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FreqMamba: Viewing Mamba from a Frequency Perspective for
Image Deraining

Anonymous Authors

ABSTRACT
Images corrupted by rain streaks often lose vital frequency infor-
mation for perception, and image deraining aims to solve this issue
which relies on global and local degradation modeling. Recent stud-
ies have witnessed the effectiveness and efficiency of Mamba for
perceiving global and local information based on its exploiting lo-
cal correlation among patches, however, rarely attempts have been
explored to extend it with frequency analysis for image deraining,
limiting its ability to perceive global degradation that is relevant
to frequency modeling (e.g. Fourier transform). In this paper, we
propose FreqMamba, an effective and efficient paradigm that lever-
ages the complementary between Mamba and frequency analysis for
image deraining. The core of our method lies in extending Mamba
with frequency analysis from two perspectives: extending it with
frequency-band for exploiting frequency correlation, and connecting
it with Fourier transform for global degradation modeling. Specifi-
cally, FreqMamba introduces complementary triple interaction struc-
tures including spatial Mamba, frequency band Mamba, and Fourier
global modeling. Frequency band Mamba decomposes the image
into sub-bands of different frequencies to allow 2D scanning from
the frequency dimension. Furthermore, leveraging Mamba’s unique
data-dependent properties, we use rainy images at different scales
to provide degradation priors to the network, thereby facilitating
efficient training. Extensive experiments show that our method out-
performs state-of-the-art methods both visually and quantitatively.

CCS CONCEPTS
• Computing methodologies → Image manipulation.

KEYWORDS
Image deraining, Frequency analysis, State space model

1 INTRODUCTION
Images taken in rainy conditions suffer from significant quality
degradation in terms of object details and contrast caused by rain-
drops in the air, which results in unpleasant visual results and loss
of frequency information. Such degradation has a serious adverse
impact on the performance of advanced visual tasks such as image
classification and target detection. Therefore, image deraining is an
important task in the low-level vision field. However, recovering
clear images from those with severe raindrop degradation is pretty a
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Figure 1: Comparison of different modeling methods. Our Fre-
qMamba enhances Mamba’s 2D global perception capability
from the frequency perspective. Meanwhile, Mamba modeling
in frequency dimension is introduced to realize the seamless
transition between the spatial and frequency domains.

difficult job due to the complex coupling of raindrops to the back-
ground and the loss of important perception frequency information.

Traditional methods have relied on prior knowledge to dissect
the physical properties of rain and background layers, introducing
various methods to distinguish rain streaks from clean images. How-
ever, these priors, being based on specific observations, might not
be reliable for modeling intrinsic features of images or estimating
transmission maps in physical models. The advent of deep learn-
ing has heralded new directions in rain removal techniques. Many
methods are proposed to improve the performance of rain removal
methods from different perspectives[8, 14, 35, 44]. Especially, effec-
tive global degradation modeling has proved crucial for addressing
intricate challenges of image deraining. For instance, the attention
mechanism in Transformer achieves great success with the capacity
to model image-internal correlations. While, attention mechanisms
face scalability challenges due to their quadratic complexity, posing
a significant challenge when addressing large images.

Recently, an improved structured state-space sequence model
(S4) with a selective scanning mechanism, Mamba, stands out due
to its ability to model long-range sequence relationships with linear
complexity. Specifically, Mamba’s selective methodology can explic-
itly build the correlation among image patches, further enabling the
guidance of clean to degraded areas. However, it is noteworthy that
Mamba’s approach to processing visual tasks is fundamentally based
on pixel sequences. While this allows it to model long-range depen-
dencies, the selective modeling of one-dimensional sequences limits
its ability in "global degradation perception" like the Fourier trans-
form. Recognizing this, we attempt to extend it from the perspective
of frequency analysis for image deraining.

We integrate two typical frequency analysis techniques into our
method: Fourier transform (FT) and wavelet packet transform (WPT).

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Figure 2: Observation of the spectrum exchange of the Discrete
Fourier Transform(DFT). The degradation is mainly in the am-
plitude component, and the Fourier transform can disentangle
image content and degradation to some extent.

It is well known that the Fourier transform has effective global mod-
eling capabilities. In addition, it has good degradation separation
properties (Fig. 2). This unique perspective is invaluable for tasks
such as image deraining, where understanding the entire image struc-
ture can significantly enhance the quality of the restoration result.
However, there are inherent gaps between different domains, so
simply combining the Fourier transform with Mamba modeling can
be quite blunt. We need an intermediate state for a seamless tran-
sition. The wavelet packet transform decomposes the image into a
series of sub-bands with varying frequencies in the spatial domain,
encapsulating both frequency analysis and spatial information simul-
taneously. By utilizing the wavelet domain as the intermediate state
between the spatial and Fourier domains, we establish a smoother
transition, enhancing the overall effectiveness of the analysis.

Recognizing the potential for perceiving global degradation via
Frequency analysis and Mamba’s ability to capture regional corre-
lations within the spatial domain, we introduce FreqMamba. This
effective and efficient paradigm utilizes the complementarity be-
tween Mamba and frequency analysis for image deraining. The
cornerstone of our approach lies in a three-branch structure.
• Spatial Mamba: This branch operates on the original image

features. It extracts details and correlations within the image,
providing crucial insights into degradation patterns.

• Frequency Band Mamba: This branch employs the WPT to
dissect the input features into a spectrum of features spread across
various frequency bands. Arranging these low-resolution features
back to the original scale in frequency order, we perform a fre-
quency dimension scanning from low to high frequency as well
as in reverse as shown in Fig. 3. This strategy not only enriches
the model’s analytical breadth but also acts as a pivotal bridge,
melding the spatial and Fourier domains into a unified analysis
framework, offering a novel perspective on modeling.

• Fourier Modeling: This branch equips the model with the ability
to conduct global analysis by leveraging the Fourier Transform
to process the input. It captures the overarching degradation pat-
terns that affect the image, offering a panoramic view of the fre-
quency spectrum. This global modeling capability is instrumental
in comprehensively understanding and mitigating the effects of
degradation, ensuring an in-depth removal of rain streaks from
the image for a cleaner visual outcome.
Together, these branches form a robust architecture for tackling

the challenge of image deraining. The Spatial Scanning Mamba

analyzes intricate spatial details, while the Fourier Modeling branch
offers a holistic view, enabling the model to understand global degra-
dation phenomena. The Frequency Band Scanning Mamba explores
the frequency dimension and provides a new perspective for 2D
modeling. Furthermore, leveraging the unique data-dependent char-
acteristics of Mamba, we apply this methodology to rainy images
across different scales to derive attention maps based on degradation
prior. These attention maps are then integrated into the backbone
network to assist in effective training.

2 RELATED WORK
2.1 Image Deraining
Image deraining has witnessed substantial evolution, transitioning
from early model-based strategies to advanced data-driven tech-
niques. Initially, model-driven methods[20, 27], separate rain streaks
from the background using hand-crafted features and physical priors.
These approaches, while insightful, often struggle with complex rain
patterns and diverse real-world scenarios, leading to limitations in
their practical applicability and performance.

The advent of deep learning ushered in a new era for image
deraining, with data-driven approaches demonstrating remarkable
adeptness in extracting and learning features directly from data. The
introduction of CNNs marked a significant advancement, enabling
more nuanced and adaptive handling of rain streaks across a wide ar-
ray of images [7, 47, 53]. Besides, the development of architectures
incorporating attention mechanisms [38, 40, 44] has further refined
the capacity to discern and eliminate rain components, addressing
previous shortcomings in model generalization and detail preserva-
tion. In this work, we propose a novel baseline with a novel triple
interaction block to improve the deraining performance jointly.

2.2 Frequency Analysis
The Fourier Transform is a fundamental technique in frequency do-
main analysis, enabling the conversion of signals to a domain where
their global statistical properties can be more easily analyzed. This
capability is extensively leveraged across various computer vision
tasks. By adept modeling of global domain information, the FT fa-
cilitates advancements in various areas [17, 22, 23, 32, 45, 48, 57].
In terms of image restoration, FECNet[16] highlights the utility of
Fourier feature amplitudes in isolating global lightness components,
thus improving the aesthetic appeal and clarity of images. Similarly,
FSDGN [50] reveals how the amplitude of Fourier features serves as
a key indicator of global haze information in image dehazing tasks.
Despite these advances, the inherent constraints of FT in signal pro-
cessing hint at untapped potential, suggesting that the efficacy of
these methodologies could be augmented further.

Beyond Fourier transform, the Wavelet Transform (WT) is also
a mathematical tool used in the analysis of signals and images,
offering a complementary perspective to FT. Unlike FT, which excels
in capturing frequency information, Wavelet transform provides a
multi-resolution analysis that is particularly effective in detecting
and representing localized variations in signals.
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2.3 State Space Models
State Space Models (SSMs)[11, 37] have garnered significant at-
tention in recent years for their ability to effectively model long-
range dependencies while exhibiting linear scalability with sequence
length. The foundational work of S4 introduced by [11] laid the
groundwork for deep state-space modeling, demonstrating promis-
ing linear scaling properties. A recent innovation, [31] enhances
SSMs’ capabilities by integrating gating units. Furthermore, Mamba
[10], a data-dependent SSM featuring a selective mechanism and
efficient hardware design, has emerged as a standout performer, sur-
passing Transformers in natural language tasks while maintaining
linear scalability with input length. The applicability of SSMs ex-
tends beyond NLP, with pioneering works leveraging Mamba for
various vision tasks, including image classification [26], biomedical
image segmentation [9, 29], and others [3, 34, 39].

3 METHOD
In this section, we first introduce the motivation of our proposed
method, then introduce the preliminaries of frequency analysis and
SSMs. Finally, we outline the overall framework of FreqMamba.

3.1 Motivation
Degraded images, particularly those afflicted by rain, suffer from
both global degradation and local detail destruction. Frequency-
based methods are utilized for mitigating global degradation, lever-
aging the significant correlation between raindrop effects and the
Fourier amplitude spectrum (refer to Fig. 2). Nonetheless, due to the
inherent gap between the frequency and spatial domain, the global
nature of frequency domain operations makes it impossible to model
local dependencies of the spatial domain. Mamba is a state space
model distinguished by its selective scanning mechanism, which
skillfully facilitates the explicit modeling of interactions among
sequences with linear complexity. Applied to vision tasks, it can
effectively establish correlations between areas in 2D images.

Recognizing the complementary strengths of frequency-based
methods and the Mamba model in addressing different aspects of im-
age degradation, we introduce the FreqSSM Block. This novel struc-
ture features a three-branch design engineered to transition smoothly
from the correction of global degradation to the refinement of lo-
cal content. Further leveraging Mamba’s distinctive data-dependent
properties, we employ degraded images across various scales to
derive attention maps and add them in the encoder stage, thereby
enhancing the efficiency of training. Expanding upon these foun-
dations, we propose FreqMamba, a specialized solution designed
specifically to solve the single-image deraining task.

3.2 Preliminaries
3.2.1 Frequency Analysis in Digital Imaging. The Fourier Trans-
form is a mathematical technique for transforming a signal from its
original domain (often time or space) into a representation in the
frequency domain and vice versa with the inverse Fourier Transform
(iFT). Specifically for a single-channel image 𝑥 with size of 𝐻 ×𝑊 ,
the Discrete Fourier Transform is defined as:

F (𝑥) (𝑢, 𝑣) =
𝐻−1∑︁
ℎ=0

𝑊 −1∑︁
𝑤=0

𝑥 (ℎ,𝑤)𝑒− 𝑗2𝜋 ( ℎ
𝐻
𝑢+ 𝑤

𝑊
𝑣) . (1)
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Figure 3: The comparison between (a) the vanilla scanning strat-
egy employed by VMamba [26] and (b) our frequency dimension
strategy. Utilizing k-level wavelet packet transform, we decom-
pose the input into 4𝑘 (𝑘=2 in the figure) frequency bands. It is
then scanned along the frequency dimension in the spatial do-
main. This strategy introduces a new dimension to 2D-Mamba,
allowing it to capture complex image details at different fre-
quencies. It is noteworthy that we use a local scanning strategy
similar to LocalMamba[18], which is more consistent with the
form of WPT and allows strictly frequency-ordered scanning.

This process converts spatial features into a complex component,
illustrating the image’s frequency components. The frequency do-
main representation F (𝑥) can be decomposed into real R(𝑥) and
imaginary I(𝑥) parts, leading to amplitude spectrum and phase
spectrum, describing the image’s frequency content:

A(𝑥) (𝑢, 𝑣) =
√︁
R2 (𝑥) (𝑢, 𝑣) + I2 (𝑥) (𝑢, 𝑣),

P(𝑥) (𝑢, 𝑣) = arctan [ I(𝑥) (𝑢, 𝑣)
R(𝑥) (𝑢, 𝑣) ] .

(2)

Another tool, the Discrete Wavelet Transform (DWT), decom-
poses an image 𝐼 ∈ R𝐻×𝑊 ×𝐶 into four sub-bands representing
low-frequency approximations and high-frequency details:

𝐼𝐿𝐿, 𝐼𝐿𝐻 , 𝐼𝐻𝐿, 𝐼𝐻𝐻 = 𝐷𝑊𝑇 (𝐼 ) . (3)

Each sub-band, corresponding to different directional details, re-
duces the original image’s dimensions by half. In contrast, the
Wavelet Packet Transform offers a more detailed frequency con-
tent analysis by further decomposing all sub-bands at each level.

3.2.2 State Space Models. State Space Models (SSMs) are fun-
damental in translating one-dimensional inputs into outputs through
latent states, utilizing a framework of linear ordinary differential
equations. For a system with input 𝑥 (𝑡) and output 𝑦 (𝑡), the model
dynamics are described by:

ℎ′ (𝑡) = Aℎ(𝑡) + B𝑥 (𝑡),
𝑦 (𝑡) = Cℎ(𝑡) + D𝑥 (𝑡), (4)

where A,B,C, and D are the model parameters. The discrete ver-
sions of these models, such as Mamba, incorporate a discretization
step through the zero-order hold (ZOH) method while allowing the
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Figure 4: The detailed architecture of our FreqMamba. The three-branch FreqSSM forms the basic block of the u-net architecture for
global and local modeling. Multi-scale degradation priors are introduced into the training process at the encoder stage.

models to scan and adjust to the input data adaptively through a se-
lective scanning mechanism. This adaptability is particularly useful
in complex applications like image restoration, where understanding
contextual relationships between different image regions is crucial.

3.3 Architecture
We show our proposed method in Fig.4, which uses a multi-scale
U-Net architecture with three-branch Frequency-SSM Blocks as
the core components. At the same time, the input-dependent nature
of Mamba is used to generate attention maps using degradation
images of different scales, allowing the model to capture degradation
distributions at different scales. Now we introduce the details of the
different components of the network respectively.

3.3.1 Frequency-SSM Block. The frequency-SSM block is de-
signed to address complex challenges by leveraging the synergy of
three distinct branches: the Fourier Modeling Branch, the Spatial
Branch, and the Frequency Band Branch.
Fourier Modeling Branch. For the Fourier Modeling Branch, the
input feature 𝐹𝑖𝑛 first undergoes a convolution layer to produce
𝐹0. 𝐹0 is transformed into its Fourier spectrum via the Fast Fourier

Transform (FFT), which is then decomposed into amplitude spec-
trum A(𝐹0) and phase spectrum P(𝐹0). The amplitude and phase
spectrum are refined through convolution blocks in the frequency
domain and finally returned to the spatial domain through iFFT:

𝐹𝑃 = 𝐶𝑜𝑛𝑣𝐵𝑙𝑜𝑐𝑘 (𝑊1 (A(𝐹0))),
𝐹𝐴 = 𝐶𝑜𝑛𝑣𝐵𝑙𝑜𝑐𝑘 (𝑊1 (P(𝐹0))),
𝐹𝑓 = F −1 (𝐹𝑃 , 𝐹𝐴),

(5)

where𝑊1 (·) donates a 1×1 convolution operation and𝐶𝑜𝑛𝑣𝐵𝑙𝑜𝑐𝑘 (·)
signifies a series of convolution operations and activation functions.
This branch captures and processes the frequency domain represen-
tation of features, mastering the global recovery of images.
Spatial Branch. We first use Layernorm to process the input features
𝐹𝑖𝑛 to get 𝐹𝐿𝑁 . The features then pass through two parallel sub-
branches. The first sub-branch simply SiLU activates them. The
other sub-branch performs spatial Mamba on features after 1 × 1
convolution. Spatial Mamba consists of sequence : DWConv →
SiLU → Mamba-scan → LN, where Mamba-scan means vanilla 2D
Mamba-scan shown in Fig. 3 (a). The outputs of two sub-branches
are then element-wise multiplied to yield the spatial output 𝐹𝑠 :

𝐹𝑠 = 𝑀𝑎𝑚𝑏𝑎𝑆𝑐𝑎𝑛(𝑊1 (𝐹𝐿𝑁 )) ⊙ 𝑆𝑖𝐿𝑈 (𝐹𝐿𝑁 ), (6)
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Figure 5: Visualization of degradation prior attention maps and
three-branch features. (a) Rainy images. (b) Attention maps.
(c), (d), and (e) are the feature maps of the spatial, frequency
band, and Fourier modeling branch. The spatial branch (c)
comprehensively recognizes raindrops but the boundaries are
blurry. The Fourier branch (e) outputs high-contrast features
and focuses more on larger rain streaks. Overall the frequency
band branch (d) is somewhere in between.

where ⊙ donates element-wise multiplication.
Frequency Band Branch. 𝐹𝐿𝑁 is subjected to a 2-layer wavelet
packet transform to capture the information of different frequency
bands with the size of 𝐻

4 ,
𝑊
4 . They are arranged back to the original

resolution from top left to bottom right, then processed by frequency
Mamba, which is unique in its frequency scan as shown in Fig. 3 (b).
Since the strategy in Fig. 3 (a) cannot completely match WPT along
the low to high frequency, we use a strategy similar to LocalMamba
[18]. We divide the wavelet features into four blocks (red line in Fig.
3 (b)) and scan separately block by block.

The output is returned to the spatial domain after the correspond-
ing k-layer wavelet packet inverse transformation and lastly multi-
plied element by element with 𝑆𝑖𝐿𝑈 (𝐹𝐿𝑁 ) to obtain the frequency
band scanning output 𝐹𝑏 . This procedure is encapsulated as:

𝐹𝑏 = 𝐼𝐷𝑊𝑇 (𝐹𝑟𝑒𝑞𝑆𝑐𝑎𝑛(𝐷𝑊𝑇 (𝐹𝐿𝑁 ))) ⊙ 𝑆𝑖𝐿𝑈 (𝐹𝐿𝑁 ), (7)

where 𝑊𝑃𝑇 and 𝐼𝑊 𝑃𝑇 donate discrete wavelet packet transform
and inverse discrete wavelet packet transformation, respectively. We
regard the frequency dimension of Mamba modeling as a transition
between Mamba and Fourier modeling to achieve global degradation
processing and local detail restoration seamlessly.

𝐹𝑖𝑛 is added with the output of the spatial branch using a residual
connection. By concatenating the output features of three branches
and applying a final 1 × 1 convolution operation, the block achieves
a harmonized synthesis of the features. In Fig. 5, we present visu-
alizations of the features from different branches to illustrate the
variations in rain capture across each branch.

3.3.2 Data-dependent Degradation Prior Attention Map. In
various regions of the degraded image, the challenge of recovery
varies significantly, influenced by the degradation distribution and

(e) Ours(d) GT (f) Error map of (e)

(a) Input (b) Restormer (c) Error map of (b)

Figure 6: Error map (c) is the difference between the restored
image (b) by Restormer[51] and the ground truth (d). There
are significantly larger errors in mountainous areas with dense
rain streaks and complex backgrounds, reflecting the uneven
recovery difficulty and, more importantly, the need to model
degradation priors. Error map (f) is the difference between our
restoration result and GT with fewer huge error values.

the image background’s complexity. As illustrated in Fig. 6, the
restoration performed by Restormer [51] exhibits a huge error with
GT in areas such as mountains, characterized by dense rain patterns
and intricate backgrounds. This discrepancy stems from the absence
of explicit modeling of the degradation in the rainy images.

To address this issue, we leverage the unique data-dependent
property of the Mamba module, which allows it to dynamically
focus on or disregard specific input features based on their signif-
icance. We introduce an innovative approach wherein we utilize
the Mamba module to generate degradation priors, thereby enhanc-
ing our model’s ability to discern and address the varying degrees
of degradation across different regions of the image. This process
involves the generation of degradation priors through spatial 2D
scanning of input images at multiple scales. These degradation pri-
ors are then element-wise multiplied with features corresponding to
the same scale and subsequently summed with the features:

𝑀𝑎𝑡𝑡𝑒𝑛 = 𝑀𝑎𝑚𝑏𝑎(𝑊1 (𝐼𝑖𝑛)),
𝐹 = 𝐹 ⊙ 𝑀𝑎𝑡𝑡𝑒𝑛 + 𝐹,

(8)

where 𝐼𝑖𝑛 donates low-resolution rainy image and 𝐹 donates fea-
ture at the same scale. By incorporating input features of different
scales, our model can effectively delineate the possible locations of
degradation at various levels of granularity. As shown in Fig. 5, we
show some rainy images and the corresponding degradation attention
maps. The rain streaks are highlighted in the attention maps.

In essence, this approach harnesses the inherent adaptability of
the Mamba module to dynamically allocate attention to different
regions of the input image, thereby enabling our model to better
address the intricate of degradation distribution across the image.

3.4 Loss Function
In addition to new modules and degradation priors, we also introduce
new loss functions to optimize the training process of the network
to achieve good results in both spatial and frequency domains. The
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Table 1: Quantitative comparison (PSNR/SSIM) for Image Deraining on five benchmark datasets. The highest and second-highest
performances are marked in bold and underlined. ’-’ indicates the result is not available.

Method Venue Rain100H [47] Rain100L [47] Test2800 [7] Test1200 [53] Param(M) GFlops
PNSR ↑ SSIM ↑ PNSR ↑ SSIM ↑ PNSR ↑ SSIM ↑ PNSR ↑ SSIM ↑

DerainNet [6] TIP’17 14.92 0.592 27.03 0.884 24.31 0.861 23.38 0.835 0.058 1.453
UMRL [49] CVPR’19 26.01 0.832 29.18 0.923 29.97 0.905 30.55 0.910 0.98 -

RESCAN [24] ECCV’18 26.36 0.786 29.80 0.881 31.29 0.904 30.51 0.882 1.04 20.361
PreNet [35] CVPR’19 26.77 0.858 32.44 0.950 31.75 0.916 31.36 0.911 0.17 73.021

MSPFN [19] CVPR’20 28.66 0.860 32.40 0.933 32.82 0.930 32.39 0.916 13.22 604.70
SPAIR [33] ICCV’21 30.95 0.892 36.93 0.969 33.34 0.936 33.04 0.922 - -

MPRNet [52] CVPR’21 30.41 0.890 36.40 0.965 33.64 0.938 32.91 0.916 3.64 141.28
Restormer [51] CVPR’22 31.46 0.904 38.99 0.978 34.18 0.944 33.19 0.926 24.53 174.7
Fourmer [56] ICML’23 30.76 0.896 37.47 0.970 - - 33.05 0.921 0.4 16.753
IR-SDE [28] ICML’23 31.65 0.904 38.30 0.980 30.42 0.891 - - 135.3 119.1

MambaIR [13] arxiv’24 30.62 0.893 38.78 0.977 33.58 0.927 32.56 0.923 31.51 80.64
VMambaIR [36] arxiv’24 31.66 0.909 39.09 0.979 34.01 0.944 33.33 0.926 - -

FreqMamba (Ours) - 31.74 0.912 39.18 0.981 34.25 0.951 33.36 0.931 14.52 36.49

(a) Input (b) DerainNet (c) PreNet (d) Restormer (e) Ours (f) GT

Figure 7: Visual quality comparison on an image from Rain100L[47]. Zoom in for better visualization.

loss function consists of three parts: a spatial domain loss, a phase
spectrum loss, and an amplitude spectrum loss.

In the spatial domain, we use L1 loss between the final output
and GT to achieve supervision. At the same time, to achieve better
global information reconstruction, we calculate the L1 loss on the
amplitude spectrum and phase spectrum respectively to obtain the
amplitude and phase spectrum loss, expressed as:

𝐿𝑠𝑝𝑎 = ∥𝑌𝑜𝑢𝑡 − 𝑋𝑔𝑡 ∥1,
𝐿𝑎𝑚𝑝 = ∥A(𝑌𝑜𝑢𝑡 ) − A(𝑋𝑔𝑡 )∥1,
𝐿𝑝ℎ𝑎 = ∥P(𝑌𝑜𝑢𝑡 ) − P(𝑋𝑔𝑡 )∥1,

(9)

Finally, the overall composition of the loss function can be briefly
expressed as follows:

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿𝑠𝑝𝑎 + 𝛼𝐿𝑎𝑚𝑝 + 𝛽𝐿𝑝ℎ𝑎, (10)

where 𝛼 and 𝛽 are both empirically set to 0.05 in our implementation.

4 EXPERIMENTS
In this section, we evaluate our method through extensive experi-
ments. First, We describe the experimental setup. Then we present
the comparison results between our method and state-of-the-art ap-
proaches qualitatively and quantitatively. Lastly, a detailed ablation
analysis of our proposed method is conducted.
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(a) Input (b) PreNet (c) Restormer (d) Ours (e) GT

Figure 8: Visual quality comparison on an image from Rain100H[47]. Zoom in for better visualization.

4.1 Datasets and Implementation
Datasets. For validation, we train and validate our model on the
widely-used datasets Rain100H[47], Rain100L[47], Test1200[53],
and Test2800[7] datasets. Rain100L is selected from BSD200 [30]
with only one type of rain streaks, which consists of 200 image pairs
for training and 100 image pairs for testing. Rain100H contains 1800
image pairs for training and 100 image pairs for testing with five
types of streak directions. test1200[53] has three groups of 12,000
light, medium, and heavy rainy images for training, with each group
4,000 images. The same three groups of 1,200 images are used for
testing. Test2800[7] contains 14000 image pairs, of which 12,600
pairs are used for training and 1,400 for testing.
Implementation details. Our model was implemented using the
Pytorch framework and executed on NVIDIA RTX 3090 GPUs. The
number of blocks in each layer affects the amount of model parame-
ters and rain removal performance. After weighing the balance, we
set blocks of each layer to [2, 3, 3, 4, 3, 3, 2], which can achieve
good performance with a reasonable amount of parameters. We use
the progressive training strategy. Taking the RAIN100L dataset as
an example, we set the total number of iterations to 75000 and set
the image size to [160, 256, 320, 384] while the corresponding batch
sizes were [8, 4, 2, 1]. We use the Adam[21] optimizer with default
parameters to train the network by minimizing the loss function
𝐿𝑡𝑜𝑡𝑎𝑙 . The initial learning rate is set to 3 × 𝑒−4 and then gradually
decays to 1 × 𝑒−6 using the cosine annealing strategy.

4.2 Comparison with State-of-the-art Methods
In this section, we compare our method with state-of-the-art derain-
ing approaches: DerainNet [6], UMRL [49], RESCAN [24], PreNet
[35], MSPFN [19] , SPAIR [33] , MPRNet [52] , Restormer[51],
Fourmer [56], IR-SDE [28], MambaIR [13], and VMambaIR [36] .
Quantitative Comparison. Following [51], we compute Peak Signal-
to-Noise Ratio(PSNR) and Structural Similarity(SSIM) scores using

Table 2: Ablation study for investigating the components of
FreqMamba. The former three columns represent the three
branches. Map refers to the attention map.

Fourier Frequency Band Spatial Map PSNR SSIM
✓ ✓ ✓ 38.85 0.9782

✓ ✓ ✓ 39.08 0.9801
✓ ✓ ✓ 37.33 0.9758
✓ ✓ ✓ 39.11 0.9803
✓ ✓ ✓ ✓ 39.18 0.9814

the Y channel in YCbCr color space. Tab. 1 reports the performance
evaluation on the four datasets. As can be seen, our method achieves
the best performance among all the baseline algorithms.
Qualitative Comparison. To demonstrate the enhanced fidelity
and level of detail exhibited by images generated by our proposed
FreqMamba model for the image rain removal task, we compare the
visual quality of challenging degraded images from the Rain100L in
Fig. 7 and Rain100H datasets in Fig. 8. When faced with complex or
very severe rain streaks, our method achieves almost perfect results.
Compared with previous methods, our FreqMamba achieves the
perfect performance of global and local recovery. For example, by
zooming in the red box region in Fig. 8, our method removes more
rain streak residue while better restoring texture details. We provide
more visualization results in the supplementary material.

4.3 Ablation Studies
We performed ablations on different components of the model on the
Rain100L dataset. More results are provided in the supplementary.
Investigation of space mamba branch. To verify the efficacy of the
space mamba branch, we replace Mamba blocks with standard con-
volution layers and keep other parts unchanged. The result presented
in Tab.2 shows that the performance has dropped significantly, as
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Table 3: Ablation study of the contribution of loss functions.

Loss function PSNR ↑ SSIM ↑
w/o 𝐿𝑓 𝑟𝑒𝑞 39.09 0.9795
w/o 𝐿𝑎𝑚𝑝 39.12 0.9809
w/o 𝐿𝑝ℎ𝑎 39.12 0.9807
Full Loss 39.18 0.9814

(a)Without attention map (b)With attention map
0

1

Figure 9: The visualization of the errors between the restored
image and corresponding GT. With the employment of the degra-
dation prior attention map, the errors are greatly reduced.

the limited receptive field of standard convolution results in its poor
modeling capability.
Investigation of Fourier branch. We remove the Fourier branch,
leaving the spatial and frequency band mamba branch. The lack of
global overall modeling ability reduces model performance by 0.33
dB, which shows the importance of modeling global information in
the Fourier domain. It’s consistent with our original intention.
Investigation of frequency band branch. We remove the frequency
branch, leaving the spatial mamba and Fourier branch. The model
performance has dropped by 0.1 dB, which shows the importance of
the new frequency dimension.
Investigation of attention map. Our degradation prior attention
strategy adaptively learns degradation distributions based on rainy
images at different scales. To verify its effectiveness, we conduct
ablation experiments in Tab. 2. It can be clearly seen that when
equipped with the attention map, the algorithm gives better results
than that without using degradation prior. Further, we show an error
map in Fig. 9 with or without the attention map, which demonstrates
the effectiveness of our degradation prior attention strategy. More
comparisons can be found in the supplementary.
Investigation of loss function. The frequency loss aims to directly
emphasize global frequency information optimization. We remove it
and its two components in Tab. 3 respectively to check the validity.
The results show that removing it decreases performance metrics,
indicating its importance.

4.4 Extensions on Other Tasks
To demonstrate the potential of our FreqMamba, we extend it to
low-light image enhancement and Real-world image dehazing.

Extension on low-light image enhancement. Low-light image
enhancement mainly focuses on illuminating the darkness of the
scene and removing amplified noise. Our three-branch structure
copes with this scenario well. We adopt LOL-V1 and LOL-V2-
Synthetic datasets to evaluate the performance of our method. Sev-
eral low-light image enhancement methods are selected for compari-
son: RetinexNet [41], KinD [55], ZeroDCE [12], KinD ++ [54],

Table 4: Quantitative results of different methods on the LOL-
V1 and LOL-V2-Syn dataset.

Method
LOL-V1 [47] LOL-V2-Syn [47]

PNSR ↑ SSIM ↑ PNSR ↑ SSIM ↑
RetinexNet [41] 18.38 0.7756 19.92 0.8847

KinD [55] 20.38 0.8248 22.62 0.9041
ZeroDCE [12] 16.80 0.5573 17.53 0.6072
KinD++ [54] 21.30 0.8226 21.17 0.8814

URetinex-Net[43] 21.33 0.8348 22.89 0.8950
FECNet [17] 22.24 0.8372 22.57 0.8938

SNR-Aware [46] 23.38 0.8441 24.12 0.9222

FreqMamba (Ours) 23.57 0.8453 24.46 0.9355

URetinex-Net [43], FECNet [17], and SNR-Aware [46]. Tab. 4
shows the quantitative comparison.

Extension on real-world image dehazing. Real-world dehazing
aims to restore a clean scene from a real-world hazy image. For this
task, we apply two datasets: Dense-Haze [1]and NH-HAZE [2]. We
compare our method with others including DCP [15], DehazeNet
[4], GridNet[25], MSBDN [5], and AECR-Net [42]. We present the
quantitative comparison in Tab. 5.

Table 5: Quantitative results of different methods on the Dense-
Haze and NH-HAZE dataset.

Method
Dense-Haze [1] NH-HAZE [2]

PNSR ↑ SSIM ↑ PNSR ↑ SSIM ↑
DCP [15] 10.06 0.3856 10.57 0.5196

DehazeNet [4] 13.84 0.4252 16.62 0.5238
GridNet [25] 13.31 0.3681 13.80 0.5370
MSBDN [5] 15.37 0.4858 19.23 0.7056

AECR-Net [42] 15.80 0.4660 19.88 0.7173

FreqMamba (Ours) 17.35 0.5827 19.93 0.7372

5 CONCLUSION
In this work, we introduce FreqMamba, an innovative deraining net-
work that seamlessly integrates spatial domain sequence modeling
and frequency domain global modeling to address the challenge of
image deraining. The core of the FreqMamba network utilizes the
unique frequency SSM block. Meanwhile we leverage Mamba’s
input dependency properties to generate attention maps across mul-
tiple scales. This integration enables a nuanced understanding and
processing of rain streaks, distinguishing our approach from exist-
ing methods. Our comprehensive experiments on various datasets
highlight the effectiveness and efficiency of FreqMamba. Notably,
the model is not only good at removing rain from images but also
preserves the integrity and detail of the underlying scene. In applica-
tions where final image quality is critical, the balance of performance
and fidelity is critical. Furthermore, FreqMamba has applications
beyond rain removal, demonstrating its versatility in a variety of
image restoration tasks. This adaptability illustrates the robustness
of the underlying architecture and its potential as a foundational
model for future image restoration research.
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