
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

DIFFUSION-BASED NEURAL NETWORK WEIGHTS
GENERATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Transfer learning, while fundamental to modern deep learning, faces critical limi-
tations in model selection and storage requirements. To address these challenges,
we introduce D2NWG: Diffusion-based Neural Network Weights Generation, a
diffusion framework that learns to generate task-specific neural network weights
by modeling the distribution of weights from diverse pretrained models. Our
approach conditions the diffusion process on dataset features, task descriptions,
and architectural specifications, enabling direct generation of task-specific weights
without the need to store and search through extensive model collections. Compre-
hensive experiments validate D2NWG’s effectiveness across multiple scenarios: it
matches or exceeds traditional pretrained models on in-distribution tasks, provides
superior initialization for novel domains with faster convergence, and achieves
a 6% improvement in few-shot learning scenarios. Through extensive ablation
studies, we demonstrate that D2NWG’s performance scales with the diversity and
size of its training set. D2NWG shows particular promise in large language model
applications, enabling efficient exploration of pretrained parameter spaces without
the computational burden of traditional fine-tuning. In rigorous evaluations on
the OpenLM leaderboard, our approach improved LLaMA-3-2-1B-instruct per-
formance by 3% on challenging mathematical reasoning tasks, with a consistent
0.36% gain across all benchmarks. These results establish D2NWG as a versatile
and powerful framework for neural network weight generation, offering a practical
solution to the challenges of traditional transfer learning.

1 INTRODUCTION

Diffusion-based generative models have emerged as a breakthrough technology in artificial intelli-
gence, achieving state-of-the-art performance in generating complex, high-dimensional data across
domains including natural language, audio, images, and video (Gozalo-Brizuela & Garrido-Merchán,
2023). The success of these models stems from their principled approach to data generation through
iterative denoising (Ho et al., 2020b; Rombach et al., 2022; Peebles & Xie, 2023; Gao et al., 2023),
which has proven remarkably effective for modeling complex probability distributions and generating
high-quality samples (Yang et al., 2024).

Despite these advances in data generation, a fundamental challenge remains under-explored: can we
leverage the powerful framework of diffusion models to generate neural network weights themselves
from pretrained models? This capability would transform key machine learning paradigms, partic-
ularly in transfer learning and AutoML (Hutter et al., 2019; Doke & Gaikwad, 2021). By directly
generating task-tailored network parameters, we could potentially bypass the computational overhead
of traditional fine-tuning while achieving superior adaptation to novel tasks.

Recent attempts at weight generation through generative hyper-representation learning (Schürholt
et al., 2022a) have only scratched the surface of this challenge. Current approaches, including
latent diffusion (Wang et al., 2024) and kernel density estimation methods Sch"urholt et al. (2024),
are severely constrained in both scope and capability - limited to small architectures and lacking
cross-dataset knowledge transfer. Most critically, these methods focus exclusively on unconditional
generation within known distributions, failing to address the core challenge of generating task-specific
weights for novel problems from diverse pretrained models’ weights distribution. Although proven
to improve the performance on seen tasks, this limitation fundamentally restricts their utility for

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Diffusion Process

Vectorized Weights Sampled Weights

Weight Encoding Dataset Encoding Un/seen
Architecture

Un/seen
Dataset

Training Stage Sampling Stage

Ⲧ

𝝴 Ɗ

𝝴 : Weight Encoder
Ⲧ : Dataset / Architecture Encoder
Ɗ : Weight Decoder Ⲧ

Figure 1: Stage 1: VAE Encoder and Decoder training process. Stage 2: dataset encoder training
stage . Stage 3: Dataset conditioned diffusion process.

practical applications in model selection and transfer learning, where weights task-tailored weights
generation and adaptation to unseen tasks are essential. Although recent meta-learning approaches by
Nava et al. (2023) and Zhang et al. (2024) have advanced weight generation for visual and few-shot
tasks, they fall short of providing truly dataset-specific solutions.

To address these challenges, we introduce Diffusion-based Neural Network Weight Generation
(D2NWG), a novel approach that leverages latent diffusion to generate neural network parameters
by learning from diverse pretrained model weights. Our method reimagines the latent diffusion
paradigm for weight generation by incorporating robust dataset and task conditioning capabilities.
D2NWG learns weight distributions from a collection of models pretrained across varied datasets,
conditioned on dataset or task description enabling task-specific weights generation. The scalability
and versatility of D2NWG represent a significant advancement in neural network weight generation.
Our analysis reveals that the diversity and size of the pretrained model training set strongly correlates
with improved generalization to unseen datasets and tasks. A key strength of D2NWG is its ability
to learn the distribution of weights from diverse model architectures and pretraining datasets, and
then generate new weights that maintain performance comparable to individual pretrained models on
in-distribution tasks.

Our empirical evaluation validates the contribution of D2NWG as follows:

• The generated weights match or outperform traditional pretrained models on seen tasks
while enabling faster, better learning on new tasks through superior weight initialization.

• D2NWG outperforms recent meta-learning Zhang et al. (2024) approach on few-shot
setting as well as recent peer-reviewed weights generation studies Schürholt et al. (2022b);
Sch"urholt et al. (2024).

• Our method enables learning from a distribution of diverse pre-trained models, each trained
on different datasets while matching individual pretrained model performance.

• It scales to small and large datasets, generating weights for architectures with over 400
million parameters including GPT2-Small.

• We demonstrate its effectiveness in improving LLM performance by generating task-specific
weights from a single pretrained model and our sampled weights based LLAMA3-.1-8B
and LLAMA3-.2-1B models ranked among top 2 performing models on the open lm-
leaderboard1

2 RELATED WORK

Neural Network Parameters Prediction: As neural networks expand across domains, transfer
learning through pretrained weights has become crucial. While hypernetworks have emerged as
a promising approach for weight prediction (Chauhan et al., 2023; Ratzlaff & Fuxin, 2020; Denil

1https://huggingface.co/spaces/open-llm-leaderboard/open_llm_
leaderboard

2

https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

et al., 2013; Ha et al., 2016), subsequent Graph Hypernetworks (GHN) methods leverage model
architecture graphs to generate weights (Zhang et al., 2019; Knyazev et al., 2021; Zhmoginov et al.,
2022; Knyazev et al., 2023). Though recent transformer-based approaches treat weight generation
as an autoregressive process (Zhmoginov et al., 2022), these methods remain constrained by their
single-task focus, limiting their transfer learning capabilities. Similar to GHNs diffusion models
has been used to generate weights in meta learning setting Nava et al. (2023); Zhang et al. (2024)
However, the generated parameters are not task-specific and the generator was limted to classier head.

Parameters Generation from Pretrained Distribution: Parameter generation from pretrained
distributions has emerged as a promising research direction due to its practical applications. However,
existing approaches (Schürholt et al., 2021; Schürholt et al., 2022a; Peebles et al., 2022; Sch"urholt
et al., 2024) remain constrained by their focus on single-dataset parameter learning, leaving the
broader potential of cross-domain applications largely unexplored.

Applications of Parameter Generation in LLMs: Despite skepticism around learning from pre-
trained weight distributions, our approach generates diverse task-specific weights for LLMs (Minaee
et al., 2024; Zhao et al., 2023; Dubey et al., 2024). By generating specialized LoRA modules (Tang
et al., 2024; Zhao et al., 2024; Gong et al., 2024), we can enhance model flexibility and transfer
learning while reducing computational costs.

3 APPROACH

3.1 PRELIMINARY

Consider a collection of neural network models {Ai}Mi=1, each pretrained on one of M distinct
datasets {D1,D2, . . . ,DM}. Our primary objective is to characterize and learn the underlying
distribution p(W) of the pretrained model weights W across this ensemble. The ultimate goal is
to develop a method for conditional sampling of weights p(WT |DT) that are optimized for any
target dataset or task DT (x, y), regardless of whether it appeared in the training collection. These
sampled weights should either achieve strong performance on DT immediately(or require minimal
fine-tuning compared to random initialization. The intuition is that there is a direct relationship
between a pretrained network weights and the dataset it was trained on (see Appendix A.1 for a formal
argument). We argue that this relationship constrains the high-dimensional weight space W ∈ Rn
to a lower-dimensional manifold M ⊂ W with dimension k ≪ n. This hypothesis is supported
by the Lottery Ticket literature (Frankle & Carbin, 2019; Liu et al., 2024), which shows that sparse
subnetworks can match full network performance: L(θ;D) ≈ L(θ ⊙m;D), where m ∈ {0, 1}n is a
sparse mask. By Whitney’s Embedding Theorem (Whitney, 1936), M can be smoothly embedded in
R2k+1 via a diffeomorphism ϕ : M → Z , where Z represents a latent space. We approximate this
embedding using a variational autoencoder(VAE). Given the differentiability of Z , we can employ
latent diffusion to model the distribution of pretrained weights. This enables our proposed D2WNG
framework to not only preserve individual model performance but also generalize to unseen datasets
as we incorporate more pretrained models, leveraging the smoothness and interpolation properties
of the latent space. Later, we investigate some possible way to improve LLMs without fine-tuning
through optimal weights latent space exploration via sampling with D2NWG. In this paper, we use
the terms seen dataset/task and unseen dataset/task to refer to datasets or tasks that are present in or
absent from the training set, respectively and Zero-shot means not optimization step just inference.

3.2 WEIGHT ENCODING

Let {Mi}Ni=1 be a set of pretrained models. For each Mi, we flatten its weights to Wi ∈ Rdi where
di is its parameter count. Define dmax = maxi di. We zero-pad each Wi to obtain Ŵi ∈ Rdmax , giving
uniform-length representations (Figure 1) to which we refere to as model-wise vectorization. This
setting is suitable for small models and classifier layer adaptation. On the other hand, Layer-wise
vectorization keeps each layer’s weights separate rather than concatenating them. Each flattened
weight vector w ∈ Rmn is zero-padded to match a chosen chunk size multiple, then split into k
equal-length subvectors w̄i ∈ Rl where l = ⌈mn/k⌉. This enables independent layer-wise sampling
during inference, where each vectorized layer serves as a separate input for subsequent stages. This
setting is suitable for large models.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Parametrs Encoding: We then train a Variational Autoencoder (VAE) to encode these vectors. while
minimizing the objective function defined in 1:

L = −Eqϕ(z|w) [log pθ(w|z)] + βKL [qϕ(z|x) || p(z)] (1)

where w is the vectorized weight, z is the latent representation, pθ and qϕ the reconstruction and
approximate posterior terms respectively, and p(z) the prior distribution. For the prior, we used a
Gaussian. β is a fixed hyper parameters that regulate the stochasticity of the VAE. Higher value in-
crease the randomness while lower value increases the reconstruction precision with less randomness.
Model-wise and layer-wise vectorized parameters are encoded using the same VAE structure, with the
only difference being in the input dimensions. In chunk-wise encoding, the original flattened vector
w is recovered by reassembling the decoded latent chunks through concatenation. The reconstructed
chunks ŵi from each layer are concatenated to ensure ŵ = ŵ1 ⊕ ŵ2 ⊕ · · · ⊕ ŵk, where ⊕ denotes
concatenation. And reshaping ŵ back into the original form Ŵ yields a close approximation of the
original weight W . The quality of reconstruction is assessed by evaluating the reconstructed weights
on a designated evaluation dataset or task.

3.3 DATASET ENCODING

Image Dataset Encoding: We adopt a Set Transformer-based encoder (Lee et al., 2019a) T to
encode the pretraining datasets. This approach effectively handles large, multi-class datasets and
has been validated in prior dataset-adaptive methods (Jeong et al., 2021; Lee et al., 2021). Figure 5
in the appendix provides an architectural overview of the dataset encoder. Given a dataset wich C
classes denoted by D = {(xi, yi)}Ci=1, where xi, and yi denote inputs and labels, we use pretrained
clip image encoder to extract the images features and group the data into subsets si by class, forming
S = {si}Ci=1 with si ∈ RC×Ki×dfeat . Here Ki is the number of images belonging to class i, and
dfeat the features dimension. Each subset is transformed into embeddings zsi ∈ R1×d using a
transformation T , and these embeddings are aggregated into s̃i ∈ RC×d. Another transformation
T produces the final dataset encoding zD ∈ Rd, represented as: zD = T ◦ T (S) This encoding is
invariant to the number of classes and dataset size, and it operates without utilizing labels. We train
the dataset encoder T using a contrastive loss to align dataset embeddings zDi with pretrained weight
embeddings zi, following the CLIP-style approach introduced in HyperCLIP (Nava et al., 2023).
This alignment ensures training stability and computational efficiency during diffusion optimization.

LCLIP = − log
exp(zi · zDi

/τ)∑N
k=1 exp(zi · zDk

/τ)
, (2)

where zDi
is the dataset embedding for Di, and zi is the corresponding VAE-encoded weight em-

bedding (see Section 3.2). This alignment enables efficient probing and integration into downstream
tasks.

Language Task Encoding: To enable task-description-based parameter generation for NLP tasks,
we first encode each task description using Llama-3-8B-Instruct. The output from the last hidden
layer is used as the task’s dataset embedding. These embeddings are then directly incorporated into
the diffusion process during both training and inference.

3.4 DATASET-CONDITIONED PARAMETERS GENERATION

At this stage, we have access to a pretrained VAE for encoding neural network weights and a
pretrained Set Transformer module to encode entire datasets. The next stage involves defining a
model to generate latent representations of weights conditioned on the dataset embeddings. We
achieve this by using diffusion probabilistic models (DDPM) (Ho et al., 2020a; Rombach et al., 2021)
trained on the latent representation of the pretrained weights..

Forward Process: Given a weight embedding z, obtained from the encoder of the pretrained VAE,
the forward diffusion process involves successive Gaussian noise perturbations of z over T time steps.
At time step t,

p(zt|zt−1) = N (zt;µt =
√

1− βtzt−1, βtI) (3)

where βt ∈ (0, 1) is the noise variance and p(z1:T |z0) =
∏T
i=1 p(zt|zt−1).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Reverse Process: As in most DDPM approaches the reverse process is approximated by a neural
network such that:

pθ(zt−1|zt) = N (zt−1;µθ(zt, t),Σθ(zt, t)), (4)

where µθ and Σθ are neural networks.

Dataset-Conditioned Training: The diffusion model is trained on the VAE embeddings z, condi-
tioned on the dataset embeddings concatenated with the latent representations of the weights. To
leverage existing architectures, we designed the VAE to generate latent representations that are
compatible with standard latent diffusion models with minimal adjustments, optimizing the latent
diffusion objective defined in Eq. 5.

LLDM = Ez,ε∼N (0,1),ZD,t

[
||ε− εψ(zt, zD, t)||22

]
, (5)

where εψ(zt, zD, t) is implemented as a UNet.

Sampling: New weights are sampled conditionally through the reverse diffusion process as follows:

zt =
1

√
at

(zt −
βt√
1− ãt

εψ(zt, zD, t,)) + σξ, (6)

where ξ ∼ N (0, I) and, σt a chosen value. After sampling a latent representation (̄z for a given
dataset Di). The pretrained VAE decoder is used to transform these latents into a weight vector
w̄ = D(z̄), which is then used to initialize the target network as shown in Figure 1.

3.5 EXPLORING THE OPTIMAL PARAMETERS SPACE OF LLMS

In this section, we extend our method to enhance pretrained LLM performance without fine-tuning
by recasting D2NWG as a layer-conditioned parameter generation approach. The key challenge is
managing the vast parameter space of LLMs. Drawing from (Hartford et al., 2024), we use the
Marchenko-Pastur distribution to identify crucial layers for improving the performance base on
weights spectrum. We calculate a signal-to-noise ratio (SNR) to distinguish significant weights from

noise as: SNR =
∑

k | |σk|≥ε σk∑
n | |σn|<ε σn

, where eigenvalues σn above threshold ε represent meaningful
signals, while those below are considered noise. In this section we employ layer-wise chunking to
manage large layer. We provide more detailed in the appendix in A.3 and A. Additionally, we present
a sequential optimal space exploration algorithm, detailed in ALG. 1.

4 EXPERIMENTS

We evaluate our method both with and without finetuning on Few-Shot Learning, Zero-Shot Learning
(no fine-tuning), and Model Retrieval tasks. All experiments use a single Titan RTX GPU except
experiment with LLMs which used a single A100-80Gb. Detailed ablation studies are provided in the
AppendAn extensive set of ablation studies on the proposed method is provided in Appendix C and E

4.1 WEIGHT GENERATION WITHOUT FINETUNING ON UNSEEN TASK

We present a set of results where the generated weights are evaluated directly without finetuning for
few-shot learning and transferning for unseen Tasks.

4.1.1 WEIGHTS GENERATION FOR FEW-SHOT LEARNING

Task: We aim to show that learning the distributions of model pretrained independently on a large
set of dataset can enable sampling weights that compete with meta-learning techniques in multi-task
few-shot learning, without requiring fine-tuning.

Dataset: We utilize the mini-ImageNet and tiered-ImageNet datasets for this task. For the architec-
tures, we use a four-layer ConvNet and a ResNet12 backbone provided by Chen et al. (2021). We
generate the pretrained weights by linear probing a classifier head on each of the 50,000 subsets
for 10 epochs and evaluate the performance on 600 subsets from the unseen test split for 1-shot and
5-shot. Analogously to few shot learning, we choose the number of images per class for conditioning

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Table 1: Few-Shot Learning. ALL implies generation of the entire parameters and CH denotes
generation of classification head only.

Method Adaptation Backbone mini-ImageNet tiered-ImageNet
5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot

iMAML (Rajeswaran et al., 2019) ALL Conv4 49.30± 1.88% 59.77± 0.73% 38.54± 1.37% 60.24± 0.76%
ALFA (Baik et al., 2020) ALL Conv4 50.58± 0.51% 69.12± 0.47% 53.16± 0.49% 70.54± 0.46%
COMLN (Deleu et al., 2022) CH Conv4 53.01± 0.62% 70.54± 0.54% 54.30± 0.69% 71.35± 0.57%
MetaQDA (Zhang et al., 2021) CH Conv4 56.41± 0.80% 72.64± 0.62% 58.11± 0.48% 74.28± 0.73%
MetaDiff (Zhang et al., 2024) CH Conv4 55.06 ± 0.81% 73.18 ± 0.64% 57.77 ± 0.90% 75.46 ± 0.69%
D2NWG(Ours) CH Conv4 61.13 ± 8.50% 76.94 ± 6.04% 65.33 ± 6.50% 80.05 ± 8.25%
ALFA (Baik et al., 2020) ALL ResNet12 59.74± 0.49% 77.96± 0.41% 64.62± 0.49% 82.48± 0.38%
MetaOptNet (Lee et al., 2019b) CH ResNet12 62.64± 0.61% 78.63± 0.46% 65.99± 0.72% 81.56± 0.53%
LEO (Rusu et al., 2019) CH WRN-28-10 61.76± 0.08% 77.59± 0.12% 66.33± 0.05% 81.44± 0.09%
Classifier (Chen et al., 2021) CH ResNet12 61.22 ± 0.84% 78.72 ± 0.60% 69.71 ± 0.88% 83.87 ± 0.64%
MetaQDA (Zhang et al., 2021) CH ResNet18 65.12 ± 0.66% 80.98 ± 0.75% 69.97 ± 0.52% 85.51 ± 0.58%
MetaDiff (Zhang et al., 2024) CH ResNet12 64.99 ± 0.77% 81.21 ± 0.56% 72.33 ± 0.92% 86.31 ± 0.62%
D2NWG(Ours) CH ResNet12 69.55± 3.77% 83.51 ± 6.21% 81.15 ± 9.70% 90.04 ± 6.10%

Table 2: Zero-Shot Transfer Learning. We evalutate on two backbones: Tiny Swin Transformer and ResNet18.
Model CIFAR-10 STL-10 Aircraft Pets CIFAR-100

Swin 7.38 8.43 5.01 2.63 1.35
GHN2 (Knyazev et al., 2021) 48.20 – – – 12.7
GHN3 (Knyazev et al., 2023) 51.8 – – – 11.9
D2NWG(Ours) 53.12 ± 0.25 60.42 ± 0.14 24.57 ± 3.16 26.47 ± 1.90 30.44 ± 0.15
ResNet18 10.88 6.78 3.75 2.39 1.38
GHN2 (Knyazev et al., 2021) 19.52 13.04 – – –
D2NWG 33.03 ± 0.04 50.42 ± 0.13 17.60 ± 2.13 17.29± 0.13 13.71 ± 0.63
D2NWG_CLIP(Ours) 60.42± 0.75 82.42 ± 0.04 27.70 ±3.24 32.17 ±6.30 51.50 ±0.25

to be the same as the support set, while the number of images per class in the query set is fixed to 15
for all methods and 600 tasks are used for testing.

Baselines: We benchmark against iMAML (Rajeswaran et al., 2019), ALFA (Baik et al., 2020),
COMNL (Deleu et al., 2022), MetaQDA (Zhang et al., 2021), MetaDiff (Zhang et al., 2024),
MetaOptNet (Lee et al., 2019b) and a classifier baseline introduced in Chen et al. (2021).

Results: Table 1 shows that our approach consistently improves performance on all tasks while utiliz-
ing the same backbone as other methods. With the Conv4 backbone, we achieve approximately 6%
performance improvement in 1-shot learning and 3 to 4% on 5-shot learning on mini-ImageNet. On
Tiered-ImageNet, we achieve more than 8% performance improvement on 1-shot and 5 to 6% average
improvement on 5-shots. For the ResNet12 backbone we achieve 4 to 9% performance improvement.
These results demonstrate the effectiveness of our method against the existing meta-learning methods.

Table 3: Model Retrieval via Generative
Augmented Weight Sampling

Domain Pretrained D2NWG (Ours)

Large Animals 71.11 ± 11.45 70.33 ± 12.42
Small Animals 54.04 ± 13.56 54.70 ± 13.83
Plants 63.69 ± 9.05 71.37 ± 17.15
Plant Diseases 81.69 ± 19.14 81.98 ± 19.53
Microscopy 55.56 ± 26.14 55.49 ± 26.17
Remote Sensing 82.20 ± 7.49 82.68 ± 8.05
Vehicles 57.07 ± 19.57 58.09 ± 18.30
Manufacturing 84.34 ± 21.00 84.32 ± 20.96
Human Actions 68.63 ± 12.45 69.09 ± 12.73
OCR 63.18 ± 1.75 65.60 ± 2.00

Average 68.32 ± 13.84 69.47 ± 14.79
Runtime 6 hours 40 seconds

For evaluation, we perform 50 weight sampling iterations
per subset and report the average of the top 3 accuracies.
We explore both 1-shot and 5-shot settings, using one and
five images per class respectively for conditioning from
support set. Our dataset-conditioned weight generation
enables efficient task adaptation by producing weights
specialized to each dataset’s characteristics, achieving su-
perior generalization compared to meta-learning baselines.

4.1.2 ZERO-SHOT CLASSIFIER HEAD ADAPTATION

Task: We evaluate the performance of the proposed
method in adapting the classifier head to unseen datasets.
In this experiment, we assess whether our method can
conditionally generate the classifier weights, potentially eliminating or significantly speeding up the
finetuning process.

Dataset: We partitioned ImageNet-1k into 20k subsets of 50 classes each with 50 images per class
per subset and linear probe a classifier head for 10 epochs using Tiny Swin Transformer (denoted
Swin in Table 1), and ResNet18 all pretrained on ImageNet-1k. For dataset conditioning, we use 5
images per class per subset. The unseen target datasets are CIFAR-10, STL-10, Aircraft, Pets, and

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

CIFAR-100 . The baseline methods in these experiments are ResNet18 and Tiny Swin Transformer
pretrained on ImageNet-1k.

Baselines: We benchmark against the pretrained backbones, and two GHN models (Knyazev et al.,
2021; 2023). Additonally, we provide a powerful variant of our model D2NWG_CLIP where the
dataset encoder encodes the CLIP embedding for each sample in the datasets.

Results: Table 2 presents the performance of the sampled weights where it can be seen that the
proposed method achieves better performance compared to the ImageNet pretrained weights and the
GHN family of models. Additionally, the variant of our model that utilizes the CLIP embedding for
dataset encoding significantly improves the performance suggesting that better dataset representation
learning can boost the performance of the generated weights.

4.1.3 IN DISTRIBUTION FULL MODELS WEIGHTS GENERATION: MODEL RETRIEVAL

Task: We assess the Generative Augmented Retrieval capability of D2NWG , aiming to show that it
can learn the distribution of models pretrained on diverse real-world datasets. This task requires gen-
eration of dataset-conditioned weights that achieve performance comparable to the original pretrained
models and hence provide access to a wide range of pretrained models through efficient sampling.

Table 4: Finetuning of Generated Weights using
the Modelzoo of Schürholt et al. (2022c).

Epoch Method MNIST SVHN CIFAR-10 STL
0 RandomInit ∼10 /% ∼10 /% ∼10 /% ∼10 /%
0 SKDE30 68.6±6.7 54.5±5.9 n/a n/a
0 SANEKDE30 84.8±0.8 70.7±1.4 56.3±0.5 39.2±0.8
0 SANESUB 86.7±0.8 72.3±1.6 57.9±0.2 43.5±1.0
0 D2NWG 80.52±0.82 66.6±0.7 58.80±0.1 44.50±0.1

1 RandomInit 20.6±1.6 19.4±0.6 37.2±1.4 21.3±1.6
1 SKDE30 83.7±1.3 69.9±1.6 n/a n/a
1 SANEKDE30 85.5±0.8 71.3±1.4 58.2±0.2 43.5±0.7
1 SANESUB 87.5±0.6 73.3±1.4 59.1±0.3 44.3±1.0
1 D2NWG 87.8±0.4 73.6±1.3 59.2±0.3 44.8±0.2

5 RandomInit 36.7±5.2 23.5±4.7 48.5±1.0 31.6±4.2
5 SKDE30 92.4±0.7 57.3±12.4 n/a n/a
5 SANEKDE30 87.5±0.7 72.2±1.2 58.8±0.4 45.2±0.6
5 SANESUB 89.0±0.4 73.6±1.5 59.6±0.3 45.3±0.9
5 D2NWG 92.5±0.9 74.0±0.1 60.3±0.1 45.4±0.1

25 RandomInit 83.3±2.6 66.7±8.5 57.2±0.8 44.0±1.0
25 SKDE30 93.0±0.7 74.2±1.4 n/a n/a
25 SANEKDE30 92.0±0.3 74.7±0.8 60.2±0.6 48.4±0.5
25 SANESUB 92.3±0.4 75.1±1.0 61.2±0.1 48.0±0.4
25 D2NWG 96.2±0.3 75.7±0.5 64.1±1.0 48.7±0.5

50 RandomInit 91.1±2.6 70.7±8.8 61.5±0.7 47.4±0.9

Dataset: We collected 30 real-world datasets(Ullah
et al., 2022), spanning 19 to 706 classes and organ-
ised into 10 domains with 3 datasets per domain,
and fine-tuned a MobileNetV3 subnet2 sampled from
OFA (Cai et al., 2020) for 100 epochs on each dataset.
We then learned the distribution of the combined pre-
trained models from the last 20 epochs across all
datasets.

Baselines: For this task, we compare with the orig-
inal pretrained weights which are finetuned on each
individual dataset. For each dataset, we sample and
report the average accuracy of 5 set of weights sam-
pled with D2NWG .

Results: From Table 3 we see that
D2NWG conditionally generates high-performing
parameters while enhancing the pretrained model,
achieving the best average results across all datasets. This demonstrates the strong retrieval capability
of our method, suggesting it can be used as a neural network weight retriever in approaches like (Zhao
et al., 2024), eliminating the need for pretrained database. Detailed dataset information is provided in
Table 12 and more experiments in the Appendix C.10. Additionally, it is much more efficient to
generate weights with our model compared to pretraining as shown by the runtime in Table 3.

4.1.4 TRANSFERING TO UNSEEN ARCHITECTURE

ResNet20 ResNet32 ResNet44 ResNet56
Architecture

0

20

40

60

80

Ac
cu

ra
cy

10.00 10.00 10.00 10.00

53.62

93.48

86.52
83.39

93.53
RandInit
D2WNG
Pretrained

Figure 2: Performance
evaluation with unseen ar-
chitectures on CIFAR-10.

We investigate weight transferability across ResNet architectures by mod-
eling the distribution of pretrained weights from ResNet32 (trained on
CIFAR-10 and CIFAR-100). We propose a weight initialization method
that leverages pretrained weight distributions from ResNet32 to improve
performance across different ResNet architectures. Our approach sam-
ples and concatenates weights from the source model while preserving
layer-type correspondence, effectively handling varying network dimen-
sions. Experiments on ResNet20/44/56/32 demonstrate consistent im-
provements over random initialization, even without fine-tuning, partic-
ularly on CIFAR-10 classification tasks

2https://pytorch.org/hub/pytorch_vision_once_for_all/

7

https://pytorch.org/hub/pytorch_vision_once_for_all/

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

0 10 20 30 40 50
Epoch

20
30
40
50
60
70
80
90

100

Ac
cu

ra
cy

Pretrained
RandInit
Ours

(a) Dessert Food
Dataset

0 10 20 30 40 50
Epoch

0
10
20
30
40
50
60
70
80

Ac
cu

ra
cy

Pretrained
RandInit
Ours

(b) Gemstones
Dataset

0 10 20 30 40 50
Epoch

0

10

20

30

40

50

60

Ac
cu

ra
cy

Pretrained
RandInit
Ours

(c) Japanese
Characters

0 10 20 30 40 50
Epoch

20

40

60

80

Ac
cu

ra
cy

Pretrained
RandInit
Ours

(d) Colorectal
Histology

Figure 3: Average accuracy evolution of fine-tuning for 50 epochs with sampled weights for unseen datasets.

4.2 WEIFHTS GENERATION WITH FINE-TUNING

In this section, we evaluate the quality of the generated weights in fine-tuning scenarios to assess
their suitability for transfer learning.

4.2.1 WEIGHT GENERATION WITH FINE-TUNING ON SEEN TASKS

Task: The goal is to assess the behavior of the sampled weights when finetuned on the same dataset
and compare convergence speed. This experiment focuses on evaluating whether the sampled weights
can be effectively fine-tuned to achieved superior final performance, rather than simply aiming for
weights producing high initial accuracy and may not lead to superior performance while fine-tuning.

Datasets: We used the modelzoo of Schürholt et al. (2022c) consisting of a ConvNet trained on
MNIST, SVHN, CIFAR-10 and STL-10. Our model was trained on the combined pretrained weights
from epochs 21 to 25 of all models, consistent with the baseline settings.

Baselines: We compare against the kernel density estimator approaches from Sch"urholt et al. (2024);
Schürholt et al. (2022b), evaluated on the same datasets. Unlike these unconditional methods, we
build a model specifically for MNIST and SVHN, and another for CIFAR-10 and STL-10. For each
dataset, five sets of weights were sampled to initialize the models, which were fine-tuned for a number
of epochs from 0 to 25. We also add RandomInit model trained for 50 epochs and show that our
sampled weight finetuned for 25 epochs outperforms this model.

CIFAR-10 STL-10 AIRCRAFT-100 AIRCRAFT-30 PETS
Dataset

0

20

40

60

80

Ac
cu

ra
cy

61.66

10.00

1.00

18.41

2.73

87.47

80.05

1.43

23.53

32.91

88.25

33.58

1.24

18.91

6.04

RandInit
D2WNG
Pretrained

Figure 4: Comparison of accuracy for Pre-
trained, D2NWG , and RandInit methods
across CIFAR-10, STL-10, Aircraft100, Air-
craft30, and Pets after 1 epoch of fine-tuning.

Results: As shown in Table 4, D2NWG consistently
accelerates convergence across related tasks, surpassing
the pretrained model and outperforming both baselines
Schürholt et al. (2022a); Sch"urholt et al. (2024). The
finding implies that D2NWG accelerates convergence and
improves performance compared to existing methods. This
highlights its potential for faster and more efficient model
initialization, making it valuable for transfer learning and
real-world applications. Interestingly, on MNIST and
SVHN, weights with higher initial performance tend to
degrade during fine-tuning.

4.2.2 FINE-TUNING
ON UNSEEN TASKS:MLP CLASSIFIER

Task: The objective remains the same as in Section 4.2.1, but here we evaluate the proposed method
solely on unseen datasets.

Datasets: We assess D2NWG on a real-world dataset of 140 subsets with class counts ranging from
2 to 20, and 10 test sets with up to 1,566 classes. We use a two-layer MLP on top of a CLIP image
encoder and fine-tune it on training datasets to collect the pretrained zoo.(see appendix A.5). The
image datasets contains food, dataset, drawing, x-ray and others.

Baselines: The baseline methods are random initialization and a pretrained MLP previously trained
on ImageNet.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Results: Figure 3 shows performance on four unseen datasets, where D2NWG achieves 99.04%
initial accuracy on the dessert dataset, outperforming the randomly initialized model even after 50
epochs. D2NWG consistently accelerates convergence across all tasks, surpassing both random and
pretrained initialization. Despite no class overlap between training and test datasets, it demonstrates
strong transferability. Detailed results are available in Table 22 of the Appendix.

4.2.3 FULL MODELS FINE-TUNING ON UNSEEN TASKS

Task: We evaluate each method’s generalization on CIFAR-10, STL-10, Pets and Aircrafts, focusing
on performance gains in domain-specific tasks. The goal is to identify the best initialization strategy
for improving model adaptability across diverse data distributions.

Baseline: The baseline in this experiment are the Pretrained model, which uses weights from a model
pretrained on ImageNet and RandomInit, a randomly initialized model.

Table 5: Task Conditioned LoRA parameters Generation. Adaptations are performed on a Roberta-
Base model denoted Rob-B.

Method Parameters SST-2 (Acc) MRPC (Acc.) CoLA MCC.) QNLI (Acc.) RTE (Acc.) STS-B (PCC.) Avg.

Rob-B 125M 94.8 90.2 63.6 92.8 78.7 91.2 85.2
LoRA 0.9M 95.1±0.2 89.7±0.7 63.4±1.2 93.3±0.3 78.4±0.8 91.5±0.2 85.2
AdaLoRA 0.9M 94.5±0.2 88.7±0.5 62.0±0.6 93.1±0.2 81.7±0.6 90.5±0.2 85.0
DyLoRA 0.9M 94.3± 0.5 89.5±0.5 61.1±0.6 92.2±0.1 78.7±0.7 91.1±0.2 84.5
FourierFT 0.6M 94.2±0.3 90.0 ± 0.8 63.8±1.6 92.2±0.1 79.1±0.5 90.80 ± 0.2 85.0
D2NWG 0.6M 94.3±0.1 +0.2 90.3±0.5(↑0.3) 64.3±1.2 (↑0.5) 92.6±0.2(↑0.5) 79.6±0.4(↑0.5) 91.0±0.3(↑0.0.2) 85.3(↑0.3)

Datasets: In this experiment we evaluate the transferability to unseen dataset of D2NWG trained in
Section 4.1.3 on unseen datasets CIFAR-10, STL-10, Aircraft100, Aircraft30, and Pets.

Results: We evaluated D2NWG by comparing it against 5 pretrained and 5 randomly initialized
models, each fine-tuned for 1 epoch across CIFAR-10, STL-10, Aircraft100, Aircraft30, and Pets
datasets. As shown in Figure 4, D2NWG consistently outperformed the baselines. Notably, on
AIRCRAFT-100, D2NWG achieved 1.43% accuracy, surpassing both randomly initialized (1.0%) and
ImageNet-pretrained (1.24%) models. These results demonstrate D2NWG’s superior generalization
and fine-tuning capabilities, even on specialized datasets.

4.3 TASK CONDITIONED LORA WEIGHTS GENERATION

Task: In this section, we demonstrate that our method can be applied to LLMs by learning the
distribution of LoRA matrices conditioned on task-specific textual descriptions.

Datasets: We use six tasks from the GLUE benchmark and generate task descriptions using GPT-4,
as shown in Table 14. LoRA weights were generated following the fine-tuning process of Gao et al.
(2024). We collected LoRA and classifier head checkpoints from the last 5 epochs, combined the
pretrained vectors, and conditionally learned their distribution.

Baselines: We compare with base Roberta-base, LoRA (Hu et al., 2021), AdaLoRA (Zhang et al.,
2023), DyLoRA (Valipour et al., 2022) and FourierFT (Gao et al., 2024) which are all LoRA-based
RoBERTa-base models. We sampled and compared the average accuracy of the top 5 performing sets
of weights per dataset.

Results: As shown in Table 5, D2NWG effectively generates weights that match or surpass the
performance of pretrained models. These results align with our findings from the augmented weight
retrieval experiments. Additional details regarding the task descriptor are provided in Table 14.

4.4 ENHANCING LLM PERFORMANCE WITH WEIGHT SAMPLING

Task: We aim to demonstrate that D2NWG can enhance existing LLMs by learning the distribution
of their pretrained weights, enabling the generation of parameters that improve performance on
specific tasks while generalizing to unseen tasks.

Datasets: We evaluate on several benchmarks(Beeching et al., 2023): AI2 Reasoning Challenge for
grade-school science questions, HellaSwag for commonsense inference, Winogrande for common-
sense reasoning.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 7: Performance evaluation on unseen open llms leaderboard v2 benchmark. These results
are produced by Huggingface after submission to open LLM leaderdoards. ↑ indicate performance
improvement while ↓ indicate a performance decrease

Method ifeval (0) Bbh (3) Gpqa (0) MATH-hard (4) Musr (0) MMLU-Pro (5) Avg Base Model Fine-tuned

Meta-Llama-3.2-1B-Instruct 56.78 8.74 3.36 2.96 2.97 7.58 13.76 Meta-Llama-3.2-1B Yes
D2NWG 58.44(↑1.66) 8.82(↑0.08) 1.68(↓1.68) 6.04(↑3.08) 0.66(↓2.31) 9.09(↑1.51) 14.12(↑0.36) Meta-Llama-3.2-8B-Instruct No

SauerkrautLM-8B-Instruct 80.17 31.00 5.37 11.18 11.52 32.12 28.56 Meta-Llama-3.1-8B-Instruct Yes
D2NWG 80.33 +0.16 31.10(↑0.10) 5.26(↓0.11) 11.56(↑0.38) 11.52 32.07(↓0.05) 28.64 (↑0.08) SauerkrautLM-8B-Instruct No

Lexi-Uncensored-V2 77.92 29.69 4.36 16.92 7.77 30.90 27.93 Meta-Llama-3.1-8B-Instruct Yes
Meta-Llama-3.1-8B-Instruct 78.56 29.89 2.35 17.60 8.41 30.68 27.91 Meta-Llama-3.1-8B Yes
D2NWG 77.85(↓0.71) 30.39(↑0.5) 4.47(↑2.12) 17.52(↓0.08) 9.64(↑1.23) 31.02(↑0.34) 28.50(↑0.59) Meta-Llama-3.1-8B-Instruct No

Baseline: We evaluate our method against various version of LLAMA3 and Mistral-7B.

For each model, We extract the weights of the top 25% of layer excluding embedding and output
layer, learn their distribution using chunk based encoding, We then steer through the optimal space to
generate task-specific parameters as shown in Table 6.

Results: The results in Table 6 demonstrates that our approach consistently improve the performance
of each models demonstrating new application avenues of our proposed method.

4.5 EVALUATION ON OPEN LM BENCHMARK

We merge these models following Wortsman et al. (2022) and evaluate them on the OpenLM
leaderboard (Fourrier et al., 2024) as shown in Table 13

Task: We evaluate the robustnets of ours best models on the open-lm leaderboard.

Datasets: We evaluate models on 6 key benchmarks datasets: IFEval for instruction adherence, BBH
(Big Bench Hard, with 23 challenging tasks (arithmetic, reasoning, language understanding), MATH
focusing on Level 5 high-school math problems, GPQA with graduate-level Q&A across various fields,
MuSR testing complex reasoning with long-range context, and MMLU-Pro for advanced multitask
knowledge assessment. These benchmarks assess diverse reasoning and knowledge capabilities in
and few-shot settings.

Baselines: We compare our method against LLMA3.1-8B-Instruct and its fine-tuned variant, with
evaluations conducted on the leaderboard server.

Table 6: Exploration of optimal weight space of
some instruct LLMs using a diffusion model sam-
pled weights. ↑ indicates the performance gain

Methods Winogrande (5 shot) Arc-Challenge (25 shot) Hellaswag (25 shot)

LLAMA-3.1-8B-Instruct 67.17 ± 0.01 64.93 ±0.01 78.58 ± 0.00
D2NWG 67.61± 0.02(↑0.44) 65.74±0.01(↑0.81) 78.86± 0.02(↑0.28)

Mistral-7b-Instruct 69.93 ± 0.01 59.22 ±0.01 81.97 ± 0.00
D2NWG 70.80± 0.02(↑0.80) 59.80±0.01(↑0.58) 82.04± 0.00(↑0.07)

LLAMA-3.2-1B-Instruct 56.75± 0.01 40.96 ±0.01 61.67 ± 0.00
D2NWG 57.17 ± 0.01(↑0.42) 41.55 ± 0.01(↑0.59) 61.70± 0.01(↑0.03)

Results: As shown in Table 7, our method
surpasses baseline models on the leaderboard
and performs comparably to models pretrained
on task-specific datasets. Despite not be-
ing directly calibrated for leaderboard tasks,
D2NWG achieves up to a 3% improvement in
certain cases. This demonstrates the potential of
guided parameter space exploration for task spe-
cialization. The consistent gains across bench-
marks highlight D2NWG’s effectiveness in enhancing model robustness and transferability, with our
LLaMA-3.2-1B model ranking among the top LLaMA-3.2-1B entries on the public leaderboard.

Quality Check: Our method enhances text generation quality, as shown in Table 13 Additional
results in Appendix D show that the method effectively learns GPT-2 small’s full parameters while
maintaining performance comparable to the pretrained model.

5 CONCLUSION

In this work, we recast latent diffusion for dataset-conditioned neural network weight generation,
enabling quick adaptation to novel datasets and efficient fine-tuning and transfer learning without
training. Through extensive experiments on diverse datasets, our method generates high-quality
weights for novel tasks and improves generalization. We extend parameter generation to large
language models, demonstrating the scalability and versatility of our approach. Our method effectively
encodes architectures with up to 1 billion parameters using a single GPU with less than 80GB,
including task- or dataset-conditioned generation.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

6 LIMITATION AND ETHICAL STAEMENT

Limitations: Our method relies on large collections of pretrained weight tensors and datasets,
which require substantial storage and computational resources. However, such pretrained models are
becoming more readily available due to the efforts made by open-source communities.

REFERENCES

Sungyong Baik, Myungsub Choi, Janghoon Choi, Heewon Kim, and Kyoung Mu Lee. Meta-learning
with adaptive hyperparameters. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin
(eds.), Advances in Neural Information Processing Systems, volume 33, pp. 20755–20765. Curran
Associates, Inc., 2020.

Edward Beeching, Clémentine Fourrier, Nathan Habib, Sheon Han, Nathan Lambert, Nazneen Rajani,
Omar Sanseviero, Lewis Tunstall, and Thomas Wolf. Open llm leaderboard, 2023.

Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and Song Han. Once for all: Train one
network and specialize it for efficient deployment. In International Conference on Learning
Representations, 2020.

Vinod Kumar Chauhan, Jiandong Zhou, Ping Lu, Soheila Molaei, and David A. Clifton. A brief
review of hypernetworks in deep learning. ArXiv, abs/2306.06955, 2023. URL https://api.
semanticscholar.org/CorpusID:259138728.

Yinbo Chen, Zhuang Liu, Huijuan Xu, Trevor Darrell, and Xiaolong Wang. Meta-baseline: Exploring
simple meta-learning for few-shot learning. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 9062–9071, 2021.

Tristan Deleu, David Kanaa, Leo Feng, Giancarlo Kerg, Yoshua Bengio, Guillaume Lajoie, and
Pierre-Luc Bacon. Continuous-Time Meta-Learning with Forward Mode Differentiation. In Tenth
International Conference on Learning Representations, 2022.

Misha Denil, Babak Shakibi, Laurent Dinh, Marc' Aurelio Ranzato, and Nando de Freitas. Predicting
parameters in deep learning. In Advances in Neural Information Processing Systems, volume 26.
Curran Associates, Inc., 2013.

Ashwini Doke and Madhava Gaikwad. Survey on automated machine learning (automl) and meta
learning. In 2021 12th International Conference on Computing Communication and Networking
Technologies (ICCCNT), pp. 1–5, 2021. doi: 10.1109/ICCCNT51525.2021.9579526.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, Anthony Hartshorn,
Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark, Arun Rao, Aston
Zhang, Aurelien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Roziere, Bethany Biron, Binh
Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris Marra, Chris McConnell,
Christian Keller, Christophe Touret, Chunyang Wu, Corinne Wong, Cristian Canton Ferrer, Cyrus
Nikolaidis, Damien Allonsius, Daniel Song, Danielle Pintz, Danny Livshits, David Esiobu, Dhruv
Choudhary, Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin,
Ehab AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip Radenovic, Frank Zhang,
Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Graeme Nail, Gregoire Mialon, Guan
Pang, Guillem Cucurell, Hailey Nguyen, Hannah Korevaar, Hu Xu, Hugo Touvron, Iliyan Zarov,
Imanol Arrieta Ibarra, Isabel Kloumann, Ishan Misra, Ivan Evtimov, Jade Copet, Jaewon Lee,
Jan Geffert, Jana Vranes, Jason Park, Jay Mahadeokar, Jeet Shah, Jelmer van der Linde, Jennifer
Billock, Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang,
Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph Rocca, Joshua Johnstun, Joshua
Saxe, Junteng Jia, Kalyan Vasuden Alwala, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth
Heafield, Kevin Stone, Khalid El-Arini, Krithika Iyer, Kshitiz Malik, Kuenley Chiu, Kunal Bhalla,
Lauren Rantala-Yeary, Laurens van der Maaten, Lawrence Chen, Liang Tan, Liz Jenkins, Louis
Martin, Lovish Madaan, Lubo Malo, Lukas Blecher, Lukas Landzaat, Luke de Oliveira, Madeline
Muzzi, Mahesh Pasupuleti, Mannat Singh, Manohar Paluri, Marcin Kardas, Mathew Oldham,
Mathieu Rita, Maya Pavlova, Melanie Kambadur, Mike Lewis, Min Si, Mitesh Kumar Singh, Mona

11

https://api.semanticscholar.org/CorpusID:259138728
https://api.semanticscholar.org/CorpusID:259138728

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Hassan, Naman Goyal, Narjes Torabi, Nikolay Bashlykov, Nikolay Bogoychev, Niladri Chatterji,
Olivier Duchenne, Onur Çelebi, Patrick Alrassy, Pengchuan Zhang, Pengwei Li, Petar Vasic,
Peter Weng, Prajjwal Bhargava, Pratik Dubal, Praveen Krishnan, Punit Singh Koura, Puxin Xu,
Qing He, Qingxiao Dong, Ragavan Srinivasan, Raj Ganapathy, Ramon Calderer, Ricardo Silveira
Cabral, Robert Stojnic, Roberta Raileanu, Rohit Girdhar, Rohit Patel, Romain Sauvestre, Ronnie
Polidoro, Roshan Sumbaly, Ross Taylor, Ruan Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sahana
Chennabasappa, Sanjay Singh, Sean Bell, Seohyun Sonia Kim, Sergey Edunov, Shaoliang Nie,
Sharan Narang, Sharath Raparthy, Sheng Shen, Shengye Wan, Shruti Bhosale, Shun Zhang, Simon
Vandenhende, Soumya Batra, Spencer Whitman, Sten Sootla, Stephane Collot, Suchin Gururangan,
Sydney Borodinsky, Tamar Herman, Tara Fowler, Tarek Sheasha, Thomas Georgiou, Thomas
Scialom, Tobias Speckbacher, Todor Mihaylov, Tong Xiao, Ujjwal Karn, Vedanuj Goswami,
Vibhor Gupta, Vignesh Ramanathan, Viktor Kerkez, Vincent Gonguet, Virginie Do, Vish Vogeti,
Vladan Petrovic, Weiwei Chu, Wenhan Xiong, Wenyin Fu, Whitney Meers, Xavier Martinet,
Xiaodong Wang, Xiaoqing Ellen Tan, Xinfeng Xie, Xuchao Jia, Xuewei Wang, Yaelle Goldschlag,
Yashesh Gaur, Yasmine Babaei, Yi Wen, Yiwen Song, Yuchen Zhang, Yue Li, Yuning Mao,
Zacharie Delpierre Coudert, Zheng Yan, Zhengxing Chen, Zoe Papakipos, Aaditya Singh, Aaron
Grattafiori, Abha Jain, Adam Kelsey, Adam Shajnfeld, Adithya Gangidi, Adolfo Victoria, Ahuva
Goldstand, Ajay Menon, Ajay Sharma, Alex Boesenberg, Alex Vaughan, Alexei Baevski, Allie
Feinstein, Amanda Kallet, Amit Sangani, Anam Yunus, Andrei Lupu, Andres Alvarado, Andrew
Caples, Andrew Gu, Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit Ramchandani, Annie
Franco, Aparajita Saraf, Arkabandhu Chowdhury, Ashley Gabriel, Ashwin Bharambe, Assaf
Eisenman, Azadeh Yazdan, Beau James, Ben Maurer, Benjamin Leonhardi, Bernie Huang, Beth
Loyd, Beto De Paola, Bhargavi Paranjape, Bing Liu, Bo Wu, Boyu Ni, Braden Hancock, Bram
Wasti, Brandon Spence, Brani Stojkovic, Brian Gamido, Britt Montalvo, Carl Parker, Carly Burton,
Catalina Mejia, Changhan Wang, Changkyu Kim, Chao Zhou, Chester Hu, Ching-Hsiang Chu,
Chris Cai, Chris Tindal, Christoph Feichtenhofer, Damon Civin, Dana Beaty, Daniel Kreymer,
Daniel Li, Danny Wyatt, David Adkins, David Xu, Davide Testuggine, Delia David, Devi Parikh,
Diana Liskovich, Didem Foss, Dingkang Wang, Duc Le, Dustin Holland, Edward Dowling, Eissa
Jamil, Elaine Montgomery, Eleonora Presani, Emily Hahn, Emily Wood, Erik Brinkman, Esteban
Arcaute, Evan Dunbar, Evan Smothers, Fei Sun, Felix Kreuk, Feng Tian, Firat Ozgenel, Francesco
Caggioni, Francisco Guzmán, Frank Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella
Schwarz, Gada Badeer, Georgia Swee, Gil Halpern, Govind Thattai, Grant Herman, Grigory Sizov,
Guangyi, Zhang, Guna Lakshminarayanan, Hamid Shojanazeri, Han Zou, Hannah Wang, Hanwen
Zha, Haroun Habeeb, Harrison Rudolph, Helen Suk, Henry Aspegren, Hunter Goldman, Ibrahim
Damlaj, Igor Molybog, Igor Tufanov, Irina-Elena Veliche, Itai Gat, Jake Weissman, James Geboski,
James Kohli, Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jennifer Chan, Jenny
Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi Yang, Joe Cummings,
Jon Carvill, Jon Shepard, Jonathan McPhie, Jonathan Torres, Josh Ginsburg, Junjie Wang, Kai
Wu, Kam Hou U, Karan Saxena, Karthik Prasad, Kartikay Khandelwal, Katayoun Zand, Kathy
Matosich, Kaushik Veeraraghavan, Kelly Michelena, Keqian Li, Kun Huang, Kunal Chawla, Kushal
Lakhotia, Kyle Huang, Lailin Chen, Lakshya Garg, Lavender A, Leandro Silva, Lee Bell, Lei
Zhang, Liangpeng Guo, Licheng Yu, Liron Moshkovich, Luca Wehrstedt, Madian Khabsa, Manav
Avalani, Manish Bhatt, Maria Tsimpoukelli, Martynas Mankus, Matan Hasson, Matthew Lennie,
Matthias Reso, Maxim Groshev, Maxim Naumov, Maya Lathi, Meghan Keneally, Michael L.
Seltzer, Michal Valko, Michelle Restrepo, Mihir Patel, Mik Vyatskov, Mikayel Samvelyan, Mike
Clark, Mike Macey, Mike Wang, Miquel Jubert Hermoso, Mo Metanat, Mohammad Rastegari,
Munish Bansal, Nandhini Santhanam, Natascha Parks, Natasha White, Navyata Bawa, Nayan
Singhal, Nick Egebo, Nicolas Usunier, Nikolay Pavlovich Laptev, Ning Dong, Ning Zhang,
Norman Cheng, Oleg Chernoguz, Olivia Hart, Omkar Salpekar, Ozlem Kalinli, Parkin Kent, Parth
Parekh, Paul Saab, Pavan Balaji, Pedro Rittner, Philip Bontrager, Pierre Roux, Piotr Dollar, Polina
Zvyagina, Prashant Ratanchandani, Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel Rodriguez,
Rafi Ayub, Raghotham Murthy, Raghu Nayani, Rahul Mitra, Raymond Li, Rebekkah Hogan,
Robin Battey, Rocky Wang, Rohan Maheswari, Russ Howes, Ruty Rinott, Sai Jayesh Bondu,
Samyak Datta, Sara Chugh, Sara Hunt, Sargun Dhillon, Sasha Sidorov, Satadru Pan, Saurabh
Verma, Seiji Yamamoto, Sharadh Ramaswamy, Shaun Lindsay, Shaun Lindsay, Sheng Feng,
Shenghao Lin, Shengxin Cindy Zha, Shiva Shankar, Shuqiang Zhang, Shuqiang Zhang, Sinong
Wang, Sneha Agarwal, Soji Sajuyigbe, Soumith Chintala, Stephanie Max, Stephen Chen, Steve
Kehoe, Steve Satterfield, Sudarshan Govindaprasad, Sumit Gupta, Sungmin Cho, Sunny Virk,
Suraj Subramanian, Sy Choudhury, Sydney Goldman, Tal Remez, Tamar Glaser, Tamara Best,

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Thilo Kohler, Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim Matthews, Timothy Chou, Tzook
Shaked, Varun Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai Mohan, Vinay Satish Kumar,
Vishal Mangla, Vítor Albiero, Vlad Ionescu, Vlad Poenaru, Vlad Tiberiu Mihailescu, Vladimir
Ivanov, Wei Li, Wenchen Wang, Wenwen Jiang, Wes Bouaziz, Will Constable, Xiaocheng Tang,
Xiaofang Wang, Xiaojian Wu, Xiaolan Wang, Xide Xia, Xilun Wu, Xinbo Gao, Yanjun Chen,
Ye Hu, Ye Jia, Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi, Youngjin Nam, Yu, Wang,
Yuchen Hao, Yundi Qian, Yuzi He, Zach Rait, Zachary DeVito, Zef Rosnbrick, Zhaoduo Wen,
Zhenyu Yang, and Zhiwei Zhao. The llama 3 herd of models, 2024.

Clementine Fourrier, Nathan Habib, Alina Lozovskaya, Konrad Szafer, and Thomas Wolf. Open llm
leaderboard v2, 2024.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks, 2019.

Hanan Gani, Muzammal Naseer, and Mohammad Yaqub. How to train vision transformer on small-
scale datasets? In 33rd British Machine Vision Conference 2022, BMVC 2022, London, UK,
November 21-24, 2022. BMVA Press, 2022.

Shanghua Gao, Pan Zhou, Ming-Ming Cheng, and Shuicheng Yan. Masked diffusion transformer
is a strong image synthesizer. In 2023 IEEE/CVF International Conference on Computer Vision
(ICCV), pp. 23107–23116, 2023. doi: 10.1109/ICCV51070.2023.02117.

Ziqi Gao, Qichao Wang, Aochuan Chen, Zijing Liu, Bingzhe Wu, Liang Chen, and Jia Li. Parameter-
efficient fine-tuning with discrete fourier transform, 2024.

Yifan Gong, Zheng Zhan, Yanyu Li, Yerlan Idelbayev, Andrey Zharkov, Kfir Aberman, Sergey
Tulyakov, Yanzhi Wang, and Jian Ren. Efficient training with denoised neural weights, 2024. URL
https://arxiv.org/abs/2407.11966.

Roberto Gozalo-Brizuela and Eduardo C. Garrido-Merchán. A survey of generative ai applications,
2023.

David Ha, Andrew Dai, and Quoc V. Le. Hypernetworks, 2016.

Eric Hartford, Lucas Atkins, Fernando Fernandes Neto, and David Golchinfar. Spectrum: Targeted
training on signal to noise ratio, 2024.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In H. Larochelle,
M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neural Information Processing
Systems, volume 33, pp. 6840–6851. Curran Associates, Inc., 2020a.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. arXiv preprint
arxiv:2006.11239, 2020b.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Frank Hutter, Lars Kotthoff, and Joaquin Vanschoren (eds.). Automated Machine Learning - Methods,
Systems, Challenges. Springer, 2019.

Wonyong Jeong, Hayeon Lee, Gun Hong Park, Eunyoung Hyung, Jinheon Baek, and Sung Ju Hwang.
Task-adaptive neural network search with meta-contrastive learning. In Neural Information
Processing Systems, 2021.

Boris Knyazev, Michal Drozdzal, Graham W Taylor, and Adriana Romero-Soriano. Parameter
prediction for unseen deep architectures. In Advances in Neural Information Processing Systems,
2021.

Boris Knyazev, Doha Hwang, and Simon Lacoste-Julien. Can we scale transformers to predict
parameters of diverse imagenet models? In International Conference on Machine Learning, 2023.

13

https://arxiv.org/abs/2407.11966

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Hayeon Lee, Eunyoung Hyung, and Sung Ju Hwang. Rapid neural architecture search by learning to
generate graphs from datasets. In International Conference on Learning Representations, 2021.

Juho Lee, Yoonho Lee, Jungtaek Kim, Adam Kosiorek, Seungjin Choi, and Yee Whye Teh. Set trans-
former: A framework for attention-based permutation-invariant neural networks. In Proceedings
of the 36th International Conference on Machine Learning, pp. 3744–3753, 2019a.

K. Lee, S. Maji, A. Ravichandran, and S. Soatto. Meta-learning with differentiable convex optimiza-
tion. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.
10649–10657, 2019b.

Bohan Liu, Zijie Zhang, Peixiong He, Zhensen Wang, Yang Xiao, Ruimeng Ye, Yang Zhou, Wei-
Shinn Ku, and Bo Hui. A survey of lottery ticket hypothesis, 2024.

Shervin Minaee, Tomas Mikolov, Narjes Nikzad, Meysam Chenaghlu, Richard Socher, Xavier
Amatriain, and Jianfeng Gao. Large language models: A survey, 2024. URL https://arxiv.
org/abs/2402.06196.

Elvis Nava, Seijin Kobayashi, Yifei Yin, Robert K. Katzschmann, and Benjamin F Grewe. Meta-
learning via classifier(-free) diffusion guidance. Transactions on Machine Learning Research,
2023. ISSN 2835-8856.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In 2023 IEEE/CVF
International Conference on Computer Vision (ICCV), pp. 4172–4182, 2023. doi: 10.1109/
ICCV51070.2023.00387.

William Peebles, Ilija Radosavovic, Tim Brooks, Alexei A. Efros, and Jitendra Malik. Learning to
learn with generative models of neural network checkpoints, 2022.

Aravind Rajeswaran, Chelsea Finn, Sham M Kakade, and Sergey Levine. Meta-learning with implicit
gradients. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett
(eds.), Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc.,
2019.

Neale Ratzlaff and Li Fuxin. Hypergan: A generative model for diverse, performant neural networks,
2020.

R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer. High-resolution image synthesis
with latent diffusion models. In 2022 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 10674–10685, jun 2022.

Robin Rombach, A. Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution
image synthesis with latent diffusion models. 2022 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 10674–10685, 2021.

Andrei A. Rusu, Dushyant Rao, Jakub Sygnowski, Oriol Vinyals, Razvan Pascanu, Simon Osindero,
and Raia Hadsell. Meta-learning with latent embedding optimization. In International Conference
on Learning Representations, 2019.

Konstantin Schürholt, Boris Knyazev, Xavier Giró-i Nieto, and Damian Borth. Hyper-representations
as generative models: Sampling unseen neural network weights. In Thirty-Sixth Conference on
Neural Information Processing Systems (NeurIPS), September 2022a.

Konstantin Schürholt, Boris Knyazev, Xavier Giró i Nieto, and Damian Borth. Hyper-representations
as generative models: Sampling unseen neural network weights. In Advances in Neural Information
Processing Systems, 2022b.

Konstantin Schürholt, Diyar Taskiran, Boris Knyazev, Xavier Giró-i Nieto, and Damian Borth. Model
zoos: A dataset of diverse populations of neural network models. In Thirty-Sixth Conference on
Neural Information Processing Systems (NeurIPS) Track on Datasets and Benchmarks, September
2022c.

14

https://arxiv.org/abs/2402.06196
https://arxiv.org/abs/2402.06196

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Konstantin Sch"urholt, Michael W. Mahoney, and Damian Borth. Towards scalable and versatile
weight space learning. In Proceedings of the 41st International Conference on Machine Learning
(ICML). PMLR, 2024.

Konstantin Schürholt, Dimche Kostadinov, and Damian Borth. Self-supervised representation learning
on neural network weights for model characteristic prediction. In Advances in Neural Information
Processing Systems (NeurIPS 2021), Sydney, Australia, 2021.

Zihao Tang, Zheqi Lv, Shengyu Zhang, Fei Wu, and Kun Kuang. Modelgpt: Unleashing llm’s
capabilities for tailored model generation, 2024.

Ihsan Ullah, Dustin Carrion, Sergio Escalera, Isabelle M Guyon, Mike Huisman, Felix Mohr, Jan N
van Rijn, Haozhe Sun, Joaquin Vanschoren, and Phan Anh Vu. Meta-album: Multi-domain
meta-dataset for few-shot image classification. In Thirty-sixth Conference on Neural Information
Processing Systems Datasets and Benchmarks Track, 2022.

Mojtaba Valipour, Mehdi Rezagholizadeh, Ivan Kobyzev, and Ali Ghodsi. Dylora: Parameter
efficient tuning of pre-trained models using dynamic search-free low-rank adaptation. arXiv
preprint arXiv:2210.07558, 2022.

Kai Wang, Zhaopan Xu, Yukun Zhou, Zelin Zang, Trevor Darrell, Zhuang Liu, and Yang You. Neural
network diffusion, 2024.

Hassler Whitney. Differentiable manifolds. Annals of Mathematics, 37(3):645–680, 1936. doi:
10.2307/1968482.

Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes,
Ari S Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, and Ludwig
Schmidt. Model soups: averaging weights of multiple fine-tuned models improves accuracy without
increasing inference time. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari,
Gang Niu, and Sivan Sabato (eds.), Proceedings of the 39th International Conference on Machine
Learning, volume 162 of Proceedings of Machine Learning Research, pp. 23965–23998. PMLR,
17–23 Jul 2022.

Ling Yang, Zhilong Zhang, Yang Song, Shenda Hong, Runsheng Xu, Yue Zhao, Wentao Zhang,
Bin Cui, and Ming-Hsuan Yang. Diffusion models: A comprehensive survey of methods and
applications, 2024. URL https://arxiv.org/abs/2209.00796.

Baoquan Zhang, Chuyao Luo, Demin Yu, Xutao Li, Huiwei Lin, Yunming Ye, and Bowen Zhang.
Metadiff: Meta-learning with conditional diffusion for few-shot learning. Proceedings of the AAAI
Conference on Artificial Intelligence, 38(15):16687–16695, Mar. 2024.

Chris Zhang, Mengye Ren, and Raquel Urtasun. Graph hypernetworks for neural architecture search.
In International Conference on Learning Representations, 2019.

Qingru Zhang, Minshuo Chen, Alexander Bukharin, Nikos Karampatziakis, Pengcheng He, Yu Cheng,
Weizhu Chen, and Tuo Zhao. Adalora: Adaptive budget allocation for parameter-efficient fine-
tuning. arXiv preprint arXiv:2303.10512, 2023.

Xueting Zhang, Debin Meng, Henry Gouk, and Timothy Hospedales. Shallow bayesian meta learning
for real-world few-shot recognition. In 2021 IEEE/CVF International Conference on Computer
Vision (ICCV), pp. 631–640, 2021. doi: 10.1109/ICCV48922.2021.00069.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min,
Beichen Zhang, Junjie Zhang, Zican Dong, Yifan Du, Chen Yang, Yushuo Chen, Zhipeng Chen,
Jinhao Jiang, Ruiyang Ren, Yifan Li, Xinyu Tang, Zikang Liu, Peiyu Liu, Jian-Yun Nie, and
Ji-Rong Wen. A survey of large language models, 2023. URL https://arxiv.org/abs/
2303.18223.

Ziyu Zhao, Leilei Gan, Guoyin Wang, Yuwei Hu, Tao Shen, Hongxia Yang, Kun Kuang, and Fei Wu.
Retrieval-augmented mixture of lora experts for uploadable machine learning, 2024.

15

https://arxiv.org/abs/2209.00796
https://arxiv.org/abs/2303.18223
https://arxiv.org/abs/2303.18223

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Andrey Zhmoginov, Mark Sandler, and Maksym Vladymyrov. HyperTransformer: Model gener-
ation for supervised and semi-supervised few-shot learning. In Kamalika Chaudhuri, Stefanie
Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.), Proceedings of the 39th
International Conference on Machine Learning, volume 162 of Proceedings of Machine Learning
Research, pp. 27075–27098. PMLR, 17–23 Jul 2022.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A APPROACH

Broader Impact D2NWG addresses the resource-intensive nature of deep learning by proposing a
method for efficient transfer learning. This has the potential to reduce the computational resources
required for training neural networks, making it more accessible to a wider range of researchers and
organizations.

Limitation In this work, we focus mainly on generalization across datasets. Additionally, while the
diffusion model achieves impressive performance on image generation, there are still some challenges
to efficiently recast it for weights generation including memory constraint, convergence challenges
and considerations of symmetries in the weight spaces of different neural network architectures.

A.1 RELATIONSHIP BETWEEN DATASETS AND TRAINED WEIGHTS

Gradient descent based optimization is the commonly used technique to generate optimal neural
network weights through training by minimizing a loss function, ie. cross-entropy for classifiation
tasks. The weights optimized with gradient descent thus contains some information about the
training data. Therefore, understanding the correlation between the training dataset and the optimal
weights is important for the generation of weights. During the optimization process with gradient
descent the weights of each layer i are updated as wi = wi−1 − η∇wi

L(w1, w2, . . . , wn), where
∇wi

L(w1, w2, . . . , wn) is input dependent. As an example, let’s consider a two-layer feedforward
neural network:

x : inputs

l1 = W1x+ b1 h = ReLU(l1)

h = ReLU(l1) l2 = W2h+ b2

ŷ = softmax(l2) J = CE(y, ŷ)

Analyzing the weights’ update below, we can observe that the optimal weights are noisy perturbation
of the inputs feature maps and all together they contain information about the training either related
to the raw input or the feature map at a given stage.

δ1 =
∂J

∂l2
= (y − ŷ)T

δ2 =
∂J

∂l1
= δ1W2osgn(h)

W
(i+1)
1 = W

(i)
1 − η∇w1

L(w1, w2, b1, b2)

= W
(i)
1 − ηδT2 x

W
(i+1)
2 = W

(i)
2 − η∇w2

L(w1, w2, b1, b2)

= W
(i)
2 − ηδT1 h

T

A.2 WEIGHTS VECTORIZATION

[] For a neural network with L layers, the process of vectorizing the weights and biases for both fully
connected and convolutional layers is as follows:

• For the ℓ’th fully connected layer: W (l) ∈ Rdl−1×dl → vec(W (l)) ∈ Rdl−1.dl and b(l) ∈
Rdl , the length of the vectorized weights for this layer, including the bias if it is not null, is
given by dl−1dl + dl.

• For the ℓ’th convolutional layer: W (l) ∈ Rkh.kw.cin.cout and b(l) ∈ Rcout , the length of the
vectorized weights for this layer, including the bias if it is not null, is kh ·kw ·cin ·cout+cout.

We then concatenate all the flattened weight and bias vectors resulting in a vector θ: θ =⊕L
l=1

(
vec(W (l))⊕ b(l)

)
where vec denotes the vectorization operation and ⊕ denotes concate-

nation.The concatenation operation keeps the ordering of weights in the network.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

A.3 LAYER SELECTION STRATEGY

To manage the large number of parameters in LLM architectures, where not all layers are required to
be tuned to improve the performance, we propose focusing on the most important layers. These layers
are identified using the Marchenko-Pastur (MP) distribution, which serves as a filter to highlight
relevant weights while discarding those resembling random noise. The MP law provides a benchmark
for distinguishing structured weights from noise by comparing the empirical eigenvalue spectrum of
weight matrices to the MP distribution. D2NWG uses this spectrum method (Hartford et al., 2024)
to learn the distribution of the most informative weights—those corresponding to eigenvalues that
significantly exceed the MP upper bound. By focusing on these critical weights, D2NWG captures
meaningful patterns in LLMs, leading to enhanced performance in transfer learning.

The spectrum method, grounded in random matrix theory, applies the Marchenko-Pastur (MP)
distribution to different types of layers, treating them as rectangular random matrices. In transformer
networks, functionally similar layers are grouped, such as a set for all query layers in multi-head
attention. The method begins by computing the covariance matrix of each layer’s weight matrix,
W ∈ Rm×n, as Σ = WTW

n , followed by eigenvalue extraction. Singular value decomposition
(SVD), W = USV T , is used to efficiently compute these eigenvalues from the diagonal matrix S,
which contains the singular values. The resulting eigenvalues describe the variance captured by each
principal component of the squared weight matrix and form what is known as the empirical spectrum.
To analyze this spectrum, we compare it to the theoretical distribution of eigenvalues predicted by
the Marchenko-Pastur (MP) distribution. This distribution p(λ), in equation 7, characterizes the
eigenvalue behavior of random covariance matrices as m,n → ∞, with a fixed aspect ratio q = m

n

and variance σ2.
p(λ) =

1

2πσ2qλ

√
(λ+ − λ)(λ− λ−), (7)

where λ ∈ [λ+, λ−], λ+ = σ2(1 +
√
q)2, and λ− = σ2(1−√

q)2. From 7, the correspoding bounds
for eigen values of W are

√
λ/

√
n ∈ [ε+, ε−], ε+ = 1√

n
σ(1 +

√
q), and ε− = 1√

n
σ(1−√

q).

Interpretation: The Marchenko-Pastur (MP) distribution provides insight into the underlying
structure of data or layer in our case:

• Eigenvalues within MP bounds: Likely represent noise, with their corresponding principal
components carrying little meaningful information, indicating the layer’s lower importance.

• Eigenvalues larger than the upper MP bound λ+: Capture more variance than noise,
suggesting the presence of true signals or patterns in the data.

• Eigenvalues smaller than the lower MP bound λ−: May indicate compression or degenera-
tion in the data structure.

Significant deviations, particularly large eigenvalues, indicate meaningful components that capture
more variance than random noise, aiding in the identification of important features or signals. This
insight is used to compute the signal-to-noise ratio (SNR), where eigenvalues below the upper bound
are considered noise. The SNR is calculated as follows:

SNR =

∑
k | |σk|≥ε σk∑
n | |σn|<ε σn

. (8)

A.4 LEARNING THE DISTRIBUTION OF LLM WEIGHTS

Our method for LLM weight generation employs a layer-wise chunking mechanism that facilitates
both layer-wise and chunk-wise sampling. Each layer is divided into independent chunks to form the
training data, and are then encoded with the VAE. During the diffusion process, an index is assigned
to each chunk, and the model is trained using class-conditioned diffusion, where chunk indices serve
as class labels. At sampling time, the chunk indices corresponding to each layer are grouped into
clusters associated with that layer. These clusters are then used to sample new sets of chunks, which
are concatenated to reconstruct the sampled weights for each layer.

After selecting the top 25% of the layers, we applied chunking with a size of 2,097,152 for LLaMA
3.2-1B and 4,194,304 for other models. We then performed sequential refinement using Algorithm

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

1. Unlike in vision tasks, LLM models are conditioned on chunk indices. Here, we refer to neural
network operations such as dense layers and layer normalization as layers. The spectrum method
provides an ordered set of these layers (q, k, v, o, mlp_up, mlp_down, mlp_gate). For architectures
like Llama 3.1-8B and Mistral, we only learn the distribution of the top 8 each of these layers,
excluding layer normalization. These layers are further divided into two groups: the top 4 and the
second top 4, for which we build separate models to learn their distributions. As for the normalization
layers, we learn the distribution across all of them. The maximum generated parameters is ≈ 872M.

Algorithm 1 Sequential Weight Model Improvement

1: Input: Initial weights Θinit = {θ̃1, . . . , θ̃L}, Hypernetwork Hi for each layer i, Validation
dataset Dval, K candidates per layer

2: Output: Final weights Θ∗ = {θ∗1 , . . . , θ∗L}
3: Initialize Θ∗ = Θinit
4: Compute initial validation accuracy: current_accuracy = A(Θinit,Dval)
5: for each layer i = 1 to L do
6: Generate K candidates {θ(1)i , . . . , θ

(K)
i } using Hi

7: for each candidate k = 1 to K do
8: Replace θ̃i with θ

(k)
i in Θ∗ to form Θ(k)

9: Compute validation accuracy: A(Θ(k),Dval)
10: end for
11: Choose θ∗i = argmaxkA(Θ(k),Dval)
12: if A(Θ(k),Dval) > current_accuracy then
13: Update Θ∗ = Θ(k)

14: Update current_accuracy = A(Θ∗,Dval)
15: else
16: Retain θ̃i in Θ∗

17: end if
18: end for
19:
20: return Θ∗

A.5 MODELZOO AND PRETRAINED DATASETS

Model zoo We use the pretrained datasets from Schürholt et al. (2022c) as structured in Schürholt et al.
(2022a). This dataset consists of 4 different datasets with 5000 pretrained weights per architectures
and datasets. The details of the architecture used to generate the pretrained weights are available in
Schürholt et al. (2022c).

KaggleZoo This modelzoo is generated using the dataset provided by Jeong et al. (2021). To
efficiently generate the pretrained weights, we first compute the features of each image then use a
MLP with two layers with input size 512, hidden size 256 and leaky ReLU activation functions. We
train the MLP on clip features as it allows us to quickly generate high performing weights. For each
datasets we used the last 10 checkpoints which results in 1400 pretrained weights for training.

ImageNet zoo To generate the pretrained modelzoo on ImageNet, we sample 1000, 5000, 10000 and
20000 subsets with 10 classes each with 100 images per class in the training set and 50 per class in
the test set. For the 1000 and 5000 subsets we used the same MLP architecture as the KaggleZoo. For
the 10000 subset, we reduce the hidden dimension to 128 and, for the 20000 subset we use a single
linear probing layer. On the other datasets linear probing shows similar generalization performance
as the two-layer MLP. We use Adam optimizer with a learning rate of 1e − 3 and all models are
trained for 30 epochs.

Zoo for Few-shot learning: The few-shot learning pretrained zoo is generated by fine-tuning the
classifier head for 10 epochs on each of the 50,000 subsets.

LLMs zoo: We collected the pretrained LLM model from their original HugginFace repositories
with no further pertaining on specific tasks or datasets.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Meta-album datasets: We split the meta-album dataset into a training set (70%) and a test set (30%).
Next, we trained the MobileNetV3 OFA subnet with parameters d = 2, k = 3, and e = 3 for 100
epochs. Checkpoints from the last 20 epochs were collected as training data. A detailed breakdown
of the dataset can be found in Table 12.

A.6 DETAILS OF THE PROPOSED MODEL

We build our dataset conditioned weight generation model using latent diffusion (Rombach et al.,
2021).

AutoEncoder: We use the same VAE modules of latent diffusion and use the same architecture for all
experiments except adaptation of the inputs and output dimensions. We insert a linear layer before the
first layer of the encoder such that we can reshape its output to a representation for the convolution
layers. Similarly, a linear layer is placed at the last layer of the decoder adapting the output to the
vectorized weights representations. For the VAE loss function we removed the discriminator in the
original latent diffusion VAE loss function.

Table 8: Models seting, n and c in the
dataset configuration represent respectively
the number of samples per class n=5 for
training and c the total number of classes
per dataset. The VAE and the diffusion
models share similar configuration and ar-
chitectures as (Rombach et al., 2021)

Parameters Values

Epochs [50, 2000]

VAE

Optimizer Adam
Learning Rate 1e-3
Latent Dimiension 1024
KL-Divergence Weight 1e-6

Dataset Encoder

Architecture Set Transformer
Input Dimension c× n× 512(min)
Output Dimension 1024 (min)
Depth of Set Transformer 2

Diffusion

Optimizer AdamW
Learning Rate 1e-4
Scheduler Linear
Time step 1024
Network Unet
UNet Input Size (c× 32× 32)

Diffusion Model: We utilize same UNet architecture
as in latent diffusion with the same training procedure.

Dataset Encoding Mechanisms We investigated three
different mechanisms of dataset encoding. Firstly, we
use Set Transformer (Lee et al., 2019a) which can be
difficult to train when optimized together with the dif-
fusion using the weights encoder from the VAE and the
Set Transformer.

In addition to the Set Transformer, we explored a two-
layer MLP model as the dataset encoder. The first
layer is a dynamic linear layer with a maximum in-
put feature size set to nmax · cmax, where nmax is the
maximum number of images per class and cmax is the
maximum number of classes among all subsets of the
pretrained datasets. The shape of the image features
in each dataset obtained with the CLIP image encoder
is x ∈ Rc×n×d, where d is the feature dimension for
each corresponding pretrained weight vector. While
the Set Transformer-based encoder uses these inputs
directly, the MLP encoder reshapes each input from
x ∈ Rc×n×d to x ∈ Rd×(n·d) and then applies the
dynamic linear layer. If a dataset has more classes or
samples than cmax and nmax respectively, we only con-
sider the first cmax classes and nmax samples per class.
If the dataset has fewer classes or samples, we adjust
the dynamic linear layer dimensions accordingly. The
output of the dynamic linear layer is z ∈ Rd×h, where
h is an arbitrarily chosen number greater than zero. We
then reshape z from Rd×h to R1×(h·d) (with h · d fixed) and apply the final linear layer to obtain the
desired output. This model can be jointly optimized with the diffusion model while achieving good
performance.

Dataset Encoding with Set Transformer We use the Set Transformer for dataset encoding, pretrained
as described in Lee et al. (2021). The approach involves using the frozen Set Transformer and adding
a single linear layer to adapt its output to our specific problem, utilizing it as the dataset encoder. This
method reduces the computational cost of training the Set Transformer and enables joint optimization
of the dataset encoder and the diffusion model. The results of these data set encoding schemes are
presented in Table 21 for the Hyperzoo dataset.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Algorithm 2 Datasets Encoder Training

Input: pretrained weights x, image features y, batch_num m
Instanciate T = Set Transformer, Load pretrained Encoder (E).
repeat

Initialize loss = 0.0
for i = 1 to m− 1 do
xi ∼ x, Di ∼ D
zi = EncoderVAE(xi)
zDi

= T (Di)
loss = loss+ LCLIP (zi, zDi

) (Equation ??)
end for
Update weights of T

until convergence

Figure 5: Overview structure of the set-transformer-based dataset encoder. For each pretrained dataset
we use n = 5 images per class and the embedding dimension d0 = 1024.

B TRAINING DETAILS

In this section, we describe the training steps used to train our method.

• Pretrained Zoo Generation: For classifier head adaptation, we first compute the features
for all datasets. Then, we train the classifier head to generate the pretrained zoo.

• VAE Training: We train the VAE to encode the pretrained weights following Equation 1.
Additionally, a pretrained performance predictor can be used to predict the performance of
the reconstructed weights and guide the VAE training as described in Equation 9.

• Dataset Alignment: If using dataset alignment, we pretrain the Set Transformer to align the
pretrained weights’ latent representations. This is done using the frozen encoder of the VAE
and the dataset embeddings. The inputs to the Set Transformer are image features, with five
image features per class.

• Diffusion Process Training: We train the diffusion model while keeping the Set Transformer
and the VAE models frozen. If an MLP is used for dataset encoding, we jointly optimize the
diffusion process with the MLP dataset encoder.

Although the dataset encoder can be optimized together with diffusion model, we train them separately
to speed up the training process and reduce memory requirements. The VAE and the dataset encoder
are trained using the Adam optimizer with a learning rate of 1e − 4. The diffusion model in
each experiment is trained with a linear scheduler, a base learning rate of 1e-4, and the AdamW
optimizer (Rombach et al., 2021). During the training process of the diffusion model, the output of
the dataset encoder is concatenated with the latent representation of the input weights, forming the
input to the UNet model. Additionally, we investigate joint training of the diffusion process in the
ablation study and Appendix C.5 and A.6. Further details can be found in Table 8.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Algorithm 3 Predictor-Guided VAE

Input: Pretrained weights x, accuracy y, batch_num m
Instantiate f = Set Transformer, and load pretrained predictor g).
repeat

Initialize loss = 0.0
for i = 1 to m− 1 do

x̄ = fθ(x), ȳ = g(x̄) ŷ = g(x)
L
θ

x−x̄
σ2 + log σ2 + ||ŷ − ȳ||2

end for
Update weights of f

until Convergence

B.1 PREDICTOR TRAINING

To improve the reconstruction and sampling efficiency, we trained an accuracy predictor g from
pretrained weights w then use the frozen predictor during the training of the VAE as a regularizer as
shown below:

min
θ,σ

w − fθ(w)

σ2
+ log σ2 + ||g(w)− g(fθ(w))||2, (9)

where g(w) is the embedding of the original input and g(fθ(w)) is the predictor embedding of the
reconstructed weights. The predictor can be either dataset-conditioned or unconditioned. In general
we found that dataset-conditioned predictor works only well for large number of samples per dataset.
After the AutoEncoder is trained, we train the dataset-conditioned module which requires a dataset
encoder.

C ABLATION STUDY

C.1 CAN THE PROPOSED METHOD HANDLE MULTIPLE ARCHITECTURES?

This section provides a simple way to handle the case where the pretrained zoo contains multiple
architectures per task or dataset. Since the number of architecture and dataset are predefined, it
is possible to build a set of unique index for each combination of dataset-architecture pairs. An
alternative will be to encode the graph representation of the architectures then used that as conditioning.
In this ablation study we use the simple class indexing approach to demonstrate the versatility of
our method. We use CIFAR10 and CIFAR100 as the dataset and as target architectures we utilze a
ResNet44 trained on CIFAR-100 with 667,188 parameters and a ResNet44 trained on CIFAR-10 with
661,338 parameters and finally, a MobileNetV2 trained on CIFAR-10 with 700,490 parameters. All
models were zero-padded to 700,490 parameters, combined into a unified dataset, and trained without
chunking. The results in Table 9 demonstrate that the proposed method is capable of simultaneously
learning the distributions of diverse architectures trained on diverse datasets.

Model ResNet44 (CIFAR-10) ResNet44 (CIFAR-100) MobileNetV2 (CIFAR-10)

Pretrained 94.01 71.63 92.88
D2NWG 94.10 ±0.09 71.64±0.02 93.11±0.20

Table 9: Performance evaluation on mixed architectures.

C.2 TRANSFERABILITY

As demonstrated in Table ??, our approach achieves performance comparable to existing meth-
ods while relying on a single generative model instead of 38 task-specific pretrained models.
Notably, the pretrained model architecture and parameter counts used in this study are pub-
licly available on a non-affiliated GitHub repository: https://github.com/chenyaofo/
pytorch-cifar-models.

22

https://github.com/chenyaofo/pytorch-cifar-models
https://github.com/chenyaofo/pytorch-cifar-models

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

EVALUATING SAMPLING FOR TRANSFER LEARNING

We compared sampling from a distribution of diverse pretrained models against traditional single-
model transfer learning, using ResNet-56 and our generative model trained on weights from 19
diverse architectures pretrained on CIFAR-10 and CIFAR-100. We tested three experimental setups:

1. Direct evaluation of the pretrained models.

2. Sampling conditioned on training sets (e.g., STL-10, CIFAR-10).

Results show that our approach consistently outperforms single-model transfer learning. Notably,
there is no significant difference between training- and test-conditioned sampling when drawn from
the same distribution, demonstrating the robustness of our method. This highlights the practicality of
leveraging diverse pretrained model distributions for improved generalization.

Table 10: Performance on CIFAR10.1 and STL10 of D2NWG trained on diverse architectures

Model CIFAR10.1 STL10
Pret-cifar10 75.20 32.37
Pret-cifar100 0.25 0.12
Ours 83.10 ± 0.06 35.41 ± 0.13
Ours(test) 83.04 ± 0.06 35.47 ± 0.12

C.3 EFFECT OF MODELZOO SIZE GENERALIZATION

Here we investigates the impact of increasing the number of pretrained datasets on performance
with experiments that use model zoos of sizes 5000, 10,000, and 20,000, derived from ImageNet
subsets. Unseen target datasets CIFAR-10 and STL-10 are used. Sampling 50 weights, the average
performance of the top 5 performing weights is shown in Figure 6a.

Results: On CIFAR-10 and STL-10, we obtain accuracies of 39.60 ± 1.31% and 44.66 ± 0.55%
for 5000 subsets, 42.15 ± 2.12 and 64.83 ± 2.83% for 10000 subsets, and 52.64 ± 3.12% and,
80.49± 1.77% for 20000 subsets. The maximum accuracies with random initialization are 12.11%
and 17.12% on CIFAR-10 and STL-10 without fine-tuning. This experiment demonstrated that
increasing the number of datasets enhances the generalizability of the proposed method.

5K 10K 20K
Dataset Size

0
10
20
30
40
50
60
70
80

Ac
cu

ra
cy

CIFAR10
STL10

(a)

1 2 3
Dataset Subsets

0

10

20

30

40

50

Ac
cu

ra
cy

VAE+DDPM
DDPM
Pretrained

(b)

Figure 6: (a) Effect of the number of pretrained datasets on sampling weights performance on unseen datasets.
(b) Performance comparison on in-distribution sampling of methods with VAE+DDPM vs DDPM

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Dessert Alien vs
Preditor

Covid-19 HoneyBee
Pollen

Dataset

0

20

40

60

80

100

Ac
cu

ra
cy

With CLIP
Without CLIP
Rand Init

Figure 7: Performance comparison at initialization of method with jointly trained set-transformer (Without
CLIP) and method clip-based dataset encoder.

C.4 SAMPLING WITHOUT LATENT REPRESENTATION
This section explores a model variant that directly learns the diffusion model on weights, bypassing
the AutoEncoder stage, and compares it to the standard approach. Both variants are trained on
1000 subsets of ImageNet, and evaluated in in-distribution sampling setting on three randomly
selected subsets from the 1000 subsets. The results, presented in Figure 6b, indicate that learning
the distribution of pretrained weights in the latent space is notably successful in generating high-
performing weights. The failure of the DDPM process on raw pretrained weights may stem from
their higher model capacity requirement.

C.5 CLIP-BASED DATASET ENCODING

In this section, the comparison between the CLIP-based dataset encoding scheme trained at an
intermediate stage and the Set Transformer encoder jointly trained with the diffusion process is
explored. Experiments are conducted on 140 Kaggle datasets and their respective model zoos. The
results depicted in Figure 7 indicate that both methods achieve similar results for small numbers of
datasets during the in-distribution sampling. However, as the number of datasets increases, the Set
Transformer jointly trained with the diffusion approach faces challenges in convergence and requires
more computational resources, as demonstrated in Figure 7.

C.6 UNCONDITIONAL SAMPLING

We conduct the experiment using ResNet18 pretrained on CIFA-100 and CIFAR-10. For all datasets,
the weight vector length is 2048 and we compare with pdiff (Wang et al., 2024). While pdiff requires
a separate model for each dataset, our method combines the pretrained weights into a single dataset
and conditionally learns their distribution. The sample size for each dataset in our method is 200,
with a combined total of 400 parameters. The results are provided in Table 11 for 100 sampled
weights. Two separate models for are trained for pdiff, CIFA10-pdiff and CIFAR100-pdiff while
our method consists of a single model trained once for both datasets. It can be seen that our method
outperformance the baseline (Wang et al., 2024) in Table 11.

Table 11: Unconditional Sampling Evaluation against Wang et al. (2024) on ResNet18.

Dataset CIFAR-10 CIFAR-100 Runtime

Method Avg Median Max #Epochs for
VAE,DDPM Avg Median Max #Epochs for

VAE,DDPM

pdiff 94.46 94.46 94.52 8999,47999 76.1028 76.13 76.21 32999,38999 ≈ 3h
D2NWG 94.46 94.47 94.50 100,200 76.1796 76.18 76.24 100,200 ≈ 1h30

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

C.7 COUPLING WITH AN ACCURACY PREDICTOR

This section reports the extended results of Table 19 in which we compared our method in-distribution
and out-of distribution with and without accuracy predictor.

Results.: The full results of Table 19 are reported in Table 20. Using an accuracy predictor enable
easily selecting highly performing when sampling in-distribution. However, in our case the accuracy
predictor struggles to generalize well for unseen dataset as shown in Table 20

C.8 SAMPLED WEIGHTS ANALYSIS

In this section, we analyze the characteristics of the sampled weights and compare them to the
pre-trained ones based on experiments with the model zoo and a model pre-trained on a subset of
ImageNet. The proposed method samples weights with a large variance, as shown in Figure 10,
providing a broad range of initialization choices, from weights with low initial performance to those
with higher initial performance.

Table 12: Details description of meta-album datasets

Domain Original Dataset # Classes
Large Animals Animals with Attributes, Dogs,

Birds
50, 120, 315

Small Animals Insects, Insects 2, Plankton 117, 102, 102
Plants Fungi, PlantNet, Flowers 25, 25, 102
Plant Diseases PlantDoc, Medicinal Leaf,

Plant Village
27, 26, 38

Microscopy Subcel. Human Protein, Pan-
Nuke, Bacteria

21, 19, 33

Remote Sensing RSD, RSICB, RESISC 43, 45, 45
Vehicles Boats, Airplanes, Cars 26, 21, 196
Manufacturing Textures ALOT, Textures

DTD, Textures
250, 47, 64

Human Actions MPII Human Pose, Stanford
40 Actions, 73 Sports

29, 40, 73

OCR Omniprint-MD-6, Omniprint-
MD-5-bis, Omniprint-MD-
mix

703, 706, 706

C.9 EVALUTAION ON LARGE DATASETS

We investigate how our method perform for combined large and small dataset as well for mixed
architectures. For this experiment we collect the pretrained weights from PyTorch hub with one
checkpoints per datasets(CIFAR-10, CIFAR-100, and ImageNet-1k). After conditionally learning
the combined weights distribution, we sampled 10 weights for each datasets and report the average
accuracy of the top-3 datasets in Table 15. As shown in Table 15, D2NWG consistently produced
high performing weights for each dataset from a single pretrained checkpoint.

C.10 GENERATING THE FULL WEIGHTS FOR RESNET18

We investigate how our method performs when used to generate the full parameters for a ResNet18
model pretrained on MNIST, CIFAR-10, and CIFAR-100. In total, we use 100 pretrained weights per
dataset and conditionally learn their distribution. The modelzoo generation follows the same setting
as Wang et al. (2024). Table 16 demonstrates the effectiveness of our method for generating the entire
weights of a network.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Table 13: Comparison between Base Model and Improved Model Responses

Instruction Base Model Response Improved Model Response

Prompt: {"role": "system", "con-
tent": "You are an AI chatbot"},
{"role": "user", "content": "Explain
what AI is and its importance"},

What is AI? Artificial Intelligence (AI) refers
to the development of computer systems that
can perform tasks that would typically require
human intelligence, such as:

1. Learning: AI systems can learn from
data, experiences, and environments
to improve their performance.

2. Reasoning: AI systems can reason
and make decisions based on the data
they have learned.

3. Problem-solving: AI systems can
solve complex problems and adapt to
new situations.

4. Perception: AI systems can perceive
and understand the world around them
through sensors, cameras, and other
devices.

AI systems use various techniques, such as ma-
chine learning, deep learning, natural language
processing, and computer vision, to achieve
these capabilities.
Types of AI:

1. Narrow or Weak AI: Designed to
perform a specific task, such as facial
recognition or language translation.

2. General or Strong AI: Designed to
perform any intellectual task that a hu-
man can, such as reasoning, problem-
solving, and learning.

3. Superintelligence: Significantly
more intelligent than the best hu-
man minds, potentially leading to
exponential growth in technological
advancements.

Importance of AI:
1. Automation: AI can automate repet-

itive and mundane tasks, freeing up
human resources for more strategic
work.

What is Artificial Intelligence (AI)? Artifi-
cial Intelligence (AI) is a branch of computer
science that focuses on creating intelligent ma-
chines that can think, learn, and behave like
humans. AI involves the development of algo-
rithms, statistical models, and computer pro-
grams that enable machines to perform tasks
that typically require human intelligence, such
as:

1. Reasoning and problem-solving: AI
systems can analyze data, identify pat-
terns, and make decisions based on
that data.

2. Learning: AI systems can learn from
experience, adapt to new situations,
and improve their performance over
time.

3. Perception: AI systems can inter-
pret and understand data from sensors,
such as images, speech, and text.

4. Natural Language Processing
(NLP): AI systems can understand
and generate human language, en-
abling them to communicate with
humans.

Importance of AI AI has become increasingly
important in various aspects of our lives, in-
cluding:

1. Automation: AI can automate repeti-
tive and mundane tasks, freeing up hu-
man time for more creative and strate-
gic work.

2. Improving decision-making: AI can
analyze large datasets, identify pat-
terns, and provide insights that inform
business decisions.

3. Enhancing customer experience: AI-
powered chatbots and virtual assis-
tants can provide 24/7 support and per-
sonalized services.

prompt; {"role": "system", "con-
tent": "You work at a coffee shop"},
{"role": "user", "content": "what
title do you give to someone who
serves the coffee to customers"},

At our coffee shop, we call the person who
serves the coffee to customers a ’Barista’. How-
ever, some of our team members are also
referred to as ’Cafe Attendants’ or ’Coffee
Servers’, depending on their specific role and
responsibilities. But generally, the title ’Barista’
is the most commonly used and well-known
term in the industry.

In a coffee shop, the person who serves the
coffee to customers is typically referred to as
a: Barista: This is the most common title, and
it refers to a skilled person who prepares and
serves coffee drinks, as well as other beverages
and food items. Coffee Server: This title is
also used to describe someone who serves cof-
fee and other beverages to customers. Coffee
Barista or Coffee Specialist: These titles are of-
ten used in specialty coffee shops or high-end
establishments to emphasize the barista’s ex-
pertise and knowledge of coffee. In our coffee
shop, I’m a barista, and I’m happy to serve you
your favorite coffee drink.

C.11 GENERATING WEIGHTS FOR MOBILENETV3

So far, our focus has been on model zoos populated by relatively simple classifier heads. In this section,
we evaluate our method using MobileNetV3, a subnetwork sampled from OFA (Cai et al., 2020),
consisting of 2.8 million parameters fine-tuned on CIFAR-10, STL-10, SVHN and MNIST for 15
epochs. We collect the last 10 checkpoints per dataset and utilize our method to learn the distribution
of pretrained weights. Furthermore, we combine the pretrained weights of MNIST and CIFAR-10,
learn their distribution, and then evaluate our method on SVHN and STL-10. Subsequently, we
reverse this process by combining the pretrained weights of SVHN and STL-10, and evaluate our
method on MNIST and CIFAR-10.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Table 14: Glue benchmark tasks descriptor used in the experiment on glue datasets.

Task Name Description
SSTB Predict the similarity score between two sen-

tences. Rate their similarity on a scale from
0 to 5, where 0 indicates no meaning overlap,
1 indicates very little overlap, and 5 indicates
complete overlap in meaning.

MRCP Determine the semantic equivalence of two
given sentences (Sentence 1 and Sentence 2).
If the sentences are semantically equivalent, re-
turn 1. If they are not, return 0.

SST2 Determine the sentiment of a given sentence.
Respond with 0 if the sentiment is negative and
1 if the sentiment is positive.

COLA Evaluate whether the given sentence is both
syntactically and semantically correct. If it is,
respond with "1"; otherwise, respond with "0".

QNLI Evaluate whether the given response properly
answers the provided question. If the response
answers the question correctly, return 0; other-
wise, return 1.

RTE Determine if a given hypothesis is true (entail-
ment), false (contradiction), or undetermined
(neutral) based on a provided premise.

Table 15: Evaluation on Large Datasets

Datasets CIFAR10
(ShuffleNet)

CIFAR100
(ShuffleNet)

ImageNet-1k
(SqueezeNet)

Methods Top1 Top5 ToP1 Top5 Top1 Top5

Pretrained 92.98 99.73 72.39 91.46 58.178 80.624

Ours(sampling) 93.14 ± 0.25 99.76± 0.22 72.60 ± 0.15 91.29 ± 0.13 58.257 ± 1.022 81.01± 1.251

As shown in Table 23 our method enhances the performance of the pretrained model. Furthermore,
we note that learning the full model weights does not compromise performance. Although learning
the distribution of the classifier head is computationally efficient, it can result in lower performance.

C.12 GENERATING WEIGHTS FOR VISION TRANSFORMERS

Our method shows the ability to learn the distribution of all parameters within a vision transformer,
including convolutional and linear layers. We present in-distribution evaluation results in plot Figure 9,
highlighting the learning of combined weight distributions conditioned on individual datasets. The
model zoo for ViTs is collected based on models proposed by Gani et al. (2022).

D APPLICATION TO LARGE LANGUAGE MODEL (LLM) OUTPUT LAYER
GENERATION

Phi-3-MINI-4K-Instruct:We conduct experiments on the Microsoft Phi-3-MINI-4K-Instruct model
to demonstrate the scalability of our method for generating output layers in large language models
(LLMs). The model’s 98.5 million-parameter output layer was split into 96 chunks, each of size
1,026,048, and used as training data for a Variational Autoencoder (VAE) with an embedding size
of 1,024. Lacking access to original training data, we used a class-conditional diffusion process,
with chunk embeddings as conditioning data. Post-training, conditioned chunks were sampled and

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Table 16: Zero-Shot Transfer Learning This Table represent results of zero-shot evaluation against
the pretrained model on Resnet18 full model architecture.

Model MNIST CIFAR-10 CIFAR-100

Pretrained 99.61 94.56 75.86
D2NWG(ours) 99.62 ± 0.07 94.57 ± 0.00 75.83 ± 0.02

Pretrained KDE30 Ours

0 5 10 15 20 25
Epoch

65

70

75

80

85

90

95

A
cc

ur
ac

y

(a) MNIST

0 5 10 15 20 25
Epoch

45

50

55

60

65

70

75

A
cc

ur
ac

y

(b) SVHN

0 5 10 15 20 25
Epoch

20

25

30

35

40

45

50

A
cc

ur
ac

y

(c) CIFAR-10

0 5 10 15 20 25
Epoch

15

20

25

30

35

40

A
cc

ur
ac

y

(d) STL-10

Figure 8: Convergence Plots on Finetuning Generated Weigths: Weights generated by the
competing methods are finetuned for 25 epochs on the training set. We utilize the modelzoos of
Schürholt et al. (2022c).

concatenated to reconstruct the original output vector. We evaluate our method using the Open-LLM
LeadearBoard-1. As shown in Table 17, our approach effectively scales to the LLMs head generation
demonstrating adaptability across diverse domains with minimal adjustments to conditioning data.

Table 17: Generating weights for the Microsoft Phi-3 language model output head.

Methods ARC Challenge (25-shots) ARC Easy (25-shots) HellaSwag (10-shots) Winogrande (5-shots)

Pretrained 87.16 ± 0.00 63.23 ± 0.01 73.65 ± 0.01 76.64 ± 0.01
D2NWG 87.36 ± 0.01 63.74 ± 0.01 73.65 ± 0.00 76.72 ± 0.01

GPT2: In this experiment, we show that our method can learn the distribution of any layer in an LLM
by modeling the full distribution of GPT-2 small (164M parameters). We use a chunk size of 1,523,712
and, unlike Llama architectures, concatenated all vectorized layer weights before chunking them
uniformly. Table 18 highlights the method’s effectiveness on the Open LM-Leaderboard benchmark.
While it did not outperform the base model overall, it significantly improved performance on certain
tasks and maintained average accuracy comparable to the pretrained model.

D.1 FAST CONVERGENCE PERFORMANCE EVALUATION

In this section we report supplementary results for experiment on tiny model zoo dataset. The
pretrained weights used here are from epochs 21 to 25 for each dataset where 70% of the resulting
modelzoo is used for training and 15% for validation and testing respectively. The number of
pretrained weights in the modelzoos are 3500 for MNIST, CIFAR-10, and STL-10, and 2864 for
SVHN. The flattened network weights’ length is 2864 for CIFAR-10 and STL-10 and, 2464 for
MNIST and SVHN. We pad all the weights with zero to 2864.

D.2 SAMPLING WEIGHTS FOR UNSEEN DATASETS

Task: We evaluate the transferability of the models on unseen datasets. We create disjoint modelzoos
by combining MNIST and CIFAR-10 into a single modelzoo and combining the SVHN and STL-10
modelzoos. When we train on the MNIST plus CIFAR-10 modelzoos, we test on the SVHN and
STL-10 modelzoos and vice-versa.

Results: As shown in Table 19, D2NWG is able to sample weights with higher accuracy on
unseen datasets as well as for in distribution. Through these experiments our method does not only
outperform the baseline it also demonstrates promising results for dataset-conditioned sampling for
unseen datasets.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Table 18: Performance evaluation on unseen open llms leaderboard v2 benchmark base on full gpt2-
164M small. These results are produced by Huggingface after submission to open LLM leaderdoards.
↑ indicate performance improvement while ↓ indicate a performance decrease

Method ifeval (0) Bbh (3) Gpqa (0) MATH-hard (4) Musr (0) MMLU-Pro (5) Avg Base Model Fine-tuned

openai-community-gpt2 17.8 2.83 1.12 0.3 13.91 1.84 6.3 na Yes

D2NWG 19.16(↑1.36) 2.85(↑0.02) 1.01(↓0.11) 0.38(↑0.08) 12.68(↓1.23) 1.68(↓0.16) 6.29(↓0.01) openai-community-gpt2 No

Table 19: No Fine-tuning Initialization on Unseen Datasets We transfer from one dataset, or
combinations of datasets, to unseen datasets at test time.

Source Target Accuracy Methods

MNIST SVHN 13.25

SKDE30
SVHN MNIST 29.30
CIFAR-10 STL-10 15.20
STL-10 CIFAR-10 15.40

Sampling from Combined Weights Distribution

MNIST+CIFAR-10 SVHN 18.80

OursMNist+CIFAR-10 STL-10 16.21
SVHN + STL-10 MNIST 36.64
SVHN + STL-10 CIFAR-10 18.00

E MISCELLANEA

In Table 24 we present the parameter count for the model used to learn the distribution of the
25% of llama-3.2-1B transformer blocks. In Table 25 we showcase the set of experiments and
the corresponding number of parameters generated by D2NWG . Although D2NWG is capable of
generating up to 1 billion parameters, all our experiments were limited to a maximum of 872 million,
achieved using the Llama 3.1-8B model with 4 transformer layers, excluding layer normalization, for
which we constructed a separate model. This parameter count makes D2NWG the only method, to
the best of our knowledge, capable of generating nearly a billion parameters, significantly enabling
large architecture weights generation including GPT-2 and most existing image classification models
in terms of parameter scale. For non-LLM models, we utilize joint distribution learning, enabling task
or dataset-conditioned sampling. For example, CIFAR-10 and ImageNet are considered two separate
datasets, while SST-2 and CoLA in the GLUE benchmark are treated as two distinct tasks, regardless
of differences in the number of classes or subtasks within each dataset or task. Table 25 highlights
that the proposed method supports text and image conditioning, as well as layer- or chunk-wise
conditional sampling. D2NWG is one of the first weight generation methods to produce over 800
million parameters in a single instance without tiling. Additionally, it is among the first to effectively
explore weight generation across various domains, learning the distribution of combined models
pretrained on diverse tasks or datasets.

Model MNIST SVHN CIFAR-10 STL-10

Pretrained 99.42 ± 0.05 94.62 ± 0.18 93.51 ± 0.16 94.01 ± 0.10
Linear_prob 96.88 ± 0.45 57.23 ± 0.28 82.85 ± 0.25 95.63 ± 1.23

D2NWG(ful) 99.55 ± 0.02 95.13 ± 0.10 94.23 ± 0.27 94.02 ± 0.10
D2NWG(rob) 97.56 ± 0.26 57.41 ± 0.17 83.64 ± 0.47 95.74 ± 0.74
Cross datasets transfer learning

OFA (Pretrained)Cai et al. (2020) 13.34 8.90 13.34 8.90
D2NWG(full) 66.82 ± 0.65 35.20 ± 0.65 36.70 ± 0.18 51.50 ± 0.37
D2NWG(prob) 42.86 ± 0.62 20.974 ± 0.78 26.56 ± 1.22 47.33 ± 0.32

Table 23: MobileNet Weight Generation.

SVHN CIFAR10 CIFAR100 CINI100 TinyImageNet
0

20

40

60

80

100

Ac
cu

ra
cy

97.7
93.7

83.6

72.3

53.4

97.8
93.7

83.6

72.8

53.5

Pretrained
D2NWG

Figure 9: Experiment with ViT

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Table 20: Performance evaluation at initialization without fine-tuning. For the baseline we use
weights of SVHN for MNIST and vice versa similarly for CIFAR-10 and STL-10

Datasets MNIST SVHN CIFAR10 STL10

Random 10.23±0.56 12.21±3.76 9.98±1.47 9.56±1.02
Pretrained models 82.82± 1.38 67.57± 0.59 44.68± 3.15 35.99± 1.15

Skde30Schürholt et al. (2022a) 69.73± 5.12 50.25± 6.12 26.06± 3.01 17.20± 3.43

seen (D2NWG) 83.92±1.92 61.81 ± 3.13 43.08±0.55 31.45±0.35
seen(D2NWG)(with Pred) 84.85±0.83 66.03 ± 1.36 43.89±0.15 34.29±0.13

Skde30Schürholt et al. (2022a)(cross) 29.30± 3.46 13.25± 1.12 15.40± 0.51 15.20±1.24
not seen(D2NWG) 36.64±4.69 18.80±0.58 18.00±0.22 16.21±0.52

not seen(D2NWG)(with Pred) 30.15±5.09 15.76±1.43 17.10±1.12 15.37±0.52

Table 21: In-distribution performance comparison of different image dataset encoding schemes on
model zoo dataset

Datasets MNIST SVHN CIFAR10 STL10

Pretrained models 82.82± 1.38 67.57± 0.59 44.68± 3.15 35.99± 1.15
Skde30Schürholt et al. (2022a) 69.73± 5.12 50.25± 6.12 26.06± 3.01 17.20± 3.43

MLP_Encoder 67.04±17.73 35.65 ± 13.03 17.41±3.02 20.36±7.38
Set_transf(pret) 78.21±1.76 60.90 ± 1.08 28.68±1.84 34.75±00.38
seen (D2NWG) 83.92±1.92 61.81 ± 3.13 43.08±0.55 31.45±0.35

seen(D2NWG)(with Pred) 84.85±0.83 66.03 ± 1.36 43.89±0.15 34.29±0.13

30 20 10 0 10 20

30

20

10

0

10

20

30
TSNE plot of the sampled and pretrained weights

Pretrained
Ours

(a) TSNE

3 2 1 0 1 2 3 4
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

D
en

si
ty

Density comparison

Pretrained
Ours

(b) Density

Prerained Ours
Methods

0.700

0.725

0.750

0.775

0.800

0.825

0.850

0.875

Ac
cu

ra
cy

Accuracy of Pretrained vs Ours

(c) Accuracy

Figure 10: Analysis of relationship between the pretrained weights and the sampled weights for
MNIST dataset

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

Table 22: Performance of the datasets conditional sampling on 10 unseen real-world datasets. We
report the averaged accuracy on ten unseen test datasets over 3 different runs fine-tuned for 50 epochs.
pret(imnet): pretrained on imagenet1k

Datasets No-fine-tuning 50 epochs Fine-Tuning # of classesRandom init. pret(imnet) D2NWG(ours) Random init. pret(imnet) D2NWG(ours)

Gemstones 1.13 ± 0.52 0.62 ± 0.00 1.86 ± 0.25 70.59± 0.91 67.49± 0.43 76.06 ± 0.88 87
Dog Breeds 0.55 ± 0.22 0.69 ± 0.00 1.87 ± 0.39 80.78± 0.28 78.13± 0.49 80.88 ± 0.88 133
Dessert 21.03 ± 2.44 12.50 ± 0.00 99.40 ±0.02 95.83±0.34 94.64± 0.00 99.40 ± 0.02 5
Colorectal Histology 11.77 ±2.88 11.00 ± 0.00 18.12 ± 0.25 90.34 ± 0.33 89.75± 0.19 93.65 ± 0.10 8
Drawing 10.86 ± 1.22 11.00 ± 0.00 11.87 ±0.93 90.20 ± 0.16 90.00± 0.16 89.00 ± 0.16 10
Alien vs Predator 51.48 ±2.09 28.88 ± 0.00 78.15 ±0.52 98.52± 0.52 98.89± 1.42 97.77 ± 0.00 2
COVID-19 20.13 ±18.66 46.53 ± 0.00 47.22 ±0.00 93.86±0.16 93.40± 0.49 94.56 ± 0.71 3
honey-bee-pollen 49.54 ±1.30 50.00 ± 0.00 56.94 ±4.53 93.05 ± 0.00 88.89± 0.00 93.55 ± 4.53 2
Speed Limit Signs 30.55 ±2.27 25.00 ± 0.00 31.48 ±10.23 83.33± 0.00 86.11± 0.00 90.74 ± 1.31 4
Japanese Characters 0.03±0.00 0.08 ± 0.00 0.50±0.22 53.17 ± 0.15 62.33 ± 0.16 62.16 ±0.47 0.45 1566

Table 24: Model components and their configuration modes for llma3.2.1B

ID Name Type Params Mode
0 Model DiffusionWrapper 102 M Train
1 Model Ema LitEma 0 Train
2 First stage Model VAENoDiscModel 553 M Eval
3 Cond Stage Model IdentityCondStage 0 Eval

Table 25: Summary of Experiments for Figures and Tables presented. Min #cls and Max #cls
correspond to the minimum and maximum number of classes respectively.

Object # Datasets Min #cls Max #cls #Params Trainset Size Conditioning

Table 1 10 1 5 2565/8005 50k Dataset
Table 2 5 10 100 128100 20k Dataset
Table 3 30 19 706 3 M 30 Dataset
Table 4 4 10 10 10853 4 Dataset
Table 5 6 2 3 0.6M 6 Text Description
Table 6 NA NA NA 872M NA Chunk Indices
Table 7 NA NA NA 872M NA Chunk Indices
Table 9 2 10 100 0.7M 2 Dataset
Table 11 2 10 100 2048 2 Dataset
Table 15 3 10 1000 1.4M 3 Dataset
Table 16 3 10 100 11M 2 Dataset
Table 16 4 10 10 2.8M 4 Dataset
Table 17 NA NA NA 96M NA Chunk Indices
Table 18 NA NA NA 164M NA Chunk Indices
Figure 3 10 2 1566 136468 140 Dataset
Figure 2 2 10 100 0.47M 2 Dataset
Figure 6a 2 10 10 5310 2 Dataset
Figure 7 2 10 10 5310 2 Dataset
Figure 9 5 10 200 2.8M 5 Dataset

31

	Introduction
	Related work
	Approach
	Preliminary
	Weight Encoding
	Dataset Encoding
	Dataset-Conditioned Parameters Generation
	Exploring the Optimal Parameters Space of LLMs

	Experiments
	Weight Generation without Finetuning On Unseen Task
	Weights Generation for Few-Shot Learning
	Zero-Shot Classifier Head Adaptation
	In Distribution Full Models Weights Generation: Model Retrieval
	Transfering to unseen Architecture

	Weifhts Generation With Fine-Tuning
	Weight Generation with Fine-tuning on Seen Tasks
	Fine-Tuning On Unseen Tasks:MLP classifier
	Full Models Fine-Tuning on Unseen Tasks

	Task Conditioned LoRA weights Generation
	Enhancing LLM Performance with Weight Sampling
	Evaluation on Open LM Benchmark

	Conclusion
	Limitation and Ethical Staement
	Approach
	Relationship Between Datasets and Trained Weights
	Weights Vectorization
	Layer Selection Strategy
	Learning the Distribution of LLM Weights
	Modelzoo and Pretrained Datasets
	Details of the Proposed Model

	Training Details
	Predictor Training

	Ablation Study
	Can the proposed method handle multiple architectures?
	Transferability
	Effect of Modelzoo Size Generalization
	Sampling without Latent Representation
	CLIP-based Dataset Encoding
	Unconditional Sampling
	Coupling with an Accuracy Predictor
	Sampled Weights Analysis
	Evalutaion on Large Datasets
	Generating the Full Weights for ResNet18
	Generating Weights for MobileNetV3
	Generating Weights for Vision Transformers

	Application to Large Language Model (LLM) Output Layer Generation
	Fast Convergence Performance Evaluation
	Sampling Weights for Unseen Datasets

	Miscellanea

