
A Proof of Theorem 4.1

Background. PAC-Bayesian generalization theory offers a nice way to blend data-dependent proper-
ties such as noise stability and sharpness into generalization bounds. Recent works (e.g., Bartlett et al.
(2017); Neyshabur et al. (2018)) introduced generalization bounds for multi-layer neural networks
in an attempt to explain why neural network models generalize well despite having more trainable
parameters than the number of training examples. On the one hand, the VC dimension of a neural
network is known to be roughly equal to its number of parameters (Bartlett et al., 2019). On the
other hand, the number of parameters is not a good capacity measure for neural nets, as evidenced by
the popular work of Zhang et al. (2016). The bounds of Bartlett et al. (2017) (and follow-up works)
provide a more meaningful notion of “capacity” compared to VC-dimension.

While these bounds constitute an improvement compared to classical learning theory, it is unclear if
these bounds are tight or non-vacuous. One response to this criticism is a computational framework
from Dziugaite and Roy (2017). That work shows that directly optimizing the PAC-Bayes bound
leads to a much smaller bound and low test error simultaneously (see also Zhou et al. (2018) for
a large-scale study). The recent work of Jiang et al. (2020) further compared different complexity
notions and noted that the ones given by PAC-Bayes tools correlate better with empirical performance.
In particular, we will use the following classical result (McAllester, 1999a,b).
Theorem A.1 (Theorem 1 in McAllester (1999a)). Let H be some hypothesis class. Let P be a prior

distribution on H that is independent of the training set. Let QS be a posterior distribution on H

that may depend on the training set S. Suppose the loss function is bounded from above by C. With

probability 1� � over the randomness of the training set, the following holds
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We remark that the original statement in McAllester (1999a) requires the loss function is bounded
between 0 and 1. The above statement modifies the original statement and instead applies to a loss
function bounded between 0 and C, for some fixed constant C > 0. This is achieved by rescaling
the loss by 1/C, leading the C factor in the right hand side of equation (8). To invoke the above
result in our setting, we set the prior distribution P = N (Ŵ (s)

,�
2 Id), where Ŵ

(s) are the weights
of the pre-trained nework. The posterior distribution QS is centered at the fine-tuned model as
N (Ŵ ,�

2 Id). Based on the above result, we present the proof of Theorem 4.1.

Proof of Theorem 4.1. First, we show that the KL divergence between P and QS is equal to 1
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2. We expand the definition using the density of multivariate normal distributions.
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Next, let the dimension of Wi be di�1 times di, for every i = 1, 2, . . . , L. In particular, d0 is equal to
the dimension of the input data points. Let H = max0iL di be the maximum matrix dimension
size across all the L layers. Let e = �

p
2H log(2L ·H/�). We show that for any � > 0 and any

L-layer feedforward neural network parameterized by W = [W1,W2, . . . ,WL], with probability at
least 1� �, the perturbation QS increases the loss function L̂(h) by at most
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Consider some data point (x, y) evaluated at a neural network function fW . Let Ui be a Gaussian
perturbation matrix on Wi with mean zero and entrywise variance �2, for i = 1, . . . , L. Denote by
U = [U1, U2, . . . , UL]. Since `(x, y) is 1-Lipschitz over x, we get

|`(fW+U (x), y)� `(fW (x), y)|  kfW+U (x)� fW (x)k2. (10)

Since Ui 2 Rdi�1⇥di is a random matrix with i.i.d. entries sampled from the standard Gaussian
distribution, we can upper bound the operator norm of Ui by applying well-known concentration
results. In particular, by equation (4.1.8) and section (4.2.2) of Tropp (2015), we get
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Thus, for all i = 1, 2, . . . , L, with probability at most �/L, we have that
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union bound, we conclude that with probability at most 1� �, for all i = 1, 2, . . . , L, the operator
norm of Ui is at most � ·

p
2H log(2L ·H/�).

Let zi be the input to the i-th layer of fW . Let z̃i be the input to the i-th layer of fW+U . We can
expand the right hand side of equation (10) as

k L((WL + UL)z̃L)�  L(WLzL)k2 (13)
k(WL + UL)z̃L �WLzLk2 (since  L(·) is 1-Lipschitz)
kWL(z̃L � zL)k2 + kULz̃Lk2 (by triangle inequality)
kWLk2 · kz̃L � zLk2 + kULz̃Lk2 (kWxk2  kWk2 · kxk2 for any vector x)
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where the last step is by equation (12). Recall from Section 3 that the i-th layer takes an input z and
outputs  i(Wiz), for every i = 1, . . . , L. Because we have assumed that  i(·) is 1-Lipschitz, for all
i = 1, . . . , L� 1, we can bound
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Applying the above to equation (14), we have shown
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Next, we can expand the difference between z̃L =  L�1((WL�1 + UL�1)z̃L�1) and zL =
 L�1(WL�1zL�1) similar to equation (13). In general, for any i = 1, 2, . . . , L, we get
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By repeatedly applying equation (16) together with equation (15) (relaxing kWik2 to kWik2 + e),
we can show that with probability at least 1� �,
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Combined with equation (10), we have shown that equation (9) holds. Finally, with equation (9) and
the fact that that the loss function `(·) is bounded from above by some fixed value C2, we can bound
the expectation of L̂(h) for some h ⇠ QS as
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Note that the above inequality applies for any (small) value of �. Thus, we can minimize the right
hand side by appropriately setting �. For our purpose, we will show that there exists some � such that
the right hand side of equation (17) (leaving out L̂
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To see that the above is true, we will abstract away the precise scalars and instead write the right hand
side of equation (17) as g(�) = (1� �)A1

p
log(A2/�) + C2�, for some fixed A1 and A2 that does

not depend on �. We note that subject to
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Therefore, we only need to lower bound � based on the constraint (19). In particular, the largest
possible �? under constraint (19) is achieved when both sides equal:
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log(A2). Thus, we have shown that g(�?) is less than equation (18),

using equation (20) and the lower bound on �?. Additionally, A1 is on the order of a fixed constant
based on � defined below.

Using a similar argument since our bound on the perturbed loss holds point-wise for every x 2 X ,
we can likewise prove that with probability 1� �,

E
h⇠QS

[L(h)] � L(f
Ŵ
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By applying equation (18) and the above to equation (8) in Theorem A.1, we thus conclude that for
any �, with probability at least 1� 2� over the training data set, the following holds
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Table 5: Top-1 test accuracy on CUB-200-2011 and Flowers dataset with independent label noise
injected in the training set. Results are averaged over 3 random seeds.

Datasets Methods independent noise
20% 40% 60% 80%

CUB-200-2011

Fine-tuning 68.28 ± 0.34 56.88 ± 0.38 39.54 ± 0.42 16.21 ± 0.38
LS 69.89 ± 0.85 59.18 ± 0.43 41.58 ± 0.45 16.96 ± 0.45

`
2-PGM 69.71 ± 0.31 58.91 ± 0.42 41.52 ± 0.74 16.76 ± 0.41
GCE 69.54 ± 0.25 60.15 ± 0.93 41.84 ± 0.47 17.77 ± 0.32
SCE 70.68 ± 0.67 61.33 ± 0.57 43.67 ± 0.37 17.62 ± 0.19
DAC 68.58 ± 0.25 57.37 ± 0.29 40.00 ± 0.37 15.92 ± 0.83
APL 70.59 ± 0.18 59.68 ± 0.69 40.46 ± 0.24 14.69 ± 0.36
SAT 68.69 ± 0.38 57.34 ± 0.18 38.75 ± 0.40 15.14 ± 0.20
ELR 69.92 ± 0.14 58.69 ± 0.02 40.76 ± 0.68 16.68 ± 0.79

REGSL (ours) 71.76 ± 0.49 62.79 ± 0.23 45.85 ± 0.66 17.88 ± 0.25

Flowers

Fine-tuning 83.13 ± 0.15 72.23 ± 0.40 55.27 ± 0.32 29.35 ± 0.74
LS 83.62 ± 0.30 72.35 ± 0.47 54.23 ± 0.24 28.60 ± 0.45

`
2-PGM 83.45 ± 0.70 73.24 ± 0.20 56.51 ± 0.40 31.04 ± 0.88
GCE 83.09 ± 0.22 71.74 ± 0.65 54.73 ± 0.90 28.38 ± 0.95
SCE 83.45 ± 0.14 73.11 ± 0.05 55.96 ± 0.97 29.22 ± 0.07
DAC 83.40 ± 0.27 72.73 ± 0.34 55.27 ± 0.40 28.95 ± 0.89
APL 83.42 ± 0.11 72.06 ± 0.23 54.96 ± 0.36 28.86 ± 0.64
SAT 82.49 ± 0.25 72.52 ± 0.28 55.10 ± 0.50 27.82 ± 0.38
ELR 83.38 ± 0.38 72.53 ± 0.48 55.74 ± 0.42 30.17 ± 0.26

REGSL (ours) 83.79 ± 0.39 73.32 ± 0.66 57.52 ± 0.15 31.09 ± 0.25

Thus, plugging in the value of � above, we conclude that the second term in equation (21) is at most
". By applying the value of � to the third term in equation (21), we conclude
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Ŵ
)  L̂(f

Ŵ
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Thus, we have proved equation (4) is true. The proof is complete.

Implication. Our result implies a tradeoff in setting the distance parameter Di. While a larger Di

increases the network’s “capacity”, the generalization bound gets worse as a result.

B Extended experimental setup and results

B.1 Additional details of the experimental setup

We extend the details of our experiment setup. First, we introduce the data sets in our experiments
and describe the pre-processing steps. Second, we present the model architectures and the fine-tuning
procedures. Third, we describe the baselines in detail. Finally, we describe the implementation and
the hyperparameters for our algorithm and the baselines.

Data sets. We evaluate fine-tuning on seven image classification data sets covering multiple applica-
tions, including fine-grained object recognition, scene recognition, and general object recognition.
We divide each dataset into the training set, the validation set, and the test set for data split. We
adopt the standard splitting of data given in the Aircrafts dataset (Maji et al., 2013). For Caltech-256
dataset (Griffin et al., 2007), we use the setting in Li et al. (2018b) that randomly samples 30, 20, 20
images of each class for training, validation, and test set, respectively. For other data sets, we split
10% of the training set as the validation set and use the standard test set. We describe the statistics
of the seven data sets in Table 1. When fine-tuning on the seven data sets, we preserve the original
pixel and resize the shorter side to 256 pixels. The image samples are normalized with the mean
and std values over ImageNet data (Russakovsky et al., 2015). Moreover, we apply commonly used
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Table 6: Left: Mean AUROC of fine-tuning ResNet-18 on the ChestX-ray14 data set. Right: Top-1
accuracy of fine-tuning ViT on the indoor data set. Results are averaged over 3 random seeds.

(a) The ChestX-ray14 data set.

Methods Mean AUROC

Fine-tuning 0.8159 ± 0.0667
`2-Norm 0.8198 ± 0.0644
LS 0.7885 ± 0.0578
`2-SP 0.8231 ± 0.0658
`2-PGM 0.8235 ± 0.0636

REGSL (ours) 0.8274 ± 0.0654

(b) The indoor data set.

Methods Independent Noise

40% 80%

Fine-tuning 75.87 ± 1.15 32.06 ± 3.17
Regularization 82.66 ± 0.44 63.01 ± 0.83
Self-labeling 79.13 ± 0.37 41.69 ± 0.16

REGSL (ours) 83.48 ± 0.29 64.50 ± 0.53

data augmentation methods on the training samples, including random scale cropping and random
flipping. The images are resized to 224⇥ 224 as the input for the model. The training and batch size
are both 16.

To test the robustness of fine-tuning, we evaluate Algorithm 1 under two different settings with label
noise. We select MIT-Indoor dataset (Sharif Razavian et al., 2014) as the benchmark dataset and
randomly flipped the labels of the training samples. The results for the other datasets are similar,
which can be found in Appendix B.2. We consider two scenarios of label noise in our experiments,
independent random noise and correlated noise. Random label noise is generated by flipping the
labels of a given proportion of training samples to other classes uniformly. For the correlated noise
setting, the label noise is dependent on the sample. We simulate the correlated noisy label by training
an auxiliary network on a held-out dataset to a certain accuracy. We then use the prediction of the
auxiliary network as noisy labels. For few-shot learning, we conduct experiments on a few-shot
image recognition benchmark, miniImageNet (Vinyals et al., 2016) and follow the meta training and
meta test setup in Tian et al. (2020).

Architectures. For image data sets, we use ResNet-101 (He et al., 2016) network which is pre-trained
on ImageNet dataset (Russakovsky et al., 2015). For the label-noise experiments, we mainly use
ResNet-18 (He et al., 2016) network. In the transfer learning and label-noise experiments, we fine-
tune the model with Adam optimizer (Kingma and Ba, 2014) with an initial learning rate 0.0001 for
30 epochs and decay the learning rate by 0.1 every 10 epochs. We report the average Top-1 accuracy
on the test set of 3 random seeds. For the few-shot learning tasks, we use ResNet-12 pre-trained on
the meta-training dataset as in the previous work (Tian et al., 2020). To fine-tune on the meta-test
sets, we use Adam optimizer (Kingma and Ba, 2014) with an initial learning rate 5e�5 and fine-tune
the model on the training set for 25 epochs. We report the average classification accuracies on 600
sampled tasks from the meta-test split.

Baselines. For the transfer learning tasks, we focus on using the Frobenius norm for distance
regularization. We present ablation studies to compare the Frobenius norm and other norms in
Appendix B.2. we compare our algorithm with fine-tuning with early stop (Fine-tuning), fine-tuning
with weight decay (`2-Norm), label smoothing (LS) method formulated in (Müller et al., 2019),
`
2-SP (Li et al., 2018b), and `2-PGM (Gouk et al., 2021). For testing the robustness of our algorithm,

in addition to the baselines described above, we adopt several baselines that have been proposed in
the supervised learning setting, including GCE (Zhang and Sabuncu, 2018), SCE (Wang et al., 2019),
DAC (Thulasidasan et al., 2019), APL (Ma et al., 2020), ELR (Liu et al., 2020) and self-adaptive
training (SAT) (Huang et al., 2020). We compare with the same fine-tuning baselines in transfer
learning for the few-shot classification tasks.

Implementation and hyperparameters. For all baselines and data sets, all regularization hyperpa-
rameters are searched on the validation dataset by the Optuna optimization framework (Akiba et al.,
2019). In our proposed algorithm, we search the constraint distance D in [0.05, 10] and the distance
scale factor � in [1, 5] by sampling. For setting layer-wise constraints, we set four different constraints
for the four blocks of the ResNet. Concretely, ResNet-101 has four blocks, with 10, 13, 67, and 10
convolutional layers for each block, respectively. For every block, we set the same constraint value
for all the layers within the block. Therefore, there are four distance values (D,D · �, D · �

2
, D · �

3)
each block. Similar constraints are set for ResNet-18 and ResNet-12 models in the experiments. The
search space for other hyperparameters is shown as follows. Re-weight start step Er is searched in
{3, 5, 8, 10, 13}. Re-weight temperature factor � is searched in {3.0, 2.0, 1.5, 1.0}. Label correction
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Table 7: Top-1 accuracy of fine-tuning a three-layer feed forward network pre-trained on SST with
no label noise and with independent label noise. Results are averaged over 5 random seeds.

Noise Rate 0% MR CR MPQA SUBJ TREC

Fine-tuning 83.37±0.70 83.29±0.80 87.56±0.70 93.14±0.42 83.28±0.86
`2-PGM 84.16±0.41 83.87±0.66 87.77±0.62 93.16±0.21 84.48±0.52
REGSL (ours) 84.20±0.47 84.35±0.60 87.95±0.65 93.50±0.17 83.73±0.75

Noise Rate 40% MR CR MPQA SUBJ TREC

Fine-tuning 82.91±0.25 77.67±1.11 82.85±0.98 90.78±0.88 70.80±0.22
`2-PGM 83.45±0.28 79.47±0.37 84.03±0.41 72.14±0.21 73.48±0.90
REGSL (ours) 83.54±0.40 79.89±0.51 84.15±0.99 72.48±0.45 74.80±0.87

Table 8: Comparing
P

L

i=1 D
2
i

between layer-wise and constant regularization.

Aircrafts CUB-200-2011 Caltech-256 Stanford-Cars Stanford-Dogs Flowers MIT-Indoor

Layer-wise 250.20 840.09 90.42 4150.02 20.72 252.45 57.16
Constant 2465.05 1225.69 195.72 2480.08 211.78 3151.28 295.49

start step Ec is searched in {5, 8, 10, 13, 15}. Label correction threshold p is set as 0.90 in all experi-
ments. The validation set sizes used for evaluating these hyperparameters choices range from 536 to
5120 (cf. Table 1). For the results in Table 2, we search for 20 different trials of the hyperparameters
for the proposed algorithm and the baselines. For the results in Table 3, we search 20 times on the
self-labeling parameters and 20 times on the regularization parameters. For the few-show learning
experiments in Table 4, we use the validation set of Mini-ImageNet, following the training procedure
of Dhillon et al. (2019) and search for 20 different trials.

We report the results for baselines by running the official open-sourced implementations. We describe
the hyperparameters space for baselines as follows. For GCE (Zhang and Sabuncu, 2018), we search
the factor q in their proposed truncated loss Lq in {0.4, 0.8, 1.0} and set the factor k as 0.5. We also
search the start pruning epoch in {3, 5, 8, 10, 13}. For SCE (Wang et al., 2019), we search the ↵ and
A in their proposed symmetric cross entropy loss. The factor ↵ is searched in {0.01, 0.10, 0.50, 1.00},
and the factor A is searched in {�2,�4,�6,�8}. For DAC (Thulasidasan et al., 2019), we search
the start abstention epoch in {3, 5, 8, 10, 15} and set the other hyperparameters as the same in their
paper. For APL (Ma et al., 2020), we choose the active loss as normalized cross entropy loss and
the passive loss as reversed cross entropy loss. We search the loss factor ↵ in {1, 10, 100} and � in
{0.1, 1.0, 10}. For ELR (Liu et al., 2020), we search the momumtum factor � in {0.5, 0.7, 0.9, 0.99}
and the weight factor � in {0.05, 0.3, 0.5, 0.7}. For SAT (Huang et al., 2020), the start epoch is
searched in {3, 5, 8, 10, 13}, and the momumtum is searched in {0.6, 0.8, 0.9, 0.99}. We use the
same number of trials in tuning hyperparameters for baselines.

B.2 Extended experimental results

We present additional results. First, we apply our algorithm to another data set with label noise (same
label noise as Table 3). Second, we apply our algorithm to sentence classification tasks.

Additional results under label noise. We report the test accuracy results of our algorithm on CUB-
200-2011 and Flowers data sets with independent label noise in Table 5. From the table, we show
that our algorithm still outperforms previous methods by a significant margin, which aligns with our
results of the MIT-Indoor data set in Table 3.

Results on ChestX-ray14. We apply our approach to medical image classification, which is a more
distant transfer task (relative to the source data set ImageNet). We report the mean AUROC (averaged
over predicting all 14 labels) on the ChestX-ray14 data set in Table 6a. With layer-wise regularization,
we see 0.39% improvement compared to the baseline methods.

Results on ViT. We apply our approach to fine-tuning pre-trained ViT (Dosovitskiy et al., 2020)
from noisy labels, under the same setting as Table 3). Table 6b shows the result. First, we find that
our approach improves upon the best regularization methods by 1.17% averaged over two settings.
Second, we find that our approach also improves upon self-labeling by 13.57% averaged over two
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Figure 6: Frobenious norms of each layer in ResNet-18 pre-trained with standard and adversarial
training methods from different noise levels (✏ = 0.01, 0.25, 5). Higher ✏ implies lower norms.

settings. These two results again highlight that both regularization and self-labeling contribute to
the final result. While regularization prevents the model from over-fitting to the random labels,
self-labeling injects the belief of the fine-tuned model into the noisy data set.

Extension to text classification. We apply our algorithm in text data domains. We conduct an
experiment on sentiment classification tasks using a three-layer feedforward neural network (or
multi-layer perceptron). We considered six text classification data sets: SST (Socher et al., 2013),
MR (Pang and Lee, 2005), CR (Hu and Liu, 2004), MPQA (Wiebe et al., 2005), SUBJ (Pang and
Lee, 2004), and TREC (Li and Roth, 2002). We use SST as the source task and one of the other tasks
as the target task. We compared our proposed algorithm with fine-tuning and L2-PGM (Gouk et al.,
2021). In Table 7, we report the results evaluated under a setting with no label noise and a setting
with independent label noise (same setting in Table 3). The results show our proposed algorithm can
outperform these baseline methods under both settings.

B.3 Ablation studies

We describe several ablation studies. First, we compare the performance between using the Frobenius
norm and the MARS norm proposed in Gouk et al. (2021). Second, we show the norm values of the
adversarial robust pre-trained models in each layer and explain their improvement for fine-tuning on
downstream tasks. Third, we compare our proposed layer-wise constraints and a constant and discuss
their correlation to the generalization performance in Theorem 4.1. Fourth, we analyze the role of
regularization in our proposed self label-correction method. Finally, we conduct an ablation study to
study the influence of three components in our algorithm.

Comparing layer-wise and constant regularization:
P

L

i=1 D
2
i
. To show the bound in Proposition

4.1 is nonvacuous, We compare the value of
P

L

i=1 D
2
i

from Equation 4 under both layer-wise
constraints and constant regularization in Table 8. The values for every Di are from the parameters set
in Table 2 for these data sets. We can see that layer-wise constraints incur a smaller value of

P
L

i=1 D
2
i

compared to constant regularization, which correlates with their better generalization performance.

Comparing norms of adversarial robust pre-trained models. We empirically observe that adver-
sarially robust pre-trained models have lower Frobenius norms over each layer shown in Figure
6. The lower norms of robust models would induce smaller generation error, which explains their
improvement in fine-tuning downstream tasks.

Comparing label-correction precision with and without regularization. We observe from Figure
5a that combining self-labeling and regularization is more effective than using just self-labeling.
This is evidenced by the gap between correction with regularization and without regularization in
the figure. In Table 9, we show the denominator of relabeling precision (i.e., the overall number of
data points that are relabeled in line 7 of Algorithm 1) in the correction process. We find that the
denominator is different between with and without regularization. The denominator is significantly
smaller with regularization than without regularization, indicating that regularization prevents the
model from over-fitting the noisy labels. The denominator decreases only with regularization. Without
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Table 9: Denominator (total number of relabeled data points) and numerator (the number of correctly
relabeled data) for calculating precision of label-correction in Figure 5a.

Number of epoch 1 4 7 10 13 16 19 21

denominator w/ regularization 28 32 32 29 26 24 21 19
numerator w/ regularization 15 17 16 13 12 10 9 8
denominator w/o regularization 56 66 64 64 62 58 59 56
numerator w/o regularization 34 33 28 26 21 18 17 14

Table 10: Top-1 test accuracy of using different norms for fine-tuning ResNet-101 pre-trained on the
ILSVRC-2012 subset of ImageNet. Results are averaged over 3 random seeds.

Aircrafts CUB-200-2011 Caltech-256 Stanford-Cars Stanford-Dogs Flowers MIT-Indoor

PGM (MARS) 74.34±0.15 81.14±0.16 83.28±0.31 89.01±0.18 87.90±0.10 93.45±0.23 78.48±0.29
PGM (`2) 74.90±0.26 81.23±0.32 83.25±0.33 88.92±0.39 86.48±0.28 93.23±0.34 77.31±0.30
Ours (MARS) 75.10±0.32 82.03±0.32 85.33±0.33 89.29±0.25 90.94±0.28 93.67±0.34 79.40±0.30
Ours (`2) 75.32±0.23 82.24±0.21 84.90±0.16 89.14±0.22 89.58±0.13 93.82±0.35 79.30±0.31

Table 11: Removing any component in our algorithm leads to worst performance. Results are on the
Indoor data set with independent label noise. Results are averaged over 3 random seeds.

Indoor independent noise correlated noise
20% 40% 60% 80% 25.18%

REGSL (ours) 72.51±0.46 68.13±0.16 57.59±0.55 34.08±0.79 70.12±0.83
w/o regularization 71.94±0.43 67.84±0.38 57.24±0.43 33.78±0.30 69.43±0.36
w/o label correction 70.92±0.41 59.10±0.24 47.81±0.35 28.42±0.46 69.78±0.34
w/o label removal 70.32±0.65 66.57±0.76 55.37±0.28 29.43±0.88 67.96±0.49
w/o self-labeling 70.23±0.25 64.40±0.58 54.20±0.68 32.54±0.43 69.05±0.09

regularization, the denominator remains roughly the same. Additionally, the number of incorrectly
labeled data points by the self-labeling is much higher (e.g., 42 vs. 11 at epoch 21).

Comparing `2 norm and the MARS norm. We report the results of using different norms for
constraints in our algorithm in Table 10. We compare the performance of the Frobenius norm (`2),
and the MARS norm proposed in (Gouk et al., 2021). From the table, we show that the results of the
two norms are similar. In the paper, we focus on the Frobenius norm for our discussion.

Influence of different components in REGSL. We study the influence of each component of our
algorithm: layer-wise constraint, label correction, and label removal. We remove these components,
respectively, and run the same experiments on the MIT-Indoor dataset with different kinds of label
noise. Furthermore, we also include a row of results using only layer-wise constraints without
self-labeling (containing label correction and removal). As shown in Table 11, removing any
component from our algorithm could hurt the performance. This suggests that only incorporating
these components can prevent both over-fitting and label memorization of models. In addition, We can
see from Table 11 that when the noise rate is 20%, the self-labeling part (including label correction
and removal) is more critical than regularization. When the noise rate is 40% or higher, the label
correction part is the most important.

C Limitation

Our work focuses on the regularization and robustness properties of fine-tuning. We mainly focus on
feedforward neural networks, including convolutional neural networks. Thus, we have not considered
Other settings such as recurrent neural networks in this work. We mainly focus on independent label
noise for evaluating the robustness. Other types of label noise, for example, using weak supervision,
are not well-understood. This is left for future work. Finally, our treatment of label noise using
self-labeling is based on empirical heuristics. It would be fascinating to come up with a more
principled approach to tackle label noise.
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