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Abstract

We introduce Husky Hold’em Bench, a novel agent benchmark which combines1

strategic reasoning and software engineering skills. Agents are tasked with im-2

plementing poker bots which then compete in a 6-player round-robin tournament.3

We use a minimal 5-stage iterative refinement agent scaffold to solicit bots from4

current frontier models and run a poker bots tournament, averaging over several5

trials to reduce variance. We find that Claude 4 Sonnet tops the leaderboard, and6

that in general top models tended to employ balanced or aggressive play styles,7

while lower-ranking models tended to play more defensively. We open-source our8

code as well as all data from the tournament.9

1 Introduction10

The rapid evolution of large language models (LLMs) has expanded their capabilities toward in-11

creasingly agentic behaviors, enabling them to tackle complex, multi-step tasks that once demanded12

hours of human effort [30, 17, 22]. This progress is evident in domains like mathematical reasoning,13

where models have advanced from modest accuracies (20-30%) on benchmarks such as the American14

Invitational Mathematics Examination (AIME) [21] to achieving gold-medal performance at the15

International Mathematical Olympiad (IMO) within a single year [29, 1]. Such examples of quick16

benchmark saturation motivated the development of competitive arena-style evaluations [31, 20]17

which enjoy longevity from model co-evolution - as the LLM capabilities frontier expands, the18

counterparties in these arena benchmarks become stronger. Example arenas include the Kaggle Game19

Arena [13], Text Arena[15], and Werewolf Arena [10], which evaluate AI agents on strategic games.20

In this work we introduce Husky Hold’em Bench, an arena-style agentic evaluation framework that21

combines strategy, coding, and performance engineering - LLMs design and implement poker bots22

that compete on their behalf in a 6-player round robin tournament.23

The design of a pokerbot involves managing imperfect information, nondeterminism, deception,24

and strategy [23]. Pioneering systems like Libratus [11] and Pluribus [32] achieved superhuman25

performance in heads-up and multi-player no-limit Texas Hold’em through approximate Nash26

equilibrium computation, action-information abstraction, and counterfactual regret minimization27

(CFR). We were wary that these approaches would be well-known to frontier models via their training28

data, and therefore decided to imposed compute limits to broaden the competitive algorithmic design29

space, such as by incentivizing heuristic approaches.30

In addition to a strategic gameplay benchmark, we also see Husky Hold’em Bench as a software31

engineering agent benchmark. The evaluated agent is responsible for the full software lifecycle32

of initial design, implementation, debugging, and iterative refinement. We see this systems design33

component of the poker bots task as complimentary to SWE-Bench [18], which emphasizes solving34

issues on existing repositories rather than building from the ground up. Because we impose stringent35

compute and memory limits on bot decisions, this benchmark also contains elements of performance36
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engineering. Unlike existing code optimization benchmarks like Kernel Bench [27] however, Husky37

Hold’em Bench does not specify what (if anything) the model should optimize. The model needs to38

make decisions about how much compute should be spent on deciding a good move vs. modeling39

opponents’ strategies vs. modeling opponents’ models of its strategy. This open-endedness is akin40

to that of Design Arena [26], which solicits UI design prompts and preferences from human voters.41

While Design Arena uses subjective preferences to score models on open-ended UI design tasks, our42

open-ended poker bot design task enjoys the possibility of objective grading - we score bots by their43

average delta money over the course of the tournament.44

2 The Husky Hold’em Benchmark45

We introduce Husky Hold’em, a benchmark designed to challenge AI models in generating functional46

Python code for fully operational poker bots. These models are tasked with developing decision-47

making strategies for No-Limit Texas Hold’em, which boasts a game-tree complexity of 1016048

possible states [19]. Through this process, models must demonstrate a conceptual understanding49

of poker rules and strategies, translate those insights into executable code, balancing competing50

objectives such as maximizing winnings while adhering to constraints on memory and computational51

resources.52

2.1 Tournament Framework53

Evaluation occurs through structured tournament play, where bots from different models compete in54

six-handed games. To promote efficient algorithmic design, each bot file is capped at a maximum55

size of 500 MB, which discourages the inclusion of large datasets or pre-computed lookup tables.56

Additionally, every decision must be made within a 5-second time limit to prevent the use of brute-57

force strategies. Performance is ultimately assessed by net money gained over the entire tournament,58

offering an objective economic measure that reflects both strategic prowess and implementation59

robustness.60

The initial evaluation process runs across 6 batches. In each batch, every LLM generates a final61

bot through five iterative rounds. During each round, the bot is tested against an in-house bot that62

performs random action, with game results and any code errors fed back to guide the next iteration.63

The resulting final bot is submitted to compete on behalf of its LLM designer for that batch. Once all64

bots are ready, they compete in a round-robin tournament of six-handed games, covering all possible65

combinations. Performance is determined by cumulative winnings from these matches. This process66

repeats for each of the 6 batches, with winnings added to the leaderboard after each batch.67

During this initial phase of our benchmark we include 13 selected LLMs: Claude Opus 4.1 [9], Qwen3-68

235B-A22B-2507 [25], Grok-4 [5], Gemini-2.5-Pro [14], Claude Sonnet 4 [2], GLM-4.5 [4], Hermes-69

4-405B [28], Qwen3-Coder [25], Gemini-2.5-Flash [14], Kimi-K2 [8], DeepSeek-R1-0528 [3],70

GPT-5-High [6], and o3-Pro [7]. These models were chosen as they represent the current frontier in71

LLM capabilities.72

We simulate all possible six-player combinations from these 13 models, resulting in
(
13
6

)
= 171673

games per batch, repeated across 6 batches. Each game consists of 1000 consecutive hands over74

which earnings and losses accumulate. The current leaderboard displays the average delta winnings75

per game.76

2.2 Other contributions77

In addition to results from running the benchmark on current frontier models, we also contribute:78

An interactive website to visualize all games from the tournament. The website shows the current79

standings, delta money evolution over time for each game, action-by-action replay for each hand, and80

reasoning traces and code for each bot produced.81

Open-source evaluation infrastructure We open source our game engine, web frontend code,82

minimal bot synthesis agent framework, and admin portal code.83
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Open-source tournament game data To make our analysis transparent as well as to enable others to84

do further analysis, we provide an open source dataset compiling the delta money standings from85

every game as well as reasoning traces and bot implementations.86

Links to the website, GitHub, and Hugging Face are currently omitted to comply with double-blind87

review.88

3 Results and Analysis89

This section presents selects results from 6 batches of gameplay in the Husky Hold’em benchmark.90

We provide leaderboard rankings and analyze play styles. Additional quantitative results are available91

in Appendix A, and qualitative analysis of reasoning traces and generated bots is available in92

Appendix B.93

3.1 Model Performance94

The leaderboard ranks 13 models by cumulative score, which represents delta winnings per game95

across all batches (Table 1). A key objective of the benchmark requires models to comprehend the96

code interface and poker rules (a challenging task in itself). We observe this as even though the97

prompt explicitly mentions the minimum raise rule (requiring raises to be at least 2x the current bet),98

game replays reveal that bots from lower-ranked models often violate this and other rules (such as99

folding after all-ins). Currently, we allow for minimum raise to be any value to keep games interesting100

but hope to get stricter as LLMs are able to generate better bots. These issues contribute to lower101

rankings and underscore broader difficulties in strategy implementation.102

Rank Model Average ∆ Money ($)

1 Claude Sonnet 4 3672
2 Claude Opus 4.1 3185
3 Gemini 2.5 Pro 3099
4 GPT-5 (high reasoning effort) 937
5 Grok-4 396
6 Gemini 2.5 Flash 111
7 Hermes-4 405B -1241
8 GLM-4.5 -1267
9 O3-Pro -1577

10 Kimi K2 -1844
11 Qwen3-Coder -2324
12 Deepseek-R1-0528 -2355
13 Qwen3-235B-A22B-2507 -2907

Table 1: Ranked models by average delta money ($) across all games. Models start each game with
$10,000, so a $3672 increase corresponds to a 36.72% profit. For comparison, the expected value of
an always-fold strategy is −$2500.

3.2 Play Style Analysis103

Figure 1 displays the percentage breakdown of actions (fold, call, raise, check, all-in) for each model104

across 6 batches, aggregating trends from bots generated by the same LLM. Figure 2 groups models105

into defensive (6 models), aggressive (4 models), and balanced (3 models) archetypes based on action106

profiles.107

Models that perform worse tend to exhibit more defensive play styles, characterized by high folds and108

checks with low raises, which correlate with lower leaderboard positions. Such defensive tendencies109

may also reflect the models’ inability to understand and effectively execute the strategies they intend110

to implement.111

In contrast, models with more action-diverse aggressive or balanced play styles introduce greater112

variance in winnings, particularly in the middle ranks of the leaderboard. However, the top three113
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Figure 1: Frequencies of bot actions by model as a percentage of total actions taken. Models are
ordered by fold frequency.

models maintain consistent performance, demonstrating superior comprehension and execution of114

code-writing abilities.115
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4 Discussion116

We introduce Husky Hold’em, an objectively-graded arena-style benchmark combining aspects117

of strategic reasoning, probabilistic reasoning, deception, software engineering, and performance118

engineering.119

Husky Hold’em remains in its early stages. While for this work we used the same 5-stage iterative120

refinement scaffold across all models, we are working on opening this benchmark up to evaluate121

general SWE agents. We expect that as models and SWE agent scaffolding improve, generated bots122

will demonstrate temporal intelligence - they will implement meta-strategies that learn and adapt to123

data presented by their opponents.124

We expect that eventually LLMs will be able to implement poker bots that can outplay them, raising125

the question of whether such capability belongs to the agent or only to its derived bot.126
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A Additional quantitative results200

A.1 Pairwise win rates201

Figure 3: Pairwise win rate matrix. We say that a model A wins against another model B in a game if
A’s bot achieves a higher delta money than B’s bot. Models never play against themselves so the
main diagonal is omitted. Models ordered by increasing final rank.

A.2 Player performance outcomes202

Figure 4: Player performance outcome frequencies for each model. We show the frequencies of
achieving the highest delta money (top player), lowest delta money (bottom player), or delta money
exactly -10000 (going bust). Models ordered by increasing final rank.
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A.3 Delta money distribution203

We show the delta money distribution by model in Figure 4. We find that most models exhibit fairly204

high variance across games, with the exception of Hermes-4 405B [28]. As noted in Section 3.2,205

Hermes-4 405B plays fairly defensively, usually folding.206

Figure 5: Delta money distribution by model. Models ordered by increasing final rank.

B Analysis of reasoning and bots by model207

B.1 Gemini 2.5 Pro (Batch 5)208

Gemini 2.5 Pro developed an overall aggressive poker bot that emphasized strategies to value bet209

with strong hands, calculate pot odds for draws, and perform selective bluffing. It uses tiered pre-flop210

hand rankings, detailed post-flop hand evaluation, and dynamic bet sizing to inform its strategy.211

B.1.1 CoT analysis212

The models began with developing the core logic where it first emphasized pre-flop hand strengths.213

Over the 5 iterations it improved on its strategy by incorporating robust hand ranking, pot odds, and214

aggressive value betting. The reasoning shows a step-by-step refinement.215

Chain-of-Thought Excerpt

Model reasoning (excerpt):
"Developing the Bot’s Core
I’m structuring the poker bot as a ‘SimplePlayer‘ class in Python, inheriting from a base ‘Bot‘ class. The
objective is clear: maximize ‘delta money‘ (ending chips minus starting chips) in No-Limit Texas Hold’em.
This foundational framework feels solid, ready to be built upon. Framing Hand Strength
I’m now diving deep into hand strength evaluation. I’m planning to use a lookup table for pre-flop hand
rankings. For post-flop, I’ll need a system to evaluate my hand against the community cards. Considering the
time constraint, I might lean towards a simplified approach, perhaps calculating the raw poker hand rank
(e.g., a pair beats a high card, etc.) and applying some weighting.
Prioritizing Core Functionality
I’ve clearly defined the critical components: hand strength evaluation, opponent modeling (though simplified
initially), and a betting strategy based on those. I’m leaning towards a hand representation using numerical
ranks and suits for efficiency. Pre-flop hand strength will rely on a lookup table or a ranking system to
quickly assess starting hands. Post-flop hand assessment needs careful consideration to balance accuracy and
speed.
Decomposing the Challenge
I’m now wrestling with the detailed components. Parsing card strings to usable rank/suit formats is a must.
Hand strength is the core: pre-flop will use a ranking system; post-flop requires a hand ranker and equity
calculations. I’m exploring a hand-ranking function and weighing Monte Carlo simulations against simpler
öutsc̈alculations. I need to find the right balance between accuracy and speed.

216
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Planning Player Actions
I’m now focusing on how the bot will make decisions during a round. My plan is to build a ‘SimplePlayer‘
class, inheriting from ‘Bot‘, that needs to maximize my ‘delta money‘, which is my final chips minus my
starting chips. I must manage my hand strength, opponent modeling, betting strategies, and risk management.
Refining the Core Logic
The ‘SimplePlayer‘ class is taking shape. I’m confirming ‘on_start‘ receives my initial hand, and
‘on_round_start‘ provides the round state. This clarifies the game flow: ‘on_start‘ gets the initial cards,
followed by ‘on_round_start‘ and ‘get_action‘ for each betting phase. This sets the stage for implementing
hand ranking and betting decisions.
Mapping the Game Flow
I’m now interpreting the game rules’ context. The crucial methods are clear: ‘on_start‘ gets dealt cards, and
‘on_round_start‘ provides the current betting state. Then, ‘get_action‘ is the central part of my gameplay
decision. The focus is now on understanding how to build the core logic.
Evaluating Key Methods
I’m now working through the game lifecycle methods. I’ve confirmed ‘on_start‘ initializes the player and
their hand, while ‘on_round_start‘ provides the current game state. This clears the stage for ‘get_action‘, the
core of the betting logic. I’m figuring out how the data flows."
Mapping the Bot’s Logic
I’m planning to break down the bot’s decision-making process. I’ll determine hand strength, consider my
position, and model opponents (initially simplified). This information will be used to formulate betting
strategies. The goal is simple: win and win consistently.
Refining the Game Logic
I’m now starting to think about the overall structure, and what each function should return. The critical piece
is now the decision-making process in ‘get_action‘. Pre-flop decisions depend on hand ranking. Post-flop
decisions involve combining hand strength with outs calculations. I’ll start simple and build from there.
Evaluating Opponent Behavior
I’m now evaluating opponent actions for modeling. Analyzing their actions, particularly betting patterns, is a
key. While detailed tracking is complex, I can start with VPIP and PFR as initial opponent indicators. This
data will influence my betting decisions over time.
Implementing the Core Logic
I’m now refining the core components and hand evaluation functions. I’m working through the card parsing,
the main hand evaluation function, pre-flop ranking lookup, and equity estimations using ’outs’. The
‘get_action‘ method is next, where everything needs to come together for betting decisions, based on the
hand’s strength and position at the table.
Iterating on the Strategy
I’m now tweaking the initial decision logic. The plan is to refine pre-flop hand rankings and thresholds for
post-flop betting. I’m prioritizing a simpler, more robust approach for the first iteration, focusing on clear
rules and effective execution. This approach aims for solid foundations.
Implementing the Strategy
I’m now starting to put the pieces together. I’ve defined the hand representation, which is now tuples. I’m
coding the pre-flop hand ranking using a simplified categorized system, as this will be the first thing I do.
The evaluation of the hands, and the main structure are next on my list.
Reviewing the Strategy
I’m now reviewing the overall strategy to ensure it aligns with the limited scope. I’m focusing on simplicity
and robustness, aiming for a well-defined approach. I’ll use a categorized approach for pre-flop and a
simplified post-flop strategy based on hand ranking and outs.
Assessing the Hand Evaluation
I’m now moving forward with my hand evaluation function. I’m focusing on the algorithm for ‘evalu-
ate_best_hand‘, making sure to efficiently rank hands. I’m planning to create a ranking based on the hand’s
category (e.g., straight flush, four of a kind) to speed up decision-making.
Focusing on the Strategy
I’m now streamlining the overall plan. I will use a categorical hand-ranking system to simplify pre-flop
decisions. For post-flop, I am planning to use a simplified approach based on hand ranking and outs to make
the betting strategies much easier to manage.

217

B.1.2 Code analysis218

GLM 4.5’s bot employs a tiered pre-flop strategy based on hand strength, a detailed hand evaluation219

system for post-flop play, and decision-making that incorporates pot odds, draws, and selective220

bluffing. It uses aggressive value betting for strong hands and disciplined folding for weak ones.221

Pre-Flop Strategy (Tiered Hand Ranking)
222

# Hand strength tiers based on Sklansky -Malmuth rankings (simplified)223
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# Using canonical representation: AKs , KQs , 77, T8o224

self.tier1 = {’AA’, ’KK’, ’QQ’, ’JJ’, ’AKs’}225

self.tier2 = {’TT’, ’AQs’, ’AJs’, ’KQs’, ’AKo’}226

self.tier3 = {’99’, ’JTs’, ’QJs’, ’KJs’, ’ATs’, ’AQo’}227

self.tier4 = {’88’, ’KTs’, ’QTs’, ’J9s’, ’T9s’, ’98s’, ’AJo’, ’KQo’}228

self.tier5 = {’77’, ’66’, ’55’, ’A9s’, ’A8s’, ’A7s’, ’A6s’, ’A5s’, ’229

A4s’, ’A3s’, ’A2s’, ’K9s’, ’KTo’, ’QJo’}230

231

def _get_preflop_strength(self , hand: List[str]) -> int:232

""" Categorizes hand into a strength tier (1-6, 1 is strongest)."""233

card1 , card2 = hand[0], hand [1]234

rank1 , suit1 = card1 [0], card1 [1]235

rank2 , suit2 = card2 [0], card2 [1]236

237

r1_val = RANKS.index(rank1)238

r2_val = RANKS.index(rank2)239

240

if r1_val < r2_val:241

rank1 , rank2 = rank2 , rank1242

243

is_suited = ’s’ if suit1 == suit2 else ’o’244

is_pair = (rank1 == rank2)245

246

hand_key = f"{rank1 }{ rank2}"247

if not is_pair:248

hand_key += is_suited249

250

if hand_key in self.tier1: return 1251

if hand_key in self.tier2: return 2252

if hand_key in self.tier3: return 3253

if hand_key in self.tier4: return 4254

if hand_key in self.tier5: return 5255

return 6256257

This code defines hand strength tiers for pre-flop decisions, categorizing starting hands from premium258

(tier 1) to marginal (tier 5) for strategic play.259

Hand Evaluation (_evaluate_hand)
260

def _evaluate_hand(self , hole_cards: List[str], community_cards: List[261

str]) -> Tuple[int , Tuple ]:262

""" Evaluates the best 5-card hand from 2 hole cards and community263

cards."""264

all_cards = self._parse_cards(hole_cards + community_cards)265

best_hand_rank = -1266

best_hand_kickers = ()267

268

if len(all_cards) < 5:269

return 0, tuple(sorted ([c[0] for c in all_cards], reverse=True270

))271

272

for hand_combo in combinations(all_cards , 5):273

ranks , is_flush , is_straight , counts , rank_counts = self.274

_get_hand_details(list(hand_combo))275

major_kickers = sorted ([r for r, c in rank_counts.items() if c276

>= 2], reverse=True)277

kicker_ranks = sorted ([r for r, c in rank_counts.items ()],278

reverse=True)279

current_rank = 0280

current_kickers = tuple(kicker_ranks)281

282

if is_straight and is_flush:283

current_rank = 9 if ranks [0] == 14 else 8284

elif counts [0] == 4:285

current_rank = 7286

10



kicker = [r for r, c in rank_counts.items() if c == 1][0]287

current_kickers = (major_kickers [0], kicker)288

elif counts == [3, 2]:289

current_rank = 6290

current_kickers = (major_kickers [0], major_kickers [1])291

elif is_flush:292

current_rank = 5293

elif is_straight:294

current_rank = 4295

elif counts [0] == 3:296

current_rank = 3297

elif counts == [2, 2, 1]:298

current_rank = 2299

elif counts [0] == 2:300

current_rank = 1301

302

if current_rank > best_hand_rank:303

best_hand_rank = current_rank304

best_hand_kickers = current_kickers305

elif current_rank == best_hand_rank and current_kickers >306

best_hand_kickers:307

best_hand_kickers = current_kickers308

309

return best_hand_rank , best_hand_kickers310311

The hand evaluation function assesses the best possible 5-card combination, returning a rank (0-9)312

and kickers for strength comparison.313

Post-Flop Action (_get_postflop_action)
314

def _get_postflop_action(self , round_state: RoundStateClient ,315

remaining_chips: int , active_players: int , legal_actions: Set[316

PokerAction ]) -> Tuple[PokerAction , int]:317

""" Determines post -flop action based on hand strength and318

potential."""319

hand_power , _ = self._evaluate_hand(self.hand , round_state.320

community_cards)321

pot_odds = self._calculate_pot_odds(round_state)322

323

# Strong Hands (Two Pair or better)324

if hand_power >= 2:325

if PokerAction.RAISE in legal_actions:326

bet_amount = int(round_state.pot * random.uniform (0.6,327

0.9)) # Value bet328

bet_amount = min(round_state.max_raise , max(round_state.329

min_raise or 0, bet_amount))330

if bet_amount >= remaining_chips:331

return PokerAction.ALL_IN , remaining_chips332

return PokerAction.RAISE , bet_amount333

if PokerAction.ALL_IN in legal_actions: return PokerAction.334

ALL_IN , remaining_chips335

if PokerAction.CALL in legal_actions: return PokerAction.CALL ,336

0337

return PokerAction.CHECK , 0338

339

# Medium Hands (One Pair)340

if hand_power == 1:341

if PokerAction.CHECK in legal_actions: return PokerAction.342

CHECK , 0343

amount_to_call = round_state.current_bet - round_state.344

player_bets.get(str(self.id), 0)345

if PokerAction.CALL in legal_actions and amount_to_call <346

remaining_chips * 0.2:347

return PokerAction.CALL , 0348

return PokerAction.FOLD , 0349
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350

# Drawing hands / Bluffs351

outs = self._count_outs(self.hand , round_state.community_cards)352

if outs >= 8 and round_state.round != ’River’: # Good draw (flush353

or open -ended straight)354

equity = self._calculate_equity_from_outs(outs , round_state.355

round)356

if pot_odds is not None and equity > pot_odds and PokerAction.357

CALL in legal_actions:358

return PokerAction.CALL , 0359

# Bluff if heads -up and everyone checked360

if active_players <= 2 and round_state.current_bet == 0 and361

PokerAction.RAISE in legal_actions:362

if random.random () < 0.3: # Bluff 30% of the time363

bluff_amount = int(round_state.pot * 0.5)364

bluff_amount = min(round_state.max_raise , max(365

round_state.min_raise or 0, bluff_amount))366

if bluff_amount > 0: return PokerAction.RAISE ,367

bluff_amount368

if PokerAction.CHECK in legal_actions: return PokerAction.369

CHECK , 0370

return PokerAction.FOLD , 0371

372

if PokerAction.CHECK in legal_actions: return PokerAction.CHECK , 0373

return PokerAction.FOLD , 0374375

Post-flop decisions prioritize value betting strong hands, calling with medium strength if pot odds376

favor it, and pursuing draws or selective bluffs based on outs and opponents.377

B.2 GLM 4.5 (Batch 5)378

The GLM 4.5 model developed a defensive poker bot which focuses on tight play with simple379

heuristic-based hand evaluation. It emphasizes preflop aggression with strong hands and postflop380

decisions based on basic hand strength metrics. It has an overall less detailed and thought out strategy381

compared to Gemini.382

B.2.1 CoT Analysis383

The model’s reasoning developed a simple bot with basic strategies for preflop and postflop action.384

The model considered using external libraries like pokersolver [24] or treys [16] but opted for a385

custom, simplified hand evaluator to keep the code short and pure Python. For pre-flop, it outlined a386

Chen-like formula [12] for hand value, assigning points based on ranks, suits, and connectivity. For387

postflop, it designed a rank-counting system to return a float strength value. Throughout its iterations,388

the model focused on fixing code errors it faced. It also refined its strategy, like adjusting the raise389

amounts and incorporating pot odds approximations without full Monte Carlo simulations to stay390

within time limits.391

Chain-of-Thought Excerpt

Model reasoning (excerpt): "We’ll design a simple bot that uses a basic strategy: Pre-flop: Play tight-
aggressive. Only play with strong hands (e.g., pairs, high cards) and raise with premium hands. Post-flop:
Bet when we have a strong hand (like top pair, two pair, etc.) and fold weak hands. [...] We’ll implement a
very simple bot that does not do hand evaluation but instead uses the hole cards and community cards in a
naive way. [...] We’ll implement a very short hand evaluator that only checks for pairs, two pair, three of a
kind, and then uses the high card. It won’t check for straight or flush to save space."

392

Chain-of-Thought Excerpt

Model reasoning (excerpt): "We’ll do a very simplified version: points = max(card1_rank, card2_rank)
[converted to a number] if cards are paired: points = points * 2 if suited: points += 2 if connected: points
+= 2 [...] Then we set thresholds: points >= 16: raise points >= 10: call else: fold [...] Post-flop: We
calculate hand_strength(hole_cards, community_cards) and then compare it with a threshold. [...] Then: If

393
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hand_strength_value >= 3.0 (three of a kind or better), we raise or all-in. If hand_strength_value >= 1.0 (one
pair or better) and we are facing a bet that is not too large, we call. Otherwise, fold."

394

Chain-of-Thought Excerpt

Model reasoning (excerpt): "We must be cautious: the hand representation: e.g., [’Ah’, ’Ks’] for Ace
of hearts and King of spades. [...] We’ll split each card string into rank and suit. [...] We’ll map the
letter ranks to numbers: ’A’ -> 14 ’K’ -> 13 ’Q’ -> 12 ’J’ -> 11 ’T’ -> 10 others: int(rank) [...] Now, in
get_action: round_name = round_state.round # ’Preflop’, ’Flop’, ’Turn’, ’River’ if round_name == ’Preflop’:
points = self._preflop_hand_value(self.hole_cards) [...] my_bet = round_state.player_bets.get(str(self.id), 0)
amount_to_call = max(0, current_bet - my_bet) [...] We hope that the game server calls on_start for every
hand. If not, this bot will use the same hole cards for every hand, which is bad, but we have no choice."

395

Chain-of-Thought Excerpt

Model reasoning (excerpt): "Since we are on iteration 3, we are building upon the previous code. However,
the previous code is not provided. We must assume that the previous code had issues and we are to fix them.
[...] We’ll implement the bot with the above ideas. We’ll code: 1. A helper function for converting a card to a
rank number and suit. 2. A helper function for pre-flop hand strength (Chen-like). 3. A helper function for
post-flop hand strength (simplified). [...] We’ll also avoid using any external library to keep the code short
and requirements.txt empty. [...] We’ll assume: the list player_hands has one element per player, and that
element is a string of space separated two cards? [...] We’ll do: self.hole_cards = my_hole_cards_str.split()
[...] We’ll be as concise as possible. We’ll avoid long code."

396

B.2.2 Code Analysis397

The final bot implements a conservative heuristic-driven poker strategy that relies on simple hand398

strength calculations. Decisions prioritize folding weak hands, calling moderate ones with favorable399

pot odds approximations, and raising or all-in with strong holdings.400

Listing 1: Hand Strength Helper Functions
401

def _rank_to_number(self , rank_char):402

if rank_char == ’A’:403

return 14404

elif rank_char == ’K’:405

return 13406

elif rank_char == ’Q’:407

return 12408

elif rank_char == ’J’:409

return 11410

elif rank_char == ’T’:411

return 10412

else:413

return int(rank_char)414

415

def _get_rank_suit(self , card_str):416

return card_str [0], card_str [1]417

418

def _preflop_hand_value(self , hole_cards):419

if not hole_cards or len(hole_cards) < 2:420

return 0421

rank1 , suit1 = self._get_rank_suit(hole_cards [0])422

rank2 , suit2 = self._get_rank_suit(hole_cards [1])423

num1 = self._rank_to_number(rank1)424

num2 = self._rank_to_number(rank2)425

points = max(num1 , num2)426

if num1 == num2:427

points = num1 * 2428

else:429

if suit1 == suit2:430

points += 2431

if abs(num1 - num2) == 1:432

points += 2433
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return points434

435

def _postflop_hand_strength(self , hole_cards , community_cards):436

all_cards = hole_cards + community_cards437

if not all_cards:438

return 0.0439

rank_count = {}440

for card in all_cards:441

rank , _ = self._get_rank_suit(card)442

num = self._rank_to_number(rank)443

rank_count[num] = rank_count.get(num , 0) + 1444

counts = sorted(rank_count.values (), reverse=True)445

if counts [0] == 4:446

return 7.0447

elif counts [0] == 3 and (len(counts) > 1 and counts [1] >= 2):448

return 6.0449

elif counts [0] == 3:450

return 3.0451

elif len(counts) > 1 and counts [0] == 2 and counts [1] == 2:452

return 2.0453

elif counts [0] == 2:454

return 1.0455

else:456

max_rank = max(rank_count.keys()) if rank_count else 0457

return min(max_rank / 14.0, 0.9)458459

Listing 2: Core Decision-Making in get_action
460

def get_action(self , round_state: RoundStateClient , remaining_chips:461

int) -> Tuple[PokerAction , int]:462

try:463

current_bet = round_state.current_bet464

min_raise = round_state.min_raise465

max_raise = round_state.max_raise466

pot = round_state.pot467

round_name = round_state.round468

community_cards = round_state.community_cards469

my_bet = round_state.player_bets.get(str(self.id), 0)470

amount_to_call = max(0, current_bet - my_bet)471

if round_name == ’Preflop ’:472

hand_value = self._preflop_hand_value(self.hole_cards)473

else:474

hand_value = self._postflop_hand_strength(self.hole_cards ,475

community_cards)476

if round_name == ’Preflop ’:477

if hand_value >= 16:478

raise_amount = min(max_raise , current_bet + min_raise479

* 2)480

return (PokerAction.RAISE , raise_amount)481

elif hand_value >= 10:482

if amount_to_call == 0:483

return (PokerAction.CHECK , 0)484

elif amount_to_call <= pot // 4:485

return (PokerAction.CALL , 0)486

else:487

return (PokerAction.FOLD , 0)488

else:489

return (PokerAction.FOLD , 0)490

else:491

if hand_value >= 6.0:492

return (PokerAction.ALL_IN , 0)493

elif hand_value >= 3.0:494

raise_amount = min(max_raise , current_bet + pot // 2)495

return (PokerAction.RAISE , raise_amount)496

elif hand_value >= 1.0:497
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if amount_to_call == 0:498

return (PokerAction.CHECK , 0)499

elif amount_to_call <= pot // 5:500

return (PokerAction.CALL , 0)501

else:502

return (PokerAction.FOLD , 0)503

else:504

if amount_to_call == 0:505

return (PokerAction.CHECK , 0)506

else:507

return (PokerAction.FOLD , 0)508

except Exception:509

return (PokerAction.FOLD , 0)510511

B.3 DeepSeek-R1-0528 (Batch 5)512

DeepSeek-R1-0528 developed a poker bot that focused on optimizing preflop decisions using sim-513

plified hand strength calculations and postflop play based on a custom hand evaluator. It aimed to514

balance aggression with caution, incorporating pot odds and basic bluffing.515

B.4 CoT analysis516

The model thought through and developed a simplified hand evaluator with quick preflop ranking517

formulas and limited Monte Carlo iterations for postflop strength estimation.518

Chain-of-Thought Excerpt

Model reasoning (excerpt): "Let’s design a bot that is competitive but with concise code. Strategy: We will
implement a bot that uses a simplified version of the ’TAG’ (tight-aggressive) strategy, with adjustments for
position and hand strength."

519

The model refined its approach by incorporating the Chen-like formula [12] for preflop evaluation520

and a full 7-card hand evaluator for postflop. It also implemented bluffing on scare cards to address521

passive play.522

Chain-of-Thought Excerpt

Model reasoning (excerpt): "We are given 10 games of heads-up (two players) in the feedback. Our bot
lost every game, with an average loss of 7.5 chips per game. Key observations: The bot lost 10 out of 10
games, which indicates the strategy is too passive or not aggressive enough in stealing blinds, or too loose
when behind. Proposed improvements: 1. Preflop strategy: Use a predefined range of starting hands to
decide whether to fold, call, or raise. 2. Postflop: Evaluate hand strength using approximate methods but in a
simplified way to keep code short. We’ll use a preflop hand chart and then for postflop, we’ll use a simple
hand evaluator that returns a rank (from 0 to 9) for the hand."

523

Throughout the iterations Deepseek kept optimizing the code. It reduced the Monte Carlo samples to524

10, and focused on adding valid action checking.525

Chain-of-Thought Excerpt

Model reasoning (excerpt): "I’ve implemented a highly optimized poker bot with concise code while
maintaining competitive strategy. The key improvements include: 1. Significantly condensed all functions,
especially the hand evaluator, using efficient algorithms 2. Simplified strategy implementation while retaining
core aspects: - Preflop uses quick hand ranking formula instead of large lookup tables - Postflop evaluates
hand strength with monte carlo estimation (10 iterations for speed) - Implements pot odds and position-aware
betting - Aggressive play for strong hands, cautious for weak ones 3. Added proper error checking and
handling for all edge cases 4. Optimized memory usage by minimizing stored data 5. Handled all possible
game states including side pots and all-ins"

526
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B.4.1 Code analysis527

The final bot uses a custom hand evaluator for 5-7 card combinations, calculating strength by528

simulating opponent hands and comparing scores. The strategy can be described as tight-aggressive,529

with position-aware decisions and pot odds based decisions.530

Hand Strength Calculation
531

def _get_action_strength(self , hand , community):532

samples = 10 if len(community) < 5 else 1533

wins = 0534

our_hand = hand + community535

max_score = self._eval_hand(our_hand)536

all_cards = [f"{rank}{suit}" for rank in "23456789 TJQKA" for suit537

in "shdc"]538

for card in our_hand:539

if card in all_cards:540

all_cards.remove(card)541

for _ in range(samples):542

random.shuffle(all_cards)543

opp_hand = all_cards [:2]544

opp_score = self._eval_hand(opp_hand + community)545

if max_score > opp_score:546

wins += 1547

return wins / max(samples , 1)548549

Action Decision Logic
550

def get_action(self , round_state: RoundStateClient , remaining_chips:551

int) -> Tuple[PokerAction , int]:552

player_id_str = str(self.id)553

player_bet = round_state.player_bets.get(player_id_str , 0)554

call555556
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