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490

491
492

A Discussion and outlook493

Intuitions on the separation rate Let us provide some explanations that should help to gain494

intuition on the conditions on κ̄in-in and κ̄in-out obtained in our main theorems. More precisely, we will495

explain in this paragraph where the right hand side of (6) comes from. Consider the simpler problem496

in which we wish to test the hypothesis H0 : µ = 0 against H1 : µ 6= 0 based on the observation Y497

drawn from the Gaussian distributionNd(µ, σ2Id). This problem has a tight link with the considered498

problem of matching, since one can think of Y as the difference Xi −X#
j . We are interested in499

checking whether the pair (i, j) is such that j = π∗(i), that is whether H0 is true.500

Using the standard bounds on the tails of the chi-squared distribution (Lemma 1), one can check that501

under H0, the random vector Y lies with probability ≥ 1− α in the ring R0 = B(0, σ
√
d+ r2) \502

B(0, σ
√
d− r1) where503

r1 = 2
√
d log(1/α) and r2 = 2

√
d log(1/α) + 2 log(1/α).

Similarly, considering the approximation ‖Y ‖22 ≈ ‖µ‖22 + σ2‖ξ‖22 where ξ is a standard Gaussian504

vector, we can check that under H1, the random vector Y lies with probability ≥ 1− α in the ring505

R1 = B(0, σ
√
‖µ/σ‖22 + d+ r2) \B(0, σ

√
‖µ/σ‖22 + d− r1).506

If the two rings R0 and R1 are disjoint, it is possible to decide between H0 and H1 by checking507

whether Y belongs to R0 or not. This condition of disjointness is equivalent to508

‖µ/σ‖22 + d− r1 > d+ r2.

This leads to509

‖µ/σ‖2 >
√
r1 + r2 =

(
4
√
d log(1/α) + 2 log(1/α)

)1/2
�
(
d log(1/α)

)1/4 ∨ log1/2(1/α).

The right hand side of the last display is of the same order as the right hand side of the (6), for small510

values of nm. The fact that for large values of nm there is a logarithmic deterioration, due to the fact511

that we have to test a large number of hypotheses H0,i,j : θπ∗(i) = θ#j , (i, j) ∈ [n] × [m], is quite512

common in probability and statistics.513

Other noise distributions The results of this paper can be extended to sub-Gaussian distributions514

without any change in the rates. The extension to sub-exponential distributions seems also possible515

to do using the methodology employed in this paper, but will most likely lead to higher-order516

polylogarithmic terms.517

Finally, considering heavy tailed distributions such as the multivariate Student distribution might518

have stronger impact on the rate. Studying this impact is out of scope of the present work.519
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Outlier detection The results presented in previous sections provide conditions under which the520

objective mapping is identified with high probability. This automatically implies that the outliers are521

correctly identified. However, the task of outlier detection is arguably simpler than that of estimation522

of π∗. Therefore, one may wonder whether this task can be accomplished under weaker assumptions523

than those required in the theorems stated in this paper. Somewhat surprisingly, it turns out that this524

is not the case unless we require the outliers to be very far away from the inliers.525

Indeed, on the one hand, if the normalized distance between the outliers and the inliers is not larger526

than O(d1/2), it follows from the counter-example constructed in the proof of Theorem 3 that it is527

impossible to identify the outliers using a distance based M -estimator. Extending the arguments528

presented in Appendix C below, one can check that this impossibility holds for every estimator of the529

set of outliers.530

On the other hand, suitably adapting the arguments of the proof of Theorem 4, one can prove that531

if the inlier-outlier distance is larger than a threshold of order
√
d exp(cn) for some c > 0, the LSL532

recovers the true set of outliers.533

Estimation of π∗ instead of detection An interesting yet challenging problem is that of assessing534

the minimax risk of estimation of π∗ when the error is measured, for instance, by means of the535

Hamming loss `Hamming(π̂;π∗) = #{i ∈ [n] : π̂(i) 6= π∗(i)}. It is relevant to study this problem in a536

setting where consistent detection of π∗ (i.e., Hamming loss equal to zero) is impossible, that is when537

the separation conditions are violated but some weaker assumptions are satisfied. On a related note,538

one may look for conditions on the normalized separation distances which ensure the existence of an539

estimator π̂ such that P(`Hamming(π̂;π∗) ≤ τn) ≥ 1− α. This means that with probability ≥ 1− α540

the fraction of mismatched vectors of the estimated map π̂ is less than τ , for τ ∈ (0, 1). Note that541

these problems are not studied even in the simpler outlier-free framework.542

B Postponed proofs543

In this appendix we have collected the proofs of the theorems presented in the main text of the paper,544

as well as some technical definitions used in the proofs. First, denote545

σ2
i,j = σ2

i + σ#2
j and κi,j =

‖θi − θ#j ‖
σi,j

(11)

for any pair of indices (i, j) with i ∈ [n] and j ∈ [m]. We will also use the notation546

κ̄ = min(κ̄in-in, κ̄in-out). (12)

Second, we define the random variables ζ1 and ζ2 as follows547

ζ1 = max
i 6=j

∣∣(θi − θ#j )>(σiξi − σ#j ξ#j )
∣∣

‖θi − θ#j ‖σi,j
, ζ2 = d−1/2 max

i,j

∣∣∣∣
∥∥σiξi − σ#j ξ#j ∥∥2

σ2
i,j

− d
∣∣∣∣.

It can be easily noticed that ζ1 = maxi 6=j |ζi,j |, where ζi,j are standard Gaussian random variables.548

As for ζ2, it can be seen that ζ2 = d−1/2 maxi,j |ηi,j |, where ηi,j are centered χ2 random variables549

with d degrees of freedom, i.e. ηi,j
D
= χ2

d − d.550

In addition, one can infer from (1) that for every i ∈ [n] and every j ∈ [m], we have551

‖Xi −X#
j ‖2 ≤ ‖θi − θ#j ‖2 + σ2

i,j(d+
√
d ζ2) + 2ζ1‖θi − θ#j ‖σi,j

= σ2
i,j

(
κ2
i,j + d+

√
d ζ2 + 2ζ1κi,j

)
, (13)

‖Xi −X#
j ‖2 ≥ ‖θi − θ#j ‖2 + σ2

i,j(d−
√
d ζ2)− 2ζ1‖θi − θ#j ‖σi,j

= σ2
i,j

(
κ2
i,j + d−

√
d ζ2 − 2ζ1κi,j

)
. (14)

The concentration of the centered and normalized χ2 random variable, such as ζ2, is described in the552

following lemma.553
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Lemma 1 (Laurent and Massart (2000), Eq. (4.3) and (4.4)) If Y is drawn from the chi-squared554

distribution χ2(D), where D ∈ N∗, then, for every x > 0,555  P
(
Y −D ≤ −2

√
Dx
)
≤ e−x,

P
(
Y −D ≥ 2

√
Dx+ 2x

)
≤ e−x.

As a consequence, for every y > 0, P
(
D−1/2|Y − D| ≥ y

)
≤ 2 exp

{
− 1

8y(y ∧
√
D)
}

. Or,556

equivalently, for any α ∈ (0, 1), we have557

P

(
D−1/2|Y −D| ≤ 2

√
log(2/α) +

2 log(2/α)√
D

)
≥ 1− α.

B.1 Proof of Theorem 1558

We prove the upper bound for κ̄ in the presence of outliers. Without loss of generality we can assume559

that π∗(i) = i, ∀i ∈ [n]. We wish to bound the probability of the event Ω = {π̂ 6= π∗}, where560

π̂ = π̄LSNS. It is evident that561

Ω ⊂
⋃
π 6=π∗

Ωπ, (15)

where the union is taken over all possible injective mappings π : [n]→ [m] and562

Ωπ =

{ n∑
i=1

‖Xi −X#
i ‖2

2σ2
i

≥
n∑
i=1

‖Xi −X#
π(i)‖

2

σ2
i + (σ#π(i))

2

}
.

One easily checks that the following inclusion holds:563

Ωπ ⊂
n⋃
i=1

⋃
j∈[m]\{i}

{
‖Xi −X#

i ‖2

2σ2
i

≥
‖Xi −X#

j ‖2

σ2
i + (σ#j )2

}
. (16)

Since π∗(i) = i for every i ∈ [n], κi,i = 0 (see the definition in (11)) and, in view of (13),564

‖Xi −X#
i ‖2 ≤ 2σ2

i (d+
√
d ζ2). (17)

Similarly, for every j ∈ [m] and j 6= i, in view of (14),565

‖Xi −X#
j ‖2 ≥ σ2

i,j(κ
2
i,j + d−

√
d ζ2 − 2κi,jζ1).

Recall that κ̄ defined in (12), is the smallest normalized distance κi,j . Therefore, on the event566

Ω1 = {κ̄ ≥ ζ1}, the previous display implies that567

‖Xi −X#
j ‖2

σ2
i,j

≥ κ̄2 − 2κ̄ζ1 + d−
√
d ζ2. (18)

Hence, combining obtained bounds (17) and (18) we get that568 {
‖Xi −X#

i ‖2

2σ2
i

≥
‖Xi −X#

j ‖2

σ2
i + (σ#j )2

}
∩ Ω1 ⊂

{
d+
√
d ζ2 ≥ κ̄2 − 2κ̄ζ1 + d−

√
d ζ2

}
=
{

2
√
d ζ2 + 2κ̄ ζ1 ≥ κ̄2

}
. (19)

Note that the event on the right hand side of the last display is independent of the pair (i, j). This569

implies that570

Ω ∩ Ω1

by (15)
⊂

( ⋃
π 6=π∗

Ωπ

)
∩ Ω1

by (16)
⊂

( n⋃
i=1

⋃
j∈[m]\{i}

{
‖Xi −X#

i ‖2

2σ2
i

≥
‖Xi −X#

j ‖2

σ2
i + (σ#j )2

})
∩ Ω1

⊂
n⋃
i=1

⋃
j∈[m]\{i}

({
‖Xi −X#

i ‖2

2σ2
i

≥
‖Xi −X#

j ‖2

σ2
i + (σ#j )2

}
∩ Ω1

)
by (19)
⊂

{
2
√
d ζ2 + 2κ̄ ζ1 ≥ κ̄2

}
. (20)
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Using (20) we can show that571

P(Ω) ≤ P(Ω{
1) + P

(
Ω ∩ Ω1

)
≤ P

(
ζ1 ≥ κ̄

)
+ P(2

√
dζ2 + 2κ̄ζ1 ≥ κ̄2)

≤ P
(
ζ1 ≥ κ̄

)
+ P

(
ζ1 ≥ 1

4 κ̄
)

+ P
(

2
√
dζ2 + 2κ̄ζ1 ≥ κ̄2; ζ1 <

1
4 κ̄
)

≤ 2P
(
ζ1 ≥ 1

4 κ̄
)

+ P

(
ζ2 ≥

κ̄2

4
√
d

)
. (21)

For suitably chosen standard Gaussian random variables ζi,j it holds that ζ1 = maxi 6=j |ζi,j |. There-572

fore, using the tail bound for the standard Gaussian distribution and the union bound, we get573

P
(
ζ1 ≥ 1

4 κ̄
)
≤
∑
i 6=j

P
(
|ζi,j | ≥ 1

4 κ̄
)
≤ 2nme−κ̄

2/32.

To complete the proof, it remains to upper bound the second term in the right hand side of (21), i.e.,574

to evaluate the tail of the random variable ζ2. To this end, we use the concentration result stated in575

Lemma 1 with y = κ̄2

4
√
d

, combined with the union bound and simple algebra. This yields576

P
(
ζ2 ≥

κ̄2

4
√
d

)
≤ 2nm exp

{
− 1

8
· κ̄

2

4
√
d

( κ̄2

4
√
d
∧
√
d
)}

= 2nm exp
{
− (κ̄/16)2

d
(2κ̄2 ∧ 8d)

}
, (22)

where the nm factor in front of the exponent comes from the union bound for all nm pairs (i, j) from577

the definition of ζ2, while the exponent is a direct application of Lemma 1. Finally, using inequalities578

(21)-(22), we get that whenever579

κ̄ ≥ 4
(√

2 log(8nm/α) ∨
(
d log(4nm/α)

)1/4)
, (23)

the probability of incorrect matching is at most α. Thus, we have formally showed that if (23) holds580

then P(π̂ 6= π∗) = P(Ω) ≤ α, as desired.581

B.2 Proof of Theorem 2582

We prove the upper bound for κ̄ = min(κ̄in-in, κ̄in-out) in the presence of outliers and in the case of583

unknown noise variance. We wish to bound the probability of the event Ω = {π̂ 6= π∗}, where584

π̂ = π̂LSL and π∗(i) = i for all i ∈ [n]. It is evident that585

Ω ∈
⋃
π 6=π∗

Ωπ, (24)

where586

Ωπ =
{ n∑
i=1

log ‖Xi −X#
i ‖2 ≥

n∑
i=1

log ‖Xi −X#
π(i)‖

2
}

⊂
n⋃
i=1

⋃
j∈[m]\{i}

{
log ‖Xi −X#

i ‖2 ≥ log ‖Xi −X#
j ‖2
}

(25)

Recall that κ̄ = min(κ̄in-in, κ̄in-out). On the event Ω1 = {κ̄ ≥ ζ1}, from (14), we get587

‖Xi −X#
j ‖2

σ2
i,j

≥ κ̄2 − 2ζ1κ̄+ d−
√
d ζ2. (26)
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Note that the expression on the right hand side of the last display is independent of the pair (i, j).588

This implies that589

Ω ∩ Ω1⊂
( ⋃
π 6=π∗

Ωπ

)
∩ Ω1 [by (24)]

⊂
( n⋃
i=1

⋃
j∈[m]\{i}

{
log ‖Xi −X#

i ‖2 ≥ log ‖Xi −X#
j ‖2
})
∩ Ω1 [by (25)]

⊂
n⋃
i=1

⋃
j∈[m]\{i}

({
‖Xi −X#

i ‖2 ≥ ‖Xi −X#
j ‖2
}
∩ Ω1

)
⊂
{

2σ2
i (d+

√
dζ2) ≥ σ2

i,j(κ̄
2 − 2ζ1κ̄+ d−

√
d ζ2)

}
[by (13),(26)]

⊂
{

2(d+
√
dζ2) ≥ κ̄2 − 2ζ1κ̄+ d−

√
d ζ2

}
, [since σi ≤ σi,j ]

⊂
{

3
√
d ζ2 + 2ζ1κ̄ ≥ κ̄2 − d

}
. (27)

We can bound the probability of incorrect matching P(Ω) using the relationship obtained in (27)590

P(Ω) ≤ P(Ω{
1) + P(Ω ∩ Ω1)

≤ P(ζ1 ≥ κ̄) + P
(
3
√
d ζ2 + 2ζ1κ̄ ≥ κ̄2 − d

)
.

From the last inequality, we infer that591

P(Ω) ≤ P(ζ1 ≥ κ̄) + P
(
ζ1 ≥ 1

4 κ̄
)

+ P
(

3
√
d ζ2 + 2ζ1κ̄ ≥ κ̄2 − d ; ζ1 <

1
4 κ̄
)

≤ 2P
(
ζ1 ≥ 1

4 κ̄
)

+ P
(

3
√
d ζ2 ≥ 1

2 κ̄
2 − d

)
≤ 2P

(
ζ1 ≥ 1

4 κ̄
)

+ P
(
ζ2 ≥

κ̄2 − 2d

6
√
d

)
. (28)

As mentioned in the beginning of the section, for suitably chosen standard Gaussian random variables592

ζi,j it holds that ζ1 = maxi 6=j |ζi,j |. Therefore, using the tail bound for the standard Gaussian593

distribution and the union bound, we get594

P
(
ζ1 ≥ 1

4 κ̄
)
≤
∑
i 6=j

P
(
|ζi,j | ≥ 1

4 κ̄
)
≤ 2nme−κ̄

2/32 ≤ α/4. (29)

To complete the proof, it remains to upper bound the second term in the right hand side of (28), i.e.,595

to evaluate the tail of the random variable ζ2. Using Lemma 1 with y = (κ̄2 − 2d)/(6
√
d)—which is596

positive under the conditions of the theorem—combined with the union bound, we arrive at597

P(ζ2 ≥ y) ≤ 2nm exp
{
− 1

8
y(y ∧

√
d)
}

= 2nm

(
exp

{
− 1

8
y2
}
∨ exp

{
− 1

8
y
√
d
})

.

One easily checks that the last expression is smaller than α/2 if and only if598

y2 ≥ 8 log(4nm/α) and y
√
d ≥ 8 log(4nm/α)

which is equivalent to599

y ≥
(
2
√

2 log(4nm/α)
)
∨
(
(8/
√
d) log(4nm/α)

)
.

Replacing y = (κ̄2 − 2d)/(6
√
d), the last inequality becomes600

κ̄2 ≥ 2d+
(
12
√

2d log(4nm/α)
)
∨
(
48 log(4nm/α)

)
.

Combining the inequality from the last display with the bound derived from (29) we get that all these601

bounds are satisfied whenever602

κ̄ ≥
√

2d+ 4

{(
2d log

4nm

α

)1/4

∨
(

3 log
8nm

α

)1/2}
.

Therefore, under this condition on κ̄, the probability of the incorrect matching is at most α, i.e.603

P(π̂ 6= π∗) = P(Ω) ≤ α.604
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B.3 Proof of Theorem 3605

First we fix m = n+ 1 and π∗(i) = i for all i ∈ [n], where π∗ is the correct matching. Let σ#1 = 1606

and σ#i+1 = αi for all i ∈ [n], where α � 1. Then let’s take π(i) = i+ 1 for all i ∈ [n]. Let L(π)607

be the vector of distances ‖Xi −X#
π(i)‖ for a matching scheme π608

L(π) =


‖X1 −X#

π(1)‖
‖X2 −X#

π(2)‖
· · ·

‖Xn −X#
π(n)‖

 .
The next lemma shows that the event L(π̄) < L(π∗) (coordinate-wise) occurs with probability at609

least 1/4.610

Lemma 2 Let n ≥ 4, d ≥ 422 log(4n) and θ#1 = (1; 0; . . . ; 0)>. Assume that π∗(i) = i, σ#i =611

2−(i−1) and θ#i+1 = θ#i + 2−(i+1)
√
d θ#1 for all i ∈ [n + 1]. Then L(π∗) > L(π̄) with probability612

greater than 1/4, where π̄ is the injection defined by π̄(i) = i + 1. Furthermore, for these values613

(θ#,σ#, π∗), we have κin-in = κin-out =
√
d/20.614

Proof of Lemma 2 Let us denote615

κ̄i ,
‖θ#π(i) − θi‖√
σ2
i + σ#2

π̄(i)

=
√
d/20, for all i ∈ [n].

Recall that σ2
i,j = σ2

i + σ#2
j and write616

Li(π) = ‖Xi −X#
π(i)‖

2 = ‖θi − θ#π(i) + ζiσi,π(i)‖2,

where ζi ∼ N (0, Id). Notice that Li(π∗) = 2σ2
i ‖ζi‖2 for all i ∈ [n]. Similarly, the expression from617

the last display for π̄ reads as618

Li(π̄) = ‖ζiσi,π̄(i)‖2
(

1 +
κ̄2
i

‖ζi‖2
)

+ 2σi,π̄(i)ζ
>
i (θi − θ#π̄(i)).

Plugging in the values of σ# with α = 1/2 and π̄(i) = i+ 1 we arrive at619

Li(π
∗) = 23−2i‖ζi‖2, Li(π̄) =

5

22i
‖ζ̄i‖2

(
1 +

κ̄2
i

‖ζ̄i‖2
)

+

√
5

2i−1
ζ̄>i (θi − θ#i+1),

where in the second expression we write ζ̄i instead of ζi to indicate that these random variables are620

different, though both are standard normal d-dimensional vectors. We first replace the second term of621

Li(π̄) with its upper bound that holds with probability of at least 1/4. It is evident that the random622

variable Z , 2σi,π̄(i)ζ
>
i (θi − θ#π̄(i)) is Gaussian with standard deviation σ , 2σi,π̄(i)‖θi − θ#π̄(i)‖ =623

2σ2
i,π̄(i)κ̄i, therefore624

P(Z ≥ σ
√

2 log 4) ≤ 1

4
.

Hence, on the event Ω = {Z ≤ 2σ2
i,π̄(i)κ̄i

√
2 log 4} the inequality Li(π∗) > Li(π̄) holds whenever625

8

22i
‖ζi‖2 >

5

22i
‖ζ̄i‖2

(
1 +

κ̄2
i

‖ζ̄i‖2
)

+
5

22i
κ̄i
√

8 log 4,

8

5
‖ζi‖2 − ‖ζ̄i‖2 > κ̄2

i + 2κ̄i
√

2 log 4. (30)

Notice that the left hand side of (30) is a weighted difference of two centered and normalized χ2
626

random variables with d degrees of freedom. The concentration inequality for such difference is a627

direct consequence of Lemma 1. Namely, for X,Y ∼ χ2
d the concentration bound for Z = αX−βY628

with arbitrary α, β ∈ R reads as629

P(Z ≥ (α− β)d− 2
√
dx(α+ β)− 2βx) ≥ 1− 2e−x.
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It is easy to verify that given n ≥ 4, d ≥ 422 log(4n) and κ̄i ≤
√
d/20, then630

κ̄2
i + 2κ̄i

√
2 log 4 ≤ 3

5
d− 26

5

√
d log(4n)− 2 log(4n),

where the right hand side is the quantile of Z with x = log(4n). Combining the inequality from the631

last display with (30) we get that on the event Ω we have632

P(Li(π
∗) > Li(π̄)) ≥ 1− 1

2n
.

Recall that P(Ω) ≥ 3/4, then using the union bound for events Ω and {Li(π∗) > Li(π̄)} all i ∈ [n]633

we arrive at P(L(π∗) > L(π̄)) > 1/4. This completes the proof of Lemma 2.634

Therefore, using the result of Lemma 2 and applying any non-decreasing function ρ(·) to each of the635

coordinates of L(π̄) and L(π∗) yields636

n∑
i=1

ρi(‖Xi −X#
π̄(i)‖) <

n∑
i=1

ρi(‖Xi −X#
π∗(i)‖)

with probability of at least 1/4. This, in turn, implies that an optimizer will not choose π∗ on this637

event. Hence, P(π̄ 6= π∗) > 1/4, concluding the proof of the theorem.638

B.4 Proof of Theorem 4639

To ease notation, we write π̂ instead of π̂LSL
n,m, and, without loss of generality, we assume that π∗(i) = i640

for i ∈ [n]. We wish to prove that on an event of probability ≥ 1− α, for every injective mapping641

π : [n]→ [m], we have ψ(π∗) ≤ ψ(π), where642

ψ(π) =

n∑
i=1

log ‖Xi −X#
π(i)‖

2.

Since the logarithm is an increasing function, this is equivalent to showing that643

n∏
i=1

‖Xi −X#
π∗(i)‖

2 <

n∏
i=1

‖Xi −X#
π(i)‖

2, for every π 6= π∗,

which, in turn, is the same as644

n∏
i=1

‖Xi −X#
π∗(i)‖

2

‖Xi −X#
π(i)‖2

< 1, for every π 6= π∗.

In view of (13) and (14), we have645

n∏
i=1

‖Xi −X#
π∗(i)‖

2

‖Xi −X#
π(i)‖2

≤
∏
i∈[n]

π(i)6=π∗(i)

2σ2
i (d+

√
d ζ2)

σ2
i,π(i)

(
κ2
i,π(i) + d−

√
d ζ2 − 2ζ1κi,π(i)

)
+

≤
∏
i∈[n]

π(i)6=π∗(i)

4σ2
i (d+

√
d ζ2)

σ2
i,π(i)

(
κ2
i,π(i) + 2d− 2

√
d ζ2
)

+

, if ζ1 ≤ (1/4)κ̄. (31)

Let us define the sets I1 =
{
i ∈ [n] : π(i) ∈ Im(π∗)\{π∗(i)}

}
and I2 = {i ∈ [n] : π(i) 6∈ Im(π∗)}.646

Clearly, using the inequality σ2
i,j ≥ 2σiσ

#
j , we get647

∏
i∈[n]

π(i)6=π∗(i)

2σ2
i

σ2
i,π(i)

≤
∏
i∈[n]

π(i)6=π∗(i)

σ2
i

σiσ
#
π(i)

=

∏
i∈I1∪I2 σi∏

i∈I1 σ
#
π(i)

∏
i∈I2 σ

#
π(i)

. (32)
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For every i ∈ I1, there is j ∈ [n] such that π(i) = π∗(j); this j is given by j = (π∗)−1(i). For648

such a pair (i, j), in view of (2), we have σ#π(i) = σ#π∗(j) = σj . Note that by construction of I1,649

(π∗)−1(I1) ⊂ I1 ∪ I2. This implies that650 ∏
i∈I1

σ#π(i) =
∏

j∈(π∗)−1(I1)

σj =

∏
j∈I1∪I2 σj∏

j∈(I1∪I2)\(π∗)−1(I1) σj
. (33)

Note also that the cardinality of the set J1 = (π∗)−1(I1) is equal to the cardinality of I1, which651

implies that |(I1 ∪ I2) \ J1| = |I2|. Combining (32), (33), and the last equality of cardinalities, we652

get653 ∏
i∈[n]

π(i)6=π∗(i)

2σ2
i

σ2
i,π(i)

≤
∏
j∈(I1∪I2)\J1 σj∏

i∈I2 σ
#
π(i)

≤ r|I2|σ . (34)

Using the same notation I1 and I2, we can check that654

κi,π(i) ≥
{
κ̄in-in, i ∈ I1,
κ̄in-out, i ∈ I2.

Injecting this inequality into (31), and using (34), we get655

n∏
i=1

‖Xi −X#
π∗(i)‖

2

‖Xi −X#
π(i)‖2

≤ rI2σ {2(d+
√
d ζ2)}|I1|+|I2|

(κ̄2
in-in + 2d− 2

√
d ζ2)I1+ (κ̄2

in-out + 2d− 2
√
d ζ2)I2+

.

Recall that this inequality is true on the event ζ1 ≤ κ̄/4. It follows from last display that as soon as656 
ζ1 ≤ κ̄/4
4
√
d ζ2 < κ̄2

in-in

2d(rσ − 1) + 4rσ
√
d ζ2 ≤ κ̄2

in-out

(35)

we have657

n∏
i=1

‖Xi −X#
π∗(i)‖

2

‖Xi −X#
π(i)‖2

< 1

for every π. It remains to show that, under the conditions of Theorem 4, the event in (35) has a658

probability at least 1 − α. This will be done by using tail bounds for Gaussian and khi-squared659

distributions, combined with the union bound.660

On the one hand, using the well-known tail bound for the standard Gaussian distribution and the661

union bound, we get662

P

(
ζ1 ≥

√
2 log

(4nm

α

))
≤
∑
i 6=j

P

(
|ζi,j | ≥

√
2 log

(4nm

α

))
≤ α/2.

On the other hand, Lemma 1 and the union bound entail663

P

(
ζ2 ≥ 2

√
log(4nm/α) +

2 log(4nm/α)√
d

)
≤ α/2.

Therefore, if664 
κ̄ ≥ 4

√
2 log(4nm/α)

κ̄2
in-in ≥ 8

√
d log(4nm/α) + 8log(4nm/α)

κ̄2
in-out ≥ 2d(rσ − 1) + 8rσ

√
d log(4nm/α) + 8rσlog(4nm/α)

then, on an event of probability ≥ 1− α, all the inequalities in (35) hold true. This completes the665

proof of the theorem.666
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C General lower bound667

In this section we formulate and prove a lower bound over all injective mappings π : [n]→ [m]. The668

theorem states that the rate presented and proved in Theorem 1 is indeed optimal. We show that even669

if κ̄in-in and κ̄in-out are of order (d log(nm))1/4 ∨ (log(nm))1/2 there are indeed scenarios in which670

any estimator π̂ fails to detect π∗ with probability at least 1/3.671

Theorem 5 (General lower bound) Denote κ = min{κ̄in-in, κ̄in-out}. Assume that m > n ≥ 5 and672

d ≥ 16 log(nm). Then, there exists a triplet (σ#,θ#, π∗) such that 6κ ≥ (d log(nm))1/4 and673

inf
π̂

Pθ#,σ#,π∗(π̂ 6= π∗) > 1/3,

where the infimum is taken over all injective matching maps π : [n]→ [m].674

Proof We denote the set of all injective functions π : [n] → [m] as In,m. We use the notation675

D(P,Q) for the Kullback-Leibler (KL) divergence between two probability measures P and Q such676

that P is absolutely continuous with respect to Q, P� Q. The identity mapping denoted by id is677

defined as follows: id(i) = i, ∀i ∈ [n]. It is also assumed that π∗ = id.678

To establish the general lower bound we use the following lemma:679

Lemma 3 (Tsybakov (2009), Theorem 2.5) Assume that for some integer M ≥ 2 there exist dis-680

tinct injective functions π0, . . . , πM ∈ In,m and mutually absolutely continuous probability measures681

Q0, . . . ,QM defined on a common probability space (Z,Z ) such that682

1

M

M∑
j=1

D(Qj ,Q0) ≤ 1

8
logM.

Then, for every measurable mapping π̃ : Z → In,m,683

max
j=0,...,M

Qj(π̃ 6= πj) ≥
√
M√

M + 1

(3

4
− 1

2
√

log(M)

)
.

Since d ≥ 16 log(nm) then the rate from Theorem 1 becomes of order (d log(nm))1/4. We show684

that for 6κ ≥ (d log(nm))1/4 there is indeed a setting where the detection of π∗ fails with probability685

at least 1/4 for any matching map π̃ ∈ In,m. To show this we use Lemma 3 with properly chosen686

family of probability measures described in the following lemma.687

Lemma 4 (Collier and Dalalyan (2016), Lemma 14) Let ε1, . . . , εm be real numbers defined by688

εk =
√

2/d κσ#k, ∀k ∈ [m],

and let µ be the uniform distribution on E = {±ε1}d × · · · × {±εm}d. Denote by Pµ,π the689

probability measure on Rd×m defined by Pµ,π(A) =
∫
E Pθ,π(A)µ(dθ). Let Θ̄κ be the set of θ#690

such that 6κ ≥ (d log(nm))1/4. Assume that σ#1 ≤ · · · ≤ σ#m and σ#2
m /σ

#2
1 ≤ 1 +

√
log(nm)

16d . Let691

π = (k k′) be the transposition that only permutes kth and k′th observations (k < k′). Then, the692

Kullback-Leibler divergence between Pµ,π and Pµ,id can be bounded as follows693

D(Pµ,π,Pµ,id) ≤
1

8
log(m(m− 1)/2).

Additionally, µ(E \ Θ̄κ) ≤ (m(m− 1)/2)e−d/8.694

Applying Lemma 3 with M = m(m− 1)/2, Q0 = Pµ,id and {Qj}j=1,...,M = {Pµ,πk,k′}k 6=k′ we695

obtain that696

inf
π̂

max
π∗∈In,m

sup
θ#∈Θ̄κ

Pθ#,σ#,π∗(π̂ 6= π∗) ≥ max
π∗∈{id}∪{πk,k′}

∫
Θ̄κ

Pθ#,π∗
(
π̂ 6= π∗

)µ(dθ#)

µ(Θ̄κ)

≥ max
π∗∈{id}∪{πk,k′}

Pµ,π∗
(
π̂ 6= π∗

)
− µ(E \ Θ̄κ)

≥
√

15√
15 + 1

(3

4
− 1

2
√

log 15

)
− m(m− 1)

2
e−d/8,
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where the in the last inequality we applied the result of Lemma 3 in conjunction with the monotonicity697

of function m 7→
√
m

1+
√
m

(3/4 − (2
√

log(m))−1). Recall that m > n ≥ 5 and d ≥ 16 log(nm)698

yielding inf π̂ Pθ#,σ#,π∗(π̂ 6= π∗) > 0.338.699

D Further details on Experiment 3700

In this section we present further details on real-data experiment presented in the paper. We first701

plot the estimation accuracy measured in the Hamming loss for two other scenes (Reichstag and702

Brandenburg Gate). The results are shown in Figure 5 in a similar manner as in Figure 4. We observe703

very similar behaviour in all 3 applied algorithms across scenes. From Figure 4 and Figure 5 we see704

that in general the image pairs from Reichstag scene are easier and LSL gets accuracy around 0.9705

when outlier rate, (m − n)/n, equals 70%. In the same situation for Brandenburg Gate scene the706

LSL accuracy is around 0.7. This is due to quality, angle of the camera and other external factors of707

images.708
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Figure 5: The estimation accuracy measured in the Hamming loss of the estimated matching in
Exp. 3 for different values of the outlier rate, (m− n)/n, varying from 0% to 70%. The medians of
estimation accuracy both for challenging pairs (right plots) and simple pairs (left plots) of images
from Reichstag (top) and Brandenburg Gate (bottom) scenes was computed using OpenCV, LSS and
LSL matchers. The green region represents the interquartile range (lower and upper bounds being
25% and 75% percentiles, respectively).

We also plot the boxplots of the distances between SIFT descriptors of matching and non-matching709

keypoints both for easy (not challenging) and challenging pairs of images. Figure 6 has 3 plots for710

each of the scenes and 4 boxplots in each of them. The first 2 boxplots correspond to the distance711

between SIFT descriptors of matching and non-mathcing keypoints for easy pairs, while the last712

2 boxplots are that of challenging pairs. There are several observations that are observed across713

all scenes. First, the median distance for matching keypoint descriptors is much less than that of714

non-matching keypoint descriptors. Second, the median distance between the matching keypoint715

descriptors from challenging pairs is much higher than that of easy pairs. We also observe that716

the distance distribution of non-matching keypoint descriptors is roughly the same for easy and717

challenging pairs. These observations suggests that distance based matching algorithms can be718

effectively applied.719
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To give a glimpse of what easy and challenging pairs of images look like we include sample pairs720

with accuracy of OpenCV matching algorithm greater than 0.5 and sample pairs with accuracy less721

than 0.5 from each scene. These pairs are collected in Figure 7.722
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Figure 6: Boxplots of distances between SIFT descriptors for (left to right) Reichstag, Brandenburg
Gate and Temple Nara scenes. We split datasets into easy and challenging pairs according to OpenCV
matching algorithm score (the pairs with less than 0.5 are considered challenging pairs, others are
easy pairs). For each scene we then draw the boxplots of distances between descriptors of matching
keypoints and non-matching keypoints grouped by easy and challenging pairs, respectively.

Figure 7: Matching map computed by LSL on randomly chosen easy (not challenging) and challeng-
ing pairs of images from each scene. The green lines represent the correct matching, and red lines are
incorrect ones.
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