Supplementary material

A Closed-form updates of the assignment variables

In this section, we provide more details on the derivation of the closed-form update of variable U at
each iteration. Let F' be the defined as the cost function in and let 0F,, (U, W, V') denote the
Moreau subdifferential of F' at (U, W, V') with respect to variable u,,. We define ¢ as
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It is well known that the proximity operator of ¥ (see |34/ Chap. 24] for a definition) is the softmax
operator [44} Ex. 2.23].

At each step of the algorithm, u,, is updated according to:
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where we used the definition of the proximity operator |34! Eq. 24.2] to obtain . We thus retrieve
the update in Algorithm [T}

B Proof of Proposition][1]

Our proof relies on the convergence result established in [45]. Given a convex set X, we denote ¢ x
the indicator function of X, i.e. tx(z) = 0if z € X, tx(x) = +oo otherwise. We rewrite problem
[10]as the minimization of the following cost:
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where we have introduced an additional parameter € > 0, the role of which will become clearer in the
rest of the proof. The optimum of the cost function F(U, W, -) for given U € C and W € (R%)X
is reached when
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Thus, minimizing F’ is actually equivalent to minimizing
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The following algorithm for minimizing F turns out to be a simple modified version of PADDLE
(see Algorithm:



Algorithm 2: Alternating algorithm for minimizing F

Initialize W (%) as the prototypes computed on the support, and V' (©) = 0.
for(=1,2,...,do
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U® = softmax (—f (Hwk — zn||2)1<n<N + )\A*V(“l)),
2 1<k<K

v =1+ In((AUO),, + e) VEe{l,...,K},
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According to [45) Thm 4.1], if the following assumptions are satisfied:

1. The set {(U,W7V)  F(U,W,V) < F(U(0>7W(0),V(°>)} is compact;

2. Fis continuous on C' x (RY)X x V;

3. At each iteration ¢, the partial functions F(-, W© V) F@U®) . v©) and

FU®) WD ) admit a unique minimizer,

then the sequence generated by the algorithm is bounded and every of its cluster points is a coordi-

natewise minimizer of F. We now show that the above assumptions hold.

1. Let us show that F is coercive. We derive a lower bound on F using the Cauchy-Schwarz

inequality:
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Since the functions U — ||AU|| and U anl Zk:l (un,i) are continuous on the
compact set C, there exist constants ;4 and 6 such that
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The lower bound obtained in is separable in (U, W, V). The term with respect to
variable W is coercive when, forevery k& € {1,..., K}, thereexistsn € {|Q| +1,...,N}
such that y,, ;, > 0. In other words, it is coercive if the support set includes at least one
example of each class, which is a reasonable assumption. The terms with respect to variables

U and V are clearly coercive too. Hence, the cost function F' is coercive. Finally, since F'
is lower semi-continuous, condition 1. is satisfied.

2. The continuity of FonC x RF¥4 x V. is clear.

. Let £ € N*. We already proved in Appendixthat the partial function with respect to

variable U has a unique minimizer. It follows from the same arguments as above that the
partial function with respect to W is strictly convex, continuous, and coercive as soon as the
support set contains at least one example of each class. Hence, it admits a unique minimizer.
Regarding the partial function with respect to variable V', we first remark that given the
definition of the softmax operator, AU “*1) is necessarily strictly positive component-wise.
Up to some additive term independent of V', the partial function reads

Vs A Z ( — o ([AU D]+ €) + b eanaoy) (05 — 1)) (18)



The latter function is strictly convex, lower-semicontinuous, and coercive, which concludes
the proof.

Note that, since
Uk A (emrl — up([AUD], + E)) (19)

is decreasing on | — 0o, 1 4 In([AU “*+ D], + ¢)] and increasing on [1 + In([AU “+V)], +
€), +00[, the resulting cluster points are also coordinatewise minimizers of F'.

In summary, PADDLE can be understood as the limit case of Algorithmwhen € goes to
zero. This simplification is justified by the fact that € can be chosen arbitrarily small and that
we did not observe any change in practical behaviour of the proposed algorithm by setting
e=0.

C Label cost relaxation

The plot in Figureillustrates in the case K = 2 how our model-complexity term in (2) could be
viewed as a continuous relaxation of the discrete label cost function defined in @
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Figure 5: Label cost as a function of 41 and our proposed relaxation 4 — —tq In(d;) — (1 —
G1) In(1 — 4q).

D Plots obtained using WRN backbone

In Figure@ we provide additional comparisons of PADDLE with state-of-the-art methods using a
WRN28-10 network. We report the accuracy obtained for each method as a function of K¢ . These
plots point to the same conclusions drawn in Section

E About the hyper-parameter in our method

As discussed in Section PADDLE does not require parameter tuning. In Figure we investigate
the optimal value of parameter \ in as a function of the size of the query set, for 3 different
values of K.gr . We observe that the optimal value of A increases linearly with |Q|. As it could be
expected, the higher the level of class imbalance (K. = 2), the higher the optimal value of A (w.r.t.
its theoretical value). On the contrary, when the query is better balanced (K. = 10), the optimal
value of ) is slightly under its theoretical value. However, Figureshows that the gap of performance
when using the theoretical value of )\ instead of the optimal one, is only of the order of a few percents.
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Figure 6: Evolution of the accuracy as a function of K¢ . Each row represents a dataset, and each
column a fixed number of shots. All methods use the same WRN28-10 network. Results are averaged
across 10,000 tasks.
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Figure 7: Evolution of the optimal parameter A (i.e. the one with which the best accuracy is reached)
as a function of |Q|. Each column represents a fixed number of effective classes. The black line
represents the identity function. The results were computed on the tiered dataset with a Resnet18 as a
backbone.
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Figure 8: Evolution of the accuracy as a function of A. Each column represents a fixed number of
effective classes. The results were computed on the tiered dataset with a Resnet18 as a backbone,
and the size query set was fixed to |Q| = 75. The blue dotted line represents the optimal value of A
while the black dashed line represents the theoritical value of A, i.e. A = |Q).



