
APPENDIX

TRAINING DETAILS

We report the architecture and hyper-parameters used in the
experiments in Section VI for each of the data sets. We used
for most of the data intensive experiments Ubuntu 16.04 on a
machine with 2x Intel Xeon Gold 6126 CPU @2.6GHz/3.7GHz
12C/24T each, 2x512GB SSD for system (RAID0 = 512GB
usable), and 4xNvidia GTX 1080Ti 11GB GPUs.

a) Active learning training: After each batch of queries
the network is trained for a certain number of epochs, starting
from the previous configuration. The reported accuracies are
averaged over 5 runs. All the experiments were performed
using PyTorch [18].

b) Checkerboard: We consider a pool data set of
|Xpool| = 2000 labeled points drawn from the checkerboard
distribution. We start with a training set X0

ℓ composed of 4
points randomly drawn from the pool set for each of the classes
(so that

∣∣X0
ℓ

∣∣ = 8) and train a feed-forward neural network.
The accuracy and its variance are measured on a separate test
data set of Ntest = 200 points drawn from the checkerboard
distribution in Fig. 2. All the results are averaged over 5 runs.

We trained a fully-connected network with 2 hidden layers
of width 30 each. We optimized using SGD with batch size
1, learning rate 0.001 and momentum 0.9. We ran 100 epochs
after each query. The experiments were run on a pool set of
size 2000. The accuracy was evaluated on a separate test data
set sampled from the same distribution (200 points).

c) MNIST: The fully-connected model we used had 2
hidden layers of width 100 and 50 respectively. The convolu-
tional model used was composed by a convolutional layer with
16 channels and a kernel of size 5× 5, a MaxPool layer with a
kernel of size 2 and padding 2, and 2 hidden fully-connected
layers of width 20 each. For both models, we optimized using
Adam [12] with batch size 8 and learning rate 0.001. For both
models, a BatchNorm [10] layer was added before each hidden
fully-connected layer. We ran 100 epochs after each query. The
experiments were run on a pool set formed by a (balanced)
randomly selected subset of the training data set of size 10000.
The accuracy was evaluated on the test data set (10000 points).

d) CIFAR10 : The network used was a VGG-16 archi-
tecture pre-trained on ImageNet. We took the convolutional
part of such network and added 2 fully-connected layers of
width 512 and 20 respectively. A dropout layer was added after
each of these fully-connected layers. Only the fully-connected
layers were trained. We optimized using Adam [12] with batch
size 100. After each query the learning rate was initialized
to 0.0003 and decayed by 0.5 every 30 epochs. We ran 100
epochs after each query. The full training data set (50000
points) was used as pool data set for the experiments. The
accuracy was evaluated on the test data set (10000 points).

e) SVHN : The network used was a VGG-16 architecture.
We optimized using SGD with batch size 50, learning rate
0.005, momentum 0.9 and weight-decay 0.0005. We ran 50
epochs after each query. The experiments were run on a pool
set formed by a (balanced) randomly selected subset of the

training data set of size 20000. The accuracy was evaluated
on the test data set (26032 points).

f) Openml155: For the OpenML, we use a two-layer
Perceptron with ReLU activations (MLP) as in [11]. The
embedding dimensionality of the MLP is 1024, as more capacity
helps the model fit training data. We fit models using cross-
entropy loss and the Adam variant of SGD. We use a learning
rate of 0.0001.

g) DDAL: The following parameters were used for the
diffusion algorithm in the experiments presented in Section VI.
For the experiment with the checkerboard data set (experiment
in Figure 2), we used T = 4, K = 10 and P = 1. For the
experiments with the MNIST data set (experiment in Figure
4), we used T = 5, K = 10 and P = 1. For the experiment
with the CIFAR10 data set (experiment in Figure 4), we used
T = 4, K = 20 and P = 10.

h) Bayesian criterion: In order to perform the active
learning queries using the Bayesian criterion, we added a
dropout layer after each hidden fully connected layer to the
models with no dropout layers.

A. Variants of multi-class extension

In Section IV, we described a possible formulation to
extend the diffusion-based active learning criterion to the
multi-class setting. We propose in the following other possible
formulations.

a) One-vs-all approach: In the one-vs-all setting de-
scribed in Section IV, the batch is queried according to

X̂ = argminBi∈Xu
q
(
χ
(T)
:,i

)
for some chosen function q which measures a notion of
uncertainty at point xi, given the matrix χ(T). In Section
IV, we chose q to be

q
(
χ
(T)
:,i

)
= min

c∈[C]

∣∣∣χ(T)
c,i

∣∣∣, or q
(
χ
(T)
:,i

)
=

∥∥∥χ(T)
:,i

∥∥∥
p

for some p ∈ [1,∞].
b) Multivariate diffusion approach: Moving from the one-

vs-all approach, we can performs the query as follows, using
the property that M is a stochastic matrix. For each data point
xi, we propagate a probability vector χ(t)

i ∈ ∆C . This vector
can be initialized as

χ
(0)
i,c =

1 if i ∈ Xℓ and c = yi

0 if i ∈ Xℓ and c ̸= yi
1
C otherwise

We can therefore diffuse the matrix aggregating the signal for
all the points, χ(t) ∈ RN×C , and diffuse it as in the binary
case:

χ(t) = Mχ(t−1), χ(t)|Xℓ
= χ(0)|Xℓ

Since M is stochastic, it holds that χ(t) ∈ ∆C at each iteration
t. Therefore we can interpret each vector χ(t)

i as a probability
vector of the data point xi belonging to different classes,

obtained by the diffusion above. It therefore makes sense to
choose the points to query as

X̂ = argminBk∈Xu
q
(
χ
(T)
i

)
where q : ∆C → R is some measure of uncertainty. Possible
choices include:

• Uncertainty: q(p) = pc∗ , where c∗ = argmaxc pc;
• Margin: q(p) = pc∗ − pc∗2 , where c∗ is defined as above

and c∗2 = argmaxc∈[C]\{c∗} pc;
• Negative entropy: q(p) =

∑
c∈[C] pc log pc.

B. PROOF OF LEMMA 1

Proposition 1. A general solution to the Jacobi iteration (??)
after t iterations and with initial conditions specified by χ(0)

is given by

χ(t) = (M)tχ(0) = c1λ
t
1ϕ1 + ...+ cnλ

t
nϕn, (10)

where χ
(t)
i:xi∈Xl

= yi, for each t ∈ {0, ..., T}, and c1, ..., cn
are coefficients that are prescribed by the initial condition
χ(0) = c1ϕ1 + ...+ cnϕn, where λ1, ..., λn and ϕ1, ..., ϕn are
the eigenvalues and eigenvectors of M .

Via a simple algebraic manipulation those eigenvectors are
also shown to be the eigenvectors of the graph’s Laplacian:

Proposition 2. λ1, ..., λn, ϕ1, ..., ϕn are also solutions to the
system:

Lϕ = (1− λ)Dϕ, (11)

where L = D −W .

The eigenvector ϕ2 is a solution to the relaxed Minimal
Normalized Cut problem (MinNCut) [5] in a graph G(V,E)
constructed from data representation in the hidden layer fn

θ :

MinNCut = argminh:hTD1=0
hTLh

hTDh
. (12)

We follow on the proposition 1 eq. (10). We first note
that χ(0) has the sign of its non-zero coordinates as the
subset of the coordinates of ϕ2 (up to a sign permutation),
and after each iteration they are restarted. Since ϕ1 has
constant sign (and magnitude) restarting with opposite
signs causes c1 to be suppressed to zero already at
t = 0 . Since ϕ2 ⊥ ϕi for i = 3, ..., N , there have to
be coordinates j1, ..., jk; jk ∈ {1, ..., N − 1}, for which
sign(ϕi(xjm)) ̸= sign(ϕ2(xjm)) 1 ≤ m ≤ k. We consider
two cases:

1) χ(0) contains such non-zero coordinates. For all
eigenvectors ϕi1 , ..., ϕil with such sign inequality
we have that c2 > cil for il ∈ {3, ..., N}, and
since λ2 ≥ λil we have that ϕ2 is dominant. The
restarting of χ prevents it from converging to 0 in case
c2λ2 < 1, and we conclude our proof. For all other
eigen-components (for which χ(0) has 0 coordinates
where sign(ϕi(xjm)) ̸= sign(ϕ2(xjm)) 1 ≤ m ≤ k) the
following case also holds.

2) All coordinates j1, ..., jk in χ(0) are zero: Since for a
well-separated GMM the kernel K is a 2-block stochastic
matrix, point xjm will be transduced only from points xl

for which yjm = yl. For every such point xjm there exist
an iteration t′ such that χ(t′)(xjm) becomes non-zero and
attains the sign of yl. At this t′ all eigen-components
ϕi, i = 3, ..., N in the iterant χ(t′), which have coordi-
nates such that sign(ϕi(xjm)) ̸= sign(χ(t′)(xjm)) 1 ≤
m ≤ k, will be reduced. Once all such points are visited
the dominant component will be ϕ2, and the remaining
components will converge to zero.

C. PROOF OF PROPOSITION 1

The eigenvectors of the kernel M form a complete basis and
therefore any vector in CN can be represented as their linear
combination. What is left to prove is that any initial conditions
can be matched. To this end we need to show that

Sc = χ(0) (13)

can be solved, where S is the matrix whose columns are the
eigenvectors of BJ (the iteration matrix introduced in Section
III for the iteration in eq. (??)). Since the eigenvectors are
linearly independent S is non-singular and (10) always admits
a solution.

D. PROOF OF PROPOSITION 2
Simple algebraic operations yield the result:

D−1Wϕ = λIϕ ⇔ ϕKϕ = λIϕ ⇔ Wϕ = λDϕ ⇔
(D − L)ϕ = λDϕ ⇔ Lϕ = Dϕ− λDϕ ⇔ Lϕ = (1− λ)Dϕ

E. PROOF OF THEOREM 1
We note that eq. (8) is derived from several steps and after reducing

constant factors. We elaborate these steps below:
1) The first term of (8) depends on the balancedness β, and accounts

for the number of queries required to achieve a representative
for every class. The ratio in (8) is a direct result of Lemma 4
in [7].

2) Since at every diffusion step K nodes are transduced with a
label, KT nodes will have a soft label after diffusing from a
labelled node (assuming a connected graph). On the other hand,
the approximate number of labelled nodes needed to cover the
graph with soft labels can be derived in expectation from the ratio
N
KT for connected graphs. When T = O(logK N) all O(N)
unlabelled nodes are reachable in expectation in T iterations, and
O(1) labelled nodes are needed. Exploration involves O(N

KT)
queries to guarantee all nodes have non-zero labels via diffusion.

3) The search process is dictated by the minimal value of the
diffusion soft label (criterion (6)) obtained after each propagation
of the labels from a pair of nodes vi vj of opposite labels, to their
neighbors along the shortest path between them. This propagation
repeats until two nodes of opposite sign are discovered. Since
the absolute value among those two nodes is expected to be
minimal, our query criterion selects one of those nodes to be
queried, and the process repeats until his opposite label neighbor
is queried as well. For a regular graph grid in which all the
transition probabilities are equal, the queried node will reside
at the midpoint between vi and vj , thus resulting in O(logM)
queries, where M is the length of the shortest path between
them.

Since after exploration with T = O(logK N) the maximal
shortest distance between any two nodes vi, vj , of opposite
label is at most 2KT hops, we have that at most log 2KT =
1 + T logK = 1 + logK N · logK queries are required until
the first two connected cut nodes are recovered. Since in a
connected grid each node has K = 2d neighbors. We obtain at
most 1 + d logK N queries are sufficient.

4) The next propagation will reach another cut node in a constant
number of propagations, specifically for any grid in just 2 hops.
Since this is a constant the following queries scale as the size
of the cut - |∂C|.

F. PROOF OF THEOREM 2
We start with auxiliary results (proved below) that show that the

diffusion iteration converges to a minimal cut solution in the graph
G(V,E,W) derived from the top hidden layer, under the separation
requirement. As a result, the decision boundary is recovered accurately
because the GMM cluster assignments correspond to the ground truth
labels.

We start with observing the general form of the solution of the
iteration (??) as in Proposition 1:

χ(t+1) = M t+1χ(0) = c1λ
t
1ϕ1 + ...+ cnλ

t
nϕn, (14)

where χ
(t)
l:xi∈Xl

= yi, for each t ∈ {0, ..., T}, and c1, ..., cn are
coefficients that are prescribed by the initial condition χ(0): χ(0) =
c1ϕ1 + ...+ cnϕn, and λ1, ..., λn and ϕ1, ..., ϕn are the eigenvalues
and eigenvectors of M .

Let λ1, ..., λn and ϕ1, ..., ϕn be the set of eigenvalues and
eigenvectors of M ordered in the decreasing order of the eigenvalues.
Using Proposition 2 and Lemma 1 we show the equivalence of the
iteration solution as t → ∞ to the Minimal Normalized Cut solution
(MinNCut) [5].

As achieved by Lemma 1, the construction of the decision boundary
can be done by following the convergence to the minimal cut solution.
We therefore show that the sample complexity is dominated by the
initial class sampling and the sampling in the exploration stage, which
allows the labels to propagate through the whole graph for a given T .

1) At the initial stage data is queried until at least one sample of
each label exists. Assuming that β is the measure of balancedness
(as definition 2), the first component to consider is the complexity
required to discover all classes, following on Lemma 4 in [7].

2) Next, we are looking to sample a set of labelled nodes such that
when diffused T times all unlabelled nodes will have a non-zero
soft label. As discussed above in the proof of Theorem 1, the
expected number of queries is O(N

KT) to guarantee coverage by
diffusion for almost all nodes in T diffusion steps. On the other
hand, setting T = logK N , renders this complexity as constant
O(1), independent of N , which can be neglected.

3) Once all such points are queried the minimal cut corresponding
to the Gaussian clusters is obtained accurately according to
Lemma 1, for sufficiently large T via the diffusion process.
The optimality of the spectral cut solution here is supported by
Theorem 1.1 in [16], which we give below for completion:
Theorem 3. For N data points generated from a Gaussian
Mixture model, if
• number of clusters is finite
• the sizes of clusters are in the same order
• the minimum distance among centers goes to infinity
• the dimension d is at most in the same order of N
then with high probability, spectral clustering achieves the
optimal clustering rate, which is

l(χ̂, χ∗) = N exp
(
− (1− o(1))

△2

8

)
(15)

where l(·, ·) is the Humming loss function, and △ is the distance
between the centroids.

The theorem provides the final step, showing that ϕ2 is an
optimal solution for finding the decision boundary between the
Guassians in the GMM.

We note that the assumptions of Theorem 3, in particular, the high
separation between the class-clusters (here modeled by the GMM) are
attained due to the highly trained network at the refinement stage. In
this stage the penultimate layer is well trained and present a structured
graph where members of different class are separated.

