A STUDY OF UNSUPERVISED EVALUATION METRICS
FOR PRACTICAL AND AUTOMATIC DOMAIN ADAPTA-
TION

- SUPPLEMENTARY MATERIAL -

Anonymous authors
Paper under double-blind review

A IMPLEMENTATIONS OF UNSUPERVISED DOMAIN ADAPTATION METRICS

Metric w. Source Accuracy | Hard to Attack | Input-level
A-distanceBen-David et al. (2006) v v
HAH-divergence or MCD Ben-David et al. (2010); Saito et al. (2018) v v
MDD Zhang et al. (2019) v v
Deep Embedded Validation (DEV) You et al. (2019) v
DEVN Musgrave et al. (2022) v
Entropy Grandvalet & Bengio (2004); Vu et al. (2019)
Soft Neighborhood Density (SND) Saito et al. (2021)
Mutual Information Shi & Sha (2012)
BNM Musgrave et al. (2022)
ClassAMI Musgrave et al. (2022)
ISM (ours) v v
ACM (ours) v v v

Table 1: The metrics of UDA studied in the paper. We implement previous metrics according
to their papers and modify them to be positively correlated with target accuracy.

A.1 DISCREPANCY-BASED METRIC:

Ben-David’s theory Ben-David et al. (2006; 2010) shows that the error rate of a classifier on
the target domain can be bounded by the error rate on the source domain and the domain
divergence:

GT(h) < Es(h) + dy (Ds,DT) + A (1)

where A = Ap + Ag, and Ap and Ag are the errors of h* = argming, ¢z (er(h) + es(h)) with
respect to Dy and Dg respectively. Later works Ganin et al. (2016) exploits this bound to
optimize the domain divergence and source error to minimize the target error. Inspired by
this formula, we think that the target error can be approximated by domain divergence and
source error. In other words, we can utilize domain divergence and source accuracy as the
evaluation metric to measure target accuracy.

We transform these discrepancy-based UDA methods Ben-David et al. (2006; 2010); Saito
et al. (2018); Zhang et al. (2019) into UDA metrics. These metrics are composited by source
accuracy and domain divergence. We can formalize the UDA metrics as:

M(Ds, Dy, M) = As(Ds, M) — dy(Ds, Dy, M) (2)

where M is the model to be evaluated, Ag is source accuracy and da is the domain
divergence. The model is composed of a feature generator and a classifier: M = f(g(-)).
Different metrics for UDA have different da(terms, we describe each das terms in the
following.

1) A-distance Ben-David et al. (2006):

da=2sup |Ep,I[h=1]+Ep,I[h=0]]
heH

A domain discriminator h is trained and the accuracy of the domain discriminator is used as
the metric. We use one linear layer to model the domain discriminator the same as Jiang
et al. (2020). Notably, when evaluating metrics, we only have the validation set of the source
and the target domain, but we need to train the domain discriminator on a training set and
evaluate it on the other set. So we use 3-fold validation: we split the validation set into three
parts, and each time we train the domain discriminator on two parts and evaluate it on the
left part. If not specified, for the following metric that needs training additional networks,
we use this 3-fold validation to get the metric score.

2) HAH-divergence or MCD Ben-David et al. (2010); Saito et al. (2018):
d?‘-LA’H = Ssup ‘EDSI [h/ 7é h] —]EDtI [h/ 7£ h”
b EH

Two additional classifiers are trained on the top of the feature. Apart from supervised
training on source features, they also need to agree on the source domain and disagree on
the target domain. These two classifiers are modeled by one linear layer.

3) Maximum Mean Discrepancy (MDD) Zhang et al. (2019):
df(De,Dy) = sup (disp) (£, 1) — dispf) (/1)
freF

where f is the classifier of the evaluated model and disp(p) is the margin error. An additional
classifier f’ is trained to agree f on the source domain and disagree f on the target domain.
/' is modeled by a linear layer and trained by the algorithm: Eq. (30) in the original
paper Zhang et al. (2019).

A.2 IMPORTANCE WEIGHTED VALIDATION METRIC:

4) Deep Embedded Validation (DEV) You et al. (2019):

DEV is based on the Importance-Weighted cross-validation (IWCV) of the source domain.
It needs to train a two-layer domain discriminator h first, and compute IWCV:

00x7) = wn (x7) 1 (57 # y7)

S\ __ Ns 1—h (Zf)
o) = TG
Then DEV adds IWCV and the variance of the risk estimation as follows:
DEV = mean(?) + nmean(W) — n (3)
6&1 27 Wh,
) G (tm) o
Var [wp,]

We use the negative DEV to be positively related to accuracy.
5) DEV with normalization (DEVN) Musgrave et al. (2022):

In Musgrave et al. (2022), they propose to normalize the weights by either max normalization
or standardization to avoid large 7. We implement DEVN with standardization:

W-—Ww
Wy = — +1 (5)
ow

Then Wy, is used in DEV .
A.3 ENTROPY-BASED METRIC:
6) Entropy Morerio et al. (2017); Vu et al. (2019):

Ent = —Ep, [H(p)] = Ep,[>_ p; logpy]
k

We compute the negative entropy of the predicted probability p of M on target samples.
7) Soft Neighborhood Density (SND) Saito et al. (2021):

In their work, they define the soft neighborhoods as the similarity distribution between
target samples and estimate the density by computing the entropy of the distribution. The
similarity is defined as S;; = (pf,p}). The similarity distribution is computed as follows:

ex i/ T
Py = Zj’ fxi’ig{j’)/T) ©
Then SND is defined as:
SND:fiiinlogP-- (7)
Ne i=1 j=1 N Y

8) Mutual Information Shi & Sha (2012):

The Mutual Information of the model prediction:

MI = H(Ep,[p]) — Ep,[H(p)]

A.4 OTHER METRIC:

9) Batch nuclear-norm maximization (BNM) Cui et al. (2020); Musgrave et al.
(2022):

BNM is a UDA algorithm that aims to generate diverse and confident predictions. It
approaches this via singular value decomposition:

BNM = ||P|. (8)
where P is the N, x K prediction matrix (Nt is the target validation set size, and K is the
number of classes), and || P||. is the nuclear norm (the sum of the singular values) of P.
10) ClassAMI Musgrave et al. (2022):

They propose computing the Adjusted Mutual Information (AMI) between target cluster
labels and the predicted labels:

ClassAMI = AMI(P, kmeans(F').labels) (9)
P; = argmax|p;] (10)
k

where P is the predicted labels for the target data, p, is the i-th prediction vector, and F' is
the set of target features.

A.5 OUR METRIC:

11) Inception Score Metric for UDA (ISM):

Its formula is presented in the main paper. The MLP classifier h has two layers with a
hidden size equal to the feature size (bottleneck dimension). The classifier is trained by the
LBFGS optimizer for 200 steps on the source validation set.

12) Augmentation Consistency Metric (ACM):

Its formula is presented in the main paper. For the data-augmented sample, we use a series
of random data augmentation to get it, including Random Resize and Crop, Horizontal Flip,
Random Color Jitter, and Random Gaussian Blur.

Office31 A W D

Training 1,971 556 498
Validation 846 239 498
OfficeHome Ar Cl Pr Rw

Training 1,698 3,055 3,107 3,049
Validation 729 1,310 1,332 1,308
DomainNet c p r S

Training 33,525 50,416 120,906 48,212
Validation = 14,604 21,850 52,041 20,916

VisDA Syn Real

Training 106,677 55,388

Validation 45,720 72,372

Table 2: The statistic of the training set and the validation set of the datasets used in the
paper. Following the 70%/30% scheme, we split Office31, OfficeHome, and the “Synthetic”
domain of VisDA into no overlapping training and validation sets.

B DETAILS OF UDA TRAINING

B.1 DATASETS SPLITTING

Generally speaking, the validation set contains different samples with the training set to show
generalization. However, Office31 and OfficeHome do not split the training and validation
set, so previous works report the accuracy of the target training set. To solve this historical
issue, we follow a 70%/30% split scheme to split the training and the validation set for
Office31 and OfficeHome (except for “D” domain of Office31, due to limited samples) and
report the target accuracy on the validation set. We also split the training and validation set
for the source domain of VisDA2017, as metrics will utilize the source validation set. The
training sets and validation sets are listed in Tab 2

B.2 TRAINING IMPLEMENT DETAILS

Following Transfer-Learning-Library Jiang et al. (2020), we train all five methods (Source
only, DANN, CDAN, MDD, MCC) through SGD with 0.9 momentum, and the learning
rate of ResNet backbone is scaled by 0.1. We schedule the learning rate with the commonly
used strategy: the learning rate is adjusted by 7, = (1+77qu)¢“ where ¢ is the training progress
linearly changing from 0 to 1, ng = 0.01, a = 10, 8 = 0.75. The batch size is set to 32 for
all training. We train each model with one V100 GPU. For the architecture of the model,
M = f(g(-)), the feature generator g contain a ResNet He et al. (2016) backbone and a
bottleneck layer, and the classifier f is a linear layer. We use ResNet50 as the backbone for
Office31 and OfficeHome, and ResNet101 for VisDA and DomainNet. We train every model
for 3000 steps on Office31, OfficeHome, and VisDA, and 6000 steps on DomainNet in total.

C EXPERIMENTAL RESULTS

C.1 MORE CONSISTENCY RESULTS

In Section 4.2 of the main paper, we show the results of comparing our ISM and ACM
to previous metrics on three datasets. In the Appendix, we add three more previous
metrics Musgrave et al. (2022): DEVN, BNM, and ClassAMI. We show the consistency of
each metric with target accuracy on four UDA datasets with five UDA training methods.
Tab. 1, Tab. 5, Tab. 4 and Tab. 6 show the results on VisDA2017, DomainNet, OfficeHome
and Office31 respectively.

We find the performance of the metric can vary largely for different training methods. DEVN,
BNM, and ClassAMI demonstrate excellent performance in certain cases, yet they may
also exhibit significant errors under other conditions. Our ISM and ACM show decent
performance for all training methods on all datasets. We find the results of all metrics

Datasets OfficeHome VisDA2017 DomainNet
Train Method MI AC MI AC MI AC
Metric corr dev | corr dev corr dev | corr | dev corr | dev | corr | dev
MI 0.67 | 797 | 0.55 | 5.76 | -0.21 | 15.3 | 0.87 | 1.99 | -0.75 | 189 | 0.95 | 1.62
ISM 0.89 1.73 | 0.97 | 1.43 0.87 1.77 | 0.89 1.57 0.88 0.0 | 0.97 | 0.62
ACM 0.92 | 1.15 | 0.62 | 1.37 | 0.99 0.0 | 0.89 | 0.59 | 0.91 | 0.0 0.96 1.55

Table 3: A test of whether metrics are attackable on different datasets. These three metrics
are transformed into training loss, and then trained models are evaluated by themselves.

Training Method | Source only DANN CDAN MDD MCC ALL

Metric corr | dev | corr | dev | corr | dev | corr | dev | corr | dev | corr dev
MDD -0.65 | 7.39 | 0.58 | 6.29 | -0.11 | 4.73 | 0.66 | 0.85 | 0.34 | 4.38 | 0.36 | 5.93
DEVN -0.6 | 7.39 | -0.16 | 6.67 | -0.15 | 8.99 | 0.55 | 4.97 | 0.47 | 4.99 | 0.37 | 32.51
BNM 0.11 | 6.35 | 0.60 | 3.65 | -0.03 | 3.72 | 0.85 | 0.00 | 0.02 | 3.41 | 0.48 | 3.41
ClassAMI -0.40 | 7.39 | 0.74 | 6.29 | -0.12 | 9.81 | 0.94 | 1.29 | 0.15 | 7.19 | 0.61 | 7.76
ISM 0.84 | 0.31 | 0.75 3.92 0.42 1.23 | 0.75 | 0.40 | 0.88 | 0.66 | 0.59 1.66

ACM 0.80 | 2.38 | 0.79 | 1.18 | 0.61 | 0.98 | 0.85 | 0.0 | 0.93 | 1.66 | 0.76 | 1.66

Figure 1: Consistency between metrics of UDA and target accuracy on VisDA2017.

Training Method | Source only DANN CDAN MDD MCC ALL

Metric corr | dev | corr | dev | corr | dev | corr dev corr dev corr dev
MDD 0.53 | 4.44 | 0.72 | 1.67 | 0.83 | 1.88 | 0.83 | 1.13 | 0.05 | 5.99 0.3 6.2
DEVN 0.18 | 3.48 | -0.06 | 6.38 | 0.08 | 7.10 | 0.89 | 12.03 | 0.27 | 845 | 0.52 | 10.14
BNM -0.59 | 6.63 | 0.48 | 453 | 0.88 | 1.30 | 0.93 | 1.98 | 0.37 | 17.19 | 0.54 | 17.28
ClassAMI 0.79 | 3.57 | 0.77 | 293 | 0.86 | 1.25 | 0.93 1.08 0.71 1.16 | 0.81 1.24
ISM 0.72 | 1.47 | 0.6 1.68 [0.91 | 1.15 | 0.97 | 1.45 | 0.70 | 1.96 | 0.88 | 1.96
ACM 0.75 | 1.37 | 0.77 | 1.16 | 0.90 | 1.13 | 0.95 | 0.93 | 0.94 | 1.36 | 0.93 | 1.73

Table 4: The “corr” and “dev” results are averaged over the 12 transfer tasks of OfficeHome.

Training Method | Source only DANN | CDAN MDD MCC | ALL

Metric corr | dev | corr | dev corr | dev | corr dev corr dev corr | dev
MDD 0.26 | 212 | 0.54 | 3.46 0.72 | 1.11 0.7 | 12.75 | -0.55 | 10.39 0.54 | 4.99
DEVN 0.81 | 1.47 | 0.67 | 540 0.80 | 7.99 | 0.87 | 0.38 | 0.50 | 9.95 0.0 2.45
BNM 0.34 | 3.83 | 0.58 | 6.65 0.65 | 4.28 | 0.34 | 14.28 | 0.74 | 1.37 0.59 | 2.85
ClassAMI 0.57 | 1.27 | 0.52 | 3.46 0.60 | 5.62 | 0.61 | 0.04 | 0.81 1.37 0.65 | 3.55
ISM 0.85 | 1.33 | 0.87 [0.7 096 [041 | 0.98 [0.28 | 0.92 0.6 0.91 | 1.13
ACM 0.94 | 141 0.8 0.27 0.98 | 0.29 | 093 | 0.04 | 0.84 | 0.15 0.87 | 0.29

Table 5: The “corr” and “dev” results are averaged over 12 transfer tasks of DomainNet.

Training Method DANN CDAN ALL

Metric corr | dev | corr | dev | corr dev
A-distance 0.37 | 1.69 | 0.34 1.3 0.35 | 3.11
MCD 0.46 | 1.48 | 0.32 | 1.71 | 048 | 2.20
MDD 0.53 | 2.46 | 0.38 | 1.34 | 0.63 | 2.22

DEV NaN - NaN - NaN -

DEVN NaN - NaN - NaN -
Entropy 0.4 2.47 | 0.57 | 2.59 | 0.55 | 2.01
SND 0.43 | 6.70 | 0.44 | 3.09 | 0.57 | 6.14
MI 0.38 | 2.26 | 0.58 | 1.51 | 0.53 | 2.74
BNM 0.29 | 2.99 | 0.54 | 1.75 | 0.32 | 3.59
ClassAMI 0.56 | 1.83 | 0.61 | 2.06 | 0.67 | 3.46
ISM 0.73 | 1.52 | 0.63 | 1.04 | 0.71 | 1.41
ACM 0.71 | 1.46 | 0.59 | 1.21 | 0.75 | 1.84

Table 6: Consistency between metrics of UDA and target accuracy on Office31. The results
are averaged across 6 transfer tasks of Office31.

decrease on Office31, which may be due to small validation sets. DEV and DEVN will
collapse on Office31 because source accuracy can be 1.

Method ¢c—p ¢c—r ¢c—s p—Cc p—Tr p—s r—c r—p r—s s—c s—p s—r Avg
DANN (default) 35.9 54.3 43.8 38.0 54.9 35.5 49.8 50.1 38.3 54.4 43.8 53.2 46.0
DANN (searched) 38.0 54.5 44.7 40.7 56.1 37.9 50.7 50.7 38.3 55.0 44.7 53.7 471

Gains (+A) +2.1 +0.2 +0.9 +2.7 +1.2 +24 +09 +06 +0.0 +0.6 +09 +0.5 +41.1
CDAN (default) 40.0 55.8 44.6 44.2 57.3 39.8 55.2 53.3 41.5 56.9 46.3 55.5 49.2
CDAN (searched) 40.6 56.5 45.1 45.5 58.4 40.3 55.4 53.1 42.3 57.1 46.6 56.4 49.8

Gains (+A) +06 +0.7 +05 413 +1.1 +0.5 +0.2 -0.2 +0.8 +0.2 +03 +0.9 +40.6

MDD (default) 42.3 58.4 46.6 48.5 60.1 43.6 56.8 56.3 46.3 57.2 44.8 57.2 51.5
MDD (searched) 42.5 58.6 47.0 48.5 60.1 43.6 57.3 55.9 46.6 57.5 45.0 57.2 51.7
Gains (+4) 0.2 0.2 0.4 0.0 0.0 0.0 F0.5 -04 0.3 0.3 0.2 0.0 +40.2
MCC (default) 35.1 49.2 40.6 41.0 56.0 36.2 48.3 49.0 36.3 51.9 38.9 49.9 444
MCC (searched) 41.2 53.6 44.5 51.1 59.9 40.7 58.5 54.8 38.2 61.7 47.6 55.0 50.6
Gains (+A) 6.1 +4.4 3.9 +£10.1 3.9 4.5 £10.2 5.8 1.9 9.8 8.7 51 +6.2

Table 7: The hyper-parameters found by our metric v.s. the default hyper-parameters in
original papers on DomainNet.

Method Ar - ClAr - PrAr 5 RwCl - Ar C1 5 Pr Cl - RwPr - Ar Pr - C1 Pr - Rw Rw -+ Ar Rw - CIRw — Pr Avg
DANN (default) 49.0 61.3 72.9 53.5 66.6 68.6 55.0 50.4 75.2 67.1 56.3 79.3 62.9
DANN (searched) 51.2 62.3 74.2 56.7 66.0 70.8 58.7 52.7 76.0 67.5 57.8 80.8 64.5

Gains (+A) 2.2 1.0 1.3 3.2 0.6 2.2 3.7 2.3 0.8 0.4 1.5 1.5 1.6
CDAN (default) 50.4 69.4 735 56.7 69.4 69.1 573 50.5 75.5 70.6 55.8 80.6 64.9
CDAN (searched) 51.1 69.2 74.3 58.4 70.3 69.7 61.6 50.6 77.5 714 56.7 81.1 66.0
Gains (+A) 0.7 0.3 0.8 1.7 0.7 0.6 1.3 0.1 2.0 0.8 0.9 0.5 +1.1
MDD (default) 51.1 70.6 721 57.3 70.6 76.6 59.5 53.9 749 70.5 58.6 81.7 66.4
MDD (searched) 52.9 72.2 75.2 58.8 71.9 76.6 58.7 52.4 76.8 69.8 59.2 81.8 67.2
Gains (+A) 1.8 1.6 3.1 1.5 1.3 0.0 -0.8 -1.5 1.9 -0.7 0.6 0.1 +0.8
MCC (default) 55.5 T 80.2 62.8 75.2 75.8 61.7 50.6 78.3 69.7 56.3 83.4 68.9
MCC (searched) 56.1 78.5 79.0 63.6 75.2 76.6 64.1 52.3 78.3 71.6 56.1 83.5 69.5
Gains (+A) +0.6 +0.8 -1.2 +0.8 +0.0 +0.8 +2.4 +1.7 +0.0 +1.9 -0.2 +0.1 +0.6

Table 8: The hyper-parameters found by our metric v.s. the default hyper-parameters in
original papers on OfficecHome. The target accuracy of 12 transfer tasks is reported.

Method A—-W A—-D W—-A W=D D—-A D—-W Avg
DANN (default) 90.4 81.7 69.6 97.8 72.3 93.7 84.3
DANN (searched) 90.6 83.9 69.6 98.6 72.3 95.0 85.1

Gains (+A) +0.2 +2.2 +0.0 +0.8 +0.0 +1.3 —+0.8
CDAN (default) 91.2 93.0 68.2 100.0 72.1 97.1 86.9
CDAN (searched) 91.6 91.5 69.6 100.0 74.1 97.5 87.4

Gains (+A) +0.4 -1.5 +1.4 +0.0 +2.0 +04 +0.5

Table 9: The hyper-parameters found by our metric v.s. the default hyper-parameters in
original papers on Office31.

C.2 ROBUSTNESS RESULTS

For the “Robustness” property of metrics, we transform MI and ACM into two training
methods. We employ these metrics to select the trade-off A from {0.1, 0.3, 1.0, 3.0, 10.0} for
these methods. We show the implementation of these methods here. The loss of the “Mutual
Information” method is as follows:

Lt = Bae yo)[—logpys] + A by log by, — Eae[Y by log py)), (11)
k k

where p,, is the average prediction for class k within a batch.

The loss of the “Augment Consist” method is as follows:

Lac = E(gs yoy[—log py] — AEg Z Ik = arginax(pt)] log p"/
k

where p'’ is the prediction of the model on the sample =¥, which is the augmented version
of «'. We use the same random data augmentation as the “ACM” metric.

We show the study of the Robustness property on OfficeHome, VisDA2017, and DomainNet
in Tab 3 for “MI”, “ISM” and “ACM” metrics. When the models are trained with the “MI”
method, the “MI” metric is inconsistent with the target accuracy. Meanwhile, the “ISM”
metric is robust to this attack. “ACM?” is also robust against the attack against it.

m
m
m

ACM (ours) o7es ACM (ours) | ACM (ours) ACM (ours)

ceuracy accuracy accuracy accuracy

(a) DANN on OfficeHome(b) CDAN on OfficeHome (¢) DANN on Office31 (d) CDAN on Office31

Figure 2: The visualization of the relation between the ACM score and target accuracy.
Fach sub-figure contains models trained by DANN or CDAN methods on OfficeHome or
Office31 datasets.

m
m

ACM (ours) e ACM (ours) 04+ ACM (ours) 0s0 ACM (ours)

ccuracy accuracy uracy uracy

(a) DANN on DomainNet(b) CDAN on DomainNet (¢) DANN on VisDA (d) CDAN on VisDA

Figure 3: The visualization of the relation between the ACM score and target accuracy.
Each sub-figure contains models trained by DANN or CDAN methods on DomainNet or
VisDA2017 datasets.

C.3 HYPERPARAMETER SEARCHING RESULTS

We show the results of hyper-parameter searching on DomainNet, OfficeHome, and Office31
in Tab 7, Tab 8, and Tab 9. The hyper-parameters found by our ACM metric outperform
the default hyper-parameters for all four training methods.

D VISUALIZATIONS

We visualize the consistency between the metric score of our ACM and target accuracy and
get some sense of Pearson’s correlation between them. In Fig. 2 and Fig. 3, we plot the
metric score according to the target accuracy of the models trained by the DANN (CDAN)
method on various datasets.

As we can see from the figures, it is clear that the ACM score is positively related to target
accuracy. Therefore, when the target accuracy increases, the ACM score tends to increase.
This correlation is especially obvious in OfficeHome and DomainNet datasets.

E LIMITATIONS AND FUTURE WORKS

Although we have studied various UDA metrics and proposed new metrics for UDA evaluation,
the best derivation of the best model (“dev”) remains 1%-2%. It is desirable to propose a
new metric that better meets the three criteria of robust metrics. One possible direction is
combining multiple metrics to evaluate the model. Meanwhile, the time cost of evaluating the
metric should also be considered, and metrics in the paper require, at most, to train a simple
network. In the paper, we use a simple TPE searcher and relatively small search spaces.
More advanced searching strategies and neural architecture searching Zoph & Le (2016) for
UDA can be explored. The paper mainly focuses on the single-source UDA for close-set
classification. The unsupervised metric for more transfer learning scenarios can be studied,
e.g., Partial UDA, Source-Free UDA, UDA for object detection, semantic segmentation, and
depth estimation.

REFERENCES

Shai Ben-David, John Blitzer, Koby Crammer, and Fernando C Pereira. Analysis of representations
for domain adaptation. In NeurIPS, 2006.

Shai Ben-David, John Blitzer, Koby Crammer, Alex Kulesza, Fernando C Pereira, and Jennifer Wort-
man Vaughan. A theory of learning from different domains. Machine Learning, 79:151-175, 2010.

Shuhao Cui, Shuhui Wang, Junbao Zhuo, Liang Li, Qingming Huang, and Qi Tian. Towards
discriminability and diversity: Batch nuclear-norm maximization under label insufficient situations.
In CVPR, 2020.

Yaroslav Ganin, E. Ustinova, Hana Ajakan, Pascal Germain, H. Larochelle, Frangois Laviolette,
Mario Marchand, and Victor S. Lempitsky. Domain-adversarial training of neural networks. In
Journal of Machine Learning Research, 2016.

Yves Grandvalet and Yoshua Bengio. Semi-supervised learning by entropy minimization. In NeurIPS,
2004.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In CVPR, 2016.

Junguang Jiang, Baixu Chen, Bo Fu, and Mingsheng Long. Transfer-learning-library. https:
//github.com/thuml/Transfer-Learning-Library, 2020.

Pietro Morerio, Jacopo Cavazza, and Vittorio Murino. Minimal-entropy correlation alignment for
unsupervised deep domain adaptation. ArXiv, abs/1711.10288, 2017.

Kevin Musgrave, Serge J. Belongie, and Ser Nam Lim. Three new validators and a large-scale
benchmark ranking for unsupervised domain adaptation. ArXiv, 2022.

Kuniaki Saito, Kohei Watanabe, Y. Ushiku, and Tatsuya Harada. Maximum classifier discrepancy
for unsupervised domain adaptation. In CVPR, 2018.

Kuniaki Saito, Donghyun Kim, Piotr Teterwak, Stan Sclaroff, Trevor Darrell, and Kate Saenko.
Tune it the right way: Unsupervised validation of domain adaptation via soft neighborhood
density. In ICCV, 2021.

Yuan Shi and Fei Sha. Information-theoretical learning of discriminative clusters for unsupervised
domain adaptation. In ICML, 2012.

Tuan-Hung Vu, Himalaya Jain, Max Bucher, Matthieu Cord, and Patrick Pérez. Advent: Adversarial
entropy minimization for domain adaptation in semantic segmentation. In CVPR, 2019.

Kaichao You, Ximei Wang, Mingsheng Long, and Michael I. Jordan. Towards accurate model
selection in deep unsupervised domain adaptation. In ICML, 2019.

Yuchen Zhang, Tianle Liu, Mingsheng Long, and Michael I. Jordan. Bridging theory and algorithm
for domain adaptation. In ICML, 2019.

Barret Zoph and Quoc V. Le. Neural architecture search with reinforcement learning. In ICLR,
2016.

https://github.com/thuml/Transfer-Learning-Library
https://github.com/thuml/Transfer-Learning-Library

