013; Nair et al., 2020). We consider an offline RL problem where a dataset is collected by a
behavior policy that exhibits multiple behaviors. Here, we assume that the behavior policy is given by

β(a|s) =
∫

β(a|s, z)p(z)dz, (35)

where p(z) represents the prior distribution of the latent variable, and the value of z determines the behavior style of the
behavior policy. A fixed dataset can be regarded as samples generated from the distribution dβ(s)β(a|s), where dβ(s)
represents the stationary distribution of the state obtained by executing the behavior policy β(a|s). For example, when a
dataset is constructed by executing two distinctive policies, the latent variable is discrete, e.g. z ∈ {0, 1}, and the prior
distribution p(z) defines the ratio of executing these policies.

According to the above assumption, we consider the problem formulated as follows:

max
π

Ea∼π [Aw(s,a, z)] (36)

s.t. DKL (π(a|s, z)||β(a|s, z)) ≤ ϵ (37)∫
π(a|s, z)da = 1 (38)

Here, we assume that the approximated posterior distribution q(z|s,a) is given. The problem in (38) is equivalent to (7)
in the main manuscript when taking the expectation with respect to dβ(s) and q(z|s). The Lagrangian of the constraint
problem in (38) is given by

L(π) = Ea∼π [Aw(s,a, z)] + α (ϵ−DKL (π(a|s, z)||β(a|s, z))) + λ

(
1−

∫
π(a|s, z)da

)
. (39)

By taking the partial derivative of L(π) with respect to π, we obtain the following equation:

∂L(π)
∂π

= Aw(s,a, z) + α (− log β(a|s, z) + log π(a|s, z) + 1)− λ, (40)

When we set ∂L(π)
∂π = 0, we obtain a non-parametric solution to the problem in (38):

π∗ ∝ β(a|s, z) exp
(
1

α
Aw(s,a, z)

)
. (41)

Given a dataset D = {(si,ai)}Ni=1 ∼ dβ(s)β(a|s) and the posterior distribution q(z|s,a), we project the non-parametric
solution to the parametric model πθ(a|s, z) by minimizing the KL divergence:

min
θ

Es∼dβ ,z∼q

[
DKL

(
β(a|s, z) exp

(
1

α
Aw(s,a, z)

)∥∥∥∥πθ(a|s, z))] . (42)

The KL divergence in (42) can be rewritten as

DKL

(
β(a|s, z) exp

(
1

α
Aw(s,a, z)

)∥∥∥∥πθ(a|s, z))
=

∫
β(a|s, z) exp

(
1

α
Aw(s,a, z)

)
log β(a|s, z) exp

(
1

α
Aw(s,a, z)

)
da

−
∫

β(a|s, z) exp
(
1

α
Aw(s,a, z)

)
log πθ(a|s, z)da. (43)

As the first term in the right-hand side of (43) is independent of the policy πθ(a|s, z), the problem in (42) can be rewritten
as

max
θ

Es∼dβ ,a∼β,z∼q

[
exp

(
1

α
Aw(s,a, z)

)
log πθ(a|s, z)

]
. (44)

Thus, we can obtain the relationship between (7) and (8) in the main manuscript.

12

Discovering Multiple Solutions from a Single Task in Offline RL

B. Details of diverse datasets
B.1. Details of tasks in diverse datasets

In the reward function of the original tasks in D4RL, a velocity term rvel is used to encourage the agent to walk faster, and
rvel is given by

rvel = (xt − xt−1))/∆t, (45)

where xt represents the horizontal position of the agent at time t, and ∆t represents the time step size in the simulation. To
emphasize the existence of diverse solutions, we modified the velocity term of the reward function from that in the original
tasks in the D4RL framework, as in (Kumar et al., 2020a):

rvel = min
(
(xt − xt−1)/∆t, vmax

)
, (46)

where xt represents the horizontal position of the agent at time t, and vmax is a constant term that defines the upper bound of
rvel. The value of vmax used in each agent is presented in Table 4.

The maximum return obtained using the trained policy and the minimum return obtained using a random policy are presented
in Table 5.

Table 4. Upper bound for the velocity term in our dataset

Agent vmax

Walker 2
Hopper 1
Halfcheetah 2
Ant 1.5

Table 5. Maximum returns obtained using the trained policy and the minimum return obtained using a random policy

Agent Max. return Min. return
Walker 2860 -4.02
Hopper 1962 6.84
Halfcheetah 1869 -324.79
Ant 2265 -379.33

B.2. How to construct the diverse dataset

We collected the samples by running LTD3 proposed in (Osa et al., 2022) according to the author implementation in
https://github.com/TakaOsa/LTD3. To create diverse datasets, we ran LTD3 five times with different random
seeds with the two-dimensional continuous latent variable. For “diverse-expert” and “diverse-medium” datasets, we
collected samples by running the trained policies with uniformly generated values of the latent variable. As the trained
policy occasionally resulted in an episode with a low return, we removed such episodes from the “diverse-expert” and
“diverse-medium” datasets. The minimum return to be included in a dataset is presented in Table 6. The approximate number
of samples in the “diverse-expert” and “diverse-medium” datasets was 300,000, although there was a variance in the number
of samples due to the variance of the number of the steps in episodes. The number of time steps for training policies for
each dataset is presented in Table 7. The “medium-expert” datasets were constructed by concatenating the “expert” and
“medium” datasets. Therefore, the approximate number of samples in the “diverse-medium-expert” datasets was 600,000.

To construct the “medium-replay” datasets, we aggregated the data in replay buffers from five different random seeds. To
avoid making the datasets too large, we did not include all the samples of the replay buffers in the “medium-replay” datasets
. We selected and included one episode after every N episodes from the replay buffer, and the data from five random seeds
were aggregated. The value of N was changed for each agent owing to the file size of the dataset. The values of N are
presented in Table 8. The hyperparameters of LTD3 used to train policies for constructing our datasets are presented in

13

https://github.com/TakaOsa/LTD3

Discovering Multiple Solutions from a Single Task in Offline RL

Table 10. We also provide visualization of the locomotion behaviors in the expert-diverse datasets in Figure 5, which we
omitted from the main manuscript owing to the page limitation.

Table 6. Minimum return for each dataset

Agent “expert” “medium”
Walker 2000 500
Hopper 1700 500
Halfcheetah 1650 500
Ant 1700 500

Table 7. Training time steps to obtain policies for each dataset

Agent “expert” “medium” “medium-replay
Walker 3 million 1 million 1 million
Hopper 3 million 1 million 1 million
Halfcheetah 2 million 250,000 250,000
Ant 3 million 1 million 1 million

Table 8. Interval to be included in the medium-replay dataset

Agent N
Walker 5
Hopper 5
Halfcheetah 2
Ant 5

B.3. Diversity of the samples in our datasets

To quantify sample diversity within the datasets, we evaluated the entropy of their states. However, as the datasets’ sample
distributions are unknown, the entropy estimation is not a trivial task. Instead of directly estimating the entropy, we therefore
evaluated its upper bound. When the density is approximated with a Gaussian mixture model as p(s) =

∑M
i=1 wiN (µ,Σ),

the upper bound of the entropy H(s) is given as follows:

H(s) ≤
L∑

i=1

wi

(
D

2
log(1 + 2π) +

1

2
log det(Σ)− logwi

)
(47)

Table 9. Diversity of datasets based on the state entropy. WK = Walker2d, HP = Hopper, HC = Halfcheetah.

diverse-
expert-v0

(ours)

expert-v2
(d4rl)

diverse-
medium-v0

(ours)

medium-v2
(d4rl)

WK 5.97±1.19 -5.77±1.94 5.73±1.96 2.06±2.35
HP 1.76±0.78 -2.29±1.03 5.0±1.03 -0.44±1.28
HC 13.73±0.26 1.34±0.4 17.01±0.6 11.96±1.36

diverse-
medium-
expert-v0

(ours)

medium-
expert-v2

(d4rl)

diverse-
medium-
replay-v0

(ours)

medium-
replay-v2

(d4rl)

WK 6.26±1.67 0.76±2.03 8.41±1.72 12.65±0.84
HP 4.35±0.68 2.25±0.68 6.31±1.17 6.88±0.67
HC 14.41±0.19 7.86±1.34 18.93±0.47 14.11±0.44

14

Discovering Multiple Solutions from a Single Task in Offline RL

To compute the upper bound of H(s) in (47), we selected a batch of samples from the dataset and fitted a Gaussian mixture
model. The number of Gaussian components was determined based on the Bayesian information criteria.

We compared the upper bound of the entropy with that for existing D4RL datasets, with results listed in Tablee 9. As shown,
our datasets exhibit higher values compared with existing D4RL datasets, indicating higher behavioral diversity.

We also provide visualization of the locomotion behaviors in the expert-diverse datasets in Figure 5, which we omitted from
the main manuscript owing to the page limitation.

Figure 5. Examples of locomotion behaviors contained in the expert-diverse datasets. The color of the legs of the ant agent was changed
for visibility.

15

Discovering Multiple Solutions from a Single Task in Offline RL

Table 10. Hyperparameters used for LTD3 to construct our datasets

Parameter Value
Optimizer Adam
Learning rate 3 · 10−4

Discount factor γ 0.99
Replay buffer size 106

Number of hidden layers 2
Number of hidden units per layer 256
Number of samples per minibatch 256
Activation function Relu
Target smoothing coefficient 0.005
gradient steps per time step 1
Clipping param. for IW 0.3
interval for maximizing JQ(θ) 2
interval for maximizing Jinfo(θ) 5 for walker, 4 for others

C. Diversity score
To quantify the diversity of the learned solutions, we employed the diversity metric used in (Parker-Holder et al., 2020).
Given a set of policies {πi}Mi=1, the diversity metric is expressed as

Ddiv = det
(
K(ϕ(πi),ϕ(πj))

M
i,j=1

)
, (48)

where ϕ(π) ∈ Rl is the behavior embedding of policy π, and K : Rl × Rl 7→ R is a kernel function. Specifically, we used
the squared-exponential kernel function given by

k(ϕ(πi),ϕ(πj)) = exp

(
−∥ϕ(πi)− ϕ(πj)∥2

2h2

)
, (49)

where ϕ(πi) is the policy embedding given by the mean of the states visited by the policies as ϕ(πi) = Es∼πi,P [s]. We
uniformly sampled the value of the latent variable and computed the policy embedding, with M = 9. In the main manuscript,
we reported the average and the standard deviation over five different random seeds.

D. Comparison with methods that learn a single solution
We evaluated the performance of prevalent offline RL methods that finds a single solution on our datasets. Specifically, we
considered behavior cloning, TD3+BC (Fujimoto & Gu, 2021), IQL (Kostrikov et al., 2022), AWAC (Nair et al., 2020),
and LAPO (Chen et al., 2022) as baseline methods that learn a single behavior. For TD3+BC, we used the author-provided
implementations. In our implementation of AWAC, we used the state normalization and double-clipped Q-learning as
in TD3+BC. We implemented IQL by adopting the author-provided implementation of IQL to pytorch. We report the
performance of policies after training with 1 million steps unless otherwise stated. For DiveOff, a learning rate for LM-info
was 6e− 4 for all the task, and the D4RL score is different from Table 1.

In Table 11, DiveOff (ave.) is the average over different behaviors, while DiveOff (best) represents the results when we
report the results of the latent variables that led to the highest return. To select the latent variable for DiveOff (best), we
uniformly sampled the value of the latent variable 25 times, and the value that led to the highest total returns in three test
episodes was used as the best value.

As shown, DiveOff (best) outperforms DiveOff (ave), and DiveOff (best) achieved a result comparable or superior to
prevalent offline RL methods that learn a single policy. Although learning multiple behaviors potentially increase the
computational and algorithmic complexity, the performance of the proposed method in terms of the normalized score was
found to be comparable to that of the baseline methods. LAPO is designed to deal with multimodal distributions in a given
dataset, and outperformed other baselines in diverse-expert datasets. Notably, DiveOff achieved a performance comparable
to LAPO on diverse-expert datasets, and the overall performance of DiveOff was better than LAPO.

Interestingly, the performance of IQL on the walker2d-diverse-expert and hopper-diverse-expert datasets was lower than that
of other baseline methods, whereas IQL often achieved state-of-the-art performance on the expert dataset in D4RL. However,

16

Discovering Multiple Solutions from a Single Task in Offline RL

Table 11. Results on diverse dataset. WK = Walker2dVel, HP = HopperVel, HC = HalfcheetahVel, AN = AntVel. Best results are denoted
in bold. The average and standard deviation of normalized scores over the 10 test episodes and five seeds are shown.

BC TD3+BC IQL AWAC LAPO DIVEOFF
(AVE.)

DIVEOFF
(BEST)

D
IV

.-
E

X
P. WK 95.0±4.8 75.5±31.9 23.5±31.0 90.8±3.3 93.1±7.4 98.5±2.2 99.8±0.5

HP 99.2±0.8 94.6±11.5 66.5±39.4 92.5±14.1 100.6±0.1 96.4±3.8 99.7±0.6
HC 95.9±0.7 97.6±0.2 98.4±0.5 96.5±0.2 97.5±0.2 96.8±0.1 96.7±0.3
AN 93.6±2.6 98.5±2.8 97.1±2.1 93.8±2.4 96.6±1.0 95.4±1.2 95.9±0.6

D
IV

.-
M

E
D

.-
E

X
P.

WK 63.5±24.8 96.5±7.0 49.1±36.5 74.7±22.2 68.5±21.5 98.0±2.5 98.8±1.8
HP 98.1±4.9 92.1±14.0 101.1±0.0 79.1±23.9 100.2±0.5 98.9±2.2 98.9±1.7
HC 95.8±0.8 97.3±0.2 97.1±4.2 95.9±0.6 97.4±0.2 96.2±0.1 96.4±0.2
AN 79.5±6.7 96.2±3.8 91.3±5.2 85.1±3.7 94.8±1.2 88.5±1.9 88.9±1.1

D
IV

.-
M

E
D

. WK 76.3±2.6 77.0±13.7 80.1±8.1 76.9±11.3 90.3±4.8 88.4±9.3 89.1±5.6
HP 73.5±24.4 88.1±9.0 94.5±6.2 96.9±3.0 98.2±3.4 95.1±6.2 95.6±5.3
HC 92.6±0.2 92.3±2.3 94.5±1.8 92.9±0.4 94.4±0.2 93.2±0.1 93.3±0.3
AN 75.6±4.3 64.3±64.1 91.9±0.3 79.9±3.4 83.3±3.7 81.1±2.3 81.8±1.0

D
IV

.-
M

E
D

.-
R

E
P.

WK 26.0±22.9 80.6±28.4 83.4±20.1 32.8±15.5 46.7±18.0 44.2±18.2 52.5±23.0
HP 26.5±5.2 67.9±23.1 101.1±0.0 100.9±0.2 77.0±6.1 101.1±0.1 101.1±0.1
HC 14.6±0.2 93.2±0.6 92.8±0.4 86.5±7.3 44.6±24.8 85.6±11.0 87.0±7.5
AN 32.9±1.7 91.9±3.2 91.4±0.6 35.0±2.5 37.6±6.4 32.9±2.9 36.0±2.5

IQL significantly outperformed other baseline methods on diverse-medium-replay datasets, indicating the “stitching” ability
of IQL.

E. Comparison of variants of the baseline and proposed method
As additional baseline, we evaluated the policy update based on TD3+BC, which we refer to as TD3-L+BC+VAE. In
TD3-L+BC+VAE, we used the latent-conditioned behavioral cloning term, and the objective function for TD3-L+BC+VAE
is given by

LTD3+VAE(θ) = Es∼DEz∼q [Qw(s,µθ(s, z), z)]

−λE(s,a)∼DEz∼q

[
(µθ(s, z)− a)

2
]
, (50)

where λ is a constant, and q is the posterior distribution as a part of VAE. To implement TD3-L+BC+VAE, we mofieid the
author-provided implementation of TD3+BC. We evaluated TD3-L+BC+VAE with λ ∈ 1.0, 2.5, 5.0, 10.0 in (50), but did
not observe significant differences. Therefore, we report the results with λ = 2.5 as in the default setting in TD3+BC.

While we reported the performance of DiveOff based on the double-clipped Q-learning in the main text, alternative methods
can be employed. To investigate the effect of the algorithm for learning the critic, we evaluate a variant of DiveOff using the
quantile regression as in IQL (Kostrikov et al., 2022).

The results are reported in Tables 12 and 13.

The results indicate that replacing double-clipped-Q-learning with IQL improves the performance on the replay dataset.
However, the performance on some expert datasets got worse. This effect can also be observed by comparing AWAC-L+VAE
and IQL-L+VAE in Table 1. Previous studies indicate that IQL has better stitching capability compared to double-clipped-Q-
learning. The performance gain on the replay datasets implies that the stitching capability is necessary to learn from the
replay datasets.

F. Details of few-shot adaptation experiments
F.1. Environments

The purpose of the few-shot adaptation experiment was to demonstrate that learning multiple behaviors from a single
task in a training environment allows us to perform few-shot adaptation to a new environment by selecting a usable

17

Discovering Multiple Solutions from a Single Task in Offline RL

Table 12. Normalized scores of methods that train latent-conditioned policies. WK = Walker2dVel, HP = HopperVel, HC = HalfcheetahVel,
AN=AntVel. Best results are denoted in bold.

TD3+BC+VAE
DIVEOFF
(QUANTILE
REGRESS.)

DIVEOFF
(DOUBLE
CLIPPED Q)

D
IV

.-
E

X
P. WK 3.7±3.6 27.7±35.9 93.3±9.9

HP 0.7±0.2 6.6±8.4 81.2±33.8
HC 14.6±0.1 94.2±8.7 96.8±0.3
AN 51.5±0.4 99.1±0.3 95.4±1.2

D
IV

.-
E

X
P.

-
M

E
D

.
WK 4.7±3.5 49.4±30.2 80.5±17.7
HP 0.8±0.2 101.1±0.0 98.4±4.7
HC 14.6±0.0 97.4±4.2 96.1±0.6
AN 51.7±0.3 96.9±0.4 88.5±1.9

D
IV

.-
M

E
D

. WK 4.1±3.3 62.8±20.9 67.9±17.4
HP 0.8±0.3 99.7±2.7 83.1±18.0
HC 14.6±0.0 95.5±0.4 93.2±0.5
AN 51.7±0.2 92.9±0.8 81.1±2.3

D
IV

.-
M

E
D

.-
R

E
P.

WK 3.4±3.8 90.8±7.0 39.3±11.6
HP 1.1±0.4 101.1±0.0 101.0±0.1
HC 14.7±0.0 93.5±0.5 89.8±6.4
AN 51.8±0.3 95.0±0.7 32.9±2.9

behavior from behaviors obtained in the training environment. We prepared two environments for the few-shot adaptation
experiments. For the hopper agent, we prepared the HopperLowKnee-v0 and HopperLongHead-v0 environments. In
HopperLowKnee-v0, the position of the knee joint was lower than that of the normal hopper agent. In HopperLongHead-v0,
the top link was longer than that of the normal hopper agent.

F.2. Procedure of the few-shot adaptation experiment

In the few-shot adaptation experiment, policies trained in offline RL were adapted to a test environment different from the
one used for training. The protocol of the few-shot adaptation experiment was based on the one reported in (Kumar et al.,
2020b). Given a latent-conditioned policy trained via offline RL, we sampled the value of the latent variable uniformly and
executed the latent-conditioned policy in a test environment with the sampled value of the latent variable. In this phase, we
tested each policy only once and evaluated the policy with K different values of the latent variable. In (Kumar et al., 2020b),
K is called the budget for few-shot adaptation, and we set K = 25 in our experiment. Then, we stored the value of the
latent variable zmax that resulted in the maximum return. Subsequently, we ran the latent-conditioned policy with z = zmax
in the test environment 10 times and recorded the average return. We repeated the above process five times for different
random seeds, and the corresponding average and standard deviation are presented in Table 3.

G. Implementation details and hyperparameters
In DiveOff and AWAC, we used the state normalization employed in TD3+BC (Fujimoto & Gu, 2021) and the double-clipped
Q-learning (Fujimoto et al., 2018). The neural network architecture and hyperparameters are presented in Table 14.

H. Effect of hyperarameters
We provide the effect of the learning rate of the optimizer for LM-info in Table 18. The rest of the hyperparamters were
the same as in Table 14. As we fixed the learning rate for other objective functions, changing the learning rate for LM-info
corresponds to the change of the weight on LM-info. The higher learning rate leads to the larger weight on LM-info. As shown
in Table 18, we observed the trade-off between the D4RL score and diversity score.

18

Discovering Multiple Solutions from a Single Task in Offline RL

Table 13. Diversity scores of methods that train latent-conditioned policies. WK = Walker2dVel, HP = HopperVel, HC = HalfcheetahVel,
AN=AntVel. Best results are denoted in bold. The results for cases where the D4RL scores fall below 20.0 compared to the best score
are presented in gray text. The results for cases where the D4RL scores are the best among the compared methods are presented with
underlines.

TD3+BC +
VAE

DIVEOFF
(QUANTILE
REGRESS.)

DIVEOFF
(DOUBLE

CLIPPED Q)
D

IV
.-

E
X

P. WK 0.24±0.12 0.025±0.05 0.22±0.23
HP 0.71±0.36 0.07±0.10 0.88±0.11
HC 0.09±0.08 0.73±0.28 0.77±0.24
AN 0.05±0.08 0.14±0.18 0.09±0.11

D
IV

.-
E

X
P.

-
M

E
D

.

WK 0.25±0.21 0.46±0.20 0.75±0.20
HP 0.65±0.37 0.05±0.09 0.88±00.19
HC 0.06±0.06 0.07±0.05 0.96±0.04
AN 0.28±0.30 0.06±0.06 0.61±0.27

D
IV

.-
M

E
D

. WK 0.32±0.30 0.43±0.35 0.36±0.33
HP 0.66±0.34 0.68±0.29 0.79±0.34
HC 0.04±0.04 0.12±0.08 0.81±0.13
AN 0.23±0.29 0.09±0.12 0.65±0.26

D
IV

.-
M

E
D

.-
R

E
P.

WK 0.21±0.39 0.11±0.14 0.01±0.01
HP 0.66±0.37 0.001±0.001 0.02±0.03
HC 0.004±0.005 0.29±0.35 0.00±0.00
AN 0.07±0.12 0.0±0.0 0.06±0.12

Table 14. Hyperparameters of DiveOff.
Hyperparameter Value

Optimizer Adam
Learning rate for critic 3e-4
Learning rate for actor πθ 3e-4
Learning rate for posterior distribution qϕ 3e-4 (initialization)
Learning rate for Likelihood pψ 3e-4 (initialization)
Learning rate for LM-info 6e-5 for antvel, 9e-5 for others
Mini-batch size 256
Discount factor 0.99
Target update rate 5e-3
Policy update frequency 2
Score scaling 1/απ 3.0
Score scaling 1/αq 1.0

Critic activation function ReLU
Actor activation function ReLU
Encoder hidden dim 256
Encoder hidden layers 2
Encoder activation function ReLU
Decoder hidden dim 256
Decoder hidden layers 2
Decoder activation function ReLU

λ 2.0

19

Discovering Multiple Solutions from a Single Task in Offline RL

Table 15. Hyperparameters of TD3-L+BC+VAE.
Hyperparameter Value

Optimizer Adam
Critic learning rate 3e-4
Actor learning rate 3e-4
Mini-batch size 256
Discount factor 0.99
Target update rate 5e-3
Policy noise 0.2
Policy noise clipping (-0.5, 0.5)
Policy update frequency 2

Critic hidden dim 256
Critic hidden layers 2
Critic activation function ReLU
Actor hidden dim 256
Actor hidden layers 2
Actor activation function ReLU
Encoder hidden dim 256
Encoder hidden layers 2
Encoder activation function ReLU
Decoder hidden dim 256
Decoder hidden layers 2
Decoder activation function ReLU

α 2.5

Table 16. Hyperparameters of AWAC-L+VAE.
AWAC Hyperparameter Value

Optimizer Adam
Critic learning rate 3e-4
Actor learning rate 3e-4
Mini-batch size 256
Discount factor 0.99
Target update rate 5e-3
Policy update frequency 2
Score scaling 1/α 3.0

Critic hidden dim 256
Critic hidden layers 2
Critic activation function ReLU
Actor hidden dim 256
Actor hidden layers 2
Actor activation function ReLU
Encoder hidden dim 256
Encoder hidden layers 2
Encoder activation function ReLU
Decoder hidden dim 256
Decoder hidden layers 2
Decoder activation function ReLU

20

Discovering Multiple Solutions from a Single Task in Offline RL

Table 17. Hyperparameters of IQL-L+VAE.
IQL Hyperparameter Value

Optimizer Adam
Critic learning rate 3e-4
Actor learning rate 3e-4
Mini-batch size 256
Discount factor 0.99
Target update rate 5e-3
Score scaling 1/α 3.0
Expectile τ 0.7

Critic hidden dim 256
Critic hidden layers 2
Critic activation function ReLU
Actor hidden dim 256
Actor hidden layers 2
Actor activation function ReLU
Encoder hidden dim 256
Encoder hidden layers 2
Encoder activation function ReLU
Decoder hidden dim 256
Decoder hidden layers 2
Decoder activation function ReLU

Table 18. Effect of the learning rate of LM-info. WK = Walker2dVel, HP = HopperVel, HC = HalfcheetahVel. AN = AntVel. Best results
are denoted in bold. The average and standard deviation of normalized scores over the 10 test episodes and five seeds are shown.

D4RL SCORE

DIVEOFF
LR=9E-5

DIVEOFF
LR=6E-5

D
IV

.-
E

X
P. WK 93.3±9.9 98.5±2.2

HP 81.2±33.8 96.4±3.8
HC 96.8±0.3 96.8±0.1
AN 95.6±0.6 95.4±1.2

D
IV

.-
M

E
D

.-
E

X
P.

WK 80.5±17.7 98.0±2.5
HP 98.4±4.7 98.9±2.2
HC 96.1±0.6 96.2±0.1
AN 83.6±3.7 88.5±1.9

D
IV

.-
M

E
D

. WK 67.9±17.4 88.4±9.3
HP 83.1±18.0 95.1±6.2
HC 93.2±0.5 93.2±0.1
AN 76.7±8.9 81.1±2.3

D
IV

.-
M

E
D

.-
R

E
P.

WK 39.3±11.6 44.2±18.2
HP 101.0±0.1 101.1±0.1
HC 89.8±6.4 85.6±11.0
AN 33.9±2.4 32.9±2.9

DIVERSITY SCORE

DIVEOFF
LR=9E-5

DIVEOFF
LR=6E-5

D
IV

.-
E

X
P. WK 0.220±0.230 0.146±0.169

HP 0.879±0.114 0.441±0.331
HC 0.774±0.241 0.868±0.208
AN 0.148±0.142 0.090±0.111

D
IV

.-
M

E
D

.-
E

X
P.

WK 0.751±0.195 0.132±0.140
HP 0.878±0.189 0.115±0.130
HC 0.961±0.041 0.742±0.297
AN 0.323±0.317 0.612±0.267

D
IV

.-
M

E
D

. WK 0.364±0.327 0.022±0.019
HP 0.788±0.338 0.707±0.327
HC 0.813±0.131 0.460±0.187
AN 0.278±0.221 0.645±0.259

D
IV

.-
M

E
D

.-
R

E
P.

WK 0.007±0.009 0.083±0.166
HP 0.015±0.030 0.000±0.000
HC 0.003±0.003 0.003±0.005
AN 0.244±0.386 0.062±0.120

21

