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ABSTRACT

Beyond the worst-case analysis of algorithms, the learning-augmented framework
considers that an algorithm can leverage possibly imperfect predictions about the
unknown variables to have guarantees tied to the prediction quality. We consider
online non-clairvoyant scheduling to minimize the max-stretch under this frame-
work, where the scheduler can access job size predictions. We present a family of
algorithms: Relaxed-Greedy (RG) with an O(η3 ·

√
P ) competitive ratio, where

η denotes the prediction error for job sizes and P the maximum job size ratio;
Adaptive Relaxed-Greedy with an O(λ0.5 ·η2.5 ·

√
P ) competitive ratio, where λ

denotes the error for the minimum job size; Predictive Relaxed-Greedy with an
O(λ0.5 ·φ0.5 ·η ·max{η, φ} ·

√
P ) competitive ratio, where φ denotes the error for

the maximum job size. We also present RGx, an algorithm that represents a trade-
off between consistency and smoothness, with an O(η2+2x · P 1−x) competitive
ratio. We introduce a general method using resource augmentation to bound robust-
ness, resulting in RR-augmented RG, with a (1 + ϵ)-speed O(min{η3

√
P , nϵ })

competitive ratio. Finally, we conduct simulations on synthetic and real-world
datasets to evaluate the practical performance of these algorithms.

1 INTRODUCTION

In classic online scheduling, algorithms are designed to have worst-case guarantees under incomplete
information. However, this conservative approach often results in suboptimal performance, especially
compared to where full information is available. Given the rapid advancements in Machine Learning
(ML) predictive models, the need for worst-case guarantees under incomplete information may be
too pessimistic. Beyond worst-case analysis, recent researchers have explored learning-augmented al-
gorithms to leverage predictions to improve decision-making. With ML models providing predictions
of unknown variables, these algorithms are robust and have an improved performance.

Scheduling jobs that arrive over time (preemption allowed) is a fundamental challenge in computing
resource management, particularly when minimizing the maximum stretch. The stretch of a job Jj is
defined as the ratio of its response time to job size, given by Cj−rj

p∗j
, where Cj denotes the completion

time, rj release time, and p∗j job size (or processing time). The maximum stretch, termed max-stretch,
measures fairness of the resource allocation: a max-stretch of k implies that each job receives at least
a 1
k -speed machine. In contrast, other metrics like total completion time (

∑
Cj) and total response

time (
∑
Cj − rj) emphasize efficiency and will unfairly delay large jobs, even those released early.

Studying max-stretch scheduling offers a general insight into fair resource allocation.

Previous work has considered offline max-stretch scheduling and online clairvoyant scheduling;
both assume precisely known job sizes (Bender et al., 1998; 2002; Benoit et al., 2021). However,
assuming perfect knowledge is overly optimistic in practice. Job sizes can be estimated using ML
models (Amiri and Mohammad-Khanli, 2017) but are inherently subject to error. This raises a key
question: how can we make fair scheduling decisions with imperfect information? Our objective is
learning-augmented algorithms with performance guarantees tied to the prediction quality and robust
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against poor predictions. To our knowledge, this paper is the first to explore learning-augmented
algorithms for fair scheduling. We define several terms before presenting our contributions.

Prediction errors. We consider several types of predictions: job size predictions per job at the job’s
arrival, an upfront prediction for the minimum job size, and an upfront prediction for the maximum
job size. Prediction errors are defined as the multiplicative difference between predicted and actual job
sizes. Let η denote the prediction error, defined as η = max1≤j≤n ηj = max1≤j≤nmax{p

∗
j

pj
,
pj
p∗j
},

where pj is the job size prediction for Jj (Zhao et al., 2022; Azar et al., 2021). We define P
as the ratio of the largest and smallest job sizes: P =

p∗max

p∗min
, where p∗max and p∗min represent the

maximum and minimum job sizes. For the predicted minimum job size, the error is denoted by
λ = max{p

e
min

p∗min
,
p∗min

pemin
}, where pemin is the predicted minimum job size. The error for the predicted

maximum job size is φ = max{p
e
max

p∗max
,
p∗max

pemax
}, where pemax is the predicted maximum job size.

Competitive framework, consistency, smoothness, and robustness. An online algorithm A will
be compared against an offline optimal algorithm A∗ that knows all jobs’ release times and sizes
in advance. We say A has a competitive ratio c or is c-competitive, if SA(I) ≤ c · SA∗

(I) for
any problem instance I , where SA(I) and SA

∗
(I) denote the max-stretch achieved by A and A∗,

respectively. Consistency measures the algorithm performance under perfect predictions; smoothness
under any prediction; robustness under worst-case predictions. Formally, an algorithm is said to have
consistency τ (or be τ -consistent) if it is τ -competitive when η = 1; smoothness ρ (or be ρ-smooth) if
it is ρ-competitive where ρ is a function of η; and robustness υ (or be υ-robust) if it is υ-competitive
for any η, where υ is independent of η. The relationship between smoothness and robustness can be
expressed as robustness = limη→∞ smoothness.

Resource augmentation. An algorithm A is (1 + ϵ)-speed c-competitive if SA1+ϵ(I) ≤ c · SA
∗

1 (I)

for any problem instance I , where SA1+ϵ(I) and SA
∗

1 (I) denote the max-stretch achieved by A and
A∗, respectively, and the subscripts denote the speed of the processor used by the corresponding
algorithm and A∗ is an offline optimal algorithm.

CONTRIBUTIONS

1. Improved fairness in scheduling: We present an exact offline algorithm with a runtime of
O(n2 log n), where n is the number of jobs. We develop a family of Relaxed-Greedy (RG)
algorithms under various prediction settings, achieving an O(

√
P ) competitive ratio matching

the best-known clairvoyant result under perfect predictions. These algorithms require different
types of predictions, including job size and minimum/maximum job size predictions, with varying
guarantees depending on the quality and availability of the predictions. These algorithms leverage
ML predictions for job sizes to optimize fairness in resource allocation. They extend the algo-
rithmic idea proposed by Bender et al. (2002), but with predictions, they no longer require prior
knowledge of exact or extreme job sizes, making them applicable to a broader range of scenarios.

2. Consistency-smoothness trade-off: We explore the trade-off between consistency and smooth-
ness by introducing RGx with a competitive ratio of O(η2+2x · P 1−x). This algorithm is parame-
terized, allowing users to adjust the guarantees as a function of the prediction error η, based on the
confidence in the prediction quality.

3. Enhanced robustness via resource augmentation: To address the robustness limitations ofO(n ·
P ) in the RG family, we propose RG+, round-robin-augmented version of RG, which achieves
optimal robustness of O(n) with a (1 + ϵ)-speed and a competitive ratio of O(min{η3

√
P , nϵ }).

We demonstrate how asymptotically optimal robustness can be achieved via resource augmentation
when the classic technique of preferential round robin fails (Purohit et al., 2018).

4. Extensive experimental validation: We conduct experiments on synthetic and real-world datasets
to evaluate the performance of these algorithms. The experimental results validate our theoret-
ical analysis and demonstrate that RG+ consistently outperforms other algorithms in practical
scenarios, showing its robustness and effectiveness.
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The family of the RG algorithms is somewhat reminiscent of the O(
√
P )-competitive algorithm

proposed by Bender et al. (2002). The existing algorithms work in clairvoyant scheduling. They
assume the minimum job size is 1 and a known maximum job size. The assumption is unrealistic,
particularly when the extreme job sizes vary from time to time. Our algorithms extend the existing
work to non-clairvoyant scheduling and overcome these limitations via predictions. The proposed
algorithms allow variable minimum job size and do not require the exact maximum job size.

2 PRELIMINARIES

Problem definition. Consider a job system with a single unit-speed machine and n independent
jobs. The jobs arrive at the machine for processing over time. We use Jj to denote the j-th
arrived job (tie break arbitrarily). Job Jj has a release time rj and a job size p∗j , i.e., it takes
(in total) p∗j time to complete processing job Jj . Jobs are preemptive, which means they can be
preempted during their processing. A preempted job can resume processing later. Let Cj denote
the completion time for job Jj . The stretch Sj for job Jj is the ratio of the response time and job
size, i.e., Sj =

Cj−rj
p∗j

. Our objective is to minimize the maximum stretch, known as max-stretch:

max-stretch = max1≤j≤n Sj = max1≤j≤n
Cj−rj
p∗j

.

Related work. We review recent advances in competitive online scheduling with predictions. For
single-machine static scheduling to minimize total completion time, an O(min{ 1λ (1 +

2η
n ), 2

1−λ})-
competitive algorithm exists (Purohit et al., 2018), where η is the additive error defined as η =∑n
j=1 |pj − p∗j |, and λ is a user-defined parameter. Follow-up works analyze robustness-consistency

trade-offs (Wei and Zhang, 2020) and extend the results to dynamic scheduling and parallel machines
(Bampis et al., 2022). For unrelated machine scheduling to minimize makespan, a deterministic
O(min{ log η logm

log logm , logm})-competitive algorithm is developed (Li and Xian, 2021), building on
(Lattanzi et al., 2020). Here, the predictions are for machine loads, η is the multiplicative error of the
predictions, and m is the number of machines. For single-machine scheduling to minimize weighted
response time, anO(min{µ3 log(µP ), µ3 log(µD)})-competitive algorithm is developed (Azar et al.,
2021), where µ is the multiplicative error for job size predictions and D is the maximum density
ratio. For parallel identical machine scheduling, an O(min{µP, µ logµ + µ log n

m})-competitive
algorithm is developed to minimize the mean response time, along with an O(µ2)-competitive non-
migrative algorithm for minimizing mean stretch (Azar et al., 2022). Our problem is a special case
of minimizing maximum weighted response time, but prior works under the learning-augmented
framework focus on min-sum objective, while our work focuses on min-max. Results on prediction
error metrics (Im et al., 2021), multiple predictions (Dinitz et al., 2022), machine speed predictions
(Balkanski et al., 2023), and stochastic scheduling (Merlis et al., 2023) are also available.

3 OFFLINE, ONLINE CLAIRVOYANT, ONLINE NON-CLAIRVOYANT SCHEDULING

We start with offline scheduling. We show an optimal algorithm withO(n2 log n) run time. We review
the lower bound and competitive algorithms for online clairvoyant scheduling. We consider online
non-clairvoyant scheduling and show a Ω(n) competitive lower bound with an O(n)-competitive
algorithm. Proofs for Section 3.1 and 3.3 are in Appendix A and B.

3.1 OFFLINE SCHEDULING

We have already known that an approximation exists for offline scheduling.

Theorem 3.1 (Bender et al. (1998)). There exists an algorithm that finds a preemptive offline schedule
with max-stretch at most 1 + ϵ times the optimum in time polynomial in n and 1

ϵ , for any fixed ϵ > 0.

The (1 + ϵ)-approximation algorithm is based on a bisection search over the value of the optimal
max-stretch, using Earliest Deadline First (EDF) to check the feasibility of each candidate value.
While the algorithm is polynomial in terms of the number of jobs n and the precision parameter ϵ, it
is not purely polynomial in the input size n. This is because, traditionally, finding the exact minimum
max-stretch was considered to involve an infinite search space, thus requiring a predefined precision
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ϵ to discretize the search space. Bender et al. (2002) propose that the search for the maximum stretch
can be reduced to a finite set of candidates, but they do not formalize this result. Recent work (Benoit
et al., 2021) provides an exact polynomial-time greedy algorithm for the case where all jobs are
released at time 0. This algorithm follows the smallest job size first policy but does not apply to
the general case with arbitrary release times. To close this gap, our first technical contribution is a
formal proof of an exact, polynomial-time offline scheduling algorithm for arbitrary release times.
The insight is identifying an O(n2)-size list of candidates that contains the optimal max-stretch. We
establish the following result, with the proof provided in Appendix A.
Theorem 3.2 (Optimal Offline Scheduling). There exists an algorithm that finds an offline schedule
with optimal max-stretch in time polynomial in n. It admits an O(n2 log n) implementation.

3.2 ONLINE CLAIRVOYANT SCHEDULING

We consider online clairvoyant scheduling, where we know a job at its release time. We also know
the exact job size p∗j when job Jj is released. This problem has been studied by Bender et al. (1998;
2002). We summarize the key results, including the lower bound and competitive algorithms.

Theorem 3.3 (Bender et al. (1998)). No P
1
3

2 -competitive deterministic clairvoyant algorithm exists.

Theorem 3.4 (Bender et al. (2002)). There exist O(
√
P )-competitive clairvoyant algorithms.

3.3 ONLINE NON-CLAIRVOYANT SCHEDULING

We consider online non-clairvoyant scheduling, where we know a job at its release time but not the
job size p∗j at job Jj’s release. The job size is revealed only after the job is completed. We give the
lower bound on the competitive ratio for any deterministic algorithm. The key construction of the
adversary is to force the algorithm to allocate no more than a 1

n share of processing at some point for
the smallest-sized job, resulting in a stretch of n for that job. Subsequently, the rest of the jobs are
assigned geometrically increasing sizes, ensuring that the optimum max-stretch is approximately 1.
Theorem 3.5 (Non-clairvoyant Lower Bound). No c-competitive deterministic algorithm exists with
c < n for online non-clairvoyant max-stretch scheduling, even if all jobs are released at time 0.

We show Round Robin (RR) scheduling where every job in the system shares an equal amount of
processing power of the machine at any arbitrarily fine time, i.e., with k jobs in the system, each
gets 1

k units of the processing done every time unit until any job completes or any job arrives), is an
n-competitive online non-clairvoyant scheduling algorithm.
Theorem 3.6 (n-Competitive RR). RR is n-competitive for online non-clairvoyant scheduling.

We show that any non-lazy algorithm is O(n · P )-competitive. Here, non-lazy means that the
algorithm does not idle the machine unnecessarily when there are active jobs. This result will be used
to establish the robustness of learning-augmented algorithms in the following sections.
Theorem 3.7 (Worst-case Competitive Ratio). Any non-lazy algorithm is (n− 1) ·P +1-competitive.

4 ONLINE SCHEDULING WITH PREDICTIONS

We consider the integration of predictions. Rather than knowing the exact job size, we have a size
prediction pj for job Jj . Initially, we assume that the extreme predictions are known beforehand;
specifically, the algorithm knows the smallest prediction pmin (i.e., min1≤j≤n pj) and the largest
prediction pmax (max1≤j≤n pj) at time 0. We present the Relaxed-Greedy algorithm, which
achieves an O(η3

√
P ) competitive ratio, where η is the prediction error for job sizes. Next, we

show how to remove this assumption by updating the extreme predictions observed online and
using predictions of the extreme job sizes. We introduce the Adaptive Relaxed-Greedy algorithm,
which uses the prediction of the minimum job size and dynamically updates the maximum job size
prediction, achieving an O(λ0.5 · η2.5 ·

√
P ) competitive ratio, where λ is the prediction error for

the minimum job size. Finally, we present the Predictive Relaxed-Greedy algorithm, which uses
predictions of both extreme job sizes, achieving an O(λ0.5 · φ0.5 · η ·max{η, φ} ·

√
P ) competitive

ratio, where φ is the prediction error for the maximum job size. We begin by outlining the algorithmic
ideas, with proofs for Section 4.2, 4.3, and 4.4 provided in Appendix C, E, and F.
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4.1 ALGORITHM OVERVIEW

The key algorithmic idea is the reduction to the case with two job sizes. Recall that the stretch is
defined as Cj−rj

p∗j
. If there are only two job sizes — one short and the other long — the jobs of the

same type should be executed in a First-In-First-Out (FIFO) manner. A short job should be executed
before a long job if the long job is released at the same time as, or later than, the short job. It can
be shown that greedily scheduling the jobs, i.e., always running the job with the minimal stretch,
results in a constant competitive ratio when there are only two job sizes (as shown in Bender et al.
(2002) and Lemma C.6). Clearly, the problem becomes easier when there are only two job sizes. Our
strategy is to reduce the general problem to this two-job-size case via predictions.

We classify jobs into two categories: job Jj is considered short if its job size prediction pj ≤√
pmin·pmax

µ , where µ is a constant, and long otherwise. We show in Appendix H that the optimal
choice for µ is

√
3, though for now, we can ignore this constant. We then approximate the stretch for

short jobs by Cj−rj√
pmin·pmax

and for long jobs by Cj−rj
pmax

; these are defined to be relaxed stretch. This
construction follows the idea in Bender et al. (2002), but requires both pmin and pmax to account for
that the minimal job size is not necessarily 1, which is assumed in Bender et al. (2002). This approach
overestimates the size of a short job Jj by

√
pmin · pmax ≤

√
η2 · p∗min · p∗max = η ·

√
P · p∗min ≤ η ·√

P ·p∗j , resulting in an overestimation by at most a factor of η
√
P . Similarly, it overestimates the size

of a long job Jj (pj >
√
pmin · pmax) by pmax ≤

√
pmin · pmax·

√
pmax

pmin
≤ η·
√
P ·η·p∗j = η2·

√
P ·p∗j ,

meaning the overestimation is at most a factor of η2
√
P . Overall, the relaxed stretch overestimates job

sizes by at most η2
√
P . With these approximations, the stretch of a job Jj is bounded by O(η2

√
P )

times the relaxed stretch, resulting in a competitive ratio loss of O(η2
√
P ) (Lemma C.8). However,

the advantage of this approximation is that it reduces the scheduling problem to the easier two-job-
size case. In Appendix H we show that using the square root of pmin · pmax provides the optimal
dependency on P in the competitive ratio, though it is possible to adjust the power to pxmin · p1−xmax for
any 0 < x ≤ 1

2 , yielding different power dependencies on P in the competitive ratio.

Using predictions to classify jobs as short or long, we greedily schedule the jobs by running the job
with the minimal relaxed stretch at any time. This heuristic minimizes the relaxed stretch to within a
constant factor (

√
3). Finally, we observe that the optimal relaxed stretch is bounded by η times the

optimal max-stretch (Lemma C.7). The max-stretch bound from Relaxed-Greedy is O(η2
√
P ) of the

optimal relaxed stretch, which is itself bounded by O(η3
√
P ) of the optimal max-stretch.

4.2 RELAXED-GREEDY

One of the assumptions for previous algorithms is that the minimum job size is known to be 1 and
that the maximum job size is also known upfront. We relax these assumptions by setting a threshold
α as the geometric mean of the predicted minimum and maximum job sizes, which serves as the
boundary for classifying jobs as small or large. Our analysis shows that such methods allow the
performance to tie to the prediction errors for these quantities.

Definition 4.1 (α-β Relaxed-Stretch). Define α-β relaxed-stretch S̃j,α,β(t) for job Jj at time t given

α and β: S̃j,α,β(t) =
t−rj
α if Jj is active at time t and pj ≤ α; S̃j,α,β(t) =

t−rj
β if Jj is active at

time t and pj > α. We drop the prefix α-β when the context is clear.

Definition 4.2 (α-β Short and Long Jobs). Given parameters α and β, a job Jj is said to be short if
pj ≤ α; a job Jj is said to be long otherwise.

We present an O(η3
√
P )-competitive algorithm Relaxed-Greedy (RG). Through the execution

of RG, parameters α and β are set to be constants: α =
√
pmin·pmax√

3
and β = pmax. It holds

α =
√
pmin·pmax√

3
< pmax = β. Note that the constant

√
3 in α serves to yield an optimal constant in

the competitive ratio. Any constant can replace it and still maintain RG’s O(η3
√
P ) competitive

ratio as long as α < β (see Appendix D for a discussion). Algorithm RG maintains the invariant of
running the active job with the largest relaxed-stretch. This means that at any time t, RG looks at all

5



Published as a conference paper at ICLR 2025

Algorithm 1: Relaxed-Greedy
Data : job size prediction pj upon job release and the extreme predictions pmin and pmax

Result :schedule with a max-stretch O(η3
√
P ) times the optimum max-stretch

1 α←
√
pmin·pmax√

3
, β ← pmax

2 Function relaxedStretch(j, t) // computes job Jj’s relaxed-stretch at time t
3 if Jj is completed before t then
4 t← Cj // set variable t to be the completion time of Jj

5 return t−rj
α

if pj ≤ α else t−rj
β

6 Relaxed-Greedy maintains the active job (released but not completed job) set U; initially, set U← ∅.
7 Event Function JobRelease() // Jj is released
8 insert Jj into U; run Jj on the machine if U = ∅.

9 Event Function JobComplete() // Jj has been processed for p∗j unit at time t
10 remove Jj from U.
11 if there is at least one job in U then
12 let Js be the job in U with the largest relaxed-stretch: Js ← argmaxJx∈U relaxedStretch(x, t),

with tie breaking by the smaller job index.
13 run Js on the machine.
14 else
15 idle the machine.

16 Event Function JobSwitch() // there exists Jx ∈ U, x ̸= s such that
relaxedStretch(x, t) > relaxedStretch(c, t), where Jc is the currently running job

17 let Js be the job in U with the largest relaxed-stretch: Js ← argmaxJx∈U relaxedStretch(x, t), with
tie breaking by the smaller job index.

18 preempt Jc.
19 run Js on the machine.

the active jobs and processes the one with the largest relaxed-stretch until the job is completed or
until there is another active job later with a larger relaxed-stretch. Note that RG does not need the
knowledge of the prediction error η. The pseudo-code of RG is given in Algorithm 1.

Theorem 4.3 (The O(η3
√
P ) Competitive Ratio). Relaxed-Greedy is

√
3 · η3 ·

√
P -competitive

for online scheduling with predictions.

We show that RG is Θ(n · P )-competitive with the worst-case predictions.
Theorem 4.4 (Robustness of RG). RG is (n−1) ·P +1-competitive with arbitrarily bad predictions,
and this bound is tight.

Remark 4.5. Relaxed-Greedy is
√
3 ·
√
P -consistent,

√
3 · η3

√
P -smooth, and (n − 1) · P + 1-

robust. It represents a consistency of O(
√
P ) matching (asymptotically) the best-known clairvoyant

competitive ratio but comes with the worst robustness among non-lazy algorithms.

Algorithm RG can be implemented with constant run-time for online decision-making. Observe that
any later-released short (long) job has a smaller relaxed-stretch than any early-released active short
(long) job. Thus, the short (long) jobs are processed in a First-In-First-Out (FIFO) manner, allowing
us to maintain two queues, one for short and one for long jobs. Determining the job with the largest
relaxed-stretch requires simply comparing the relaxed-stretch of the jobs at the front of the queues.
We give RG’s performance for its run-time and space complexity and preemptions.
Proposition 4.6 (Complexity of RG). Relaxed-Greedy admits an implementation with O(1) run-
time to make any online decision and O(n) space.
Proposition 4.7 (Preemptions of RG). Relaxed-Greedy generates a schedule with at most n− 1
preemptions. Thus, the amortized number of preemptions per job is at most 1.

4.3 ADAPTIVE RELAXED-GREEDY

We remove the assumption of knowing the extreme predictions beforehand and extend RG to
Adaptive Relaxed-Greedy (ARG). We show that the absence of extreme predictions does not
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significantly alter the competitive ratio. We show that ARG achieves anO(λ0.5·η2.5·
√
P ) competitive

ratio, where λ denotes the prediction error for the minimum job size. Instead of knowing the exact
minimum job size prediction, Algorithm ARG can access a black-box ML model that predicts the
minimum job size of all jobs, denoted by pemin. This predicted minimum job size pemin comes with a
prediction error λ = max{p

e
min

p∗min
,
p∗min

pemin
}. Meanwhile, Algorithm ARG learns pmax along job release.

A key technical challenge in ARG is classifying jobs when α is continuously updated over time.
Dynamically changing the classification of jobs might work, but the proof for its competitive ratio
is difficult to establish (we did not find proof). Our solution overcomes this issue by ensuring that
once a job is classified at its arrival time, based on αrj , it remains unchanged in that classification.
For example, if job Jj is classified as r-long, it remains a long job, regardless of future updates of α.
This enables the competitive analysis for ARG. One innovation of ARG is the use of heterogeneous
predictions, i.e., predictions for different types of quantities, in learning-augmented algorithms. Our
analysis reveals that these different predictions impact the algorithm’s performance differently.

We introduce subscript t to denote the value of a variable at time t. Thus, pmax at time t (denoted
by pmax,t) represents the maximum job size prediction seen so far, i.e., pmax,t = maxrj≤t pj .
Parameters α and β are functions in pmin and pmax and thus are time-varying. They are updated with

updates of pmax in JobRelease. Formally, ARG sets αt =
√
pemin·pmax,t√

3
and βt = max{pmax,t, αt},

where αt and βt denote the values of α and β at time t. We record αrj and βrj for every job Jj .
These values are used to compute the adaptive relaxed-stretch of Jj , defined as follows.

Definition 4.8 (α-β Adaptive Relaxed-Stretch). Define α-β adaptive relaxed-stretch Ŝj,α,β(t) for job
Jj at time t given α and β: Ŝj,α,β(t) =

t−rj
αrj

if Jj is active at time t and pj ≤ αrj ; Ŝj,α,β(t) =
t−rj
βrj

if Jj is active at time t and pj > αrj . We drop the prefix α-β when the context is clear.
Definition 4.9 (α-β r-short and r-long Jobs). Given parameters α and β, a job Jj is said to be r-short
if pj ≤ αrj ; a job Jj is said to be r-long otherwise.

The prefix r for r-short or r-long means that the classification depends on the values of α and β at rj
for job Jj . It is thus possible that a r-short job released later has a larger job size prediction than a
r-long job released earlier. Other than that, ARG maintains the (same) invariant of running the active
job with the largest adaptive relaxed-stretch. The pseudo-code of ARG is given in Appendix E.

Theorem 4.10 (The O(λ0.5 · η2.5 ·
√
P ) Competitive Ratio). Adaptive Relaxed-Greedy is

√
3 ·

λ0.5 · η2.5 ·
√
P -competitive for online scheduling with predictions.

Remark 4.11. Adaptive Relaxed-Greedy is
√
3 ·
√
P -consistent,

√
3 · λ0.5 · η2.5 ·

√
P -smooth, and

(n− 1) · P + 1-robust. This robustness result is tight.

The ARG’s performance remains the same as RG with respect to run-time and space complexity and
preemptions. Since the parameters α and β are non-decreasing, it still holds that any later-released
short (long) job has a smaller adaptive relaxed-stretch than any early-released active short (long) job,
allowing ARG to have the same implementation of two FIFO job queues as RG does.
Proposition 4.12 (Complexity of ARG). Adaptive Relaxed-Greedy admits an implementation
with O(1) run-time to make any online decision and O(n) space.
Proposition 4.13 (Preemptions of ARG). Adaptive Relaxed-Greedy generates a schedule with at
most n− 1 preemptions. Thus, the amortized number of preemptions per job is at most 1.

The competitive result in this section does not hold if the algorithm is instead given the predicted
maximum job size and has to estimate the minimum job size prediction online. There seems to be an
asymmetric importance for the knowledge about extreme job sizes. Having some knowledge of the
minimum job size at the start may be a requirement.

4.4 PREDICTIVE RELAXED-GREEDY

If the prediction error(s) for extreme job sizes are believed to be lower than η, the algorithm can use
an additional prediction about the maximum job size. We extend RG to Predictive Relaxed-Greedy
(PRG), which needs access to predictions of both the minimum job size, denoted by pemin, and
the maximum job size, denoted by pemax, of all jobs, with prediction errors λ = max{p

e
min

p∗min
,
p∗min

pemin
}
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and φ = max{p
e
max

p∗max
,
p∗max

pemax
}. PRG sets static α and β independent of time: α =

√
pemin·pemax

µ and

β = pemax, where µ is a symbolic constant µ = max{
√
3,
√

pemin

pemax
+ ϵ} for any small fixed ϵ > 0.

This ensures α < β. Algorithm PRG maintains the same invariant of running the active job with the
largest relaxed-stretch determined by the above α and β.

Theorem 4.14 (The O(λ0.5 · φ0.5 · η ·max{η, φ} ·
√
P ) Competitive Ratio). Predictive Relaxed-

Greedy is max{ 3µ , µ} · λ
0.5 · φ0.5 · η ·max{η, φ} ·

√
P -competitive.

With reasonable predictions where pemin ≤ pemax and φ ≤ η, PRG is
√
3 · λ0.5 · φ0.5 · η2 ·

√
P -

competitive. With extremely bad predictions (i.e., pemin > 3 · pemax), however, the competitive ratio

depends on the prediction values and becomes (
√

pemin

pemax
+ϵ) ·λ0.5 ·φ0.5 ·η ·max{η, φ}·

√
P . This can

be avoided by switching to ARG when pemin > 3 · pemax. Combining of ARG and PRG guarantees
the competitive ratio of

√
3 · λ0.5 · φ0.5 · η ·max{η, φ} ·

√
P or

√
3 · λ0.5 · η2.5 ·

√
P .

Remark 4.15. Predictive Relaxed-Greedy is max{ 3µ , µ} ·
√
P -consistent, max{ 3µ , µ} ·λ

0.5 ·φ0.5 ·
η ·max{η, φ} ·

√
P -smooth, and (n−1) ·P +1-robust. This robustness result is tight. The algorithm

admits an implementation with O(1) run-time to make any online decision and O(n) space and
generates a schedule with at most n− 1 preemptions.

5 CONSISTENCY-SMOOTHNESS TRADE-OFFS

We study the trade-off between consistency and smoothness for RG by altering the parameters (α
and β) in the definition of relaxed-stretch. The idea directly applies to ARG and PRG, so this paper
does not discuss them. We introduce a hyper-parameter x (0 ≤ x ≤ 1

2 ). Denote RGx to be Relaxed

Greedy parametrized by x, where RGx sets α =
pxminp

1−x
max√
3

and β = pmax and runs the same process

as RG. This constructs a family of algorithms and RG is one member RG
1
2 . We show that RGx

interpolates between the First Come First Serve (denoted by FIFO) algorithm and RG, where
FIFO is O(P )-competitive and RG is O(η3 ·

√
P )-competitive. See Appendix G for proofs for this

section and Appendix H for the construction process of RGx.

Theorem 5.1 (The O(η2+2x · P 1−x) Competitive Ratio). RGx (0 ≤ x ≤ 1
2 ) is

√
3 · η2+2x · P 1−x-

competitive for online scheduling with predictions.

If we set x = 0 with α = pmax, β = pmax, we have a singular point where RG0 decays to FIFO, as
every job would be classified as a short job. We drop the constant

√
3 here as this term in relaxed-

stretch does not improve the performance of RG0. Algorithm RG0 with α = pmax, β = pmax, or
FIFO, achieves an O(P ) competitive ratio.

Theorem 5.2 (The O(P ) Competitive Ratio). RG0, or FIFO, is P -competitive.

Setting x = 1
2 gives the best consistency (O(

√
P )) but the worst smoothness (O(η3)). In contrast,

setting x = 0 with α = pmax, β = pmax gives the worst consistency (O(P )) but the optimal
smoothness as a function on η (O(1)), for which the prediction quality does not affect the performance
at all. If we exclude the singular point RG0, i.e., 0 < x ≤ 1

2 , increasing hyper-parameter x decreases
the power of P from 1 to 1

2 and increases that of η from 2 to 3 (a visualization of the trade-offs
is in Appendix I). Practitioners can choose the hyper-parameter x based on the confidence of the
prediction quality: high-quality predictions deserve a high x; low-quality predictions a low x.

6 BOUNDING ROBUSTNESS VIA RESOURCE AUGMENTATION

We introduce a general method for bounding robustness. The goal is to address the weak robustness
(O(n · P )) of the learning-augmented algorithms, i.e., they cannot deal with the worst predictions.
We first show that the recent technique of Preferential Round Robin (PRR) (Purohit et al., 2018),
which allocates partial processing power to multiple algorithms, fails to address this issue with
the max-stretch metric. This shows the necessity of resource augmentation (Kalyanasundaram

8



Published as a conference paper at ICLR 2025

and Pruhs, 2000). We produce a family of RR-augmented algorithms with asymptotically optimal
robustness and near-optimal consistency. Algorithm RG+, one member of the family, is (1+ϵ)-speed
O(min{η3 ·

√
P , nϵ })-competitive. Proofs are in Appendix J.

We first review the PRR method. Suppose we have two algorithms, A and B, with competitive ratios
cA and cB . Combining the two algorithms by giving x (0 < x < 1) proportion of processing power
to A and 1 − x processing power to B constructs a competitive ratio of min{ cAx ,

cB
1−x} for some

metrics (e.g., total completion time) under static scheduling (all jobs are released at time 0). This
method, however, requires a critical assumption that each algorithm, when given a processing power
less than 1, has a competitive ratio scaled by the allocated speed. This assumption, unfortunately,
fails to hold in general and, in particular, not for the max-stretch scheduling.
Theorem 6.1 (Motivation for Resource Augmentation). Any algorithm is at best ϵ

1−ϵ · n + 1-
competitive, if given a (1− ϵ)-speed machine, for any 0 < ϵ < 1.

With a slower machine, any algorithm is Ω(n)-competitive, matching the non-clairvoyant lower
bound. This means a (slower) speed takes away the advantages of clairvoyance, echoing a similar
phenomenon as previously observed by Kalyanasundaram and Pruhs (2000). As a result, the
assumption for PRR does not hold. Theorem 6.1 also suggests that RR has an asymptotically
optimal competitive ratio (O(n)) with a slower machine. This leads to the design of RR-augmented
algorithms with resource augmentation. The idea is to augment a base algorithm (e.g., RG) with a
higher-speed machine, using the additional speed to run RR concurrently at unit speed.
Definition 6.2 (Monotonicity (Purohit et al., 2018)). A non-clairvoyant scheduling algorithm is
called monotonic if given two instances with identical inputs and actual job sizes (p∗1, ..., p

∗
n) and

(p∗′1, ..., p
∗′
n) such that p∗j ≤ p∗

′
j for all j, the objective function value found by the algorithm for the

first instance is no higher than that for the second.
Lemma 6.3. All algorithms mentioned in this paper (RG, ARG, PRG, RGx, and RR) are monotonic.
Theorem 6.4 (RR-augmented Algorithms). Given a monotonic algorithm A with competitive ratio
cA, one can obtain a (1 + ϵ)-speed min{cA, nϵ }-competitive (RR-augmented) algorithm.

Remark 6.5. RR-augmented RG (denoted by RG+) is (1 + ϵ)-speed min{
√
3 · η3 ·

√
P , nϵ }-

competitive. Similarly, we produce ARG+ ((1+ϵ)-speed min{
√
3 ·λ0.5 ·η2.5 ·

√
P , nϵ }-competitive),

PRG+ ((1+ϵ)-speed min{max{ 3µ , µ}·λ
0.5 ·φ0.5 ·η ·max{η, φ}·

√
P , nϵ }-competitive), and PRGx+

((1 + ϵ)-speed min{
√
3 · η2+2x · P 1−x, nϵ }-competitive). While preserving their consistency, these

algorithms achieve asymptotically optimal robustness, or strictly optimal with 2-speed augmentation.

7 EXPERIMENTS

We evaluate Greedy-with-Rounding (GWR) (Bender et al., 2002), RR, RG, ARG, and RG+ on
synthetic and real-world datasets ((Google, 2019), (Alibaba, 2023), and Azure (Cortez et al., 2017))
in minimizing max-stretch, variance of stretch, and mean response time. Stretch variance measures
fairness by comparing jobs to each other; the mean response time measures total efficiency. This
section presents the results for the max-stretch minimization. The rest of the results and discussions
are in Appendix K, L, M, and N. Code is available on GitHub (Anonymous, 2024).

We measure the performance ratio, which is the ratio between the max-stretch obtained by an
algorithm and the optimum. Algorithm 2 is used to compute the optimal max-stretch. We set RG+ to
be (1 + 0.3)-speed RR-augmented RG, i.e., it runs RG at unit speed and RR at speed 0.3. The job
sizes are generated following exponential distributions. With the maximum job size ratio P , we set
p∗j to max{1,− logX ·A} where X is a random variable with X ∼ U(0, 1) andA a scaling factor to
ensure p∗j ≤ P . Given η and p∗j , we set pj ← p∗j · exp(Y ) with Y ∼ U(− log η, log η). We generate
50 independent instances for every problem set defined by n, P , η, and the range of release times.

Figures 1 to 3 are the results for synthetic datasets. Figures 1 and 2 present the performance ratio
under different n and P with perfect predictions. RG and ARG outperform GWR and RR in most
scenarios. RG+, with a slight 0.3 speed augmentation, consistently achieves the best performance.
Figure 3 presents the results under an increasing η. While the performance ratio of RG, ARG, and
RG+ increases with η, RG+ is robust to prediction error with a bounded performance ratio.
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Figure 1: Performance ratios with increasing jobs. Each box represents
the distribution of the performance ratios. The number of jobs is 1000
(R1C1), 2000 (R1C2), 3000 (R1C3), 4500 (R2C1), 6000 (R2C2), and
10000 (R2C3), released uniformly in [0, 5000] with sizes in [1, 10].
Prediction error is 1 (i.e., pj = p∗j ).

GWR RG
ARG RR

RG+
0.0

0.5

1.0

1.5

Pe
rfo

rm
an

ce
 R

at
io

GWR RG
ARG RR

RG+
0

1

2

Pe
rfo

rm
an

ce
 R

at
io

GWR RG
ARG RR

RG+
0.0

0.5

1.0

1.5

Pe
rfo

rm
an

ce
 R

at
io

GWR RG
ARG RR

RG+

1.0

1.5

2.0

Pe
rfo

rm
an

ce
 R

at
io

GWR RG
ARG RR

RG+

2

3

Pe
rfo

rm
an

ce
 R

at
io

GWR RG
ARG RR

RG+
2

3

4

5

6

Pe
rfo

rm
an

ce
 R

at
io

Figure 2: Performance ratios with an increasing P . The job sizes are
drawn from interval [1, P ], where P is set to 1 (R1C1), 2 (R1C2),
5 (R1C3), 10 (R2C1), 20 (R2C2), and 40 (R2C3). The number of
jobs is fixed at 4500. Jobs are released in time [0, 5000] uniformly at
random. The prediction error is set to 1.
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Figure 3: Performance ratios with an increasing prediction error η. The
prediction error increases from 1 to 512. The number of jobs is fixed at
4500. Jobs are released in time [0, 5000] uniformly at random. The
job sizes are drawn from [1, 10].
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Figure 4: Performance ratios with an increasing prediction error (1 to
6) on real-world trace-log data from Google Cloud.
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Figure 5: Performance ratios with an increasing prediction error (1 to
6) on real-world trace-log data from Azure Cloud.
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Figure 6: Performance ratios with an increasing prediction error (1 to
6) on real-world trace-log data from Alibaba Cloud.

Figure 4 to 6 presents the results on real-world trace-log data under different η. RG and ARG have
strong performance under perfect predictions. With limited job size information, the performance
ratio of ARG increases the fastest with increasing η. RG’s performance ratio falls between ARG and
GWR under imperfect predictions. Overall, RG+ achieves the best performance at all times.

8 CONCLUSION

Under classic scheduling settings, we propose an exact polynomial-time offline algorithm, establish
a non-clairvoyant competitive lower bound of Ω(n), and present a matching O(n)-competitive
algorithm. We develop a family of algorithms for online scheduling to minimize max-stretch with
different types of predictions. These algorithms offer various guarantees and leverage predictions
from multiple sources. They achieve a consistency of O(

√
P ) matching the best-known clairvoyant

result but exhibit relatively weak robustness of O(n · P ). We demonstrate how a consistency-
smoothness trade-off can be achieved with a parameterized algorithm. Furthermore, we show how
resource augmentation can overcome the poor robustness guarantee, resulting in asymptotically
optimal robustness. Through experiments, we demonstrate the practicality of these algorithms. We
anticipate that many of the techniques we employ are applicable to other problems.

Many questions remain open for future work. We have not established whether the cubic dependency
on η is optimal for learning-augmented algorithms. Therefore, analyzing the lower bound on the
dependency on η remains a subject for future study. While we have shown that our construction
of RGx achieves the best possible trade-off for consistency and smoothness under this method, we
have not demonstrated the Pareto-optimality of the trade-off. Establishing this remains an interesting
direction for future work. Additionally, extending the approach to parallel identical machines seems
to be a promising direction.
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TABLE OF NOTATIONS

See Table 1 for the table of notations used in the analysis.

S Meaning
n the number of jobs
Jj job with index j
rj release time of Jj

p∗j job size of Jj

pj job size prediction for Jj

Cj completion time of Jj

t a time instant
CA

j completion time of Jj in the schedule constructed by algorithm A
I a problem instance (in proofs for Section 6 this I refers to problem input)
σ a schedule constructed for some problem instance I

ηj prediction error for Jj : ηj = max{ p
∗
j

pj
,
pj
p∗j
}

η total prediction error: η = max1≤j≤n ηj = max1≤j≤n max{ p
∗
j

pj
,
pj
p∗j
}

p∗min, p
∗
max minimum/maximum job size: p∗min = min1≤j≤n p∗j and p∗max = max1≤j≤n p∗j

P maximum ratio of any two job sizes: P =
p∗max
p∗min

Sj stretch of job Jj : Sj =
Cj−rj

p∗j

SA
j stretch of job Jj in the schedule constructed by algorithm A: SA

j =
CA

j−rj

p∗j
S∗ optimal max-stretch for some problem instance I
SA max-stretch achieved by algorithm A for some problem instance I
π an ordering of jobs

pmin, pmax minimum/maximum job size prediction: pmin = min1≤j≤n pj and pmax = max1≤j≤n pj
pemin, p

e
max predicted minimum/maximum job size of all jobs

λ prediction error associated with pemin: λ = max{ p
e
min

p∗min
,
p∗min
pemin
}

φ prediction error associated with pemax: φ = max{ p
e
max

p∗max
,
p∗max
pemax
}

S̃j,α,β(t) α-β relaxed-stretch of job Jj at time t, abbreviated as S̃j(t)

S̃j,α,β α-β relaxed-stretch of job Jj at its completion, abbreviated as S̃j when α and β are clear
S̃α,β maximum α-β relaxed stretch of all jobs: S̃α,β = max1≤j≤n S̃j,α,β , abbreviated as S̃
S̃∗ optimal max-relaxed-stretch for some problem instance I

S̃A max-relaxed-stretch achieved by algorithm A for some problem instance I

d̃j deadline for job Jj to achieve the optimal max-relaxed-stretch
P̃j(t) predecessors of Jj (in terms of d̃j) at time t: P̃j(t) = {Jx|d̃x ≤ d̃j , Jx active at time t}
F̃j(t) followers of Jj (in terms of d̃j) at time t: F̃j(t) = {Jx|d̃x > d̃j , Jx active at time t}
C̃EDF

j completion time of Jj in the schedule constructed by EDF with deadlines d̃j
S̃OPT max-relaxed-stretch of the optimal schedule for the max-stretch problem
τj the earliest time after which no job delays/⊘-delays Jj

pmax,t maximum job size prediction seen by time t: pmax,t = maxrj≤t pj

Ŝj,α,β(t) α-β adaptive relaxed-stretch of job Jj at time t, abbreviated as Ŝj(t)

Ŝj,α,β α-β adaptive relaxed-stretch of job Jj at its completion, abbreviated as Ŝj

Ŝα,β maximum α-β adaptive relaxed stretch: Ŝα,β = max1≤j≤n Ŝj,α,β , abbreviated as Ŝ
Ŝ∗ optimal max-adaptive-relaxed-stretch for some problem instance I

ŜA max-adaptive-relaxed-stretch achieved by algorithm A for some problem instance I

d̂j deadline for job Jj to achieve the optimal max-adaptive-relaxed-stretch
P̂j(t) predecessors of Jj (in terms of d̂j) at time t: P̂j(t) = {Jx|d̂x ≤ d̂j , Jx active at time t}
F̂j(t) followers of Jj (in terms of d̂j) at time t: F̂j(t) = {Jx|d̂x > d̂j , Jx active at time t}
ĈEDF

j completion time of Jj in the schedule constructed by EDF with deadlines d̂j
ŜOPT max-adaptive-relaxed-stretch of the optimal schedule for the max-stretch problem

Table 1: A table of notations.
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Algorithm 2: Offline Scheduling
Data :every job Jj with release time rj and job size p∗j
Result :schedule with optimal max-stretch

1 S← { ri−rj
p∗j−p∗i

|1 ≤ i, j ≤ n, p∗i ̸= p∗j ,
ri−rj
p∗j−p∗i

≥ 0} ∪ {0}
2 view set S as a sorted index-based list.
3 l, r, σo,mso ← 0, |S|, ∅,∞
4 while l < r do
5 k ← ⌊ l+r

2
⌋

6 assign dj ← rj + Sk · p∗j for all 1 ≤ j ≤ n.
7 order jobs by increasing dj ; tie breaks by smaller p∗j first and tie breaks arbitrarily for the rest.
8 schedule jobs with respect to this order by always running the active arrived job with the highest

priority (the most front in the order); let the resulting schedule be σ.
9 ms← max-stretch of σ

10 if ms < mso then
11 σo,mso ← σ,ms
12 if every job Jj completes no later than dj in σ then
13 r ← k
14 else
15 l← k + 1

16 return σo

A MISSING PROOFS FOR SECTION 3.1

An exact minimum (optimal) max-stretch exists. This is a product of the following general result.

Theorem A.1 (Min Max-user-defined-stretch). Fix any positive vector Γ = (γ1, γ2, ..., γn). There
exists a schedule, for every problem instance, which achieves a minimum max-user-defined-stretch,
defined as S̃Γ = max1≤j≤n S̃Γj , where S̃Γj =

Cj−rj
γj

.

In the analysis of this section, we use the optimality of EDF: EDF minimizes the maximum lateness
of the jobs and always finds a feasible schedule if one exists.

The max-stretch is a special case of the max-user-defined-stretch with Γ = (p∗1, p
∗
2, ..., p

∗
n). We show

a polynomial-time exact algorithm exists. Observe that we can construct an optimal schedule using
the Earliest Deadline First (EDF) algorithm if we know the optimal max-stretch. If S∗ is the optimal
max-stretch, we can assign a deadline dj ← rj + S∗ · p∗j to every job Jj and schedule jobs by EDF.
This schedule has max-stretch S∗ by the optimality of EDF. Essentially, EDF uses the deadlines to
determine a job ordering and schedules jobs according to the job priority indicated by the ordering.
We can construct the optimal schedule if we know the optimal job ordering, which a bisection search
can find on the following set. We let S = { ri−rjp∗j−p∗i

|1 ≤ i, j ≤ n, p∗i ̸= p∗j ,
ri−rj
p∗j−p∗i

≥ 0} ∪ {0} be the
set of all intersections (x-axis) of lines y = rj + p∗j · x and a zero element. Every element x ∈ S
corresponds to an order of jobs via assigning dj ← rj + x · p∗j and ordering jobs by increasing dj .
One of these orders is the optimal job order. A bisection search on sorted S can efficiently find it.
The pseudo-code of this algorithm is given in Algorithm 2.

The proof for Theorem A.1 uses the following observation.
Observation A.2. If a schedule exists with max-user-defined-stretch x, there exists a schedule with
max-user-defined-stretch y for any y ≥ x. If no schedule achieves max-user-defined-stretch x, no
schedule achieves max-user-defined-stretch y for any y ≤ x.

Proof. Suppose a schedule σ achieves a max-user-defined-stretch x. Construct another schedule σ′,
which is identical to σ except for the job Jk that is completed as the last job in σ. Preempt Jk in σ′

before its completion and resume Jk later so that the user-defined-stretch for job Jk reaches exactly
y. Thus, σ′ achieves a max-user-defined-stretch y.

Suppose no schedule achieves max-user-defined-stretch x. Suppose, for proof by contradiction, that
there exists a schedule σ that achieves max-user-defined-stretch y with y ≤ x. Construct a schedule
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σ′ following the same procedure as above to produce σ′ with max-user-defined-stretch x. This
contradicts the idea that no schedule achieves max-user-defined-stretch x.

We introduce some definitions and notations. Given an order of jobs π = (Jj1 , Jj2 , ..., Jjn) indicating
job priority (the more front in the order, the higher the priority is), define the priority schedule with
respect to π to be the schedule constructed from always running the active arrived job with the highest
priority and preempting the running low priority job if necessary; the priority schedule is denoted by
PS(π).

For any x ∈ S, define π[x] to be the job order constructed by ordering jobs in increasing deadlines,
where dj = rj + x · γj , with tie-breaking by smaller γj first and further tie-breaking by the smaller
job index first (or any arbitrary order). View set S as a sorted index-based list S = (x0, x1, ..., xκ).
Note that x0 = 0 by definition. We have [x0, x1), [x1, x2), ..., [xκ−1, xκ), [xκ,∞) forms a partition
of non-negative numbers.

Define a mapping Ψ that maps positive numbers to orders of jobs. Order Ψ(x) is defined as follows.
Set deadline dj = rj + x · γj for all 1 ≤ j ≤ n. Order the jobs by increasing deadlines. If two jobs
have the same deadline, the one with a smaller weight (γj) comes first. If two jobs have the same
deadline and size, i.e., the same release times and job sizes, the one with a smaller job index comes
first (this tie-breaking criterion can be arbitrary). The resulting order is Ψ(x).

Proof for Theorem A.1. We make two observations: (1) PS(π[0]) does not achieve a max-user-
defined-stretch 0; (2) PS(π[x]) achieves a max-user-defined-stretch at most x, for a large x. To

see observation 2, let x′ =
max1≤j≤n rj+

∑n
j=1 p

∗
j

min1≤j≤n γj
and PS(π[x′]) achieves a max-user-defined-stretch

at most x′. By Observation A.2, there exists the largest index p such that PS(π[xp]) does not
achieve a max-user-defined-stretch xp. We show that the optimal value for max-user-defined-stretch

exists in interval [xp, xp+1], where xp+1 denotes
max1≤j≤n rj+

∑n
j=1 p

∗
j

min1≤j≤n γj
if p = κ. By definition of p,

PS(π[xp+1]) achieves a max-user-defined-stretch at most xp+1. Let X∗ be the max-user-defined-
stretch achieved by schedule PS(π[xp]). Clearly, X∗ > xp.

We first show that PS(π[x]) is identical to each other for all x ∈ [xp, xp+1), by showing that
Ψ(xp) = Ψ(x) for any x ∈ [xp, xp+1). Suppose, for proof by contradiction, there exists y ∈
(xp, xp+1) such that Ψ(xp) ̸= Ψ(y). Let k be the smallest index such that Ψ(xp)k ̸= Ψ(y)k (the k-th
elements of Ψ(xp) and Ψ(S∗) are non-equal). For reference, we let Ψ(xp)k = Jq and Ψ(y)k = Jl.
Clearly, Jq is in front of Jl in Ψ(xp), but Jl is in front of Jq in Ψ(y), by the choice of k. This means
that Jq has a smaller deadline than Jl in Ψ(xp), but a larger deadline in Ψ(y), by the definition of Ψ.
We have:

rq + xp · γq < rl + xp · γl and rq + y · γq > rl + y · γl
This means that γq > γl and rq < rl. However, we have:

xp <
rl − rq
γq − γl

< y < xp+1

This contradicts with xp+1 being the smallest element (in S) greater than xp or a new element should
be in S, by the definition of xp+1. Thus, we must have Ψ(xp) = Ψ(y) for all y ∈ (xp, xp+1), and
PS(π[x]) is identical to each other for all x ∈ [xp, xp+1).

If X∗ < xp+1, no schedule achieves a max-user-defined-stretch at most x for any x < X∗, as
PS(π[x]) achieves the same max-user-defined-stretch X∗ for all xp ≤ x < X∗. In this case,
X∗ is the minimum (optimal) max-user-defined-stretch. If X∗ ≥ xp+1, no schedule achieves a
max-user-defined-stretch at most x for any x < xp+1, as PS(π[x]) achieves the same max-user-
defined-stretchX∗ for all x ∈ [xp, xp+1). In this case, PS(π[xp+1]) achieves the minimum (optimal)
max-user-defined-stretch xp+1.

For the rest of this section, we restrict our discussion to the max-stretch, i.e., let Γ = (p∗1, p
∗
2, ..., p

∗
n)

in the max-user-defined-stretch, and prove Theorem 3.2. We can find the optimal job order with set
S (S = { ri−rjp∗j−p∗i

|1 ≤ i < j ≤ n, p∗i ̸= p∗j ,
ri−rj
p∗j−p∗i

≥ 0} ∪ {0}). View set S as a sorted index-based

list S = (x0, x1, ..., xκ). We have [x0, x1), ..., [xκ−1, xκ), [xκ,∞) forms a partition of non-negative
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numbers. The optimal stretch S∗ must be within one of the intervals. Suppose S∗ ∈ [xp, xp+1), where
we use xκ+1 to represent∞ for convention. Then, PS(π[xp]) achieves the optimal max-stretch.

Lemma A.3. There exists x ∈ S such that PS(π[x]) achieves the optimal max-stretch.

Proof. This is a product of Theorem A.1.

Let x∗ ∈ S be the critical element with PS(π[x∗]) achieving the optimal max-stretch. Observe the
following property enabling the bisection search.

Lemma A.4. At lease one job Jj in PS(π[x]) completes later than rj + x · p∗j , for x ∈ S, x < x∗.
Every job Jj in PS(π[x]) completes no later than rj + x · p∗j , for x ∈ S, x > x∗.

Proof. We first show that PS(π[x]) contains at least one job Jj that completes later than rj + x · p∗j
for x ∈ S, x < xp. Suppose otherwise for proof by contradiction. There exists x̂ ∈ S, x̂ < xp such
that every job Jj completes no later than rj + x̂ · p∗j in PS(π[x̂]). Then, we have the max-stretch of
PS(π[x̂]) to be at most x̂ < xp, which contradicts the fact that the optimal max-stretch is at least xp.
We then show that every job Jj in PS(π[x]) completes no later than rj +x · p∗j for x ∈ S, x > xp. If
x ∈ S, x > xp, then it holds that x ≥ xp+1 > S∗. Since there exists a schedule with S∗ max-stretch,
where every job Jj completes no later than rj + S∗ · p∗j , a schedule where every job Jj completes no
later than rj + x · p∗j exists for x > S∗. By optimality of EDF, PS(π[x]) (x > xp) must ensure that
every job Jj completes no later than its deadline, rj + x · p∗j .

Lemma A.5. Algorithm 2 admits an O(n2 log n) implementation.

Proof. Computing S takes O(n2) time, as there are O(n2) pairs of jobs. For the same reason, S has
O(n2) elements. Sorting S takes O(n2 log n2) = O(n2 log n) time. We sort all jobs by their release
time before entering the bisection search, which takes O(n log n) time. The bisection search loop
experiences O(log n2) = O(log n) iterations. Consider any iteration. Computing the job priority
takes O(n) + O(n log n) = O(n log n) time. Computing the priority schedule with the static job
priority takes O(n log n). This is achieved by maintaining a priority queue of active arrived jobs
and processing events, including job release and job completion. There are O(n) events for job
release and job completion. Every event takes O(log n) to process with the priority queue. Apart
from computing the priority schedule, the rest operations in the iteration take O(n) time. Therefore,
an iteration of the bisection search takes O(n log n) +O(n log n) +O(n) = O(n log n) time. The
overall complexity is:

O(n2 log n) +O(log n) ·O(n log n) = O(n2 log n)

Theorem A.6 (Theorem 3.2 Restated). Algorithm 2 finds an offline schedule with optimal max-stretch
in time polynomial in n. It admits an O(n2 log n) implementation.

Proof for Theorem 3.2. Let the optimal stretch be S∗. Let xp ∈ S such that PS(π[xp]) achieves
max-stretch S∗ by Lemma A.3. We show that one of the bisection search iterations visits the xp
and finds the optimal job order π[xp]. First observe that the bisection search procedure terminates
within a finite number of iterations. Let li, ri denote the left and right ends of the searching interval
at the start of the i-th iteration of the search (initially, l0 = 0 and r0 = |S|). We show the invariant
that, if li ≤ p < ri, either the i-th iteration finds xp or li+1 ≤ p < ri+1. The i-th iteration finds
xp if ⌊ li+ri2 ⌋ = p. We consider the other two cases: ⌊ li+ri2 ⌋ < p and ⌊ li+ri2 ⌋ > p. Suppose
k = ⌊ li+ri2 ⌋ < p. With k < p, at least one job Jj in PS(π[xk]) completes later than rj + xk · p∗j
in this iteration by Lemma A.4. Then, we have li+1 = k + 1 ≤ p (by k, p both integers) and
p < ri = ri+1. Suppose k = ⌊ li+ri2 ⌋ > p. With k > p, every job Jj completes no later than
rj + xk · p∗j in this iteration by Lemma A.4. Then, we have li+1 = li ≤ p and p < k = ri+1.
Observe that we have le ≥ re, where e is the total number of iterations, at the termination of the
search. This means that one of the iterations must visit the xp and finds the optimal job order π[xp],
which shows the correctness of the algorithm. Further, Lemma A.5 shows that the algorithm admits a
polynomial-time O(n2 log n) implementation.
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B MISSING PROOFS FOR SECTION 3.3

Theorem B.1 (Theorem 3.5 Restated). No c-competitive deterministic algorithm exists with c < n
for online non-clairvoyant max-stretch scheduling, even if all jobs are released at time 0.

Proof for Theorem 3.5. We use proof by contradiction. Suppose there exists a c-competitive deter-
ministic algorithm A with c < n. Consider n identical jobs all with job size 1 to be released at time
0. Run A against this set of jobs. Without loss of generality, let J1 be the job with the least amount of
the processed size l1. We have l1 ≤ 1

n by the pigeonhole principle.

Construct the problem instance consisting n (n ≥ 2) jobs to be released at time 0, with job sizes
p∗1 = 1

n + ϵ, p∗2 = ψ − ( 1n + ϵ), p∗3 = ψ2 − ψ, p∗4 = ψ3 − ψ2, ..., p∗n = ψn−1 − ψn−2. Here,
p∗j = ψj−1 − ψj−2 for j ≥ 3, and ψ is a large constant ψ = max{2, n

n−c} and ϵ is a small constant
ϵ = min{ 1n ,

1
c −

1
c·ψ −

1
n}. Observe that 1

c −
1
c·ψ −

1
n > 0 and thus ϵ > 0 by the definition of ψ.

Run A against this job set. Since the algorithm is deterministic, job J1 will be completed after time 1.
The max-stretch achieved by A on this instance is more than 1

p∗1
= 1/( 1n + ϵ) = n

1+n·ϵ . Consider
the schedule that runs J1, J2, ..., Jn sequentially in the order of job index. The stretch for job J1 is
S1 = 1. The stretch for job J2 is S2 = ψ/(ψ − 1

n − ϵ). Observe that job Jj completes at time ψj−1

for j ≥ 3. The stretch for job Jj is:

ψj−1

ψj−1 − ψj−2
=

ψ

ψ − 1

for all j ≥ 3. Observe that ψ
ψ−1 ≥ 1 and ψ

ψ−1 ≥ ψ/(ψ − 1
n − ϵ) by the definition of ϵ. Thus, the

max-stretch achieved by this schedule is ψ
ψ−1 . Therefore, the minimum max-stretch for this job set is

at most ψ
ψ−1 . However, we have the ratio between the max-stretch achieved by A and the optimal

schedule more than:
n

1+n·ϵ
ψ
ψ−1

= n ·
1− 1

ψ

1 + n · ϵ
≥ n ·

1− 1
ψ

1 + n · ( 1c −
1
c·ψ −

1
n )

= c

which contradicts the competitive ratio of A.

Theorem B.2 (Theorem 3.6 Restated). RR is n-competitive for online non-clairvoyant scheduling.

Proof for Theorem 3.6. With RR, job Jj is processed by at least p∗j amount during time rj (when the
job arrives) and rj + n · p∗j . Therefore, Cj ≤ rj + n · p∗j and Sj ≤ n for every 1 ≤ j ≤ n. We have
max-stretch = max1≤j≤n Sj ≤ n = n · 1. Observe that the optimal schedule has a max-stretch of at
least 1. Therefore, RR is n-competitive.

We observe instantaneous fairness achieves global fairness under the non-clairvoyant setting. This
processor-sharing policy is necessary for non-clairvoyant scheduling, i.e., any algorithm must adapt a
certain degree of processor sharing to be competitive. We define processor-sharing as follows.
Definition B.3 (k processor-sharing). An algorithm is said to be k processor-sharing for a problem
instance I , if it holds either (1) Jj is completed before t, or (2) Jj has been processed for at least
t−rj
k unit, for any job Jj and any time instant t ∈ [rj ,∞), in the execution of A on I .

Intuitively, a k processor-sharing algorithm allocates at least 1
k unit of processing power to all active

jobs. By definition, RR is n processor-sharing for every problem instance. We show the criticality of
processor-sharing in obtaining competitiveness in online non-clairvoyant scheduling.
Theorem B.4 (Equivalence of Competitiveness and Processor-sharing). In online non-clairvoyant
scheduling, a deterministic algorithm is c-competitive if it is c ·S∗ processor-sharing for any problem
instance I with the minimum max-stretch S∗. Any c-competitive algorithm must be c · n processor-
sharing for every problem instance I .
Remark B.5. Any k1 processor-sharing algorithm (for every problem instance) is k2 processor-
sharing for any k1 ≤ k2. As a corollary of Theorem B.4, any k processor-sharing algorithm (for
every problem instance) is k-competitive.
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The proof for Theorem B.4 uses the following bound for the minimum max-stretch.
Observation B.6. The minimum max-stretch is at most n for any problem instance with n jobs.

Proof. The max-stretch obtained by RR on any problem instance is at most n. Therefore, the
minimum max-stretch for problem instance I is at most n.

Proof for Theorem B.4. Fix a problem instance. If an algorithm is c · S∗ processor-sharing for that
instance, every job Jj completes before rj + c · S∗ · p∗j with Sj ≤ c = c · S∗. The max-stretch is at
most c times the optimum, so the algorithm is c-competitive. Below we consider the reverse.

Let A be any c-competitive algorithm. Suppose, for proof by contradiction, that there exists a
problem instance I with minimum max-stretch S∗, such that there exists a job Jj and a time instant
t′ ∈ [rj ,∞), where Jj has been processed for less than q =

t′−rj
c·n at time t′. Construct another

instance I ′, which contains the same job set as I except for the job Jj with p∗j = q. Run A on I ′.
The schedule is the same as the one generated for I before and at time t′. Therefore, Jj is completed
after t′ for I ′. The max-stretch achieved on I ′ is more than t′−rj

q = c · n. The minimum max-stretch
for I ′ is at most n by Observation B.6. Thus, algorithm A achieves a max-stretch on I ′ more than c
times the optimum, which contradicts the c competitive ratio.

Theorem B.7 (Theorem 3.7 Restated). Any non-lazy algorithm is (n− 1) · P + 1-competitive.

Proof for Theorem 3.7. Pick any job Jj . The algorithm is processing active jobs in time [rj , Cj ].
We have Sj =

Cj−rj
p∗j

≤ (n−1)·p∗max+p
∗
min

p∗min
= (n − 1) · P + 1 and max-stretch = max1≤j≤n Sj ≤

(n− 1) · P + 1.

C MISSING PROOFS FOR SECTION 4.2

Define a heuristic relaxed-stretch based on two parameters α and β (α < β).

Definition C.1 (α-β Relaxed-Stretch). Define α-β relaxed-stretch S̃j,α,β(t) for job Jj at time t

given α and β: S̃j,α,β(t) =
t−rj
α if Jj is active at time t and pj ≤ α; S̃j,α,β(t) =

t−rj
β if Jj is

active at time t and pj > α. We use S̃j,α,β to denote the α-β relaxed-stretch at the completion

of job Jj : S̃j,α,β =
Cj−rj
α if pj ≤ α; S̃j,α,β =

Cj−rj
β if pj > α. Fixing a problem instance of

online scheduling with predictions and a schedule, we use max-relaxed-stretch, denoted by S̃α,β ,

to represent the maximum α-β relaxed stretch of all jobs: S̃α,β = max1≤j≤n S̃j,α,β . We drop the
subscripts α and β from the notations when the context is clear for simplicity. We also drop the prefix
α-β when the context is clear.

Classify jobs into short and long jobs according to their job size predictions, with a given α and β.

Definition C.2 (α-β Short and Long Jobs). Given parameters α and β, a job Jj is said to be short if
pj ≤ α; a job Jj is said to be long otherwise.

Fix a problem instance I . Run RG. Let SRG and S∗ denote the max-stretch achieved by RG and
the optimal max-stretch of I . Let S̃RG and S̃∗ denote the max-relaxed-stretch achieved by RG
and the optimal max-relaxed-stretch of I . The quantity S̃∗ exists due to Theorem A.1, regardless
of the values of α and β. We study the relations between SRG, S̃RG, S̃∗, and S∗. We begin
with showing S̃RG ≤ 3 · S̃∗. We consider how much RG differs from an optimal execution by
examining the maximum amount of processing units a job can be delayed compared with the optimal
schedule. Define d̃j to be the deadline of completing job Jj to achieve the max-relaxed-stretch, i.e.,
d̃j = rj + S̃∗ · α for short job Jj and d̃j = rj + S̃∗ · β for long job Jj . A schedule achieves the
optimal max-relaxed-stretch if every job Jj completes no later than d̃j . We study how much any job
Jj can be delayed after d̃j in RG.
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Observe that EDF finds a feasible schedule meeting all deadlines if one exists. The schedule obeying
EDF with deadlines d̃j achieves the optimal max-relaxed-stretch S̃∗. Define set P̃j(t) = {Jx|d̃x ≤
d̃j , Jx active at time t} and set F̃j(t) = {Jx|d̃x > d̃j , Jx active at time t} to be the predecessors and
followers (in terms of the deadlines) of Jj at time t.

Definition C.3 (Definition of Delay). Job Jj is said to be delayed by another job Jk at time t, if the
following four conditions are simultaneously met: (1) Jj is not completed or not released at time t, (2)
Jk ∈ F̃j(t), (3) P̃j(t) ̸= ∅, and (4) RG is processing Jk at time t with max

Jx∈P̃j(t)
S̃x(t) < S̃k(t).

If C̃EDF
j and CRG

j denote the completion time for Jj in the (optimal) schedule constructed by EDF

with S̃∗ and the schedule by RG, it follows CRG
j ≤ C̃EDF

j +
∫

any job delays Jj at time t dt. The following
two lemmas hold with any given α and β (α < β).

Lemma C.4 (No Job Delays a Long Job). A long job is never delayed, for any α and β (α < β).

Proof. Fix any long job Jj and a time t before the completion of Jj . Suppose, for proof by
contradiction, that another job Jk ∈ F̃j(t) delays Jj at time t. Job Jk must be a short job, since
otherwise, we would have rj < rk and S̃j(t) > S̃k(t). We also have d̃k > d̃j ⇒ rk + S̃∗ · α >

rj + S̃∗ · β ⇒ rk > rj . Thus, Jj is active at time t. We have:

S̃j(t) < S̃k(t)⇒
t− rj
β

<
t− rk
α
⇒ t >

rk · β − rj · α
β − α

Observe, by the definition of delay, that Jk ∈ F̃j(t) implies rk + S̃∗ · α > rj + S̃∗ · β. It holds that:

t >
(rj + S̃∗ · β − S̃∗ · α) · β − rj · α

β − α
= rj + S̃∗ · β = d̃j

Thus, no job delays Jj before time d̃j . In such a case, however, Jj completes no later than d̃j , which
is earlier than t, contradicting the definition of delay.

Lemma C.5 (Bound on the Delay for a Short Job). A short job Jj completes no later than rj+3·S̃∗ ·α,
for any α and β (α < β).

Proof. We claim that any short job Jj can only be delayed before time d̃j , i.e., some job Jk ∈ F̃j(t)
delays Jj at some time t implies t < d̃j . We show this via proof by contradiction. Fix a short job Jj .
Suppose another job Jk ∈ F̃j(t) delays Jj at some time t ≥ d̃j . Job Jj must be active at time t. Job
Jk must be a long job, since otherwise, we would have Jk ∈ F̃j(t) implying d̃k > d̃j , which means
rk > rj and S̃j(t) > S̃k(t). We have:

S̃j(t) < S̃k(t)⇒
t− rj
α

<
t− rk
β
⇒ t <

rj · β − rk · α
β − α

With Jk ∈ F̃j(t), it holds rk + S̃∗ · β > rj + S̃∗ · α. We have:

t <
rj · β − (rj + S̃∗ · α− S̃∗ · β) · α

β − α
= rj + S̃∗ · α = d̃j

which contradicts Jk delays job Jj at time t ≥ d̃j .
Next, consider any short job Jj . Define τj to be the earliest time after which no job delays Jj , i.e.,
for any time t after τj and before the completion time of Jj , the processor always processes a job
from P̃j(t) when P̃j(t) ̸= ∅, and τj is the earliest time instant such that the condition holds (τj is
the last time Jj is delayed). Consider set P̃j(τj). Observe that every job Jx ∈ P̃j(τj) is delayed
by the job (call it Jq) running at time instant τj , since d̃x ≤ d̃j and d̃j < d̃q. It follows P̃j(τj)
contains only short jobs, by Lemma C.4. Observe that, for any job Jx ∈ P̃j(τj), we have τj ≤ d̃x, or
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equivalently rx ≥ τj − S̃∗ · α, as job Jx is delayed at τj . We bound the total amount of delay on Jj
by

∑
Jx∈P̃j(τj)

p∗x. Consider the optimal schedule constructed by EDF with S̃∗. We have two cases.

Case 1 (τj < rj). In the optimal schedule, all jobs in P̃j(τj) are released no earlier than τj − S̃∗ · α
and no later than τj and completed no later than τj + S̃∗ · α. We have:∑

Jx∈P̃j(τj)

p∗x ≤ τj + S̃∗ · α− (τj − S̃∗ · α) = 2 · S̃∗ · α

Case 2 (τj ≥ rj). In the optimal schedule, all jobs in P̃j(τj) (including job Jj) are released no earlier
than τj − S̃∗ · α and completed no later than d̃j = rj + S̃∗ · α. We have:∑

Jx∈P̃j(τj)

p∗x ≤ d̃j − (τj − S̃∗ · α) = rj + 2 · S̃∗ · α− τj ≤ 2 · S̃∗ · α

Thus, the completion time for a short job Jj in RG is at most d̃j+
∑
Jx∈P̃j(τj)

p∗x ≤ rj+3 ·S̃∗ ·α

Let S̃∗
j and S̃RG

j be the relaxed-stretch of Jj in the schedule constructed by EDF with S̃∗ and RG.

Lemma C.6. For any given α and β (α < β), it holds S̃RG
j ≤ S̃∗ for any long job Jj and S̃RG

j ≤ 3·S̃∗

for any short job Jj .

Proof. Pick any job Jj . If Jj is a long job, it follows by Lemma C.4 that:

CRG
j ≤ C̃EDF

j +

∫
any job delays Jj at time t

dt = C̃EDF
j ⇒ S̃RG

j ≤ S̃∗
j ≤ S̃∗

If Jj is a short job, it follows by Lemma C.5 that:

S̃RG
j =

CRG
j − rj
α

≤ (rj + 3 · S̃∗ · α)− rj
α

= 3 · S̃∗

Denote SRG
j and S̃RG

j to be the stretch and the relaxed-stretch of job Jj in the execution of RG. The

following lemmas show the relation between S̃∗ with S∗ and SRG
j with S̃RG

j by using α =
√
pmin·pmax√

3

and β = pmax. Lemma C.7 requires α < β and pj ≤ β for all 1 ≤ j ≤ n to hold; Lemma C.8
requires the specific values for α and β to hold. They do not hold under any arbitrary α and β.

Lemma C.7. S̃∗ ≤ η · S∗, for any given α < β and pj ≤ β for all 1 ≤ j ≤ n.

Proof. Denote S̃OPT to be the max-relaxed-stretch of the optimal schedule for the max-stretch

problem (the schedule with max-stretch S∗). It follows S̃∗ ≤ S̃OPT . Consider the optimal schedule

with max-stretch S∗. Let C∗
j and S̃OPTj denote the completion time of job Jj and the relaxed-stretch

of Jj in this schedule. Pick any job Jj . It follows pj ≤ α and S̃OPTj =
C∗

j −rj
α ≤ C∗

j −rj
pj

≤

η · C
∗
j −rj
p∗j

≤ η · S∗, if Jj is a short job. It follows pj ≤ β and S̃OPTj =
C∗

j −rj
β ≤ C∗

j −rj
pj

≤

η · C
∗
j −rj
p∗j

≤ η ·S∗, if Jj is a long job. Combining these two cases gives us S̃∗ ≤ S̃OPT ≤ η ·S∗.

Lemma C.8. It holds SRG
j ≤

√
3 · η2 ·

√
P · S̃RG

j for any long job Jj and SRG
j ≤ η√

3
·
√
P · S̃RG

j for

any short job Jj , with α =
√
pmin·pmax√

3
and β = pmax.
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Proof. Pick any job Jj . If job Jj is a long job, it holds that pj > α =
√
pmin·pmax√

3
. We have:

SRG
j =

CRG
j − rj
p∗j

=
CRG
j − rj
β

· β
p∗j
≤ S̃RG

j · η ·
β

pj
< S̃RG

j · η ·
√
3 · pmax√

pmin · pmax

≤ S̃RG
j · η ·

√
3 ·

√
pmax

pmin
≤ S̃RG

j · η ·
√
3 ·

√
η · p∗max

p∗min/η
=
√
3 · η2 ·

√
P · S̃RG

j

If job Jj is a short job, we have:

SRG
j =

CRG
j − rj
p∗j

≤
CRG
j − rj
p∗min

=
CRG
j − rj
α

· α
p∗min

≤ S̃RG
j ·

√
η · p∗min · η · p∗max√

3 · p∗min

≤ η√
3
·
√
P ·S̃RG

j

The derivation uses the observation: pmax ≤ η · p∗max, pmin ≥ p∗min

η , and pmin ≤ η · p∗min.

Combining the above results completes the proof for Theorem 4.3.

Theorem C.9 (Theorem 4.3 Restated). Relaxed-Greedy is
√
3 · η3 ·

√
P -competitive for online

scheduling with predictions.

Proof for Theorem 4.3. Consider the execution of RG. Pick any job Jj . If job Jj is a long job, we
have, by Lemmas C.8, C.6, and C.7, that:

SRG
j ≤

√
3 · η2 ·

√
P · S̃RG

j ≤
√
3 · η2 ·

√
P · S̃∗ ≤

√
3 · η3 ·

√
P · S∗

If job Jj is a short job, we have, by Lemmas C.8, C.6, and C.7, that:

SRG
j ≤ η√

3
·
√
P · S̃RG

j ≤ η√
3
·
√
P · 3 · S̃∗ ≤

√
3 · η2 ·

√
P · S∗

Therefore, we have SRG = max1≤j≤n S
RG
j ≤

√
3 ·η3 ·

√
P ·S∗. RG is

√
3 ·η3 ·

√
P -competitive.

We show that RG is Θ(n · P )-competitive with the worst-case predictions.
Theorem C.10 (Theorem 4.4 Restated). RG is (n − 1) · P + 1-competitive with arbitrarily bad
predictions, and this bound is tight.

Proof for Theorem 4.4. The non-lazy RG is (n− 1) · P + 1-competitive by Theorem 3.7. To see the
bound is tight, we show that, for any small ϵ > 0, there exists a set of n jobs with the associated
predictions such that the max-stretch obtained by RG is at least (n−1) ·P +1− ϵ times the optimum.
Fix any 0 < ϵ < 1. Let ω = ϵ·P

(n−1)·P+(1−ϵ) . Construct n jobs: p∗1 = 1, r1 = 0, p1 = n4·P 2

ω2 + 3 and
p∗j = P, rj = (1− ω) + (j − 2) · P, pj = 1 for all j ≥ 2. For this instance, we have pmin = 1 and
pmax = p1. The optimal schedule processes job J1, J2, ..., Jn in order and has max-stretch 1 + ω

P .
Algorithm RG will classify job J1 as a long job and the rest as short jobs. In the execution of RG, job
J1 is not processed in the intervals (rj +

rj√
p1−1 , C

RG
j ] as S̃1(t) < S̃j(t) for t ∈ (rj +

rj√
p1−1 , C

RG
j ]

for all 2 ≤ j ≤ n. Thus, before CRG
n , job J1 has been processed for at most:

(1− ω) +
n∑
j=2

rj√
p1 − 1

= (1− ω) +
n∑
j=2

(1− ω) + (j − 2) · P√
n4·P 2

ω2 + 3− 1
< 1

At CRG
n , jobs J2, ..., Jn are completed, leaving J1 to be completed at time (n − 1) · P + 1. The

max-stretch obtained by RG is (n−1) ·P +1, which is (n−1) ·P +1− ϵ times 1+ ω
P , the optimum

max-stretch.

We show RG’s performance for its run-time and space complexity and preemptions.
Lemma C.11. A short job Jj remains to have the largest relaxed-stretch among active jobs for all
time t ≥ t′ before its completion if it had the largest relaxed-stretch among active jobs at some time
t′.
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Proof. Suppose job Jj has the largest relaxed-stretch among active jobs at time t′. For any short job
Jk active at time t′, we have S̃j(t′) ≥ S̃k(t′)⇒ rj ≤ rk. Fix any time t ≥ t′. Any short job Jk active
at time t (including those released after t′) has rj ≤ rk and, thus, S̃j(t) ≥ S̃k(t). For any long job Jk
released after t′, we have t−rj

α ≥ t−rk
β ⇒ S̃j(t) ≥ S̃k(t), as rj ≤ rk and α < β. For any long job Jk

active at time t′, we have t′−rj
α ≥ t′−rk

β ⇒ t′ ≥ β·rj−α·rk
β−α ⇒ t ≥ β·rj−α·rk

β−α ⇒ S̃j(t) ≥ S̃k(t).

Theorem C.12 (Theorem 4.6 Restated). Relaxed-Greedy admits an implementation with O(1)
run-time to make any online decision and O(n) space.

Proof for Theorem 4.6. Main two First-In-First-Out (FIFO) queues: short queue and long queue. The
short/long queue contains short/long jobs in order of release time. The algorithm always processes the
job with the largest relaxed-stretch at the front of the two queues and removes a job from the (front of
the) queue when the job is completed. We claim that one of the jobs at the front of the queues has the
overall largest relaxed-stretch at any time t. To see this, it holds that rj ≤ rk ⇒ t−rj

α ≥ t−rk
α ⇒

S̃j(t) ≥ S̃k(t) for any short jobs Jj , Jk, and that rj ≤ rk ⇒ t−rj
β ≥ t−rk

β ⇒ S̃j(t) ≥ S̃k(t) for any
long jobs Jj , Jk. Therefore, Lines 17 and 22 in Algorithm 1 each require O(1) time to run. The rest
operations take O(1) time to run. Finally, since the algorithm maintains at most all jobs in memory
and a constant number of support variables, the space required is O(n).

Instead of running JobSwitch at every time t, the algorithm may compute a critical time t′ such that
t′−rj
α = t′−rk

β , if a long job Jk is currently being processed, where Jj and Jk are the short (if there
are any) and long jobs at the front of the queues. Update or re-compute this t′ if Jk is completed, or a
new short job is released when there is no short job prior to the job’s release. The algorithm calls
JobSwitch only at time t′, which minimizes the number of function calls. This is supported by the
observation that JobSwitch is executed only when a long job is being processed by Lemma C.11.

Theorem C.13 (Theorem 4.7 Restated). Relaxed-Greedy generates a schedule with at most n− 1
preemptions. Thus, the amortized number of preemptions per job is at most 1.

Proof for Theorem 4.7. Preemptions are triggered by JobSwitch, which is not triggered while a
short job is being processed by Lemma C.11. A long job may be preempted by short jobs; these short
jobs, however, will not be preempted by Lemma C.11. Thus, the number of preemptions is bounded
by the total number of short jobs, which is at most n − 1. No preemptions occur if all jobs have
the same job size prediction. Therefore, the amortized number of preemptions (per job) is at most
n−1
n ≤ 1.

D DISCUSSION OF THE CONSTANT IN RELAXED-STRETCH FOR SECTION 4.2

We show that replacing the constant
√
3 in α with any other constant maintains RG’s competitive

ratio, as long as α < β. The idea applies to the family of RG-based algorithms, including ARG,
PRG, RGx, and their RR-augmentations. For simplicity, we focus our discussion on RG.

Fix any constant µ (µ >
√

pmin

pmax
). Set α =

√
pmin·pmax

µ and β = pmax in RG. It holds α < β. With

parameters α and β, we (re-)use the definitions, lemmas, and notations from Section 4.2. We show
the following theorem.

Theorem D.1. Relaxed-Greedy is max{µ, 3
µ} · η

3 ·
√
P -competitive with α =

√
pmin·pmax

µ , β =

pmax, and µ >
√

pmin

pmax
, for online scheduling with predictions.
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Algorithm 3: Adaptive Relaxed-Greedy
Data : job size prediction pj upon job release and a prediction for minimum job size pemin

Result :schedule with a max-stretch O(λ0.5 · η2.5 ·
√
P ) times the optimum max-stretch

1 pmin ← pemin, pmax ← −1, α← −1, β ← −1
2 Function relaxedStretch(j, t) // computes adaptive relaxed-stretch for job

Jj at t
3 if Jj is completed before t then
4 t← Cj

5 if pj ≤ αrj then
6 return t−rj

αrj

7 else
8 return t−rj

βrj

9 Event Function JobRelease() // job Jj is released at time rj
10 if U = ∅ then
11 run Jj on the machine.

12 insert Jj into U.
13 pmax ← max(pmax, pj), α←

√
pmin·pmax√

3
, β ← max(pmax, α), αrj ← α, βrj ← β

14 The other functions (JobComplete, JobSwitch) remain the same as in Algorithm 1.

Proof. Consider the execution of RG. Pick any job Jj . If job Jj is a long job (pj > α =
√
pmin·pmax

µ ),
we have:

SRG
j =

CRG
j − rj
p∗j

=
CRG
j − rj
β

· β
p∗j
≤ S̃RG

j · η ·
β

pj
< S̃RG

j · η · µ ·
pmax√

pmin · pmax

≤ S̃RG
j · η · µ ·

√
η · p∗max

p∗min/η
= µ · η2 ·

√
P · S̃RG

j ≤ µ · η2 ·
√
P · S̃∗ ≤ µ · η3 ·

√
P · S∗

where the second last inequality is by Lemma C.6, and the last inequality is by Lemma C.7. If job Jj
is a short job, we have:

SRG
j =

CRG
j − rj
p∗j

≤
CRG
j − rj
p∗min

=
CRG
j − rj
α

· α

p∗min

= S̃RG
j ·
√
pmin · pmax

µ · p∗min

≤ S̃RG
j ·

√
η · p∗min · η · p∗max

µ · p∗min

=
η

µ
·
√
P · S̃RG

j ≤ 3

µ
· η ·
√
P · S̃∗ ≤ 3

µ
· η2 ·

√
P · S∗

where the second last inequality is by Lemma C.6, and the last inequality is by Lemma C.7. Therefore,
we have SRG = max1≤j≤n S

RG
j ≤ max{ 3µ , µ} · η

3 ·
√
P · S∗.

The implications of Theorem D.1 are as follows. Altering the constant
√
3 in α preserves RG’s

O(η3 ·
√
P ) competitive ratio, i.e., the choice does not affect the asymptotic performance guarantee.

This opens the door to searching for the appropriate constant for specific applications via algorithm
engineering. In addition, choosing µ =

√
3 yields the optimal constant in the competitive ratio, as

max{ 3µ , µ} ≥
√
3 for all µ > 0 and the minimum is obtained at µ =

√
3. This justifies our choice of√

3 in the definition of α.

E MISSING PROOFS FOR SECTION 4.3

We introduce subscript t to denote the value of a variable at time t. Thus, pmax at time t (denoted
by pmax,t) represents the maximum job size prediction seen so far, i.e., pmax,t = maxrj≤t pj .
Parameters α and β are functions in pmin and pmax and thus are time-varying. They are updated with

updates of pmax in JobRelease. Formally, ARG sets αt =
√
pemin·pmax,t√

3
and βt = max{pmax,t, αt},
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where αt and βt denote the values of α and β at time t. We record αrj and βrj for every job Jj .
These values are used to compute the adaptive relaxed-stretch of Jj , defined as follows.

Definition E.1 (α-β Adaptive Relaxed-Stretch). Define α-β adaptive relaxed-stretch Ŝj,α,β(t) for job
Jj at time t given α and β: Ŝj,α,β(t) =

t−rj
αrj

if Jj is active at time t and pj ≤ αrj ; Ŝj,α,β(t) =
t−rj
βrj

if Jj is active at time t and pj > αrj . We use Ŝj,α,β to denote the α-β adaptive relaxed-stretch
at the completion of job Jj : Ŝj,α,β =

Cj−rj
αrj

if pj ≤ αrj ; Ŝj,α,β =
Cj−rj
βrj

if pj > αrj . Fixing a

schedule, we use max-adaptive-relaxed-stretch, denoted by Ŝα,β to represent the maximum α-β
adaptive relaxed-stretch of all jobs: Ŝα,β = max1≤j≤n Ŝj,α,β . We drop the subscripts α and β from
the notations and the prefix α-β when the context is clear for simplicity.

The classification of job Jj now depends on the relationship between pj and αrj .

Definition E.2 (α-β r-short and r-long Jobs). Given parameters α and β, a job Jj is said to be
r-short if pj ≤ αrj ; a job Jj is said to be r-long otherwise.

Definition E.3 (Minimum max-adaptive-relaxed-stretch). We use Ŝ∗
α,β to denote the minimum

max-adaptive-relaxed-stretch, given any α and β. The existence of this quantity is due to Theorem
A.1. We drop the subscripts α and β from the notations when the context is clear.

Define d̂j to be the deadline of completing job Jj to achieve the minimum max-adaptive-relaxed-
stretch, i.e., d̂j = rj+ Ŝ∗ ·αrj for r-short job Jj and d̂j = rj+ Ŝ∗ ·βrj for r-long job Jj . A schedule
achieves the optimal max-adaptive-relaxed-stretch if every job Jj completes no later than d̂j . Define
set P̂j(t) = {Jx|d̂x ≤ d̂j , Jx active at time t} and set F̂j(t) = {Jx|d̂x > d̃j , Jx active at time t} to
be the predecessors and followers of Jj at time t in terms of minimizing the max-adaptive-relaxed-
stretch.

Definition E.4 (Definition of ⊘-delay). Job Jj is said to be ⊘-delayed by another job Jk at time t, if
the following four conditions are simultaneously met: (1) Jj is not completed or not released at time
t, (2) Jk ∈ F̂j(t), (3) P̂j(t) ̸= ∅, and (4) ARG is processing Jk at time t with max

Jx∈P̂j(t)
Ŝx(t) <

Ŝk(t).

The symbol ⊘ is only to distinguish ⊘-delay from delay; it does not contain any other meaning. We
first make the following observation.
Observation E.5. For any x ≤ y, it holds (1) αx ≤ βx, (2) αx ≤ αy , and (3) βx ≤ βy .

Lemma E.6 (No Job ⊘-delays a r-long Job). A r-long job is never ⊘-delayed.

Proof. Fix a r-long job Jj . Consider, for the proof by contradiction, another job Jk ∈ F̂j(t) ⊘-
delays Jj at some time t. Observe that rj < rk, since otherwise, we would have d̂j = rj + Ŝ∗ ·
βrj ≥ rk + Ŝ∗ · βrk ≥ d̂k. Thus, Jj is active at time t. Job Jk must be r-short, since otherwise,
Ŝj(t) =

t−rj
βrj

> t−rk
βrk

= Ŝk(t). We have:

Ŝj(t) < Ŝk(t)⇒
t− rj
βrj

<
t− rk
αrk

⇒ βrj > αrk and t >
rk · βrj − rj · αrk

βrj − αrk
≥ rj + Ŝ∗ ·βrj = d̂j

where the last inequality is due to d̂k > d̂j ⇒ rk + Ŝ∗ · αrk > rj + Ŝ∗ · βrj . Thus, no job ⊘-delays
Jj before time d̂j . However, in this case, job Jj completes no later than d̂j , which is earlier than t,
contradicting the definition of ⊘-delay.

Lemma E.7 (Bound on the Delay for a r-short Job). A r-short job Jj completes no later than
rj + 3 · Ŝ∗ · αrj .

Proof. We claim that any r-short job can only be ⊘-delayed before d̂j , i.e., some job Jk ∈ F̂j(t)
⊘-delays Jj at time t implies t < d̂j . We show this via proof by contradiction. Fix a r-short job Jj .
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Suppose another job Jk ∈ F̂j(t) ⊘-delays Jj at some time t ≥ d̂j . Job Jj must be active at time t.
Observe that rj > rk, since otherwise, we would have d̂j = rj + Ŝ∗ · αrj ≤ rk + Ŝ∗ · αrk ≤ d̂k.
Job Jk must be r-long, since otherwise, d̂k = rk + Ŝ∗ · αrk < rj + Ŝ∗ · αrj = d̂j . Then, it follows
d̂k > d̂j ⇒ rk + Ŝ∗ · βrk > rj + Ŝ∗ · αrj ⇒ βrk > αrj . We have:

Ŝk(t) > Ŝj(t)⇒
t− rk
βrk

>
t− rj
αrj

⇒ t <
rj · βrk − rk · αrj

βrk − αrj
< rj + Ŝ∗ · αrj = d̂j

where the last inequality is due to d̂k > d̂j ⇒ rk + Ŝ∗ · βrk > rj + Ŝ∗ · αrj . It follows d̂j ≤ t < d̂j ,
contradicting that Jk ⊘-delays job Jj at time t ≥ d̂j .
Next, consider any r-short job Jj . Let τj denote the earliest time after which no job ⊘-delays
Jj . Every job Jx ∈ P̂j(τj) is ⊘-delayed at time τj by the job Jl running at time instant τj , since
d̂x ≤ d̂j < d̂l. Thus, every job Jx ∈ P̂j(τj) is r-short by Lemma E.6. It follows that, for any
job Jx ∈ P̂j(τj), d̂x ≤ d̂j ⇒ rx + Ŝ∗ · αrx ≤ rj + Ŝ∗ · αrj ⇒ rx ≤ rj and τt ≤ d̂x ⇒ rx ≥
τj− Ŝ∗ ·αrx ≥ τj− Ŝ∗ ·αrj . We bound the total amount of delay on Jj by

∑
Jx∈P̂j(τj)

p∗x. Consider

the optimal schedule (in minimizing adaptive-relaxed-stretch) constructed by EDF with Ŝ∗. We have
two cases.

Case 1 (τj < rj). In the optimal schedule, all jobs in P̂j(τj) are released no earlier than τj − Ŝ∗ ·αrj
and no later than τj and completed no later than τj + Ŝ∗ · αy ≤ τj + Ŝ∗ · αrj , where y denotes
max

Jx∈P̂j(τj)
rx. We have:∑

Jx∈P̂j(τj)

p∗x ≤ τj + Ŝ∗ · αrj − (τj − Ŝ∗ · αrj ) = 2 · Ŝ∗ · αrj

Case 2 (τj ≥ rj). In the optimal schedule, all jobs in P̂j(τj) (including job Jj) are released no earlier
than τj − Ŝ∗ · αrj and completed no later than d̂j = rj + Ŝ∗ · αrj . We have:∑

Jx∈P̂j(τj)

p∗x ≤ d̂j − (τj − Ŝ∗ · αrj ) = rj + 2 · Ŝ∗ · αrj − τj ≤ 2 · Ŝ∗ · αrj

Thus, the completion time for a r-short job Jj in ARG is at most d̂j +
∑
Jx∈P̂j(τj)

p∗x ≤ rj +3 · Ŝ∗ ·
αrj

Let ĈEDF
j and CARG

j be the completion time of Jj in the schedule constructed by EDF with Ŝ∗ and

ARG. Let Ŝ∗
j and ŜARG

j be the adaptive relaxed-stretch of Jj in these two schedules.

Lemma E.8. It holds ŜARG
j ≤ Ŝ∗ for any r-long job Jj and ŜARG

j ≤ 3 · Ŝ∗ for any r-short job Jj .

Proof. Pick any job Jj . If Jj is a r-long job, it follows by Lemma E.6 that:

CARG
j ≤ ĈEDF

j +

∫
any job ⊘-delays Jj at time t

dt = ĈEDF
j ⇒ ŜARG

j ≤ Ŝ∗
j ≤ Ŝ∗

If Jj is a r-short job by Lemma E.7, it follows that:

ŜARG
j =

CARG
j − rj
αrj

≤
(rj + 3 · Ŝ∗ · αrj )− rj

αrj
= 3 · Ŝ∗

Lemma E.9. Ŝ∗ ≤ η · S∗, with αt =
√
pemin·pmax,t√

3
and βt = max{pmax,t, αt}.

Proof. Let ŜOPT be the max-adaptive-relaxed-stretch of the optimal schedule for the max-stretch
problem. It follows Ŝ∗ ≤ ŜOPT . Consider the optimal schedule with the minimum max-stretch.
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Let C∗
j and ŜOPTj be the completion time of job Jj and the adaptive relaxed-stretch of Jj in this

schedule. Pick any job Jj . If job Jj is a r-short job, it follows pj ≤ αrj and ŜOPTj =
C∗

j −rj
αrj

≤
C∗

j −rj
pj
≤ η · C

∗
j −rj
p∗j

≤ η ·S∗. If job Jj is a r-long job, it follows pj ≤ maxrx≤rj px = pmax,rj = βrj

and ŜOPTj =
C∗

j −rj
βrj

≤ C∗
j −rj
pj

≤ η · C
∗
j −rj
p∗j

≤ η · S∗. Combining these two cases gives us

Ŝ∗ ≤ ŜOPT = max1≤j≤n ŜOPTj ≤ η · S∗.

Let SARG
j and ŜARG

j be the stretch and adaptive relaxed-stretch of job Jj in the execution of ARG.

Lemma E.10. It holds SARG
j ≤

√
3 · λ0.5 · η1.5 ·

√
P · ŜARG

j for any r-long job Jj and SARG
j ≤

λ0.5·η0.5√
3
·
√
P · ŜARG

j for any r-short job Jj , with αt =
√
pemin·pmax,t√

3
and βt = max{pmax,t, αt}.

Proof. Pick any job Jj . If job Jj is r-long, it follows pj > αrj =

√
pemin·pmax,rj√

3
. We have:

SARG
j =

CARG
j − rj
p∗j

=
CARG
j − rj
βrj

·
βrj
p∗j
≤ ŜARG

j · η ·
βrj
pj

< ŜARG
j · η ·

√
3 ·

pmax,rj√
pemin · pmax,rj

≤ ŜARG
j · η ·

√
3 ·

√
pmax,rj

pemin

≤ ŜARG
j · η ·

√
3 ·

√
η · p∗max

p∗min/λ
=
√
3 · λ0.5 · η1.5 ·

√
P · ŜARG

j

If job Jj is r-short, we have:

SARG
j ≤

CARG
j − rj
p∗min

=
CARG
j − rj
αrj

·
αrj
p∗min

≤ ŜARG
j ·

√
λ · p∗min · η · p∗max√

3 · p∗min

=
λ0.5 · η0.5√

3
·
√
P · ŜARG

j

The derivation uses the observation: pmax,t = maxrx≤t px ≤ pmax ≤ η · p∗max for any t ≥ 0.

Theorem E.11 (Theorem 4.10 Restated). Adaptive Relaxed-Greedy is
√
3 · λ0.5 · η2.5 ·

√
P -

competitive for online scheduling with predictions.

Proof for Theorem 4.10. If job Jj is r-long, we have, by Lemmas E.10, E.8, and E.9, that:

SARG
j ≤

√
3 · λ0.5 · η1.5 ·

√
P · ŜARG

j ≤
√
3 · λ0.5 · η1.5 ·

√
P · Ŝ∗ ≤

√
3 · λ0.5 · η2.5 ·

√
P · S∗

If job Jj is r-short, we have, by Lemmas E.10, E.8, and E.9, that:

SARG
j ≤ λ0.5 · η0.5√

3
·
√
P · ŜARG

j ≤ λ0.5 · η0.5√
3

·
√
P · 3 · Ŝ∗ ≤

√
3 · λ0.5 · η1.5 ·

√
P · S∗

Therefore, we have SARG ≤
√
3 ·λ0.5 · η2.5 ·

√
P ·S∗. ARG is

√
3 ·λ0.5 · η2.5 ·

√
P -competitive.

Algorithm ARG is (n− 1) · P + 1-robust. The robustness result is tight by the same construction
used in Theorem 4.4 with pemin = 1, where ARG sets α =

√
p1√
3

and β = p1 at time 0, remains these
parameters constants, and produces the same result as RG.

For proving the run-time and space complexity, as well as the number of preemptions, we first show
an equivalent version of Lemma C.11 for ARG.
Lemma E.12. A r-short job Jj remains to have the largest adaptive relaxed-stretch among active
jobs for all time t ≥ t′ before its completion if it had the largest adaptive relaxed-stretch among
active jobs at some time t′.

Proof. Suppose job Jj has the largest adaptive relaxed-stretch among active jobs at time t′. For
any r-short job Jk active at time t′, we have Ŝj(t′) ≥ Ŝk(t

′) ⇒ t′−rj
αrj

≥ t′−rk
αrk

⇒ rj ≤ rk.

Fix any time t ≥ t′. Any r-short job Jk active at time t (including those released after t′) has
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rj ≤ rk and αrj ≤ αrk , thus, Ŝj(t) ≥ Ŝk(t). For any r-long job Jk released after t′, we have
t−rj
αrj
≥ t−rk

βrk
⇒ Ŝj(t) ≥ Ŝk(t), as rj ≤ rk and αrj ≤ βrj ≤ βrk . For any r-long job Jk active at

time t′, we have:

t′ − rj
αrj

≥ t′ − rk
βrk

⇒ t′ ≥
βrk · rj − αrj · rk

βrk − αrj
⇒ t ≥

βrk · rj − αrj · rk
βrk − αrj

⇒ Ŝj(t) ≥ Ŝk(t)

Therefore, job Jj remains to have the largest adaptive relaxed-stretch among active jobs at time t.

Theorem E.13 (Theorem 4.12 Restated). Adaptive Relaxed-Greedy admits an implementation
with O(1) run-time to make any online decision and O(n) space.

Proof for Theorem 4.12. Similar to the proof for Theorem 4.6. Main two First-In-First-Out (FIFO)
queues: short queue and long queue. The short queue contains r-short jobs in order of release
time; the long queue contains r-long jobs in order of release time. The algorithm always processes
the job with the largest adaptive relaxed-stretch at the front of the two queues and removes a job
from the (front of the) queue when the job is completed. We show that one of the jobs at the
front of the queues has the overall largest adaptive relaxed-stretch at any time t. To see this, it
holds that rj ≤ rk ⇒ t−rj

αrj
≥ t−rk

αrk
⇒ Ŝj(t) ≥ Ŝk(t) for any r-short jobs Jj , Jk and that

rj ≤ rk ⇒ t−rj
βrj
≥ t−rk

βrk
⇒ Ŝj(t) ≥ Ŝk(t) for any r-long jobs Jj , Jk. Finally, as the algorithm

maintains at most all jobs in memory and a constant number of support variables, the space required
is at most O(n).

Theorem E.14 (Theorem 4.13 Restated). Adaptive Relaxed-Greedy generates a schedule with at
most n− 1 preemptions. Thus, the amortized number of preemptions per job is at most 1.

Proof for Theorem 4.13. Preemptions are triggered only by JobSwitch. Observe that JobSwitch is
not triggered while a r-short job is being processed by Lemma E.12. A r-long job may be preempted
while being processed by r-short jobs; these r-short jobs, however, will not be preempted by Lemma
E.12. Thus, the number of preemptions is bounded by the total number of r-short jobs, which is at
most n− 1. Note that no preemptions occur if all jobs have the same job size prediction pmax. As a
result, the amortized number of preemptions per job is at most n−1

n ≤ 1.

F MISSING PROOFS FOR SECTION 4.4

We prove that PRG achieves an O(λ0.5 · φ0.5 · η ·max{η, φ} ·
√
P ) competitive ratio. With static α

and β, we (re-)use the definitions, lemmas, and notations from Section 4.2.
Theorem F.1 (Theorem 4.14 Restated). Predictive Relaxed-Greedy is max{ 3µ , µ} · λ

0.5 ·φ0.5 · η ·
max{η, φ} ·

√
P -competitive for online scheduling with predictions.

Proof for Theorem 4.14. Consider the execution of PRG. Pick any job Jj . If job Jj is a long job, we
have:

SPRG
j =

CPRG
j − rj
β

· β
p∗j
≤ S̃PRG

j · η · β
pj

< S̃PRG
j · η · µ · pemax√

pemin · pemax

≤ S̃PRG
j · η · µ ·

√
pemax

pemin

≤ S̃PRG
j · η · µ ·

√
φ · p∗max

p∗min/λ
≤ µ · λ0.5 · φ0.5 · η ·

√
P · S̃∗ (By Lemma C.6)

If job Jj is a short job, we have:

SPRG
j ≤

CPRG
j − rj
p∗min

≤ S̃PRG
j ·

√
λ · p∗min · φ · p∗max

µ · p∗min

≤ 3

µ
· λ0.5 · φ0.5 ·

√
P · S̃∗ (By Lemma C.6)

We then bound S̃∗ by S∗ through S̃OPT . Pick any job Jj . It follows S̃OPTj =
C∗

j −rj
α ≤ C∗

j −rj
pj

≤

η·C
∗
j −rj
p∗j

≤ η·S∗, if job Jj is a short job. It follows S̃OPTj =
C∗

j −rj
β ≤ φ·C

∗
j −rj
p∗max

≤ φ·C
∗
j −rj
p∗j

≤ φ·S∗,
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if job Jj is a long job. Therefore, we have S̃∗ ≤ S̃OPT = max1≤j≤n S̃OPTj ≤ max{η, φ} ·S∗, and,
thus, SPRG = max1≤j≤n S

PRG
j ≤ max{ 3µ , µ} · λ

0.5 · φ0.5 · η ·max{η, φ} ·
√
P · S∗.

Algorithm PRG is (n − 1) · P + 1-robust. The robustness result for PRG is tight by the same
construction used in Theorem 4.4 with pemin = 1 and pemax = p1.

G MISSING PROOFS FOR SECTION 5

We show that RGx is O(η2+2x · P 1−x)-competitive.

Theorem G.1 (Theorem 5.1 Restated). RGx (0 ≤ x ≤ 1
2 ) is

√
3 · η2+2x · P 1−x-competitive for

online scheduling with predictions.

Proof for Theorem 5.1. Consider the execution of RGx. Pick any job Jj . If job Jj is a long job, we
have:

SRGx

j ≤ S̃RGx

j · η · β
pj

< S̃RGx

j · η ·
√
3 · pmax

pxmin · p
1−x
max

≤
√
3 · η1+2x · P x · S̃RGx

j

≤
√
3 · η1+2x · P x · S̃∗ ≤

√
3 · η2+2x · P x · S∗ (By Lemmas C.6 and C.7)

If job Jj is a short job, we have, by Lemmas C.6 and C.7, that:

SRGx

j ≤ S̃RGx

j · α

p∗min

≤ S̃RGx

j · p
x
min · p1−xmax√
3 · p∗min

≤ η · P 1−x
√
3
· S̃RGx

j ≤
√
3 · η2 · P 1−x · S∗

Therefore, we have SRGx

= max1≤j≤n S
RGx

j ≤
√
3 · η2+2x · P 1−x · S∗.

Theorem G.2 (Theorem 5.2 Restated). RG0 (with α = pmax, β = pmax), or FIFO, is P -competitive.

Proof for Theorem 5.2. We first show RG0 minimizes max1≤j≤n Cj − rj (max-flow). If ω =
max1≤j≤n Cj − rj (existence of ω is due to Theorem A.1), set dj = rj+ω for all 1 ≤ j ≤ n and run
EDF with dj . The resulting schedule, which is identical to the schedule generated by RG0, achieves
the minimum max-flow. Let Jk be the job with the largest flow in the schedule that minimizes
max-stretch (e.g., C∗

k − rk = max1≤j≤n C
∗
j − rj). Consider the execution of RG0. Pick any job Jj .

We have:

SRG0

j =
CRG0

j − rj
p∗j

≤
max1≤q≤n C

RG0

q − rq
p∗j

≤
max1≤q≤n C

∗
q − rq

p∗j
=
C∗
k − rk
p∗k

· p
∗
k

p∗j
≤ S∗ · P

Therefore, we have SRG0

= max1≤j≤n S
RG0

j ≤ S∗ · P .

H CONSTRUCTION OF THE TRADE-OFF ALGORITHM FOR SECTION 5

We introduce parameters θ = (a1, a2, b1, b2, µ) and parametrize α =
p
a1
min·p

a2
max

µ and β = pb1min · pb2max

in the definition of relaxed-stretch. This section shows the construction of RGx, the trade-off between
consistency and smoothness under this parametrization.

For Lemmas C.4, C.5, and C.6 to hold, we must ensure α < β. For Lemma C.7 to hold, we must
ensure pj ≤ β for all 1 ≤ j ≤ n. We will enforce these two relations after we derive the others we
desire. For now, we assume that these relations hold. Run RG with the parametrized α and β. Pick
any job Jj . If Jj is a long job, it holds that pj > α, and we have:

SRG
j =

CRG
j − rj
p∗j

=
CRG
j − rj
β

· β
p∗j
≤ S̃RG

j · η ·
β

pj
< S̃RG

j · η · µ ·
pb1min · pb2max

pa1min · p
a2
max

= S̃RG
j · µ · η ·

pb2−a2max

pa1−b1min

≤ µ · η · p
b2−a2
max

pa1−b1min

· S̃∗ ≤ µ · η2 · p
b2−a2
max

pa1−b1min

· S∗ (By Lemma C.6 and C.7)
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If Jj is a short job, we have:

SRG
j =

CRG
j − rj
p∗j

≤
CRG
j − rj
p∗min

=
CRG
j − rj
α

· α

p∗min

= S̃RG
j ·

pa1min · pa2max

µ · p∗min

≤ 3

µ
· p

a1
min · pa2max

p∗min

· S̃∗ ≤ 3

µ
· η · p

a1
min · pa2max

p∗min

· S∗ (By Lemma C.6 and C.7)

≤ 3

µ
· η1+|a1| · pa2max

(p∗min)
1−a1

· S∗

where the last inequality is due to pa1min ≤ η|a1| · (p∗min)
a1 , as pa1min ≤ (η · p∗min)

a1 = η|a1| · (p∗min)
a1

if a1 ≥ 0 and pa1min = ( 1
pmin

)−a1 ≤ ( η
p∗min

)−a1 = η|a1| · (p∗min)
a1 if a1 < 0.

The constant term to appear in the competitive ratio is max{µ, 3
µ}, which is at least

√
3 (the minimum

is achieved at µ =
√
3). Therefore, we choose µ =

√
3 for an optimal constant term.

As we aim to relate the competitive ratio to P , the maximum ratio of any two job sizes, we enforce
the power of pmax to equal that of pmin (or p∗min) on the denominator. Thus, we set:

a1 + a2 = b1 + b2 = 1

To enforce α < β, or αβ =
p
a1−b1
min ·pa2−b2

max√
3

= 1√
3
· ( pmin

pmax
)a1−b1 < 1, we set:

a1 ≥ b1

To enforce pj ≤ β for all 1 ≤ j ≤ n, or pmax ≤ pb1min · pb2max = pb1min · p1−b1max ⇐⇒ (pmax

pmin
)b1 ≤ 1,

we set:
b1 ≤ 0

With these constraints, the results (i.e., Lemmas) used in this section can hold.

We have (with a1 + a2 = b1 + b2 and a1 ≥ b1):

SRG
j ≤

√
3 · η2 · p

b2−a2
max

pa1−b1min

· S∗ =
√
3 · η2 · (pmax

pmin
)a1−b1 · S∗ ≤

√
3 · η2 · (η · p

∗
max

p∗min/η
)a1−b1 · S∗

=
√
3 · η2+2a1−2b1 · P a1−b1 · S∗

for Jj being a long job. We have (with a2 = 1− a1):

SRG
j ≤

√
3 · η1+|a1| · (pmax

p∗min

)1−a1 · S∗

for Jj being a short job.

Observe that FIFO is P -competitive by Theorem 5.2. We set the power of P and that of pmax

p∗min
(which

will relate to P ) to be at most 1, as FIFO will otherwise dominate our algorithm. We enforce:

a1 − b1 ≤ 1⇒ a1 ≤ 1 + b1 ≤ 1

and
a1 ≥ 0

Fix any 0 ≤ a1 ≤ 1, decreasing b1 increases both the power of η and P in term
√
3 · η2+2a1−2b1 ·

P a1−b1 · S∗. We choose b1 = 0 (and therefore b2 = 1) for the optimal (minimal) competitive ratio.

With θ = (a1, 1− a1, 0, 1,
√
3), we have:

SRG
j ≤

√
3 · η2+2a1 · P a1 · S∗

for Jj being a long job, and:

SRG
j ≤

√
3 · η1+a1 · (pmax

p∗min

)1−a1 · S∗ ≤
√
3 · η1+a1 · (η · p

∗
max

p∗min

)1−a1 · S∗ =
√
3 · η2 · P 1−a1 · S∗
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for Jj being a short job. Therefore, we have SRG = max1≤j≤n S
RG
j ≤

√
3 ·η2+2a1 ·Pmax{a1,1−a1} ·

S∗. For the competitive ratio, RG with a1 = 1
2 − ∆ dominates that with a1 = 1

2 + ∆ for any
0 < ∆ ≤ 1

2 . Therefore, we restrict:

0 ≤ a1 ≤
1

2

The competitive ratio of RG (with θ = (a1, 1−a1, 0, 1,
√
3) and 0 ≤ a1 ≤ 1

2 ) is
√
3 ·η2+2a1 ·P 1−a1 .

Replacing a1 by x (0 ≤ x ≤ 1
2 ), we construct RGx with α =

pxmin·p
1−x
max√
3

and β = pmax.

I VISUALIZATION OF CONSISTENCY-SMOOTHNESS TRADE-OFFS

The trade-off between consistency and smoothness is visualized in Figure 7.

Figure 7: Trade-off between consistency and smoothness. The graphs show how the hyper-parameter x (on the x-axis) changes the competitive
ratio as a function of η (left curve (x, η, η2+2x)) and P (right curve (x, P, P 1−x)), i.e., the projection on plane x = a (0 ≤ a ≤ 1

2 )
represents the competitive ratio as a function of η and P .

J MISSING PROOFS FOR SECTION 6

Theorem J.1 (Theorem 6.1 Restated). Any algorithm is at best ϵ
1−ϵ · n+ 1-competitive, if given a

(1− ϵ)-speed machine, for any 0 < ϵ < 1.

Proof for Theorem 6.1. Construct n jobs: p∗j = 1, rj = j − 1 for all 1 ≤ j ≤ n. Clearly, the optimal
schedule with a unit-speed machine has a max-stretch of 1. Run any algorithm with a (1− ϵ)-speed
machine. Let the last completed job be Jk. Clearly, we have Ck ≥ n

1−ϵ and rk ≤ n− 1. Therefore,
the max-stretch achieved is at least Sk = Ck−rk

1 ≥ n
1−ϵ − (n− 1), which is ϵ

1−ϵ · n+ 1 times the
optimum.

We prove Lemma 6.3, which claims the monotonicity of the algorithms mentioned in this paper. We
first show that the RG-based algorithms (RG, ARG, PRG, RGx) are monotonic. Our proof shows
that (1) any RG-based algorithm has time-varying priority execution for all problem inputs, and (2)
any algorithm with time-varying priority execution for all problem inputs is monotonic. We define
time-varying priority execution as follows.

Definition J.2 (Time-varying Priority Execution). Let A be an algorithm and I a problem input.
We say A has a time-varying priority execution for I if there exist a partitioning of time 0 = t0 ≤
t1 ≤ t2 ≤ ... ≤ tP and a mapping F from time partitions to total orderings of jobs (i.e., F (tx, tx+1)
is an order of all jobs) such that A always processes the active job that has the highest priority
indicated by F (tx, tx+1) (jobs at the front of F (tx, tx+1) have higher priorities) during (tx, tx+1)
for all 0 ≤ x ≤ P , where tP+1 represents∞.

Here, a problem input differs from a problem instance. A problem input reveals the job size prediction
to an algorithm when a job is released, i.e., problem input includes release times and job size
predictions. A problem instance is all the data (release times, job sizes, and job size predictions).
Thus, a job set can create different problem instances by attaching different job size predictions. A

30



Published as a conference paper at ICLR 2025

time-varying priority execution processes jobs in a (time-varying) order that depends solely on the
problem input, not the job sizes. This is key to proving monotonicity.
Lemma J.3. Any RG-based algorithm has time-varying priority execution for all problem inputs.

Proof. Consider any RG-based algorithm A and any problem input I . Suppose I include n jobs
(J1, ..., Jn) where job size prediction for Jj is pj and release time is rj . Let yj = α if pj ≤ α
and yj = β if pj > α for all 1 ≤ j ≤ n in the case of static α and β. In the case of time-varying
α and β (for ARG), let yj = αrj if pj ≤ αrj and yj = βrj if pj > αrj . The relaxed-stretch
(or adaptive-relaxed-stretch in ARG) for Jj at the time t can be uniformly written as t−rj

yj
for

any RG-based algorithm. Let 0 = t0 ≤ t1 ≤ t2 ≤ ... ≤ tP be the sorted elements in set
{yi·rj−yj ·riyi−yj | 1 ≤ i < j ≤ n, yi ̸= yj ,

yi·rj−yj ·ri
yi−yj ≥ 0} ∪ {0}, where every element corresponds to

the solution to equation t−ri
yi

=
t−rj
yj

with variable t for some i, j. Recall that the algorithm runs the

active job Jj with the largest t−rjyj
at any time t (with tie-breaking by smaller job index first). Thus,

to conclude a time-varying priority execution, we only need to show that the relative priority between
jobs (in terms of t−rjyj

) for the entire job set remains the same in every interval (tx, tx+1). Suppose,

for proof by contradiction, that there are two jobs Ja and Jb with t′−ra
ya

> t′−rb
yb

and t′′−ra
ya

< t′′−rb
yb

with t′ < t′′ and t′, t′′ ∈ (tx, tx+1) for some x. Then, we have:

tx < t′ <
ya · rb − yb · ra

ya − yb
< t′′ < tx+1

which contradicts the construction of the time partitioning 0 = t0 ≤ t1 ≤ t2 ≤ ... ≤ tP .

Lemma J.4. Any algorithm with time-varying priority execution for all problem inputs is monotonic.

Proof. Consider any algorithmA with time-varying priority execution for all problem inputs, any two
instances with identical input I and actual job sizes (p∗1, ..., p

∗
n) and (p∗1

′, ..., p∗n
′) such that p∗j ≤ p∗j

′

for all j. Let S(1) and S(2) be the max-stretch obtained by A on these two instances, and we denote
the schedules by σ1 and σ2. To show S(1) ≤ S(2), we show C

(1)
j ≤ C(2)

j for all 1 ≤ j ≤ n, where

C
(1)
j and C(2)

j denote the completion time for job Jj in the two schedules. Let p(1)j (t) and p(2)j (t)
denote the remaining job size of job Jj at time t in the two schedules, i.e., p∗j minus the total amount

of processing allocated to job Jj up to time t. To show C
(1)
j ≤ C

(2)
j , we show that algorithm A

maintains p(1)j (t) ≤ p
(2)
j (t) for all 1 ≤ j ≤ n, t ≥ 0. Let 0 = t0 ≤ t1 ≤ ... ≤ tP be the time

partition (for algorithm A running against I) with a mapping F such that A always processes the
active job that has the highest priority indicated by F (tx, tx+1).

We show p
(1)
j (t) ≤ p

(2)
j (t) for all 1 ≤ j ≤ n, t < tx, x ≥ 1 via induction on x (we slightly abuse

the notation to let tP+1 represent ∞). The base case is to consider the interval [t0, t1). Initially,
p
(1)
j (0) = p∗j ≤ p∗j

′ = p
(2)
j (0). Fix any time t ∈ (t0, t1). The ordering F (t0, t1) defines the job

priority in (t0, t1). Schedules σ1 and σ2 are processing (either) the same or different jobs at time t. If
they are processing the same job Js, it follows p(1)j (t) = 0 = p

(2)
j (t) for every job Jj with a priority

higher than Js; p
(1)
j (t) = p

(1)
j (0) ≤ p(2)j (0) = p

(2)
j (t) for every job Jj with a priority lower than Js.

It also follows p(1)s (t) ≤ p(2)s (t), as p∗j ≤ p∗j
′ for every job Jj with a higher priority than Js. If they

are processing different jobs Ja (in σ1) and Jb (in σ2), it follows that Ja has a lower priority than Jb
in F (t0, t1) and Jb has been completed in σ1 at time t. Therefore, any job Jj with a priority higher
than Ja has been completed in σ1, i.e., p(1)j (t) = 0 ≤ p

(2)
j (t); any job Jj with a priority no higher

than Ja has not been processed in σ2, i.e., p(1)j (t) ≤ p∗j ≤ p∗j
′ = p

(2)
j (t). The arguments hold for

every t ∈ (t0, t1). For the inductive step, suppose p(1)j (t) ≤ p
(2)
j (t) for all 1 ≤ j ≤ n, t < tk for

some k ≥ 1. Consider the interval [tk, tk+1). By inductive hypothesis, we have p(1)j (tk) ≤ p(2)j (tk)
for all 1 ≤ j ≤ n. The inductive step uses a generalized version of the arguments to show the base
case. Fix any time t ∈ (tk, tk+1). The ordering F (tk, tk+1) defines the job priority in (tk, tk+1). If
σ1 and σ2 are processing the same job Js, it follows p(1)j (t) = 0 = p

(2)
j (t) for every job Jj with a
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priority higher than Js; p
(1)
j (t) = p

(1)
j (tk) ≤ p(2)j (tk) = p

(2)
j (t) for every job Jj with a priority lower

than Js; p
(1)
s (t) ≤ p(2)s (t), as p(1)j (tk) ≤ p(2)j (tk) for every job Jj with a higher priority than Js. If

they are processing different jobs Ja (in σ1) and Jb (in σ2), it follows that p(1)j (t) = 0 ≤ p(2)j (t) for

any job Jj with a priority higher than Ja and p(1)j (t) ≤ p(1)j (tk) ≤ p(2)j (tk) = p
(2)
j (t) for any job Jj

with a priority no higher than Ja.

Lemma J.5 (Lemma 6.3 Restated). All algorithms mentioned in this paper (RG, ARG, PRG, RGx,
and RR) are monotonic.

Proof for Lemma 6.3. Any RG-based algorithm (RG, ARG, PRG, and RGx) is monotonic by
Lemmas J.3 and J.4. It is trivial to see that RR is monotonic.

Theorem J.6 (Theorem 6.4 Restated). Given a monotonic algorithm A with competitive ratio cA,
one can obtain a (1 + ϵ)-speed min{cA, nϵ }-competitive (RR-augmented) algorithm.

Proof for Theorem 6.4. With a (1 + ϵ)-speed machine, we allocate one-unit speed to algorithm A
and ϵ-unit speed to RR. That is, for every time unit, both algorithms run in parallel: algorithm A
is run at a rate of 1

1+ϵ , and RR is run at a rate of ϵ
1+ϵ . Let the completion time for Jj be Cj in this

schedule.

When running A standalone on a unit-speed machine, the completion time CAj satisfies

max1≤j≤n
CA

j −rj
p∗j

≤ cA · S∗, where S∗ is the optimal max-stretch, and cA is the competitive ratio of

algorithmA. Similarly, for RR running standalone with ϵ-speed, we have max1≤j≤n
CR

j −rj
p∗j

≤ n
ϵ ·S

∗,

where CRj is the completion time in this schedule.

Due to the monotonicity of algorithms A and RR, we have:

max
1≤j≤n

Cj − rj
p∗j

≤ max
1≤j≤n

min{CAj , CRj } − rj
p∗j

≤ max
1≤j≤n

min{cA · S∗,
n

ϵ
· S∗} = min{cA,

n

ϵ
} · S∗

Thus, the combined algorithm achieves a competitive ratio of min{cA, nϵ }.

J.1 OPTIMALITY OF RG+

The proof of Theorem B.1 can be extended to show that ”no deterministic algorithm can achieve a
competitive ratio better than n

1+ϵ for online non-clairvoyant max-stretch scheduling with a machine
of speed (1 + ϵ), even if all jobs are released at time 0.” The idea of the extension is as follows.

Consider n identical jobs all with job size 1 to be released at time 0. Run any algorithm A against
this set of jobs. By time 1, let J1 be the job with the least amount of the processed size l1. We have
l1 ≤ 1+ϵ

n by the pigeonhole principle. We can then construct an instance with n jobs, all released at
time 0, where the job sizes are defined as p∗1 = 1+ϵ

n + λ and the rest geometrically increasing sizes,
i.e., p∗2 = ψ − p∗1, p∗3 = ψ2 − ψ, p∗4 = ψ3 − ψ2, ..., p∗n = ψn−1 − ψn−2, where ψ is a large constant
and λ a small constant. In this setup, the optimal max-stretch using a unit-speed machine approaches
1, while the max-stretch achieved by algorithm A with a faster machine is at least approximately n

1+ϵ .
This establishes a lower bound for the (1 + ϵ)-speed competitive ratio as n

1+ϵ . Therefore, algorithm
RG+ achieves an asymptotically optimal robustness under speed augmentation.

K JOB SIZE DISTRIBUTIONS IN EXPERIMENTS

We aim to replicate real-world data size distributions in our synthetic datasets. Figure 8 shows the
job size distributions in the real-world datasets (Google Google (2019), Alibaba Alibaba (2023),
and Azure Cortez et al. (2017)). Job sizes generally follow an exponential distribution, except for
Google’s data, which has more randomness in the right tail. With the maximum job size ratio P ,
we set p∗j to max{1,− logX · A} where X is a random variable with X ∼ U(0, 1) and A a scaling
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Figure 8: Real-world Job Size Distribution.
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Figure 9: Synthetic Job Size Distribution

factor ensuring p∗j ≤ P . Figure 9 shows the Kernel Density Estimation (KDE) of the job sizes in
the synthetic datasets, showing that the synthetic job sizes follow an exponential distribution aligned
with the real-world applications.

L EXPERIMENTS FOR VARIANCE OF STRETCH
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Figure 10: The variance of stretch with increasing jobs. Each box represents the distribution of the normalized variance scores.
The number of jobs is set to 1000 (Row 1 Column 1), 2000 (R1C2), 3000 (R1C3), 4500 (R2C1), 6000 (R2C2), and 10000 (R2C3).
Jobs are released in time [0, 5000] uniformly at random. The job sizes are drawn from [1, 10]. The prediction error is set to 1
(i.e., pj = p∗j ).

This section presents the experimental results for GWR, RR, RG, ARG, and RG+ in minimizing the
variance of stretch, defined as:

variance of stretch =
1

n

n∑
j=1

(Sj − S)2
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Figure 11: The variance of stretch with an increasing P . The job sizes are drawn from interval [1, P ], where P is set to 1 (R1C1),
2 (R1C2), 5 (R1C3), 10 (R2C1), 20 (R2C2), and 40 (R2C3). The number of jobs is fixed at 4500. Jobs are released in time
[0, 5000] uniformly at random. The prediction error is set to 1.

where S = 1
n

∑n
j=1 Sj . The variance of stretch measures fairness from the view of jobs as if they are

compared to each other. We run the experiments on the synthetic datasets under the same settings as
Section 7. In presenting the results, we apply a min-max normalization to the variance scores, i.e.,
dividing the variance by the difference between the maximum and minimum variance of all problem
instances under each setting.

Figures 10 and Figure 11 present the normalized variance score under increasing n and P with
perfect predictions. The performance ordering of these algorithms generally aligns with that in the
max-stretch minimization: a lower max-stretch performance ratio corresponds to a lower variance
score. RG+ shows its superior performance under all the settings. This suggests that RG+ ensures
fairness in resource allocation measured in the stretch space. In contrast, RR suffers the consistent
worst variance scores. This worsened performance is the cost of ignoring the job size information in
fair scheduling.
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Figure 12: The variance of stretch with an increasing prediction error η. The prediction error increases from 1 to 512. The number of jobs is
fixed at 4500. Jobs are released in time [0, 5000] uniformly at random. The job sizes are drawn from [1, 10].

Figure 12 presents the results under an increasing η. The variance scores of GWR and RR are
constants, as their executions are irrelevant to job size predictions. The variance score of RG and
ARG increases with an increasing prediction error, showing a weakening fairness guarantee with
worsening predictions. RG+ demonstrates its robustness in minimizing the variance of stretch under
imperfect predictions: the variance score increases slowly and is capped as η increases. Overall, the
distinction in the variance scores is evident: RG+ outperforms the rest, followed by RG and ARG,
and then GWR, with RR the worst.
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Figure 13: Performance ratios for the mean response time with increasing jobs. Each box represents the distribution of the
performance ratios. The number of jobs is set to 1000 (Row 1 Column 1), 2000 (R1C2), 3000 (R1C3), 4500 (R2C1), 6000
(R2C2), and 10000 (R2C3). Jobs are released in time [0, 5000] uniformly at random. The job sizes are drawn from [1, 10]. The
prediction error is set to 1 (i.e., pj = p∗j ).
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Figure 14: Performance ratios for the mean response time with an increasing P . The job sizes are drawn from interval [1, P ],
where P is set to 1 (R1C1), 2 (R1C2), 5 (R1C3), 10 (R2C1), 20 (R2C2), and 40 (R2C3). The number of jobs is fixed at 4500.
Jobs are released in time [0, 5000] uniformly at random. The prediction error is set to 1.
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Figure 15: Performance ratios for the mean response time with an increasing prediction error η. The prediction error increases from 1 to 512.
The number of jobs is fixed at 4500. Jobs are released in time [0, 5000] uniformly at random. The job sizes are drawn from [1, 10].
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M EXPERIMENTS FOR RESPONSE TIME

This section presents the experimental results for GWR, RR, RG, ARG, and RG+ in minimizing the
mean response time, defined as:

mean response time =
1

n

n∑
j=1

Cj − rj

The mean response time is used to measure the efficiency of scheduling. A lower response time
indicates lower waiting time and an improved quality of service. While our proposed algorithms
ensure fairness of scheduling, we are interested in whether this comes with a cost in efficiency. We
compare the mean response time of our algorithms with that of GWR and RR. We measure the
performance ratio for the response time, defined as the ratio between the mean response time obtained
by an algorithm and the optimal value given a problem instance. Shortest Remaining Processing
Time First (SRPT) is used to compute the optimal mean response time Baker (1974). We run the
experiments on the synthetic datasets under the same settings as Section 7.

Figures 13 and 14 present the performance ratio for the mean response time under increasing n and
P with perfect predictions. RR has the worst performance, as active jobs mutually delay each other
when they constantly share the resource equally. The performance ordering of the other algorithms
aligns with that in the max-stretch minimization. It suggests that reducing the max-stretch does not
come with a high cost in response time. While RG achieves outstanding performance in minimizing
response time, its augmented variant, RG+, emerges as the champion again.

Figure 15 presents the results under an increasing η. The performance ratios of RG and ARG increase
marginally with an increasing prediction error, showing their robustness in minimizing response
time with imperfect predictions. In addition, the performance ratio stays close to that of GWR,
even with badly wrong predictions. Though the performance ratio increases as that of RG, RG+

shows its superior performance by its winning performance ratio and the robustness to the prediction
error. Overall, RG+ performs well in minimizing response time while having a strong guarantee for
fairness.

N EXPERIMENTS ON REAL-WORLD DATASETS
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Figure 16: Performance ratios with an increasing prediction error on real-world trace-log data from Google Cloud. The prediction error increases
from 1 to 6.

Figure 16, 18, and 17 presents the results on the real-world datasets. The data are server trace logs
collected from Google, Azure, and Alibaba Cloud. Each dataset contains the arrival time and job size
of the jobs submitted to the cloud. We generate job size predictions with a prediction error from 1 to
6: with the prediction error η and job size p∗j , we set pj ← p∗j · exp(Y ) with Y ∼ U(− log η, log η).
On Azure and Alibaba datasets, RG and ARG, under a low prediction error, are comparable to GWR,
with RR the worst. The performance of RG and ARG gradually becomes worse than RR as the
prediction error increases. RG+ consistently outperforms the others. The overall performance of all
algorithms on Alibaba and Auzre datasets aligns with the results on the synthetic datasets. On the
Google dataset, the performance ratios are not sensitive to the prediction error due to the distribution
of job size being closer to uniform than exponential. RG+ consistently achieves the best performance.
This time, however, RR outperforms RG, ARG, and GWR due to a high maximum job size ratio P
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Figure 17: Performance ratios with an increasing prediction error on real-world trace-log data from Azure Cloud. The prediction error increases
from 1 to 6.
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Figure 18: Performance ratios with an increasing prediction error on real-world trace-log data from Alibaba Cloud. The prediction error increases
from 1 to 6.

in the Google dataset (compared to the others). RR’s performance does not worsen with an increasing
P , but the others do.

O ADDITIONAL EXPERIMENTS WITH A UNIT-SPEED RG+
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Figure 19: Performance ratios for the max-stretch with an increasing prediction error η. The prediction error increases from 1 to 512. The
number of jobs is fixed at 4500. Jobs are released in time [0, 5000] uniformly at random. The job sizes are drawn from [1, 10].

We performed additional experiments where we set the speed of RG+ to be the same as the others.
Figures 19, 20, and 21 presents the results for max-stretch, variance of stretch, and response time.
The label RGF denotes the RG+ running with a unit-speed machine, where 0.3-speed is allocated to
RR and the rest 0.7-speed to RG.

The performance of RGF is not as good as RG+ due to the slower machine, but the performance
generally stays bounded in between RG and RR for all metrics. This is as expected. The intuition is
that when RG performs well on an instance, some portion of the processing is shared to RR, thus
decreasing the overall performance; when RR performs well, again, some portion is shared to RG,
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Figure 20: The variance of stretch with an increasing prediction error η. The prediction error increases from 1 to 512. The number of jobs is
fixed at 4500. Jobs are released in time [0, 5000] uniformly at random. The job sizes are drawn from [1, 10].
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Figure 21: Performance ratios for the mean response time with an increasing prediction error η. The prediction error increases from 1 to 512.
The number of jobs is fixed at 4500. Jobs are released in time [0, 5000] uniformly at random. The job sizes are drawn from [1, 10].

thus decreasing the overall performance. In return, however, the robustness is persevered, making the
performance relatively stable under varying prediction errors.
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