
Supplementary material

A Closed-form updates of the assignment variables

In this section, we provide more details on the derivation of the closed-form update of variable U at
each iteration. Let F be the defined as the cost function in (10) and let @Fun(U ,W ,V ) denote the
Moreau subdifferential of F at (U ,W ,V ) with respect to variable un. We define  as
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It is well known that the proximity operator of  (see [34, Chap. 24] for a definition) is the softmax
operator [44, Ex. 2.23].

At each step of the algorithm, un is updated according to:
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where we used the definition of the proximity operator [34, Eq. 24.2] to obtain (12). We thus retrieve
the update in Algorithm 1.

B Proof of Proposition 1

Our proof relies on the convergence result established in [45]. Given a convex set X , we denote ◆X
the indicator function of X , i.e. ◆X(x) = 0 if x 2 X , ◆X(x) = +1 otherwise. We rewrite problem
10 as the minimization of the following cost:
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where we have introduced an additional parameter ✏ > 0, the role of which will become clearer in the
rest of the proof. The optimum of the cost function F (U ,W , ·) for given U 2 C and W 2 (Rd)K

is reached when

V = 1K + ln(AU + ✏1K) 2 V✏ = [1 + ln ✏, 1 + ln(1 + ✏)]K . (14)

Thus, minimizing F is actually equivalent to minimizing
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The following algorithm for minimizing F̃ turns out to be a simple modified version of PADDLE
(see Algorithm 1):
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Algorithm 2: Alternating algorithm for minimizing F̃

Initialize W (0) as the prototypes computed on the support, and V (0) = 0.
for ` = 1, 2, . . . , do

U (`) = softmax

✓
�1

2

�
kwk � znk2

�
1nN
1kK

+ �A⇤V (`�1)

◆
,

v
(`)
k = 1 + ln((AU (`))k + ✏), 8k 2 {1, . . . ,K},

w(`)
k =

NX

n=1

u(`�1)
n,k zn

. NX

n=1

u(`�1)
n,k , 8k 2 {1, . . . ,K}.

According to [45, Thm 4.1], if the following assumptions are satisfied:

1. The set
n
(U ,W ,V ) : F̃ (U ,W ,V )  F̃ (U (0)

,W (0)
,V (0))

o
is compact;

2. F̃ is continuous on C ⇥ (Rd)K ⇥ V✏;
3. At each iteration `, the partial functions F̃ (·,W (`)

,V (`)), F̃ (U (`+1)
, ·,V (`)) and

F̃ (U (`+1)
,W (`+1)

, ·) admit a unique minimizer,

then the sequence generated by the algorithm is bounded and every of its cluster points is a coordi-
natewise minimizer of F̃ . We now show that the above assumptions hold.

1. Let us show that F̃ is coercive. We derive a lower bound on F̃ using the Cauchy-Schwarz
inequality:
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The lower bound obtained in (17) is separable in (U ,W ,V ). The term with respect to
variable W is coercive when, for every k 2 {1, . . . ,K}, there exists n 2 {|Q|+ 1, . . . , N}
such that yn,k > 0. In other words, it is coercive if the support set includes at least one
example of each class, which is a reasonable assumption. The terms with respect to variables
U and V are clearly coercive too. Hence, the cost function F̃ is coercive. Finally, since F̃

is lower semi-continuous, condition 1. is satisfied.
2. The continuity of F̃ on C ⇥ Rk⇥d ⇥ V✏ is clear.
3. Let ` 2 N

⇤. We already proved in Appendix A that the partial function with respect to
variable U has a unique minimizer. It follows from the same arguments as above that the
partial function with respect to W is strictly convex, continuous, and coercive as soon as the
support set contains at least one example of each class. Hence, it admits a unique minimizer.
Regarding the partial function with respect to variable V , we first remark that given the
definition of the softmax operator, AU (`+1) is necessarily strictly positive component-wise.
Up to some additive term independent of V , the partial function reads
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The latter function is strictly convex, lower-semicontinuous, and coercive, which concludes
the proof.
Note that, since

vk 7! �

⇣
e
vk�1 � vk([AU (`+1)]k + ✏)

⌘
(19)

is decreasing on ] � 1, 1 + ln([AU (`+1)]k + ✏)] and increasing on [1 + ln([AU (`+1)]k +
✏),+1[, the resulting cluster points are also coordinatewise minimizers of F .
In summary, PADDLE can be understood as the limit case of Algorithm 2 when ✏ goes to
zero. This simplification is justified by the fact that ✏ can be chosen arbitrarily small and that
we did not observe any change in practical behaviour of the proposed algorithm by setting
✏ = 0.

C Label cost relaxation

The plot in Figure 5 illustrates in the case K = 2 how our model-complexity term in (2) could be
viewed as a continuous relaxation of the discrete label cost function defined in (3).

Figure 5: Label cost as a function of û1 and our proposed relaxation û1 7! �û1 ln(û1) � (1 �
û1) ln(1 � û1).

D Plots obtained using WRN backbone

In Figure 6, we provide additional comparisons of PADDLE with state-of-the-art methods using a
WRN28-10 network. We report the accuracy obtained for each method as a function of Keff . These
plots point to the same conclusions drawn in Section 5.

E About the hyper-parameter in our method

As discussed in Section 3, PADDLE does not require parameter tuning. In Figure 7, we investigate
the optimal value of parameter � in (10) as a function of the size of the query set, for 3 different
values of Keff . We observe that the optimal value of � increases linearly with |Q|. As it could be
expected, the higher the level of class imbalance (Keff = 2), the higher the optimal value of � (w.r.t.
its theoretical value). On the contrary, when the query is better balanced (Keff = 10), the optimal
value of � is slightly under its theoretical value. However, Figure 8 shows that the gap of performance
when using the theoretical value of � instead of the optimal one, is only of the order of a few percents.
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Figure 6: Evolution of the accuracy as a function of Keff . Each row represents a dataset, and each
column a fixed number of shots. All methods use the same WRN28-10 network. Results are averaged
across 10,000 tasks.
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Figure 7: Evolution of the optimal parameter � (i.e. the one with which the best accuracy is reached)
as a function of |Q|. Each column represents a fixed number of effective classes. The black line
represents the identity function. The results were computed on the tiered dataset with a Resnet18 as a
backbone.
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Figure 8: Evolution of the accuracy as a function of �. Each column represents a fixed number of
effective classes. The results were computed on the tiered dataset with a Resnet18 as a backbone,
and the size query set was fixed to |Q| = 75. The blue dotted line represents the optimal value of �
while the black dashed line represents the theoritical value of �, i.e. � = |Q|.
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