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Supplementary Material

A Implementation Details

We conduct our experiments on the ImageNet (also known as ILSVRC2012) [1] dataset. ImageNet is
a commonly used benchmark for image classification. We train our models on the training set, which
consists of 1.28M images. The top-1 accuracy is measured on the 50k validation images following
common practice [2, 4]. To fairly compare with previous methods, we report the single crop results.

We fix the number of sparsification stages S = 3 in all of our experiments, since this setting can
lead to a decent trade-off between complexity and performance. For the sake of simplicity, we set
the target keeping ratio ρ as a geometric sequence [ρ, ρ2, ρ3], where ρ is the keeping ratio after each
sparsifcation ranging from (0, 1). For the prediction module, we use the identical architecture for
different stages. We use two LayerNorm→ Linear(C, C/2)→ GELU block to produce zlocal and
zglobal respectively. We employ a Linear(C, C/2) → GELU → Linear(C/2, C/4) → GELU →
Linear(C/4, 2)→ Softmax block to predict the probabilities.

During training our DynamicViT models, we follow most of the training techniques used in DeiT [4].
We use the pre-trained vision transformer models to initialize the backbone models and jointly train
the backbone model as well as the prediction modules for 30 epochs. We set the learning rate of the
prediction module to batch size

1024 × 0.001 and use 0.01× learning rate for the backbone model. The batch
size is adjusted adaptively for different models according to the GPU memory. We fix the weights of
the backbone models in the first 5 epochs. All of our models can be trained on a single machine with
8 NVIDIA GTX 1080Ti GPUs.

B More Analysis

In this section, we provide more analysis of our method. We investigate the effects of progressive
sparsification, distillation loss, ratio loss, and keeping ratio. We also include more visualization
results. The following describes the details of the experiments, results and analysis.

Progressive sparsification. To verify the effectiveness of the progressive sparsification strategy,
we test different sparsification methods that result in similar overall complexity. Here we provide
more detailed results and more analysis. We find that progressive sparsification is much better than
single-shot sparsification. Increasing the number of stages will lead to better performance. Since
further increasing the number of stages (> 3) will not lead to significantly better performance but
add computation, we use a 3-stage progressive sparsification strategy in our main experiments.

Ablation on the distillation loss and ratio loss. The weights of the distillation losses and ratio
loss are the key hyper-parameters in our method. Since the token-wise distillation loss and the KL
divergence loss play similar roles in our method, we set λKL = λdistill in all of our experiments for
the sake of simplicity. In this experiment, we fix the keeping ratio ρ to be 0.7. We find our method
is not sensitive to these hyper-parameters in general. The proposed ratio loss can encourage the
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Top-1 accuracy (%) GFLOPs

DeiT-S [4] 79.8 4.6

ρ = 0.25, [ρ] (single-stage) 77.4(-2.4) 2.9(-37%)
ρ = 0.60, [ρ, ρ2] (two-stage) 79.2(-0.6) 2.9(-37%)
ρ = 0.70, [ρ, ρ2, ρ3] (three-stage) 79.3(-0.5) 2.9(-37%)

model to reach the desired acceleration rate. Distillation losses can improve the performance after
sparsification. We directly apply the best hyper-parameters searched on DeiT-S for all models.

Top-1 accuracy (%)

DeiT-S [4] 79.8

λKL = λdistill = 0 79.17(-0.63)
λKL = λdistill = 0.5 79.32(-0.48)
λKL = λdistill = 1 79.23(-0.57)

Top-1 accuracy (%)

DeiT-S [4] 79.8

λratio = 1 79.15(-0.65)
λratio = 2 79.32(-0.48)
λratio = 4 79.29(-0.51)

Smaller keeping ratio. We have also tried applying a smaller keeping ratio (larger acceleration
rate). The results based on DeiT-S [4] and LV-ViT-S [3] models are presented in the following tables.
We see that using ρ < 0.7 will lead to a significant accuracy drop while reducing fewer FLOPs. Since
only 22% and 13% tokens are remaining in the last stage when we set ρ to 0.6 and 0.5 respectively,
small ρ may cause a significant information loss. Therefore, we use ρ ≥ 0.7 in our main experiments.
Jointly scaling ρ and the model width can be a better solution to achieve a large acceleration rate as
shown in Figure 4 in the paper.

Top-1 acc. (%) GFLOPs

DeiT-S [4] 79.8 4.6

ρ = 0.9 79.8(-0.0) 4.0(-14%)
ρ = 0.8 79.6(-0.3) 3.4(-27%)
ρ = 0.7 79.3(-0.5) 2.9(-37%)
ρ = 0.6 78.5(-1.3) 2.5(-46%)
ρ = 0.5 77.5(-2.3) 2.2(-52%)

Top-1 acc. (%) GFLOPs

LV-ViT-S [3] 83.3 6.6

ρ = 0.9 83.3(-0.0) 5.8(-12%)
ρ = 0.8 83.2(-0.1) 5.1(-22%)
ρ = 0.7 83.0(-0.3) 4.6(-31%)
ρ = 0.6 82.6(-0.7) 4.1(-38%)
ρ = 0.5 82.0(-1.3) 3.7(-44%)

More visual results. We provide more visual results in Figure 1. The input images are randomly
sampled from the validation set of ImageNet. We see our method works well for different images
from various categories.
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Figure 1: More visual results. The input images are randomly sampled from the validation set of
ImageNet. We see our method works well for different images from various categories.
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