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A RELATED WORKS

Domain generalization/Domain adaptation: In many real scenarios of machine learning, data
in training phase is sampled from one or many source domains, while in the testing phase, data is
sampled from an unseen target domain. Many works have been proposed to design robust ML models
that can achieve good performances in deployment environment depending on whether they can
access to the target data (domain adaptation) or not (domain generalization). However, most of these
models focus only on transfering accuracy from source to target domains and can be categorized
into five main approaches: (1) data manipulation (Volpi et al., 2018; Qiao et al., 2020; Zhou et al.,
2020; Zhang et al., 2018; Shankar et al., 2018); (2) domain-invariant representation learning (Li et al.,
2018b;a; Ganin & Lempitsky, 2015; Ganin et al., 2016; Phung et al., 2021; Nguyen et al., 2021); (3)
distributional robustness (Krueger et al., 2021; Liu et al., 2021; Koh et al., 2021; Wang et al., 2021;
Sagawa et al., 2019; Hu et al., 2018), (4) gradient operation (Huang et al., 2020; Shi et al., 2021;
Rame et al., 2021; Tian et al., 2022), and (5) self-supervised learning (Carlucci et al., 2019; Kim
et al., 2021; Jeon et al., 2021; Li et al., 2021).

Fairness in Machine Learning: Many fairness notions have been proposed to measure the unfairness
in ML model, and they can be roughly classified into two classes: Individual fairness considers
the equity at the individual-level and it requires that similar individuals should be treated similarly
(Biega et al., 2018; Bechavod et al., 2020; Gupta & Kamble, 2021; Dwork et al., 2012). Group
fairness attains a certain balance in the group-level, where the entire population is first partitioned
into multiple groups and certain statistical measures are equalized across different groups (Hardt
et al., 2016; Zhang et al., 2019; 2020). Various approaches have also been developed to satisfy
these fairness notions, they roughly fall into three categories: (1) Pre-processing: modifying training
dataset to remove bias before learning an ML model (Kamiran & Calders, 2012; Zemel et al., 2013).
(2) In-processing: attain fairness during the training process by imposing certain fairness constraint
or modifying loss function. (Zafar et al., 2019; Agarwal et al., 2018) (3) Post-processing: altering
the output of an existing algorithm to satisfy a fairness constraint after training (Hardt et al., 2016).
However, most of these methods assume the data distributions at training and testing are the same. In
contrast, we study fairness problem under domain generalization in this paper.

Fairness under Domain Adaptation: There are some studies proposed to achieve good fairness
when the testing environment changes but all of them focused on the domain adaptation setting. The
most common adaptation setup is learning under the assumption of covariate shift. For example,
Singh et al. (2021) leveraged a feature selection method in a causal graph describing data to mitigate
fairness violation under covariate shift of distribution in testing data. Coston et al. (2019) proposed
the weighting methods that can give fair prediction under covariate shift between source and target
distribution when access to the sensitive attributes is prohibited. Rezaei et al. (2021) sought fair
decisions by optimizing a worst-case testing performance. Besides convariate shift, there are some
works proposed to handle other types of distribution shift including demographic shift and prior
probability shift. Instead of learning fair model directly, Oneto et al. (2019) and Madras et al. (2018)
find fair representation that can generalize to the new tasks. Aside from empirical studies, Schumann
et al. (2019) and Yoon et al. (2020) developed theoretical frameworks to examine fairness transfer
in domain adaptation setting and then offered modeling approaches to achieve good fairness in the
target domain.

Comparison with existing bounds in the literature: We compare our bounds with most commons
bound in the fields of domain adaptation and domain generalization as follows.

Accuracy bounds in domain adaptation.

• Bounds in Ben-David et al. (2010):
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This bound is for binary classification problem under domain adaptation. The classification error
in target domain is bounded by the error in source domain, the total variation distance of feature
distribution between source and target domain, and the misalignment of the labeling function
between source and target domain. The limitation of this bound is that (1) it’s only applicable to
settings with zero-one loss function and deterministic labeling function; (2) estimating the total
variation distance is hard in practice and it doesn’t relate the feature and representation spaces.
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This paper also provides another accuracy bound based on H�H divergence:.
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H�H divergence. However, it has the same limitations as total variation distance mentioned above.

Accuracy bounds in domain generalization.

• Bounds in Albuquerque et al. (2019):
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is the mixture of source domains that is closest to

target domain with respect to H divergence. In this bound, the classification error in target domain
is bounded by the convex combination of errors in source domains, the H divergence between
source domains, the H divergence between target domain and its nearest mixture of source domains,
and the misalignment of the labeling function between mixture source domains and target domain.
Because this bound is constructed based on H divergence, it also has the limitations for the bounds
in domain adaptation (Ben-David et al., 2010) as we mentioned. This bound can be transformed to
the representation space Z by replacing X by Z in its formula. Then, this bound suggests enforcing
invariant constraint of marginal distribution of representation Z across source domains, which has
inherent trade-off as shown in Thm. 2. Because the target domain is unknown during training, the
mixing weights {⇡i}

N
i=1 are not useful for algorithmic design.

• Bounds in Phung et al. (2021):

✏
Acc

DT

⇣
bf
⌘


NX

i=1

⇡i✏
Acc

DS
i

⇣
bf
⌘
+ Cmax

i2[N ]
EDS

i

����
h���fDT (X)y � fDS

i
(X)y

���
i|Y|

y=1

����
1

�

+
NX

i=1

NX

j=1

C
p
2⇡j

N
d1/2

⇣
P

Z
DT , P

Z
DS

i

⌘
+

NX

i=1

NX

j=1

C
p

2⇡j

N
d1/2

⇣
P

Z
DS

i
, P

Z
DS

j

⌘

where d1/2

⇣
P

X
DS

i
, P

X
DS

j

⌘
=

r
D1/2

⇣
P

X
DS

i
k P

X
DS

j

⌘
is Hellinger distance defined based on

Hellinger divergence D1/2

⇣
P

X
DS

i
k P

X
DS

j

⌘
= 2

R
X

✓q
P

X
DS

i
�

q
P

X
DS

j

◆2

dX . This bound re-

lates the feature and representation spaces that the classification error of target domain defined in
feature space is bounded by classification errors of source domains defined in feature space, the
misalignment of labeling function between target and source domains, and the Hellinger distances
between source and target domains and between source domains of marginal distribution of rep-
resentation Z. While this bound is not limited to zero-one loss and the labeling function can be
stochastic, it suggests the alignment of marginal distribution of representation Z across source
domains for generalization. Moreover, estimating Hellinger distance can be hard in practice.

The mismatch between existing bounds and adversarial learning approach for domain generalization.

All existing bounds mentioned above suggest minimizing the distances between representation
distributions across source domains with respect to some discrepancy measures such as H divergence,
total variation distance, and Hellinger distance. Based on these bounds, adversarial learning-based
models are often proposed to minimize these distances. However, there is a misalignment between
the objectives of adversarial learning and the bounds which results in the gap between theoretical
findings and practical algorithms.
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In particular, it has been shown that the objective of the minimax game between the representation
mapping and the discriminator is equivalent to minimizing the JS divergence between representation
distributions across source domains (Goodfellow et al., 2014). However, minimizing JS divergence
does not guarantee the minimization of common distances used in the existing bounds. The details
are as follows.

• H divergence: We show that JS divergence is not the upper bound of H divergence. Con-

sider an example with two distributions P (X) and Q(X) where
⇢
P (X) = 0 w.p 1/3
P (X) = 1 w.p 2/3 and

⇢
Q(X) = 0 w.p 1/3
Q(X) = 1 w.p 2/3 . By definition, DH(P k Q) ⇠ 0.33 > DJS(P k Q) ⇠ 0.08.

• Total variation distance: We have DJS(P k Q)  DTV (P k Q) 8P,Q where DJS and DTV are
JS divergence and total variation distance, respectively. Then, minimizing JS divergence does not
guarantee the minimization of total variation distance.

• Hellinger distance: We have DJS(P k Q) 
p
2d1/2(P,Q) 8P,Q where d1/2 is Hellinger

distance and total variation distance, respectively. Then, minimizing JS divergence does not
guarantee the minimization of Hellinger distance.

Different from the existing bounds, our bounds are based on JS divergence/distance. Then they align
with the adversarial learning approach for domain generalization in general, and with our proposed
method FATDM in particular.

Advantages of our proposed bounds in domain generalization.

In summary, our proposed bounds has several advantages in terms of the following:

• Most existing bounds (Ben-David et al., 2010; Albuquerque et al., 2019) do not relates feature
and representation spaces so it is not clear how performance in input space is affected by the
representations. In contrast, our bounds connect the representation and input spaces; this further
guides us to find representations that lead to good performances in input space.

• Most prior studies adopt H divergence to measure the dissimilarity between domains, which is
limited to deterministic labeling functions and zero-one loss (Ben-David et al., 2010; Albuquerque
et al., 2019). In contrast, our bound is more general and is applicable to settings where domains are
specified by stochastic labeling functions and general loss functions.

• Distant metrics (i.e., total variation distance, H divergence, Hellinger divergence, etc.) used in
existing bounds (Ben-David et al., 2010; Albuquerque et al., 2019; Phung et al., 2021) are hard
to compute in practice. In contrast, our bounds use JS divergence which is aligned with training
objective for discriminator in adversarial learning Goodfellow et al. (2014).

• Existing bounds for domain generalization only imply the alignment of marginal distribution of
feature across source domains (Albuquerque et al., 2019; Phung et al., 2021). As shown in Thm. 2,
methods that learn invariance of marginal distribution have an inherent trade-off and may increase
the lower bound of expected loss. In contrast, our bounds suggest the alignment of label-conditional
distribution of feature across source domains which has been verified to be more effective in
empirical studies (Li et al., 2018b;c; Zhao et al., 2020; Nguyen et al., 2021).

• Regarding the fairness, our work is the first that bounds the unfairness in domain generalization. In
particular, our bounds suggest enforcing the invariant constraint of feature distribution given label
and sensitive attribute across source domains to transfer fairness to the unseen target domain.

B DETAILS OF ALGORITHM FATDM

FATDM consists of density mapping functions my
i,j and m

y,a
i,j , 8y 2 Y, a 2 A, i, j 2 [N ] (learned

by two DensityMatch models), feature mapping function g (ResNet18 model), and the clas-
sifier bh. In our study, we experiment with two different DensityMatch architectures: Star-
GAN (i.e., in FATDM-StarGAN) and CycleGAN (in FATDM-CycleGAN). We show the details
of FATDM-StarGAN below. For FATDM-CycleGAN, the only difference is we used CycleGAN
as DensityMatch instead of StarGAN. The details of CycleGAN were presented in the original
paper (Zhu et al., 2017).
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For FATDM-StarGAN, each DensityMatchY (or DensityMatchY,A) consists of a generator
G : X ⇥ [N ] ⇥ [N ] ! X and a discriminator D : X ! [N ] ⇥ {0, 1}. The generator takes in real
image x and a pair of domain labels i, j as input and generates a fake image; the discriminator aims
to predict the domain label of the image generated by the generator and distinguish whether it is fake
or real. G and D are learned simultaneously by solving the following optimizations:

Discriminator’s objective: min L
StarGAN

D := �L
StarGAN

adv + �clsL
StarGAN

cls(real)

Generator’s objective: min L
StarGAN

G := L
StarGAN

adv + �clsL
StarGAN

cls(fake) + �recL
StarGAN

rec (6)

where LStarGAN

adv is the adversarial loss, LStarGAN

cls(fake) , LStarGAN

cls(real) are domain classification loss with respect
to fake and real images respectively, LStarGAN

rec is the reconstruction loss. The specific formulations
of these loss functions are in Choi et al. (2018). �cls and �rec are hyper-parameters that control the
relative importance of domain classification and reconstruction losses, respectively, compared to the
adversarial loss.

In our experiments, input images are resized to (256, 256) and normalized into the range [�1, 1]. The
dimension of representation space Z is set to 512. ! (hyper-parameter that controls accuracy-fairness
trade-off) varies from 0 to 10 with step sizes 0.0002 for ! 2 [0, 0.002], 0.002 for ! 2 [0.002, 0.1]
and 0.2 for ! 2 [0.2, 10], and � (hyper-parameter that controls accuracy-invariance trade-off) is set
to 0.1 (after hyper-parameter tuning). Models (FATDM and baselines) are implemented by PyTorch
library version 1.11 and is trained on multiple computer nodes (each model instance is trained on a
single node which has 4 CPUs, 8GB of memory, and a single GPU (P100 or V100)). One domain’s
data is used for testing and the other domains’ data is used for training (10% of training data is
used for validation). Each model is trained with 10 epoches and the results are from the epoch
with best performance on the validation set. Figure 6 visualizes the two-stage training process of
FATDM-StarGAN. The detailed architectures of FATDM-StarGAN are shown in Tables 2-5. We
have also provided all code for these models in supplemental material.
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Figure 6: Two-stage training of FATDM-StarGAN. For stage 1, we only show the training process
for DensityMatchY,A (training process for DensityMatchY is similar.)

Table 2: Architecture of StarGAN generators GY and GY,A - Density mapping functions my
i,j and

m
y,a
i,j 8y 2 Y, a 2 A, i, j 2 [N ]. This architecture is similar to the one in the original paper Choi

et al. (2018) except for the first convolution layer where number of input channels is 1 (for grayscale
images) and input shape is (h,w, 1 + 2nc). (h,w) is the size of input images, IN is instance
batchnorm, and ReLU is Rectified Linear Unit. N: number of output channels, K: kernel size, S:
stride szie, P: padding size are convolution and deconvolution layers’ hyper-parameters.

Part Input ! Output Shape Layer Information

Down-sampling

(h,w, 1 + 2nc) ! (h,w, 64) CONV-(N64, K7x7, S1, P3), IN, ReLU

(h,w, 64) !
�
h
2 ,

w
2 , 128

�
CONV-(N128, K4x4, S2, P1), IN, ReLU

�
h
2 ,

w
2 , 128

�
!
�
h
4 ,

w
4 , 256

�
CONV-(N256, K4x4, S2, P1), IN, ReLU

Bottleneck

�
h
4 ,

w
4 , 256

�
!
�
h
4 ,

w
4 , 256

�
Residual Block: CONV-(N256, K3x3, S1, P1), IN, ReLU

�
h
4 ,

w
4 , 256

�
!
�
h
4 ,

w
4 , 256

�
Residual Block: CONV-(N256, K3x3, S1, P1), IN, ReLU

�
h
4 ,

w
4 , 256

�
!
�
h
4 ,

w
4 , 256

�
Residual Block: CONV-(N256, K3x3, S1, P1), IN, ReLU

�
h
4 ,

w
4 , 256

�
!
�
h
4 ,

w
4 , 256

�
Residual Block: CONV-(N256, K3x3, S1, P1), IN, ReLU

�
h
4 ,

w
4 , 256

�
!
�
h
4 ,

w
4 , 256

�
Residual Block: CONV-(N256, K3x3, S1, P1), IN, ReLU

�
h
4 ,

w
4 , 256

�
!
�
h
4 ,

w
4 , 256

�
Residual Block: CONV-(N256, K3x3, S1, P1), IN, ReLU

Up-sampling

�
h
4 ,

w
4 , 256

�
!
�
h
2 ,

w
2 , 128

�
DECONV-(N128, K4x4, S2, P1), IN, ReLU

�
h
2 ,

w
2 , 128

�
! (h,w, 64) DECONV-(N64, K4x4, S2, P1), IN, ReLU

(h,w, 64) ! (h,w, 3) CONV-(N3, K7x7, S1, P3), IN, ReLU
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Table 3: Architecture of StarGAN discriminators. This architecture is similar to the one in the original
paper Choi et al. (2018) except for the first convolution layer where number of input channels is 1
(for grayscale images). (h,w) is the size of input images, nd is the number of domains, and Leaky
ReLU is Leaky Rectified Linear Unit. N: number of output channels, K: kernel size, S: stride szie, P:
padding size are convolution layers’ hyper-parameters.

Layer Input ! Output Shape Layer Information

Input Layer (h,w, 1) !
�
h
2 ,

w
2 , 64

�
CONV-(N64, K4x4, S2, P1), Leaky ReLU

Hidden Layer
�
h
2 ,

w
2 , 64

�
!
�
h
4 ,

w
4 , 128

�
CONV-(N128, K4x4, S2, P1), Leaky ReLU

Hidden Layer
�
h
4 ,

w
4 , 128

�
!
�
h
8 ,

w
8 , 256

�
CONV-(N256, K4x4, S2, P1), Leaky ReLU

Hidden Layer
�
h
8 ,

w
8 , 256

�
!
�

h
16 ,

w
16 , 512

�
CONV-(N512, K4x4, S2, P1), Leaky ReLU

Hidden Layer
�

h
16 ,

w
16 , 512

�
!
�

h
32 ,

w
32 , 1024

�
CONV-(N1024, K4x4, S2, P1), Leaky ReLU

Hidden Layer
�

h
32 ,

w
32 , 1024

�
!
�

h
64 ,

w
64 , 2048

�
CONV-(N2048, K4x4, S2, P1), Leaky ReLU

Output Layer (Dsrc)
�

h
64 ,

w
64 , 2048

�
!
�

h
64 ,

w
64 , 1

�
CONV-(N1, K3x3, S1, P1)

Output Layer (Dcls)
�

h
64 ,

w
64 , 2048

�
! (1, 1, nd) CONV-(N(nd), K h

64 ⇥
w
64 , S1, P0)

Table 4: Architecture of feature mapping g. This architecture is similar to ResNet18 model He et al.
(2016) except for the first convolution layer where number of input channels is 1 (for grayscale
images) and the last layer where output dimension is nz - dimension of representation space Z . (h,w)
is the size of input images, BN is batchnorm, MaxPool is max pooling, AvePool is average pooling,
and ReLU is Rectified Linear Unit. N: number of output channels, K: kernel size, S: stride szie, P:
padding size are convolution layers’ hyper-parameters.

Part Input ! Output Shape Layer Information

Input (h,w, 1) !
�
h
2 ,

w
2 , 64

�
CONV-(N64, K7x7, S2, P3), BN, ReLU, MaxPool

Bottleneck

�
h
2 ,

w
2 , 64

�
!
�
h
4 ,

w
4 , 64

� Residual Block: CONV-(N64, K3x3, S1, P1), BN, ReLU,

CONV-(N64, K3x3, S1, P1), BN

�
h
4 ,

w
4 , 64

�
!
�
h
8 ,

w
8 , 128

� Residual Block: CONV-(N128, K3x3, S1, P1), BN, ReLU,

CONV-(N128, K3x3, S1, P1), BN

�
h
8 ,

w
8 , 128

�
!
�

h
16 ,

w
16 , 256

� Residual Block: CONV-(N256, K3x3, S1, P1), BN, ReLU,

CONV-(N256, K3x3, S1, P1), BN

�
h
16 ,

w
16 , 256

�
! (1, 1, 512)

Residual Block: CONV-(N512, K3x3, S1, P1), IN, ReLU,

CONV-(N512, K3x3, S1, P1), BN, AvgPool

Output (1, 1, 512) ! nz LINEAR-(512, nz)

Table 5: Architecture of classifier bh. nz is the dimension of representation space Z .
Layer Input ! Output Shape Layer Information

Hidden Layer nz !
nz
2 LINEAR-

�
nz,

nz
2

�
, ReLU

Hidden Layer nz
2 !

nz
4 LINEAR-

�
nz
2 ,

nz
4

�
, ReLU

Output Layer nz
4 ! 1 LINEAR-

�
nz
4 , 1

�
, Sigmoid
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C ADDITIONAL EXPERIMENTS

Experimental results with all unfairness and error metrics. In this section, we provide more
experimental results about fairness and accuracy under domain generalization. In particular, we
investigate fairness-accuracy trade-off on the two clinical image datasets including Cardiomegaly and
Edema diseases with respect to different fairness criteria (i.e., Equalized Odds, Equal Opportunity),
and unfairness (i.e., MD and EMD) and error (i.e., CE, MR, AUROC, AUPR, F1) measures. Figure 7
(Cardiomegaly disease - Equalized Odds), Figure 8 (Cardiomegaly disease - Equal Opportunity),
Figure 9 (Edema disease - Equalized Odds), and Figure 10 (Edema disease - Equal Opportunity)
show the unfairness-error curves of our models as well as baselines for these two datasets. As we can
see, our model outperforms other baselines in terms of fairness-accuracy trade-off. The curve of our
model is the bottom-leftmost compared to other baselines in all measures showing the clear benefit of
(1) enforcing conditional invariant constraints for accuracy and fairness transfer and (2) using the
two-stage training process to stabilize training compared to adversarial learning approach. We also
quantify our observations by calculating the areas under these unfairness-error curves, in which the
smaller area indicates the better accuracy-fairness trade-off. As shown in Tables 6 and 7, our model
has the smallest areas under the curve and achieves significantly better fairness-accuracy trade-off for
both equalized odd and equal opportunity compared to other methods.

Impact of the number of source domains. Our work focuses on transferring fairness and accuracy
under domain generalization when the target domain data are inaccessible during training. Instead,
it relies on a set of source domains to generalize to an unseen, novel target domain. We investigate
the relationship between the fairness-accuracy trade-off on the target domain and the number of
source domains during training. In particular, we evaluate the performances of FATDM and ERM on
Edema dataset with different numbers of source domains. Similar to the previous experiment, we first
construct the dataset for each domain by rotating images with ✓ degree, where ✓ 2 {0�, 15�, 30�}
when the number of domain is 3, ✓ 2 {0�, 15�, 30�, 45�} when the number of domain is 4, and
✓ 2 {0�, 15�, 30�, 45�, 60�} when the number of domain is 5. The number of images per domain
is adapted to ensure the training set size is fixed for the three cases. We follow the leave-one-out
domain setting in which one domain serves as the unseen target domain for evaluation while the rest
domains are for training; the average results across target domains are reported.

Figure 11 shows error-unfairness curves of FATDM and ERM when training with 2, 3, and 4 source
domains. We observe that training with more source domains does not always help the model achieve
better fairness-accuracy trade-off on unseen target domains. In particular, the performances of both
FATDM and ERM are the best when training with 2 source domains and the worst when training with
3 source domains. We conjecture the reason that adding more source domains may help reduce the
discrepancy between source and target domains (term (ii) in Thm. 1 and Thm. 3), but it may make it
more difficult to minimize the source error and unfairness (term (i) in Thm. 1 and Thm. 3) and to
learn invariant representation across the source domains (term (iii) in Thm. 1 and Thm. 3). Thus, our
suggestion in practice is to conduct an ablation study to find the optimal number of source domains.

Simultaneous and sequential training comparison. In all experiments we conducted so far,
the fairness constraint Lfair is optimized simultaneously with the prediction error Lacc and the
domain-invariant constraint Linv for all methods. To investigate whether FATDM still attains a
better accuracy-fairness trade-off when the processes of invariant representation learning and fair
model training are decoupled, we conduct another set of experiments where models (FATDM (i.e.,
FATDM-StarGAN) and baselines G2DM, DANN, CDANN) are learned in a sequential matter: for
each model, we first learn the representation mapping g by optimizing Linv and Lacc; using the
representations generated by the fixed g, we then learn the fair classifier by optimizing Lacc and Lfair.
The models trained based on the above procedure are named FATDM-seq, G2DM-seq, DANN-seq,
and CDANN-seq; and their corresponding error-unfairness curves are shown in Figure 12. The
results show that FATDM-seq still attains the best accuracy-fairness trade-off at target domain
compared to G2DM-seq, DANN-seq, CDANN-seq. Our method is effective no matter whether
Lfair and Linv are optimized simultaneously or sequentially.

The reason that our method consistently outperforms the baselines for both settings is that the
invariant-representation learning in baseline methods only guarantees the transfer of accuracy but
not fairness. Even though a fairness regularizer is imposed to ensure the model is fair at source
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domains (no matter whether invariant representations and fair classifier are trained simultaneously or
sequentially), this fairness cannot be preserved at the target domain due to the potential distributional
shifts. The key to ensuring the transfer of fairness is to learn representations such that P (Z|Y,A) is
domain-invariant; this must be done during the representation learning process. From Thm 3, we
can see that unfairness at target domain ✏

EO

DT can still blow up if PZ|Y,A is different across domains,
regardless of how fair the model is at source domains (i.e., small ✏EO

DS
i

).

Figure 7: Error-unfairness curves with respect to equalized odds of FATDM and baselines on Car-
diomegaly disease dataset.
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Figure 8: Error-unfairness curves with respect to equal opportunity of FATDM and baselines on
Cardiomegaly disease dataset.
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Figure 9: Error-unfairness curves with respect to equalized odds of FATDM and baselines on Edema
disease dataset.
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Figure 10: Error-unfairness curves with respect to equal opportunity of FATDM and baselines on
Edema disease dataset.
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Table 6: Area under the error-unfairness curves (Cardiomegaly disease dataset).

Error - Unfairness
Method

ERM G2DM DANN CDANN CORAL GroupDRO IRM FATDM
Eq

ua
liz

ed
O

dd
s

AUROC - MD 0.5575 0.6093 0.7571 0.7224 0.7239 0.7039 0.6784 0.0935
AUPRC - MD 0.5463 0.6301 0.7730 0.6883 0.7300 0.7152 0.6967 0.0291
CE - MD 0.2861 0.2601 0.4622 0.4232 0.4424 0.3148 0.3370 0.2152
MR - MD 0.6312 0.4906 0.6795 0.6667 0.6683 0.6382 0.5721 0.2439
F1 - MD 0.5901 0.4150 0.6507 0.6547 0.5745 0.5360 0.5025 0.3365
AUROC - EMD 0.7326 0.7106 0.8342 0.7931 0.8075 0.7845 0.7991 0.1099
AUPRC - EMD 0.6901 0.7146 0.8308 0.7577 0.7918 0.7806 0.7945 0.0437
CE - EMD 0.5158 0.4443 0.6143 0.5788 0.5873 0.4911 0.5274 0.3384
MR - EMD 0.7056 0.5795 0.7137 0.6979 0.6902 0.6571 0.6483 0.2045
F1 - EMD 0.6866 0.5328 0.7279 0.7019 0.6515 0.6027 0.6120 0.2888

Eq
ua

l
O

pp
or

tu
ni

ty

AUROC - MD 0.5128 0.6001 0.6999 0.6686 0.5935 0.6288 0.5910 0.0750
AUPRC - MD 0.5419 0.6718 0.7086 0.7189 0.6423 0.6761 0.6435 0.0262
CE - MD 0.3690 0.4272 0.5094 0.4492 0.3780 0.2737 0.3582 0.2754
MR - MD 0.3203 0.5068 0.5252 0.5512 0.4897 0.4368 0.4173 0.1778
F1 - MD 0.2134 0.4570 0.4608 0.5207 0.4017 0.3561 0.3510 0.2737
AUROC - EMD 0.6119 0.7184 0.7649 0.7517 0.6720 0.7068 0.6780 0.0947
AUPRC - EMD 0.6321 0.7684 0.7718 0.7877 0.6912 0.7335 0.7200 0.0448
CE - EMD 0.5092 0.6093 0.6264 0.6141 0.4737 0.4340 0.4917 0.3070
MR - EMD 0.4619 0.6420 0.6325 0.6532 0.5790 0.5515 0.5298 0.1918
F1 - EMD 0.3876 0.6122 0.5942 0.6496 0.5101 0.4898 0.4889 0.3108

Table 7: Area under the error-unfairness curves (Edema disease dataset).

Error - Unfairness
Method

ERM G2DM DANN CDANN CORAL GroupDRO FATDM

Eq
ua

liz
ed

O
dd

s

AUROC - MD 0.3395 0.2765 0.2972 0.2548 0.3642 0.3627 0.0633
AUPRC - MD 0.2865 0.2446 0.2561 0.2304 0.3052 0.2998 0.0771
CE - MD 0.1096 0.1266 0.1243 0.1192 0.1269 0.1179 0.0341
MR - MD 0.3929 0.3525 0.3509 0.3302 0.4303 0.4240 0.0656
F1 - MD 0.4213 0.3219 0.3527 0.4178 0.4283 0.4189 0.1369
AUROC - EMD 0.4277 0.3813 0.3637 0.3419 0.4419 0.4394 0.2729
AUPRC - EMD 0.3868 0.3588 0.3285 0.3245 0.3958 0.3921 0.3041
CE - EMD 0.2366 0.2401 0.2348 0.2334 0.2447 0.2339 0.1827
MR - MD 0.4592 0.4435 0.4017 0.3904 0.4942 0.4792 0.2802
F1 - MD 0.5186 0.4642 0.4132 0.4827 0.5180 0.5029 0.3855

Eq
ua

l
O

pp
or

tu
ni

ty

AUROC - MD 0.2488 0.2139 0.2085 0.1806 0.2696 0.2625 0.0218
AUPRC - MD 0.2606 0.2381 0.2297 0.2035 0.2937 0.2874 0.0168
CE - MD 0.1540 0.1839 0.1689 0.1572 0.1487 0.1446 0.0234
MR - MD 0.2967 0.2652 0.2620 0.2516 0.3101 0.2999 0.0468
F1 - MD 0.2848 0.2195 0.2534 0.2613 0.2973 0.2975 0.0502
AUROC - EMD 0.2736 0.2472 0.2449 0.2155 0.2897 0.2841 0.1121
AUPRC - EMD 0.2653 0.2451 0.2429 0.2176 0.2852 0.2812 0.0912
CE - EMD 0.2083 0.2318 0.2355 0.2147 0.2055 0.2003 0.1159
MR - MD 0.3409 0.3162 0.3258 0.3026 0.3442 0.3388 0.1872
F1 - MD 0.3237 0.2756 0.3031 0.3008 0.3215 0.3271 0.1779
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Figure 11: Error-unfairness curves with respect to equalized odds of FATDM and ERM on Edema
disease dataset when training with different numbers of source domains. Names in the figure legend
are in the form of X-Y where X is the model and Y is the number of source domains (e.g., ERM-2
means training ERM on two source domains.)
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(a) Equalized Odds

(b) Equal Opportunity

Figure 12: Fairness-accuracy trade-off (Pareto frontier) of models trained with simultaneous and
sequential (i.e., models with ‘-seq’ suffix) approaches, and FATDM-CycleGAN (i.e., use CycleGAN
instead of StarGAN as density mapping functions) on Cardiomegaly disease dataset: error-unfairness
curves are constructed by varying ! 2 [0, 10] and the values of error and unfairness are normalized
to [0, 1]. Lower-left points and the smaller area under the curve indicate the model has a better
fairness-accuracy trade-off (Pareto optimality).

D ADDITIONAL RESULTS & LEMMAS

D.1 TIGHTER UPPER BOUND FOR ACCURACY

Corollary 5.1 We can replace term (ii) in Thm. 1 with the following term to attain a tighter upper
bound for accuracy:

p

2Cmin
i2[N ]

 
dJS

⇣
P

Y
DT , P

Y
DS

i

⌘
+

s

2⌘TV Ez⇠P
DT

i
(z)


dJS

⇣
P

X|Y
DT , P

X|Y
DT

i

⌘2�
!
.

where ⌘TV = sup
PX

Di
6=PX

Dj

DTV

⇣
PZ

Di
,PZ

Dj

⌘

DTV

⇣
PX

Di
,PX

Dj

⌘  1 is called Dobrushin’s coefficient (Polyanskiy & Wu,

2017).

This result suggests that we can further optimize term (ii) in Thm. 1 by minimizing ⌘TV . It has
been shown in Shui et al. (2022) that ⌘TV can be controlled by Lipschitz constant of the feature
mapping g : X ! Z when g follows Gaussian distribution. The Lipschitz constant of g, in turn, can
be upper bounded by the Frobenius norm of Jacobian matrix with respect to g (Miyato et al., 2018).
However, in practice, we found that computing Jacobian matrix of g is computationally expensive
when dimension of representation Z is large, and optimizing it together with invariant constraints
does not improve the performances of models in our experiments.

D.2 LEMMAS FOR PROVING THEOREM 1

Lemma 6 Let X be the random variable in domains Di and Dj , and E be an event that PX
Dj

� P
X
Di

,
then we have: Z

E

���PX
Dj

� P
X
Di

��� dX =

Z

E

���PX
Dj

� P
X
Di

��� dX =
1

2

Z ���PX
Dj

� P
X
Di

��� dX

where E is the complement of event E .
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Lemma 7 Let X be the random variable in domains Di and Dj , let f : X ! R+ be a non-negative
function bounded by C, then we have:

EDj [f(X)]� EDi [f(X)] 
C
p
2

r
min

⇣
DKL

⇣
P

X
Di

k P
X
Dj

⌘
,DKL

⇣
P

X
Dj

k P
X
Di

⌘⌘

where DKL(· k ·) is the KL-divergence between two distributions.

Lemma 8 Suppose loss function L is upper bounded by C and consider a classifier bf : X ! Y . the
expected classification error of bf in domain Dj can be upper bounded by its error in domain Di:

✏
Acc

Dj

⇣
bf
⌘
 ✏

Acc

Di

⇣
bf
⌘
+

p

2CdJS

⇣
P
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Dj

, P
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Di

⌘

where X,Y are random variables denoting feature and label in domains Di and Dj .

Lemma 9 Consider two distributions P
X
Di

and P
X
Dj

over X . Let PZ
Di

and P
Z
Dj

be the induced
distributions over Z by mapping function g : X ! Z , then we have:

dJS(P
X
Di

, P
X
Dj

) � dJS(P
Z
Di

, P
Z
Dj

)

Lemma 10 (Phung et al., 2021) Consider domain D with joint distribution P
X,Y
D and labeling

function fD : X ! Y
� from feature space to label space. Given mapping function g : X ! Z

from feature to representation space, we define labeling function hD : Z ! Y
� from representation

space to label space as hD(Z)Y = fD(X)Y � g
�1(Z) =

R
g�1(Z) fD(X)Y PX

D dX
R
g�1(Z) P

X
D dX

. Similarly, let

bf be the hypothesis from feature space, then the corresponding hypothesis bh from representation

space under the mapping function g is computed as bh(Z)Y =
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bf(X)Y PX
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X
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L( bf(X), Y )

⇤
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⇤
be expected errors defined with respect to feature

space and representation space, respectively. We have:

✏
Acc

D

⇣
bf
⌘
= ✏

Acc

D

⇣
bh
⌘

D.3 LEMMAS FOR PROVING COROLLARY 1.1

Lemma 11 Consider two random variables X,Y . Let PX,Y
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, P
X,Y
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be two joint distributions defined

in domains Di and Dj , respectively. Then, JS-divergence DJS
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D.4 LEMMAS FOR PROVING THEOREM 2

Lemma 12 Under Assumption in Theorem 2, the following holds for any domain D:

q
✏
Acc

D ( bf) =
q
ED[L( bf(X), Y )] �

s
2c

|Y|
dJS(P

Y
D , P

bY
D )2, 8 bf

where bY is the prediction made by randomized predictor bf .
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D.5 LEMMAS FOR PROVING THEOREM 3

Definition 13 Given domain Di with binary random variable A denoting the sensitive attribute, the
unfairness measures that evaluate the violation of equalized odd (EO) and equal opportunity (EP)
criteria between sensitive groups of this domain are defined as follows.
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Lemma 14 Given two domains Di and Dj , under Definition 13, Ry,a
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can be bounded by
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Lemma 15 Given two domains Di and Dj , under Definition 13, the unfairness in domain Dj can
be upper bounded by the unfairness measure in domain Di as follows.
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Lemma 16 Consider domain D with distribution P
X,Y
D and labeling function fD : X ! Y

�. Given
mapping function g : X ! Z from feature to representation space, we define labeling function
hD : Z ! Y

� from representation space to label space as hD(Z)Y = fD(X)Y � g
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D.6 LEMMAS FOR PROVING THEOREM 5
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E PROOFS

E.1 PROOFS OF THEOREMS

Proof of Theorem 1. First, we get the upper bound based on the representation space Z . Then,
we relate it with the feature space X . Let DS

⇤
2 {D

S
i }

N
i=1 be the source domain that’s nearest to the
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target domain D
T . According to Lemma 8, we have upper bound of the expected classification error

for the target domain based on each of the source domain as follows.
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Taking average of upper bounds based on all source domains, we have:
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Here we have
(1)
 by using triangle inequality for JS-distance: dJS(P,R)  dJS(P,Q) + dJS(Q,R)

with P,Q, and R = PDT , PDS
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, respectively. We have
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. Similarly, we can obtain the upper bound based

on the feature space X as follows.
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However, the bounds in Eq. (7) and Eq. (8) are based on either feature space or representation space,
which is not readily to use for practical algorithmic design because the actual objective is to minimize
✏
Acc

DT

⇣
bf
⌘

in feature space by controlling Z in representation space. According to Lemmas 9 and 10,
we can derive the bound that relates feature and representation spaces as follows.
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Proof of Corollary 1.1.
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Here we have
(1)
 by using Lemma 11 to decompose the JS-divergence of the joint distributions and
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 by using inequality
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This new upper bound, combined with Thm. 1 suggests learning representation Z such that PZ|Y
DS

i

is invariant across source domains, or in another word, Z ? D | Y . This result is consistent with
Thm. 4: when the target domain D
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Proof of Corollary 5.1 (tighter upper bound for accuracy). The bound in Eq. (9) is constructed
using Lemma 9. Indeed, we can make this bound tighter using the strong data processing inequality
for JS-divergence (Polyanskiy & Wu, 2017), as stated below.
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⌘  1, DTV is the

total variation distance. ⌘TV is called the Dobrushin’s coefficient (Polyanskiy & Wu, 2017).

Apply Lemma 11 and this inequality to the second term in the right hand side of Eq. (7) (similar to
the proof of Corollary 1.1), we have:
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Proof of Theorem 2. Consider a source domain D
S
i and target domain D

T . Because JS-distance
dJS(·, ·) is a distance metric, we have triangle inequality:
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The last inequality is by AM-GM inequality.

Therefore, when dJS(PY
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The above holds for any source domain D
S
i . Average over all N source domains, we have
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Proof of Theorem 3. The proof is based on Lemmas 15 and 16 and similar to the proof of Thm. 1.

Let DS
⇤
2 {D

S
i }

N
i=1 be the source domain nearest to the target domain D

T . According to Lemma 15,
we have upper bound of the unfairness measured with respect to the representation space for the
target domain based on each of the source domain. For equal opportunity (EP), we have:
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Taking average of upper bounds based on all source domains, we have:
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According to Lemmas 9 and 16. we can relate this bound to the feature space as follows.
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Similarly, we got the upper bound for unfairness measure with respect to equalized odds as follows.
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Proof of Theorem 4. Consider two source domains, DS
i and D

S
j , if PY

DS
i
= P

Y
DS

j
, we can learn the

mapping function g = P✓ (Z|X) such that PZ|Y
DS

i
= P

Z|Y
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j
. Note that this mapping function always

exists. In particular, the trivial solution for Z that satisfies PZ|Y
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i
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j
is making Z ? Y,D (e.g.,
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P✓ (Z|X) = N (0, I)). Then we have:
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For fairness, we only give the proof for equalized odds (EO), we can easily get the similar derivation
for equal opportunity. For any Z that satisfies PZ|Y=y,A=a
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Similar to the proof of accuracy, Z that satisfies PZ|Y=y,A=a
DS

i
= P

Z|Y=y,A=a
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j
8y, a 2 {0, 1}, i, j 2

[N ] always exists. The trivial solution for is Z that satisfies Z ? Y,A,D.

By Lemma 16, we have ✏
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For equal opportunity (EP), Z only need to satisfy the condition for positive label, i.e., PZ|Y=1,A=a
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i
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Proof of Theorem 5. According to Lemma 17, we have:
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where DTV and d1/2 are total variation distance and Hellinger distance between two distributions,

respectively. We have
(1)
= because of our choice for representation mapping g(x) := P

Z|x =
N
�
µ(x);�2Id

�
. According to Devroye et al. (2018), the Hellinger distance between two multivariate

normal distributions over Rd has a closed form as follows
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where µ1, µ2,⌃1,⌃2 are mean vectors and covariance matrices of the two normal distributions. In
Eq. (14), let µ1 = µ(x), µ2 = µ

�
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y
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From Eq. (15), we can see that Helinger distance between two representation distributions P
Z|x

and P
Z|my

i,j(x) is the function of their means µ (x) and µ
�
m

y
i,j(x)

�
. Combining this with Eq.

(12) and Eq. (13), we conclude that minimizing dJS
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which can be implemented as the mean square error between µ(x) and
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�
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is derived in the similar way.
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E.2 PROOFS OF LEMMAS

Proof of Lemma 6. We have:
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Proof of Lemma 7. We have:
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Proof of Lemma 8. Applying Lemma 7 and replacing X by (X,Y ), f by loss function L, Di by
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Applying Lemma 7 again and replacing X by (X,Y ), f by loss function L, Dj by Di,j , we have:
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Adding Eq. (16) to Eq. (17), we have:
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where H(X) is the entropy of X , H(X|T ) is the entropy of X conditioned on T , and I(X;T ) is
the mutual information between X and T . Similarly, we also have DJS((PZ
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Z
Dj

)) = I(Z;T ).
Because Z is induced from X by the mapping function h then we have Z ? T | X and the Markov
chain T ! X ! Z. According to data processing inequality for mutual information (Polyanskiy &
Wu, 2014), we have I(X;T ) � I(Z;T ) which implies DJS((PX
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Taking square root on both sides, we have dJS(PX
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Proof of Lemma 10. We have:
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Proof of Lemma 11. We show the decomposition for KL-divergence first and then use the result to
derive the decomposition for JS-divergence. We have:
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Proof of Lemma 12.
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Here we have
(1)
� is because of the assumption that L(by, y) is lower bounded by c when by 6= y;

(2)
= is because bf(X)T 1 = || bf(X)||1 = 1;

(3)
� is because || bf(X)||2  || bf(X)||1 = 1;

(4)
� is because

|| bf(X)||2 �
1p
|Y|

|| bf(X)||1;
(5)
� is by using Jensen’s inequality;

(6)
� is by using JS-divergence lower

bound of total variation distance.
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Proof of Lemma 14. Similar to the proof in Lemma 8, we apply Lemma 7 for Ry,a
Di

and R
y,a
Dj

and
note that bf(X)y is bounded by 1. Then 8y, a 2 {0, 1}, we have:
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Adding Eq. (18) to Eq. (19), we have:
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Proof of Lemma 15. We give the proof for unfairness measure w.r.t. to equal opportunity first and
then use this result to derive the proof for unfairness measure w.r.t. to equalized odd. Without loss of
generality, assign group indices 1, 0 be such that R1,0
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where 1 is vector with all 1’s. By Lemma 14, we have:
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Sum above two inequalities and add �1 at both sides, we have,
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Similarly, we have:
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Sum both Eq. (20) and Eq. (21), we have:
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Proof of Lemma 16. Similar to the proof of Lemma 10, Ry,a
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Proof of Lemma 17. 8y 2 Y , we have:
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