
TT-Toolbox 2.2: Fast multidimensional
array operations in TT-format

I.V. Oseledets

2009-2012

1 Contributors

• Ivan Oseledets

• Sergey Dolgov

• Vladimir Kazeev

• Olga Lebedeva

• Thomas Mach

2 What is the TT-format for tensors

The goal of this note is to get a quick start into the TT-Toolbox. For more
details, please refer to the HTML documentation, located at the directory
doc/ and read papers on the TT-format at http://spring.inm.ras.ru/osel.
These papers can be obtained from

Tensor A is said to be in the TT-format, if

A(i1, i2, . . . , id) = G1(i1) . . . Gd(id),

and Gk(ik) is a rk−1 × rk matrix, and r0 = rd = 1.
The approximation in this format is known to be stable and can be based

on QR and SVD decompositions. In linear algebra the most important
operation is probably matrix-by-vector product. Thus, matrices have to be
also represented in TT-format. Vector of length n1 . . . nd is said to be in the
TT-format, if it has low TT-ranks considered as d-dimensional array (in
MATLAB it is just a single call the the reshape function. Matrices acting
on such vectors have size M × N , where N =

∏d
k=1 nk. For simplicity

assume they are square, then each element of such matrix can be indexed

1

║Corrections for the github version
║are written in annotations like this

http://spring.inm.ras.ru/osel

by i1, . . . , id, j1, . . . , jd, where multiindex ik, k = 1, . . . , d corresponds to
rows, and jk, k = 1, . . . , d — to columns of the matrix. The matrix M is
said to be in the TT-format if

M(i1, . . . , id, j1, . . . , jd) = M1(i1, j1)M2(i2, j2) . . .Md(id, jd),

and Mk(ik, jk) is a rk−1 × rk matrix.

3 tt_tensor and tt_matrix storage scheme
TT-Toolbox 2.2has two main classes: tt_tensor and tt_matrix. The
first is a TT-representation of a d-dimensional array in TT-format, and the
second — of d-level matrix in TT-format.

Class tt_tensor contains the following fields:

1. tt.core — cores of the TT-decomposition stored in one “long” 1D
array

2. tt.d — dimension of the array

3. tt.n — mode sizes of the array

4. tt.r — ranks of the decomposition

5. tt.ps — markers for position of the k-the core in array tt.core: if
ps=tt.ps, then k-core can be obtained as

>> cr=tt.core; ps=tt.ps; corek=cr(ps(k):ps(k+1) -1);

Class tt_matrix contains three fields:

1. ttm.n — sizes of row indices

2. ttm.m — sizes of column indices

3. ttm.tt — TT-tensor of the vectorized TT-representation of the ma-
trix

4 Quick start
One has to “prepare” matrices and tensors in the format. There are several
possibilities how to do it. There are several standard tensors, available in
the Toolbox: tt_ones generates a rank-1 tensor of all ones tt_x generates
a tensor, obtained from a vector 0 : nd.

2

>> d=5; rhs=tt_ones(2,d) %Generate a d-dimensional
%tensor of all ones

rhs is a 5-dimensional TT -tensor , ranks and mode sizes:
r(1)=1 n(1)=2
r(2)=1 n(2)=2
r(3)=1 n(3)=2
r(4)=1 n(4)=2
r(5)=1 n(5)=2
r(6)=1

As for matrices, one generate the identity matrix very easily by calling.

>> e=tt_eye(2,d); %Generate 2d × 2d identity matrix
%in TT -format

e is a 5-dimensional TT -matrix , ranks and mode sizes:
r(1)=1 n(1)=2 m(1) = 2
r(2)=1 n(2)=2 m(2) = 2
r(3)=1 n(3)=2 m(3) = 2
r(4)=1 n(4)=2 m(4) = 2
r(5)=1 n(5)=2 m(5) = 2
r(6)=1

The TT-Toolbox contains efficient low-parametric representations of
simplest discretizations of Laplace operator. For example, tt_qlaplace_dd
generates a discretization of a f -dimensional Laplace operator, discretized
on a 2d grid in each direction.

>> lp=tt_qlaplacex_dd ([d,d,d])
lp is a 15- dimensional TT-matrix , ranks and mode sizes:
r(1)=1 n(1)=2 m(1) = 2
r(2)=5 n(2)=2 m(2) = 2
r(3)=5 n(3)=2 m(3) = 2
r(4)=5 n(4)=2 m(4) = 2
r(5)=5 n(5)=2 m(5) = 2
r(6)=1 n(6)=2 m(6) = 2
r(7)=5 n(7)=2 m(7) = 2
r(8)=5 n(8)=2 m(8) = 2
r(9)=5 n(9)=2 m(9) = 2
r(10)=5 n(10)=2 m(10) = 2
r(11)=1 n(11)=2 m(11) = 2
r(12)=5 n(12)=2 m(12) = 2
r(13)=5 n(13)=2 m(13) = 2
r(14)=5 n(14)=2 m(14) = 2

3

r(15)=5 n(15)=2 m(15) = 2
r(16)=1

Now we are able to solve a nontrivial problem. Let us try to approximately
solve the three-dimensional Laplace equation with right-hand side equal to
one everywhere. It can be done easily.

>> d=7; lp=tt_qlaplace_dd ([d,d,d]);
>> rhs=tt_ones (2,3*d); sol=dmrg_solve2(lp,rhs ,1e-6)

dmrg_solve2 is the name of the solver, and 1e−6 is the required accuracy.
The output on my machine is
=dmrg_solve2= Sweep 1, dx_max: 2.246e+00, res_max: 4.614e+05, erank: 5.30409
=dmrg_solve2= Sweep 2, dx_max: 3.254e -01, res_max: 8.606e -02, erank: 5.40987
=dmrg_solve2= Sweep 3, dx_max: 9.813e -15, res_max: 2.693e -14, erank: 4.50185
=dmrg_solve2= Sweep 4, dx_max: 0.000e+00, res_max: 1.107e -14, erank: 1.93218
=dmrg_solve2= Sweep 1, dx_max: 2.047e+02, res_max: 1.224e+05, erank: 5.51189
=dmrg_solve2= Sweep 2, dx_max: 3.881e -01, res_max: 4.182e+00, erank: 11 .2821
=dmrg_solve2= Sweep 3, dx_max: 6.940e -02, res_max: 3.962e -01, erank: 18 .5293
=dmrg_solve2= Sweep 4, dx_max: 6.444e -05, res_max: 5.604e -03, erank: 24 .5541
=dmrg_solve2= Sweep 5, dx_max: 5.519e -08, res_max: 7.603e -06, erank: 25 .7358
=dmrg_solve2= Sweep 6, dx_max: 1.972e -10, res_max: 3.431e -08, erank: 25 .8134
=dmrg_solve2= Sweep 7, dx_max: 0.000e+00, res_max: 6.507e -08, erank: 21 .6135
sol is a 21- dimensional TT-tensor , ranks and mode sizes:
r(1)=1 n(1)=2
r(2)=2 n(2)=2
r(3)=4 n(3)=2
r(4)=8 n(4)=2
r(5)=12 n(5)=2
r(6)=16 n(6)=2
r(7)=20 n(7)=2
r(8)=12 n(8)=2
r(9)=23 n(9)=2
r(10)=38 n(10)=2
r(11)=46 n(11)=2
r(12)=45 n(12)=2
r(13)=37 n(13)=2
r(14)=23 n(14)=2
r(15)=12 n(15)=2
r(16)=23 n(16)=2
r(17)=19 n(17)=2
r(18)=15 n(18)=2
r(19)=8 n(19)=2
r(20)=4 n(20)=2
r(21)=2 n(21)=2
r(22)=1

The accuracy then can be checked as

>> norm(lp*sol -rhs)/norm(rhs)

ans =

4.5194e -07

If not the residue is required, but L2-norm approximation to the solution,
then the very important rounding procedure should be used.

>> sol_appr = round(sol ,1e-6)
sol_appr is a 21- dimensional TT -tensor , ranks and mode sizes:
r(1)=1 n(1)=2

4

║ Consider using also newer
║ amen_solve2
║ amen_block_solve
║ for the linear system solution
║ (see help statements in these files)

r(2)=2 n(2)=2
r(3)=4 n(3)=2
r(4)=6 n(4)=2
r(5)=8 n(5)=2
r(6)=10 n(6)=2
r(7)=12 n(7)=2
r(8)=7 n(8)=2
r(9)=13 n(9)=2
r(10)=19 n(10)=2
r(11)=21 n(11)=2
r(12)=23 n(12)=2
r(13)=21 n(13)=2
r(14)=13 n(14)=2
r(15)=7 n(15)=2
r(16)=13 n(16)=2
r(17)=13 n(17)=2
r(18)=11 n(18)=2
r(19)=8 n(19)=2
r(20)=4 n(20)=2
r(21)=2 n(21)=2
r(22)=1

Note, that the ranks are now much smaller. The relative error of the
approximation is guaranteed:

>> norm(sol -sol_appr)/norm(sol)

ans =

5.6937e -07

But the residual is larger

>> norm(lp*sol_appr -rhs)/norm(rhs)

ans =

5.8572e -04

It is very natural, because the Laplace operator is ill-conditioned.
As you can see, we used several standard MATLAB operations (matrix-

by-vector product as "*", addition as "+", the Frobenius norm as a norm
function). The only unfamiliar function is the round function, which helps
to reduce the ranks while maintaining the accuracy. You can try to in-

5

crease/decrease the accuracy and see what is the effect. If a plot of the
solution is required, it is convenient to convert it to a full tensor. Let us
compute the slice of the solution in the middle of the "z" axis. The simplest
way to do it is to reshape the quantized tensor into a 3D-tensor:

>> sol_3d=reshape(sol ,[2^d,2^d,2^d],1e-8);
sol_3d is a 3-dimensional TT-tensor , ranks and mode sizes:
r(1)=1 n(1)=128
r(2)=12 n(2)=128
r(3)=12 n(3)=128
r(4)=1

Now we can extract the required slice using fancy indexing:

>> sl=sol_3d (:,:,2^(d-1)); sl=reshape(sl ,[2^d,2^d],1e-8)
sl is a 2-dimensional TT-tensor , ranks and mode sizes:
r(1)=1 n(1)=128
r(2)=12 n(2)=128
r(3)=1

Finally, the conversion to the full format is done via the full function:

>> mm=full(sl);

full has an optional argument, specifying the size of the result (i.e., to
avoid additional reshapes). Now, mm is an ordinary 2D-array and can be
plotted.

In the opposite, the conversion from a full tensor to a TT-tensor is done
via tt_tensorclass constructor.

5 Basic functions
TT-Toolbox supports several basic functions for matrices and vectors. The
full list can be found in the HTML documentation. Here we give only the
basic openes The following operations are supported:

1. tt=tt_tensor(y,eps) — construct TT-tensor from full array y with
accuracy eps.

2. ttm=tt_matrix(y,eps) — construct TT-matrix from full array of
dimension n1 × n2 . . .× nd ×m1 . . .×md with accuracy eps.

3. y=full(tt) — converts TT-tensor tt to a full array.

4. y=full(ttm) — converts TT-matrix ttm to a full square matrix.

6

║ 1D-array

║You can reshape y
║on the fly by passing
║new size vectors, e.g.
║sz1, sz2:
║
║tt = tt_tensor(y,eps,sz1)
║
║with prod(sz1)=numel(y)
║
║ttm = tt_matrix(y,eps,sz1,sz2)
║
║with prod(sz1)=size(y,1)
║ prod(sz2)=size(y,2)
║
║Matrices should be full
║(not sparse)

PDFescape
Strikeout

5. tt=round(tt,eps) — approximates given TT-tensor with another
TT-tensor with smaller ranks but with prescribed accuracy eps.

6. Binary operations tt1·tt2, where · can be any operation from the set
{+,−, .∗} (plus,minus, elementwise product). They are implemented
when both iterands are either TT-tensors or TT-matrices.

7. r=rank(tt,k), r=rank(ttm,k)— returns all ranks of the TT-decomposition
if k is not specified, and the k-th rank, if it is given.

8. sz=size(tt), sz=size(ttm) — returns the size of the array. For the
TT-tensors, it returns d integers, for TT-matrix it returns d×2 array
of interegers.

9. mm=mem(tt), mm=mem(ttm) — memory required to store the TT-
tensor

10. er=erank(tt) — effective rank of the TT-tensor.

11. Matrix-by-vector product: A*b, where A is a tt_matrix and b is a
tt_tensor of appropriate sizes;

12. Matrix-by-matrix product: A*B, where A is a tt_matrix and B is a
tt_matrix.

13. Matrix by full vector product: A*b, where A is a tt_matrix and b is
a full vector of size

∏d
k=1mk.

14. p=dot(tt1,tt2) — dot (scalar) product of two TT-tensors

15. p=norm(tt) — Frobenius norm of the TT-tensor.

16. elem=tt(i1,i2,...,id) — computes element of the TT-tensor in
position i1,i2,...,id.

17. elem=tt(ind), where ind is an integer array of length d return ele-
ment of the TT-tensor in the position specified by multiindex ind.

6 More functions

There are several functions that are helpful in working with TT-
tensors and TT-matrices.

18. ttm=diag(tt), tt=diag(ttm)— constructs either diagonal TT-matrix
from TT-tensor, or takes diagonal of a TT-matrix.

7

19. a=kron(b,c). For b, c being TT-tensors, it computes outer product
of them with number of dimensions equal to the sum of the number of
dimensions of b and c. For TT-matrices it computes their Kronecker
product in TT-format.

20. tt=tt_random(n,d,r) — generate random TT-tensor with dimen-
sion d, mode size n, ranks r. n and r can be either numbers (then all
dimensions and ranks are the same) or arrays of integers.

21. tt=tt_ones(n,d) generate tensor with mode sizes n, dimension d of
all ones

22. tt=tt_eye(n,d) generate identity matrix with dimension d and mode
size n. n can be either a number, or integer array. Returns result in
the old format.

23. tt=tt_qlaplace_dd(d) – generate Laplacian operator with Dirichlet
BC on a grid with 2d1 × 2d2 ×

24. tt=tt_x(n,d) — returns QTT representation of vector 1 : nd

25. reshape of a TT-tensor

7 Advanced routines
There are several advanced subroutines for approximate basic operations.
These include:

1. Linear system solution y=dmrg_solve2(a,x,eps,options) extensive
rank growth).

2. Eigenvalue solver y=dmrg_eigb2(a,x,eps,options)

3. Cross approximation of a black-box tensor y=dmrg_cross(d,n,fun,eps,options)

4. Construction of the WTT filters (filters_wtt, wtt, iwtt)

5. Fast evaluation of pointwise function of a TT-tensor: y=funcrs2(tt,...)

Note, that these routines are only efficient for small mode sizes, i.e. for the
QTT case (n = 2 or sometimesm = 4). There are several other subroutines
in the subdirectory exp, you can try them out! Also, the most brave ones
can try one cross approximation algorithm based on element evaluation,
contained in the subdirectory cross. However, right now they are not as
fast as they can be, due to MATLAB indexing (well, they are fast, but not
as fast as I think they should be).

As an example, consider computation of the QTT-approximation of
√
x

defined on [0, 1] on a very fine grid, one can use the following code:

8

║ a=tkron(b,c)

║ y = dmrg_eig(A,eps,options)

║ Consider using also
║ amen_cross
║ and
║ greedy2_cross

PDFescape
Strikeout

PDFescape
Strikeout

%funcrs.m: Example of cross -DMRG method
%for computing functions of TT -tensors
d=70; n=2^d; h=1.0./(n-1);
x=tt_x(d,2); %QTT -representation of x with ranks 2

fun = @(x) sqrt(x);
tic;
tt=funcrs2(x,fun ,1e-12,x,8);
toc;

The computation results are

>> fcrs
sweep=1, er=9.34e -02 er_nrm =1.00e +00
sweep=2, er=5.89e -09 er_nrm =3.49e -08
sweep=3, er=2.75e -13 er_nrm =2.98e -08
sweep=4, er=2.75e -13 er_nrm =5.27e -09
sweep=5, er=2.75e -13 er_nrm =2.79e -08
sweep=6, er=2.75e -13 er_nrm =2.79e -08
sweep=7, er=2.75e -13 er_nrm =2.79e -08
Elapsed time is 0.451595 seconds.

The convergence criteria for funcrs is not a well-developed subject, thus it
is safer to perform several sweeps. The solution has very good ranks, which
can be verified by calling erank command:

>> erank(tt)
ans =

6.2815

To check the accuracy of this approximation on 270 points, one can compute
integral ∫ 1

0

√
xdx ≈ h

n∑
k=1

f(xk).

This can be realized via a scalar product of the TT-tensor with tensor of
all ones. It should be compared with analytical value 2

3
:

>> p=tt_ones(2,d); p=tt_tensor(p); dot(p,tt)*h-2/3
ans =

-2.3648e -14

9

║x = tt_x(2, d)*h;

PDFescape
Strikeout

PDFescape
Strikeout

PDFescape
Strikeout

8 Conclusion
More detailed information should be found in the documentation (see in-
dex.html in the doc/ directory). This software is not free from bugs, so
please feel free to write and ask, what is going on.

10

	Contributors
	What is the TT-format for tensors
	tt_tensor and tt_matrix storage scheme
	Quick start
	Basic functions
	More functions
	Advanced routines
	Conclusion

