
Neural Contextual Bandits with Deep Representation
and Shallow Exploration

Anonymous Author(s)
Affiliation
Address
email

Abstract

We study neural contextual bandits, a general class of contextual bandits, where1

each context-action pair is associated with a raw feature vector, but the specific2

reward generating function is unknown. We propose a novel learning algorithm3

that transforms the raw feature vector using the last hidden layer of a deep ReLU4

neural network (deep representation learning), and uses an upper confidence bound5

(UCB) approach to explore in the last linear layer (shallow exploration). We prove6

that under standard assumptions, our proposed algorithm achieves Õ(
√
T) finite-7

time regret, where T is the learning time horizon. Compared with existing neural8

contextual bandit algorithms, our approach is computationally much more efficient9

since it only needs to explore in the last layer of the deep neural network.10

1 Introduction11

Multi-armed bandits (MAB) [9, 8, 30] are a class of online decision-making problems where an12

agent needs to learn to maximize its expected cumulative reward while repeatedly interacting with a13

partially known environment. Based on a bandit algorithm (also called a strategy or policy), in each14

round, the agent adaptively chooses an arm, and then observes and receives a reward associated with15

that arm. Since only the reward of the chosen arm will be observed (bandit information feedback),16

a good bandit algorithm has to deal with the exploration-exploitation dilemma: trade-off between17

pulling the best arm based on existing knowledge/history data (exploitation) and trying the arms that18

have not been fully explored (exploration).19

In many real-world applications, the agent will also be able to access detailed contexts associated20

with the arms. For example, when a company wants to choose an advertisement to present to a user,21

the recommendation will be much more accurate if the company takes into consideration the contents,22

specifications, and other features of the advertisements in the arm set as well as the profile of the user.23

To encode the contextual information, contextual bandit models and algorithms have been developed,24

and widely studied both in theory and in practice [19, 39, 34, 16, 1]. Most existing contextual bandit25

algorithms assume that the expected reward of an arm at a context is a linear function in a known26

context-action feature vector, which leads to many useful algorithms such as LinUCB [16], OFUL [1],27

etc. The representation power of the linear model can be limited in applications such as marketing,28

social networking, clinical studies, etc., where the rewards are usually counts or binary variables. The29

linear contextual bandit problem has also been extended to richer classes of parametric bandits such30

as the generalized linear bandits [24, 35] and kernelised bandits [44, 15].31

With the prevalence of deep neural networks (DNNs) and their phenomenal performances in many32

machine learning tasks [32, 25], there has emerged a line of work that employs DNNs to increase the33

representation power of contextual bandit algorithms [5, 38, 17, 49, 52, 20, 51]. The problems they34

solve are usually referred to as neural contextual bandits. For example, Zhou et al. [52] developed35

the NeuralUCB algorithm, which can be viewed as a natural extension of LinUCB [16, 1], where they36

Submitted to 35th Conference on Neural Information Processing Systems (NeurIPS 2021). Do not distribute.

use the output of a deep neural network with the feature vector as input to approximate the reward.37

Zhang et al. [51] adapted neural networks in Thompson Sampling [43, 14, 40] for both exploration38

and exploitation and proposed NeuralTS . For a fixed time horizon T , it has been proved that both39

NeuralUCB and NeuralTS achieve a O(d̃
√
T) regret bound, where d̃ is the effective dimension of a40

neural tangent kernel matrix which can potentially scale with O(TK) for K-armed bandits. This41

high complexity is mainly due to that the exploration is performed over the entire huge neural network42

parameter space, which is inefficient and even infeasible when the number of neurons is large. A more43

realistic and efficient way of learning neural contextual bandits may be to just explore different arms44

using the last layer as the exploration parameter. More specifically, Riquelme et al. [38] provided45

an extensive empirical study of benchmark algorithms for contextual-bandits through the lens of46

Thompson Sampling, which suggests decoupling representation learning and uncertainty estimation47

improves performance.48

In this paper, we show that the decoupling of representation learning and the exploration can be49

theoretically validated. We study a new neural contextual bandit algorithm, which learns a mapping50

to transform the raw features associated with each context-action pair using a deep neural network51

(deep representation), and then performs an upper confidence bound (UCB)-type exploration over the52

linear output layer of the network (shallow exploration). We prove a sublinear regret of the proposed53

algorithm by exploiting the UCB exploration techniques in linear contextual bandits [1] and the54

analysis of deep overparameterized neural networks using neural tangent kernels [27]. Our theory55

confirms the empirically observed effectiveness of decoupling the deep representation learning and56

the UCB exploration in contextual bandits [38, 49].57

Contributions we summarize the main contributions of this paper as follows.58

• We propose a contextual bandit algorithm, Neural-LinUCB, for solving a general class of con-59

textual bandit problems without knowing the specific reward generating function. The proposed60

algorithm learns a deep representation to transform the raw feature vectors and performs UCB-type61

exploration in the last layer of the neural network, which we refer to as deep representation and62

shallow exploration. Compared with LinUCB [34, 16] and neural bandits such as NeuralUCB [52]63

and NeuralTS [51], our algorithm enjoys the best of two worlds: strong expressiveness due to the64

deep representation and computational efficiency due to the shallow exploration.65

• Despite the usage of a DNN as the feature mapping, we prove a Õ(
√
T) regret for the proposed66

Neural-LinUCB algorithm, which matches the regret bound of linear contextual bandits [16, 1].67

To the best of our knowledge, this is the first work that theoretically shows the convergence of68

bandits algorithms under the scheme of deep representation and shallow exploration. It is notable69

that a similar scheme called Neural-Linear was proposed by Riquelme et al. [38] for Thompson70

sampling algorithms, and they empirically showed that decoupling representation learning and71

uncertainty estimation improves the performance. Our work confirms this observation from a72

theoretical perspective.73

• We conduct experiments on contextual bandit problems based on real-world datasets, demon-74

strating a better performance and computational efficiency of Neural-LinUCB over LinUCB and75

NeuralUCB, which well aligns with our theory.76

1.1 Additional related work77

There is a line of related work to ours on the recent advance in the optimization and generalization78

analysis of deep neural networks. In particular, Jacot et al. [27] first introduced the neural tangent79

kernel (NTK) to characterize the training dynamics of network outputs in the infinite width limit.80

From the notion of NTK, a fruitful line of research emerged and showed that loss functions of81

deep neural networks trained by (stochastic) gradient descent can converge to the global minimum82

[22, 4, 21, 54, 53]. The generalization bounds for overparameterized deep neural networks are also83

established in Arora et al. [6, 7], Allen-Zhu et al. [3], Cao and Gu [12, 13]. Recently, the NTK based84

analysis is also extended to the study of sequential decision problems including bandits [52, 51], and85

reinforcement learning algorithms [11, 36, 45, 47].86

Our algorithm is also different from Langford and Zhang [29], Agarwal et al. [2] which reduce the87

bandit problem to supervised learning. Moreover, their algorithms need to access an oracle that88

returns the optimal policy in a policy class given a sequence of context and reward vectors, whose89

regret depends on the VC-dimension of the policy class.90

2

Notation We use [k] to denote a set {1, . . . , k}, k ∈ N+. ‖x‖2 =
√

x>x is the Euclidean norm of91

a vector x ∈ Rd. For a matrix W ∈ Rm×n, we denote by ‖W‖2 and ‖W‖F its operator norm92

and Frobenius norm respectively. For a semi-definite matrix A ∈ Rd×d and a vector x ∈ Rd, we93

denote the Mahalanobis norm as ‖x‖A =
√

x>Ax. Throughout this paper, we reserve the notations94

{Ci}i=0,1,... to represent absolute positive constants that are independent of problem parameters such95

as dimension, sample size, iteration number, step size, network length and so on. The specific values96

of {Ci}i=0,1,... can be different in different context. For a parameter of interest T and a function97

f(T), we use notations such as O(f(T)) and Ω(f(T)) to hide constant factors and Õ(f(T)) to hide98

constant and logarithmic dependence of T .99

2 Preliminaries100

In this section, we provide the background of contextual bandits and deep neural networks.101

2.1 Linear contextual bandits102

A contextual bandit is characterized by a tuple (S,A, r), where S is the context (state) space,A is the103

arm (action) space, and r encodes the unknown reward generating function at all context-arm pairs.104

A learning agent, who knows S and A but does not know the true reward r (values bounded in (0, 1)105

for simplicity), needs to interact with the contextual bandit for T rounds. At each round t = 1, . . . , T ,106

the agent first observes a context st ∈ S chosen by the environment; then it needs to adaptively select107

an arm at ∈ A based on its past observations; finally it receives a reward r̂t(xs,at) = r(xs,at) + ξt,108

where xs,a ∈ Rd is a known feature vector for context-arm pair (s, a) ∈ S ×A, and ξt is a random109

noise with zero mean. The agent’s objective is to maximize its expected total reward over these T110

rounds, which is equivalent to minimizing the pseudo regret [8]:111

RT = E
[T∑
t=1

(
r̂(xst,a∗t)− r̂(xst,at)

)]
, (2.1)

where a∗t ∈ argmaxa∈A{r(xst,a) = E[r̂(xst,a)]}. To simplify the exposition, we use xt,a to denote112

xst,a since it only depends on the round index t in most bandit problems, and we assume A = [K].113

In some practical problems, the agent has a prior knowledge that the reward-generating function114

r has some specific parametric form. For instance, in linear contextual bandits, the agent knows115

that r(xs,a) = x>s,aθ
∗ for some unknown weight vector θ∗ ∈ Rd. One provably sample efficient116

algorithm for linear contextual bandits is Linear Upper Confidence Bound (LinUCB) [1]. Specifically,117

at each round t, LinUCB chooses action by the following strategy118

at = argmax
a∈[K]

{
x>t,aθt + αt‖xt,a‖A−1

t

}
,

where θt is a point estimate of θ∗, At = λI +
∑t
i=1 xi,aix

>
i,ai

with some λ > 0 is a matrix119

defined based on the historical context-arm pairs, and αt > 0 is a tuning parameter that controls the120

exploration rate in LinUCB.121

2.2 Deep neural networks122

In this paper, we use f(x) to denote a neural network with input data x ∈ Rd. Let L be the number123

of hidden layers and Wl ∈ Rml×ml−1 be the weight matrices in the l-th layer, where l = 1, . . . , L,124

m1 = . . . = mL−1 = m and m0 = mL = d. Then a L-hidden layer neural network is defined as125

f(x) =
√
mθ∗>σL(WLσL−1(WL−1 · · ·σ1(W1x) · · ·)), (2.2)

where σl is an activation function and θ∗ ∈ Rd is the weight of the output layer. To simplify the126

presentation, we will assume σ1 = σ2 = . . . = σL = σ is the ReLU activation function, i.e.,127

σ(x) = max{0, x} for x ∈ R. We denote w = (vec(W1)>, . . . , vec(WL)>)>, which is the128

concatenation of the vectorized weight parameters of all hidden layers of the neural network. We also129

write f(x;θ∗,w) = f(x) in order to explicitly specify the weight parameters of neural network f . It130

3

is easy to show that the dimension p of vector w satisfies p = (L− 2)m2 + 2md. To simplify the131

notation, we define φ(x; w) as the output of the L-th hidden layer of neural network f .132

φ(x; w) =
√
mσ(WLσ(WL−1 · · ·σ(W1x) · · ·)). (2.3)

Note that φ(x; w) itself can also be viewed as a neural network with vector-valued outputs.133

3 Deep Representation and Shallow Exploration134

The linear parametric form in linear contextual bandits might produce biased estimates of the reward135

due to the lack of representation power [42, 38]. In contrast, it is well known that deep neural networks136

are powerful enough to approximate an arbitrary function [18]. Therefore, a natural extension of137

linear contextual bandits is to use a deep neural network to approximate the reward generating138

function r(·). Nonetheless, DNNs usually have a prohibitively large dimension for weight parameters,139

which makes the exploration in neural networks based UCB algorithm inefficient [28, 52].140

In this work, we study a neural contextual bandit algorithm, where the hidden layers of a deep neural141

network are used to represent the features and the exploration is only performed in the last layer of the142

neural network. In particular, we assume that the reward generating function r(·) can be expressed as143

the inner product between a deep represented feature vector and an exploration weight parameter,144

namely, r(·) = 〈θ∗,ψ(·)〉, where θ∗ ∈ Rd is some weight parameter and ψ(·) is an unknown feature145

mapping. This decoupling of the representation and the exploration will achieve the best of both146

worlds: efficient exploration in shallow (linear) models and high expressive power of deep models.147

To learn the unknown feature mapping, we propose to use a neural network to approximate it. In148

what follows, we will describe a neural contextual bandit algorithm that uses the output of the last149

hidden layer of a neural network to transform the raw feature vectors (deep representation) and150

performs UCB-type exploration in the last layer of the neural network (shallow exploration). Since151

the exploration is performed only in the last linear layer, we call this procedure Neural-LinUCB,152

which is displayed in Algorithm 1.153

Specifically, in round t, the agent receives an action set with raw features Xt = {xt,1, . . . ,xt,K}.154

Then the agent chooses an arm at that maximizes the following upper confidence bound:155

at = argmax
k∈[K]

{
〈φ(xt,k; wt−1),θt−1〉+ αt‖φ(xt,k; wt−1)‖A−1

t−1

}
, (3.1)

where θt−1 is a point estimate of the unknown weight in the last layer, φ(x; w) is defined as in (2.3),156

wt−1 is an estimate of all the weight parameters in the hidden layers of the neural network, αt > 0 is157

the algorithmic parameter controlling the exploration, and At is a matrix defined based on historical158

transformed features:159

At = λI +

t∑
i=1

φ(xi,ai ; wi−1)φ(xi,ai ; wi−1)>, (3.2)

and λ > 0. After pulling arm at, the agent will observe a noisy reward r̂t := r̂(xt,at) defined as160

r̂(xt,k) = r(xt,k) + ξt, (3.3)

where ξt is an independent ν-subGaussian random noise for some ν > 0 and r(·) is an unknown161

reward function. In this paper, we will interchangeably use notation r̂t to denote the reward received162

at the t-th step and an equivalent notation r̂(x) to express its dependence on the feature vector x.163

Upon receiving the reward r̂t, the agent updates its estimate θt of the output layer weight by using164

the same `2-regularized least-squares estimate in linear contextual bandits [1]. In particular, we have165

θt = A−1t bt, (3.4)

where bt =
∑t
i=1 r̂iφ(xi,ai ; wi−1).166

To save the computation, the neural network φ(·; wt) will be updated once every H steps. Therefore,167

we have w(q−1)H+1 = . . . = wqH for q = 1, 2, We call the time steps {(q− 1)H + 1, . . . , qH}168

an epoch with length H . At time step t = Hq, for any q = 1, 2, . . ., Algorithm 1 will retrain the169

4

neural network based on all the historical data. In Algorithm 2, our goal is to minimize the following170

empirical loss function:171

Lq(w) =

qH∑
i=1

(
θ>i φ(xi,ai ; w)− r̂i

)2
. (3.5)

In practice, one can further save computational cost by only feeding data {xi,ai , r̂i,θi}
qH
i=(q−1)H+1172

from the q-th epoch into Algorithm 2 to update the parameter wt, which does not hurt the performance173

since the historical information has been encoded into the estimate of θi. In this paper, we will174

perform the following gradient descent step175

w(s)
q = w(s−1)

q − ηq∇wLq(w(s−1)).

for s = 1, . . . , n, where w
(0)
q = w(0) is chosen as the same random initialization point. We will176

discuss more about the initial point w(0) in the next paragraph. Then Algorithm 2 outputs w
(n)
q and177

we set it as the updated weight parameter wHq+1 in Algorithm 1. In the next round, the agent will178

receive another action set Xt+1 with raw feature vectors and repeat the above steps to choose the179

sub-optimal arm and update estimation for contextual parameters.180

Initialization: Recall that w is the collection of all hidden layer weight parameters of the neural181

network. We will follow the same initialization scheme as used in Zhou et al. [52], where each entry182

of the weight matrices follows some Gaussian distribution. Specifically, for any l ∈ {1, . . . , L− 1},183

we set Wl =

[
W 0
0 W

]
, where each entry of W follows distribution N(0, 4/m) independently; for184

WL, we set it as [V −V], where each entry of V follows distribution N(0, 2/m) independently.185

Comparison with LinUCB and NeuralUCB: Compared with linear contextual bandits in Sec-186

tion 2.1, Algorithm 1 has a distinct feature that it learns a deep neural network to obtain a deep187

representation of the raw data vectors and then performs UCB exploration. This deep representa-188

tion allows our algorithm to characterize more intrinsic and latent information about the raw data189

{xt,k}t∈[T],k∈[K] ⊂ Rd. However, the increased complexity of the feature mapping φ(·; w) also190

introduces great hardness in training. For instance, a recent work by Zhou et al. [52] also stud-191

ied the neural contextual bandit problem, but different from (3.1), their algorithm (NeuralUCB)192

performs the UCB exploration on the entire network parameter space, which is Rp̃+d, where193

p̃ = m + md + (L − 1)m2. Note that in Zhou et al. [52], they need to compute the inverse194

of a matrix Zt ∈ R(p̃+d)×(p̃+d), which is defined in a similar way to the matrix At in our paper195

except that Zt is defined based on the gradient of the network instead of the output of the last hidden196

layer as in (3.2). In sharp contrast, At in our paper is only of size d × d and thus is much more197

efficient and practical in implementation, which will be seen from our experiments in later sections.198

We note that there is also a similar algorithm to our Neural-LinUCB presented in Deshmukh et al.199

[20], where they studied the self-supervised learning loss in contextual bandits with neural network200

representation for computer vision problems. However, no regret analysis has been provided. When201

the feature mapping φ(·; w) is an identity function, the problem reduces to linear contextual bandits202

where we directly use xt as the feature vector. In this case, it is easy to see that Algorithm 1 reduces203

to LinUCB [16] since we do not need to learn the representation parameter w anymore.204

Comparison with Neural-Linear: The high-level idea of decoupling the representation and explo-205

ration in our algorithm is also similar to that of the Neural-Linear algorithm [38, 49], which trains a206

deep neural network to learn a representation of the raw feature vectors, and then uses a Bayesian207

linear regression to estimate the uncertainty in the bandit problem. However, these two algorithms208

are significantly different since Neural-Linear [38] is a Thompson sampling based algorithm that209

uses posterior sampling to estimate the weight parameter θ∗ via Bayesian linear regression, whereas210

Neural-LinUCB adopts upper confidence bound based techniques to estimate the weight θ∗. Never-211

theless, both algorithms share the same idea of deep representation and shallow exploration, and we212

view our Neural-LinUCB algorithm as one instantiation of the Neural-Linear scheme.213

4 Main Results214

To analyze the regret bound of Algorithm 1, we first lay down some important assumptions on the215

neural contextual bandit model.216

5

Algorithm 1 Deep Representation and Shallow Exploration (Neural-LinUCB)
1: Input: regularization parameter λ > 0, number of total steps T , episode length H , exploration

parameters {αt > 0}t∈[T]

2: Initialization: A0 = λI, b0 = 0; entries of θ0 follow N(0, 1/d), and w(0) is initialized as
described in Section 3; q = 1; w0 = w(0)

3: for t = 1, . . . , T do
4: receive feature vectors {xt,1, . . . ,xt,K}
5: choose arm at = argmaxk∈[K] θ

>
t−1φ(xt,k; wt−1) +αt‖φ(xt,k; wt−1)‖A−1

t−1
, and obtain

reward r̂t
6: update At and bt as follows:

At = At−1 + φ(xt,at ; wt−1)φ(xt,at ; wt−1)>,
bt = bt−1 + r̂tφ(xt,at ; wt−1),

7: update θt = A−1t bt
8: if mod(t,H) = 0 then
9: wt ← output of Algorithm 2

10: q = q + 1
11: else
12: wt = wt−1
13: end if
14: end for
15: Output wT

Algorithm 2 Update Weight Parameters with Gradient Descent

1: Input: initial point w
(0)
q = w(0), maximum iteration number n, step size ηq, and loss function

defined in (3.5).
2: for s = 1, . . . , n do
3: w

(s)
q = w

(s−1)
q − ηq∇wLq(w(s−1)

q).
4: end for
5: Output w

(n)
q

Assumption 4.1. For all i ≥ 1 and k ∈ [K], we assume that ‖xi,k‖2 = 1 and its entries satisfy217

[xi,k]j = [xj,k]j+d/2.218

The assumption that ‖xi,k‖2 = 1 is not essential and is only imposed for simplicity, which is also219

used in Zou and Gu [53], Zhou et al. [52]. Finally, the condition on the entries of xi,k is also mild220

since otherwise we could always construct x′i,k = [x>i,k,x
>
i,k]>/

√
2 to replace it. An implication of221

Assumption 4.1 is that the initialization scheme in Algorithm 1 results in φ(xi,k; w(0)) = 0 for all222

i ∈ [T] and k ∈ [K].223

We assume the following stability condition on the spectral norm of the neural network gradient:224

Assumption 4.2. There is a constant `Lip > 0 such that it holds225 ∥∥∥∥ ∂φ∂w
(x; w0)− ∂φ

∂w
(x′; w0)

∥∥∥∥
2

≤ `Lip‖x− x′‖2,

for all x,x′ ∈ {xi,k}i∈[T],k∈[K].226

The inequality in Assumption 4.2 resembles the Lipschitz condition on the gradient of the neural227

network. However, it is essentially different from the smoothness condition since here the gradient228

is taken with respect to the neural network weights while the Lipschitz condition is imposed on the229

feature parameter x. Similar conditions are widely made in nonconvex optimization [46, 10, 48], in230

the name of first-order stability, which is essential to derive the convergence of alternating optimization231

algorithms. Furthermore, Assumption 4.2 is only required on the TK training data points and a232

specific weight parameter w0. Therefore, the condition will hold if the raw feature data lie in a233

certain subspace of Rd. We provided some further discussions in the supplementary material about234

this assumption for interested readers.235

6

In order to analyze the regret bound of Algorithm 1, we need to characterize the properties of the236

deep neural network in (2.2) that is used to represent the feature vectors. Following a recent line of237

research [27, 12, 7, 52], we define the covariance between two data point x,y ∈ Rd as follows.238

Σ̃(0)(x,y) = Σ(0)(x,y) = x>y,

Λ(l)(x,y) =

[
Σl−1(x,x) Σl−1(x,y)
Σl−1(y,x) Σl−1(y,y)

]
,

Σ(l)(x,y) = 2E(u,v)∼N(0,Λ(l−1)(x,y))[σ(u)σ(v)],

Σ̃(l)(x,y) = 2Σ̃(l−1)(x,y)Eu,v[σ̇(u)σ̇(v)] + Σ(l)(x,y), (4.1)

where (u, v) ∼ N(0,Λ(l−1)(x,y)), and σ̇(·) is the derivative of activation function σ(·). We denote239

the neural tangent kernel (NTK) matrix H ∈ RTK×TK based on all feature vectors {xt,k}t∈[T],k∈[K].240

Renumbering {xt,k}t∈[T],k∈[K] as {xi}i=1,...,TK , then each entry Hij is defined as241

Hij =
1

2

(
Σ̃(L)(xi,xj) + Σ(L)(xi,xj)

)
, (4.2)

for all i, j ∈ [TK]. Based on the above definition, we impose the following assumption on H.242

Assumption 4.3. The neural tangent kernel defined in (4.2) is positive definite, i.e., λmin(H) ≥ λ0243

for some constant λ0 > 0.244

Assumption 4.3 essentially requires the neural tangent kernel matrix H to be non-singular, which is245

a mild condition and also imposed in other related work [21, 7, 12, 52]. Moreover, it is shown that246

Assumption 4.3 can be easily derived from Assumption 4.1 for two-layer ReLU networks [37, 53].247

Therefore, Assumption 4.3 is mild or even negligible given the non-degeneration assumption on the248

feature vectors. Also note that matrix H is only defined based on layers l = 1, . . . , L of the neural249

network, and does not depend on the output layer θ. It is easy to extend the definition of H to the250

NTK matrix defined on all layers including the output layer θ, which would also be positive definite251

by Assumption 4.3 and the recursion in (4.2).252

Before we present the regret analysis of the neural contextual bandit, we need to modify the regret253

defined in (2.1) to account for the randomness of the neural network initialization. For a fixed time254

horizon T , we define the regret of Algorithm 1 as follows.255

RT = E
[T∑
t=1

(
r̂(xt,a∗t)− r̂(xt,at)

)
|w(0)

]
, (4.3)

where the expectation is taken over the randomness of the reward noise. Note that RT defined in (4.3)256

is still a random variable since the initialization of Algorithm 2 is randomly generated.257

Now we are going to present the regret bound of the proposed algorithm.258

Theorem 4.4. Suppose Assumptions 4.1, 4.2 and 4.3 hold. Assume that ‖θ∗‖2 ≤ M for some259

positive constant M > 0. For any δ ∈ (0, 1), let us choose αt in Neural-LinUCB as260

αt = ν
√

2
(
d log(1 + t log(HK)/λ) + log(1/δ)

)
+ λ1/2M.

We choose the step size ηq of Algorithm 2 as261

ηq ≤ C0

(
d2mnT 5.5L6 log(TK/δ)

)−1
,

and the width of the neural network satisfies m = poly(L, d, 1/δ,H, log(TK/δ)). With probability262

at least 1− δ over the randomness of the initialization of the neural network, it holds that263

RT ≤ C1αT

√
Td log

(
1 +

TG2

λd

)
+
C2`LipL

3d5/2T
√

logm log(1
δ
) log(TK

δ
)‖r− r̃‖H−1

m1/6
,

where {Ci}i=0,1,2 are absolute constants independent of the problem parameters, r =264

(r(x1), r(x2), . . . , r(xTK))> ∈ RTK and r̃ = (f(x1;θ0,w0), . . . , f(xTK ;θT−1,wT−1))> ∈265

RTK , and ‖r‖A =
√

r>Ar.266

7

Remark 4.5. Theorem 4.4 shows that the regret of Algorithm 1 can be bounded by two parts: the267

first part is of order Õ(
√
T), which resembles the regret bound of linear contextual bandits [1]; the268

second part is of order Õ(m−1/6T
√

(r− r̃)>H−1(r− r̃)), which depends on the estimation error269

of the neural network f for the reward generating function r and the neural tangent kernel H.270

It is worth noting that our theoretical analysis depends on the reward structure assumption that271

r(·) = 〈θ∗,ψ(·)〉. However, the linear structure between θ∗ and ψ(·) is not essential. As long as272

the deep representation of the feature vector and the uncertainty weight parameter can be decoupled,273

Algorithm 1 can be easily extended to settings with milder assumptions on the reward structure274

such as generalized linear models [41, 24, 35, 28]. For more general bandit models where no275

assumption is imposed to the reward generating function, it is still unclear whether the decoupled276

deep representation and shallow exploration would work especially in cases a thorough exploration277

may be needed.278

Based on the result in Theorem 4.4, we can easily verify the following conclusion:279

Corollary 4.6. Under the same conditions of Theorem 4.4, if we choose a sufficiently overpa-280

rameterized neural network mapping φ(·) such that m ≥ T 3, then the regret of Algorithm 1 is281

RT = Õ(
√
T
√

(r− r̃)>H−1(r− r̃)).282

Remark 4.7. For the ease of presentation, let us denote E := ‖r− r̃‖H−1 . If we have E = O(1), the283

total regret in Theorem 4.4 becomes Õ(
√
T) which matches the regret of linear contextual bandits284

[1]. We remark that there is a similar assumption in [52] where they assume that r>H−1r can be285

upper bounded by a constant. They show that this term can be bounded by the RKHS norm of r if286

it belongs to the RKHS induced by the neural tangent kernel [6, 7, 33]. In addition, E here is the287

difference between the true reward function and the neural network function, which can also be small288

if the deep neural network function well approximates the reward generating function r(·).289

5 Experiments290

In this section, we provide empirical evaluations of Neural-LinUCB on real-world datasets. As291

we have discussed in Section 3, Neural-LinUCB could be viewed as an instantiation of the Neural-292

Linear scheme studied in Riquelme et al. [38] except that we use the UCB exploration instead of the293

posterior sampling exploration therein. Note that there has been an extensive comparison [38] of the294

Neural-Linear methods with many other baselines such as greedy algorithms, Variational Inference,295

Expectation-Propagation, Bayesian Non-parametrics and so on. Therefore, we do not seek a thorough296

empirical comparison of Neural-LinUCB with all existing bandits algorithms. We refer readers who297

are interested in the performance of Neural-Linear methods with deep representation and shallow298

exploration compared with a vast of baselines in the literature to the benchmark study by Riquelme299

et al. [38]. In this experiment, we only aim to show the advantages of our algorithm over the following300

baselines: (1) Neural-Linear [38]; (2) LinUCB [16], which does not have a deep representation of the301

feature vectors; and (3) NeuralUCB [52], which performs UCB exploration on all the parameters of302

the neural network instead of the shallow exploration used in our paper. All numerical experiments303

were run on a workstation with Intel(R) Xeon(R) CPU E5-2637 v4 @ 3.50GHz.304

Datasets: we evaluate the performances of all algorithms on bandit problems created from real-world305

data. Specifically, following the experimental setting in Zhou et al. [52],we use datasets (Shuttle)306

Statlog, Magic and Covertype from UCI machine learning repository [23], and the MINST dataset307

from LeCun et al. [31]. The details of these datasets are presented in Table 1. In Table 1, each308

instance represents a feature vector x ∈ Rd that is associated with one of the K arms, and dimension309

d is the number of attributes in each instance.310

Table 1: Specifications of datasets from the UCI machine learning repository used in this paper.

Statlog Magic Covertype MNIST

Number of attributes 9 11 54 784
Number of arms 7 2 7 10
Number of instances 58,000 19,020 581,012 60,000

8

0 3000 6000 9000 12000 15000
round

0

200

400

600

800

1000

cu
m

ul
at

iv
e

re
gr

et

LinUCB
NeuralUCB
NeuralLinear
Neural-LinUCB

(a) Statlog

0 3000 6000 9000 12000 15000
round

0

1000

2000

3000

4000

cu
m

ul
at

iv
e

re
gr

et

LinUCB
NeuralUCB
NeuralLinear
Neural-LinUCB

(b) Magic

0 3000 6000 9000 12000 15000
round

0

1000

2000

3000

4000

5000

6000

7000

8000

cu
m

ul
at

iv
e

re
gr

et

LinUCB
NeuralUCB
NeuralLinear
Neural-LinUCB

(c) Covertype

0 3000 6000 9000 12000 15000
round

0

500

1000

1500

2000

2500

3000

cu
m

ul
at

iv
e

re
gr

et

LinUCB
NeuralUCB
NeuralLinear
Neural-LinUCB

(d) MNIST

Figure 1: The cumulative regrets of LinUCB, NeuralUCB, Neural-Linear and Neural-LinUCB over
15, 000 rounds. Experiments are averaged over 10 repetitions.

Implementations: for LinUCB, we follow the setting in Li et al. [34] to use disjoint models311

for different arms. For neural network based algorithms such as NeuralUCB, Neural-Linear and312

Neural-LinUCB, we use a ReLU neural network defined as in (2.2) with L = 2 and 2000 for the313

UCI datasets (Statlog, Magic, Covertype). Thus the neural network weights are W1 ∈ Rm×d,314

W2 ∈ Rk×m, and θ ∈ Rk respectively, where k = 100, m = 2000, and d is the dimension of315

features in the corresponding task. Since the problem size of the MNIST dataset is larger, inspired316

by Hinton and Salakhutdinov [26], we use a deeper NN and set L = 3, k = 100 and m = 100,317

with weights W1 ∈ Rm×d, W2 ∈ Rm×m, W3 ∈ Rk×m, and θ ∈ Rk. We set the time horizon318

T = 15, 000, which is the total number of rounds for each algorithm on each dataset. We use319

gradient decent to optimize the network weights, with a step size ηq =1e-5 and maximum iteration320

number n = 1, 000. To speed up the training process, the network parameter w is updated every321

H = 100 rounds starting from round 2000. We also apply early stopping when the loss difference322

of two consecutive iterations is smaller than a threshold of 1e-6. We set λ = 1 and αt = 0.02323

for all algorithms, t ∈ [T]. Following the setting in Riquelme et al. [38], we use round-robin to324

independently select each arm for 3 times at the beginning of each algorithm. For NeuralUCB, since325

it is computationally unaffordable to perform the original UCB exploration as displayed in Zhou et al.326

[52], we follow their experimental setting to replace the matrix Zt ∈ R(d+p̃)×(d+p̃) in Zhou et al.327

[52] with its diagonal matrix.328

Results: we plot the cumulative regret of all algorithms versus round in Figures 1(a), 1(b) and 1(c)329

for UCI datasets and in Figure 1(d) for MNIST. The results are reported based on the average of330

10 repetitions over different random shuffles of the datasets. It can be seen that algorithms based331

on neural network representations (NeuralUCB, Neural-Linear and Neural-LinUCB) consistently332

outperform the linear contextual bandit method LinUCB, which shows that linear models may333

lack representation power and find biased estimates for the underlying reward generating function.334

Furthermore, our proposed Neural-LinUCB achieves a comparable regret with NeuralUCB in all335

experiments despite the fact that our algorithm only explores in the output layer of the neural network,336

which is more computationally efficient as we will show in the sequel.The results in our experiment337

are well aligned with our theory that deep representation and shallow exploration are sufficient to338

guarantee a good performance of neural contextual bandit algorithms, which is also consistent with339

the findings in existing literature [38] that decoupling the representation learning and uncertainty340

estimation improves the performance.341

We also conducted experiments to study the effects of different widths of deep neural networks on342

the regret performance and to show the computational efficiency of Neural-LinUCB compared with343

existing neural bandit algorithms. Due to the space limit, we defer the results to Appendix A.344

6 Conclusions345

In this paper, we propose a new neural contextual bandit algorithm called Neural-LinUCB, which uses346

the hidden layers of a ReLU neural network as a deep representation of the raw feature vectors and347

performs UCB type exploration on the last layer of the neural network. By incorporating techniques348

in liner contextual bandits and neural tangent kernels, we prove that the proposed algorithm achieves349

a sublinear regret when the width of the network is sufficiently large. This is the first regret analysis350

of neural contextual bandit algorithms with deep representation and shallow exploration, which have351

been observed in practice to work well on many benchmark bandit problems [38]. We also conducted352

experiments on real-world datasets to demonstrate the advantage of the proposed algorithm over353

LinUCB and existing neural contextual bandit algorithms.354

9

References355

[1] Yasin Abbasi-Yadkori, Dávid Pál, and Csaba Szepesvári. Improved algorithms for linear356

stochastic bandits. In Advances in Neural Information Processing Systems, pages 2312–2320,357

2011.358

[2] Alekh Agarwal, Daniel Hsu, Satyen Kale, John Langford, Lihong Li, and Robert Schapire.359

Taming the monster: A fast and simple algorithm for contextual bandits. In International360

Conference on Machine Learning, pages 1638–1646, 2014.361

[3] Zeyuan Allen-Zhu, Yuanzhi Li, and Yingyu Liang. Learning and generalization in overparame-362

terized neural networks, going beyond two layers. In Advances in neural information processing363

systems, pages 6155–6166, 2019.364

[4] Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via365

over-parameterization. In International Conference on Machine Learning, pages 242–252,366

2019.367

[5] Robin Allesiardo, Raphaël Féraud, and Djallel Bouneffouf. A neural networks committee for368

the contextual bandit problem. In International Conference on Neural Information Processing,369

pages 374–381. Springer, 2014.370

[6] Sanjeev Arora, Simon Du, Wei Hu, Zhiyuan Li, and Ruosong Wang. Fine-grained analysis of op-371

timization and generalization for overparameterized two-layer neural networks. In International372

Conference on Machine Learning, pages 322–332, 2019.373

[7] Sanjeev Arora, Simon S Du, Wei Hu, Zhiyuan Li, Russ R Salakhutdinov, and Ruosong Wang.374

On exact computation with an infinitely wide neural net. In Advances in Neural Information375

Processing Systems, pages 8139–8148, 2019.376

[8] Jean-Yves Audibert, Rémi Munos, and Csaba Szepesvári. Exploration–exploitation tradeoff377

using variance estimates in multi-armed bandits. Theoretical Computer Science, 410(19):378

1876–1902, 2009.379

[9] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed380

bandit problem. Machine learning, 47(2-3):235–256, 2002.381

[10] Sivaraman Balakrishnan, Martin J Wainwright, Bin Yu, et al. Statistical guarantees for the em382

algorithm: From population to sample-based analysis. The Annals of Statistics, 45(1):77–120,383

2017.384

[11] Qi Cai, Zhuoran Yang, Jason D Lee, and Zhaoran Wang. Neural temporal-difference learning385

converges to global optima. In Advances in Neural Information Processing Systems, 2019.386

[12] Yuan Cao and Quanquan Gu. A generalization theory of gradient descent for learning over-387

parameterized deep relu networks. arXiv preprint arXiv:1902.01384, 2019.388

[13] Yuan Cao and Quanquan Gu. Generalization bounds of stochastic gradient descent for wide389

and deep neural networks. In Advances in Neural Information Processing Systems, pages390

10835–10845, 2019.391

[14] Olivier Chapelle and Lihong Li. An empirical evaluation of thompson sampling. In Advances392

in neural information processing systems, pages 2249–2257, 2011.393

[15] Sayak Ray Chowdhury and Aditya Gopalan. On kernelized multi-armed bandits. In International394

Conference on Machine Learning, pages 844–853, 2017.395

[16] Wei Chu, Lihong Li, Lev Reyzin, and Robert Schapire. Contextual bandits with linear payoff396

functions. In Proceedings of the Fourteenth International Conference on Artificial Intelligence397

and Statistics, pages 208–214, 2011.398

[17] Mark Collier and Hector Urdiales Llorens. Deep contextual multi-armed bandits. arXiv preprint399

arXiv:1807.09809, 2018.400

10

[18] George Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of401

control, signals and systems, 2(4):303–314, 1989.402

[19] Varsha Dani, Thomas P Hayes, and Sham M Kakade. Stochastic linear optimization under403

bandit feedback. In Conference on Learning Theory, 2008.404

[20] Aniket Anand Deshmukh, Abhimanu Kumar, Levi Boyles, Denis Charles, Eren Manavoglu,405

and Urun Dogan. Self-supervised contextual bandits in computer vision. arXiv preprint406

arXiv:2003.08485, 2020.407

[21] Simon Du, Jason Lee, Haochuan Li, Liwei Wang, and Xiyu Zhai. Gradient descent finds global408

minima of deep neural networks. In International Conference on Machine Learning, pages409

1675–1685, 2019.410

[22] Simon S. Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. Gradient descent provably411

optimizes over-parameterized neural networks. In International Conference on Learning412

Representations, 2019. URL https://openreview.net/forum?id=S1eK3i09YQ.413

[23] Dheeru Dua and Casey Graff. UCI machine learning repository, 2017. URL http://archive.414

ics.uci.edu/ml.415

[24] Sarah Filippi, Olivier Cappe, Aurélien Garivier, and Csaba Szepesvári. Parametric bandits: The416

generalized linear case. In Advances in Neural Information Processing Systems, pages 586–594,417

2010.418

[25] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.419

[26] Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing the dimensionality of data with420

neural networks. science, 313(5786):504–507, 2006.421

[27] Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and422

generalization in neural networks. In Advances in neural information processing systems, pages423

8571–8580, 2018.424

[28] Branislav Kveton, Manzil Zaheer, Csaba Szepesvari, Lihong Li, Mohammad Ghavamzadeh,425

and Craig Boutilier. Randomized exploration in generalized linear bandits. In International426

Conference on Artificial Intelligence and Statistics, pages 2066–2076, 2020.427

[29] John Langford and Tong Zhang. The epoch-greedy algorithm for multi-armed bandits with side428

information. In Advances in neural information processing systems, pages 817–824, 2008.429

[30] Tor Lattimore and Csaba Szepesvári. Bandit algorithms. Cambridge University Press, 2020.430

[31] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning431

applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.432

[32] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436–444,433

2015.434

[33] Jaehoon Lee, Lechao Xiao, Samuel Schoenholz, Yasaman Bahri, Roman Novak, Jascha Sohl-435

Dickstein, and Jeffrey Pennington. Wide neural networks of any depth evolve as linear models436

under gradient descent. In Advances in neural information processing systems, pages 8570–8581,437

2019.438

[34] Lihong Li, Wei Chu, John Langford, and Robert E Schapire. A contextual-bandit approach to439

personalized news article recommendation. In Proceedings of the 19th international conference440

on World wide web, pages 661–670, 2010.441

[35] Lihong Li, Yu Lu, and Dengyong Zhou. Provably optimal algorithms for generalized linear442

contextual bandits. In International Conference on Machine Learning, pages 2071–2080, 2017.443

[36] Boyi Liu, Qi Cai, Zhuoran Yang, and Zhaoran Wang. Neural trust region/proximal policy444

optimization attains globally optimal policy. In Advances in Neural Information Processing445

Systems, pages 10564–10575, 2019.446

11

https://openreview.net/forum?id=S1eK3i09YQ
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

[37] Samet Oymak and Mahdi Soltanolkotabi. Towards moderate overparameterization: global447

convergence guarantees for training shallow neural networks. IEEE Journal on Selected Areas448

in Information Theory, 2020.449

[38] Carlos Riquelme, George Tucker, and Jasper Snoek. Deep bayesian bandits showdown: An450

empirical comparison of bayesian deep networks for thompson sampling. In International451

Conference on Learning Representations, 2018. URL https://openreview.net/forum?452

id=SyYe6k-CW.453

[39] Paat Rusmevichientong and John N Tsitsiklis. Linearly parameterized bandits. Mathematics of454

Operations Research, 35(2):395–411, 2010.455

[40] Daniel J. Russo, Benjamin Van Roy, Abbas Kazerouni, Ian Osband, and Zheng Wen. A tutorial456

on thompson sampling. Foundations and Trends R© in Machine Learning, 11(1):1–96, 2018.457

ISSN 1935-8237.458

[41] Jyotirmoy Sarkar. One-armed bandit problems with covariates. The Annals of Statistics, pages459

1978–2002, 1991.460

[42] Jasper Snoek, Oren Rippel, Kevin Swersky, Ryan Kiros, Nadathur Satish, Narayanan Sundaram,461

Mostofa Patwary, Mr Prabhat, and Ryan Adams. Scalable bayesian optimization using deep462

neural networks. In International conference on machine learning, pages 2171–2180, 2015.463

[43] William R Thompson. On the likelihood that one unknown probability exceeds another in view464

of the evidence of two samples. Biometrika, 25(3/4):285–294, 1933.465

[44] Michal Valko, Nathan Korda, Rémi Munos, Ilias Flaounas, and Nello Cristianini. Finite-time466

analysis of kernelised contextual bandits. In Proceedings of the Twenty-Ninth Conference on467

Uncertainty in Artificial Intelligence, pages 654–663, 2013.468

[45] Lingxiao Wang, Qi Cai, Zhuoran Yang, and Zhaoran Wang. Neural policy gradient meth-469

ods: Global optimality and rates of convergence. In International Conference on Learning470

Representations, 2020. URL https://openreview.net/forum?id=BJgQfkSYDS.471

[46] Zhaoran Wang, Han Liu, and Tong Zhang. Optimal computational and statistical rates of472

convergence for sparse nonconvex learning problems. Annals of statistics, 42(6):2164, 2014.473

[47] Pan Xu and Quanquan Gu. A finite-time analysis of q-learning with neural network function474

approximation. In International Conference on Machine Learning, 2020.475

[48] Pan Xu, Jian Ma, and Quanquan Gu. Speeding up latent variable gaussian graphical model476

estimation via nonconvex optimization. In Advances in Neural Information Processing Systems,477

pages 1933–1944, 2017.478

[49] Tom Zahavy and Shie Mannor. Deep neural linear bandits: Overcoming catastrophic forgetting479

through likelihood matching. arXiv preprint arXiv:1901.08612, 2019.480

[50] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding481

deep learning requires rethinking generalization. In International Conference on Learning482

Representations, 2017. URL https://openreview.net/forum?id=Sy8gdB9xx.483

[51] Weitong Zhang, Dongruo Zhou, Lihong Li, and Quanquan Gu. Neural thompson sampling.484

arXiv preprint arXiv:2010.00827, 2020.485

[52] Dongruo Zhou, Lihong Li, and Quanquan Gu. Neural contextual bandits with ucb-based486

exploration. In International Conference on Machine Learning, 2020.487

[53] Difan Zou and Quanquan Gu. An improved analysis of training over-parameterized deep neural488

networks. In Advances in Neural Information Processing Systems, pages 2053–2062, 2019.489

[54] Difan Zou, Yuan Cao, Dongruo Zhou, and Quanquan Gu. Stochastic gradient descent optimizes490

over-parameterized deep relu networks. arXiv preprint arXiv:1811.08888, 2018.491

12

https://openreview.net/forum?id=SyYe6k-CW
https://openreview.net/forum?id=SyYe6k-CW
https://openreview.net/forum?id=SyYe6k-CW
https://openreview.net/forum?id=BJgQfkSYDS
https://openreview.net/forum?id=Sy8gdB9xx

Checklist492

1. For all authors...493

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s494

contributions and scope? [Yes]495

(b) Did you describe the limitations of your work? [Yes] We discussed the limitation of496

the assumptions made in this paper. We also admit in the experiment that the theory497

maybe conservative since our experiment does not require a very wide neural network498

to achieve good performance.499

(c) Did you discuss any potential negative societal impacts of your work? [N/A] This work500

focuses on a general methodology in bandit problems and its theoretical analysis. It501

does not cause any negative social impact.502

(d) Have you read the ethics review guidelines and ensured that your paper conforms to503

them? [Yes]504

2. If you are including theoretical results...505

(a) Did you state the full set of assumptions of all theoretical results? [Yes] See the506

assumptions listed in Section 4507

(b) Did you include complete proofs of all theoretical results? [Yes] Proofs are provided in508

the appendix.509

3. If you ran experiments...510

(a) Did you include the code, data, and instructions needed to reproduce the main exper-511

imental results (either in the supplemental material or as a URL)? [Yes] We provide512

them in the supplementary material.513

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they514

were chosen)? [Yes] We specify all the details in the Implementations paragraph of515

Section 5.516

(c) Did you report error bars (e.g., with respect to the random seed after running experi-517

ments multiple times)? [Yes] All the figures are plotted with the standard error with518

respect to random repetitions.519

(d) Did you include the total amount of compute and the type of resources used (e.g., type520

of GPUs, internal cluster, or cloud provider)? [Yes] We stated the type of workstation521

at the end of the first paragraph of Section 5.522

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...523

(a) If your work uses existing assets, did you cite the creators? [Yes] As we mentioned in524

Section 5, we used codes from baseline algorithms and public available datasets. All525

the assets were properly cited.526

(b) Did you mention the license of the assets? [N/A] All the codes and datasets are527

open-source.528

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]529

We include our code in the supplementary for reproduction.530

(d) Did you discuss whether and how consent was obtained from people whose data you’re531

using/curating? [N/A]532

(e) Did you discuss whether the data you are using/curating contains personally identifiable533

information or offensive content? [N/A] The data does not contain any personally534

identifiable information or offensive content.535

5. If you used crowdsourcing or conducted research with human subjects...536

(a) Did you include the full text of instructions given to participants and screenshots, if537

applicable? [N/A]538

(b) Did you describe any potential participant risks, with links to Institutional Review539

Board (IRB) approvals, if applicable? [N/A]540

(c) Did you include the estimated hourly wage paid to participants and the total amount541

spent on participant compensation? [N/A]542

13

A Additional Experimental Results543

In this section, we provide more experimental results that are omitted in Section 5 due to space limit.544

A.1 Computational Efficiency of Neural-LinUCB545

Throughout the experiments, our Neural-LinUCB algorithm is much more computationally efficient546

than NeuralUCB since we only perform the UCB exploration on the last layer of the neural network,547

where the dimension is much lower. In specific, on the Statlog dataset, it takes on average 1.11548

seconds for NeuralUCB to finish 100 rounds (one epoch in Algorithm 1) and achieve the regret in549

Figure 1(a), while it only takes 0.58 seconds for Neural-LinUCB to finish 100 rounds and achieve550

the comparable or even better regret in Figure 1(a). On the Magic dataset, the average runtimes for551

100 rounds of NeuralUCB and Neural-LinUCB are 1.32 seconds and 0.81 seconds respectively. On552

the Covertype dataset, the runtimes of NeuralUCB and Neural-LinUCB are 1.02 seconds and 0.66553

seconds respectively. And on the MNIST dataset, the average runtimes for 100 rounds of NeuralUCB554

and Neural-LinUCB are 4.67 seconds and 1.29 seconds respectively. For practical applications in555

the real-world with larger problem sizes, we believe that the improvement of our algorithm in terms556

of the computational efficiency will be more pronounced.557

As we discussed in Section 5 and in the above paragraph as well, the computational efficiency of558

Neural-LinUCB mainly stems from the design of shallow exploration. This is because in UCB based559

bandit algorithms we need to compute the inverse of matrix A at every time step for arm selection560

(Line 5 of Algorithm 1). Due to the large width of the neural network used in practice, the arm561

selection operation could be rather time consuming. However, the neural network weight can be562

updated periodically (i.e., in our paper it is only updated every H steps). To validate our analysis563

on computational efficiency, we further studied the time profiling of the experiments conducted on564

MNIST to compared our proposed algorithm with NeuralUCB in more details.565

Table 2: Profiling experiment on MNIST for running 100 rounds: runtime (seconds) for different
algorithms on arm selection and network weight update.

Operations NeuralUCB Neural-LinUCB
Arm selection (Line 5 in Algorithm 1) 3.60 0.28

Network weight update (Line 9 in Algorithm 1) 0.96 0.92

In particular, the setting is the same as that in Section 5 for MNIST experiments. We record the time566

cost of the most expensive two subroutines: (1) the operation of arm selection (Line 5 in Algorithm567

1); and (2) the operation of updating the neural network weights (Line 9 in Algorithm 1), forH = 100568

rounds. The time cost is presented in Table 2. For Neural-LinUCB, the arm selection operation takes569

about 0.28 seconds (this is 21.71% of the total time cost by the algorithm in these H = 100 rounds),570

among which the matrix inverse step only takes 0.17 seconds. For NeuralUCB, the arm selection571

operation takes 3.60 seconds (this is 77.19% of the total time time cost by NeuralUCB for H = 100572

rounds). Therefore, the operation of arm selection in NeuralUCB is much (almost 13 times) more573

time consuming than that in Neural-LinUCB. Moreover, since the UCB matrix Zt in NeuralUCB574

is defined as ∇f(x; w)∇f(x; w)>, it needs to compute the gradients via back-propagation (0.93575

seconds) and compute the matrix inverse (1.54 seconds), while our Neural-LinUCB algorithm only576

needs to compute the matrix inverse of a small matrix (0.17 seconds). To summarize, our method is577

much more computationally efficient.578

A.2 Impact of Large Widths579

Note that the requirement of width m in our Theorem 4.4 is extremely high. On one hand, our580

theory may be too conservative since the current understanding of deep learning is still very limited581

in the field. We believe our work is a good starting point towards understanding the behavior582

of deep bandits algorithms. On the other hand, we would also like to investigate the impact of583

mild overparameterization on the regret performance of Neural-LinUCB in practice. Therefore, we584

conducted additional experiments on the Statlog dataset with wider neural networks. In particular,585

the neural network parameters are listed as follows586

W1 ∈ Rm×d,W2 ∈ Rm×m, . . . ,WL ∈ Rk×m,θ ∈ Rk,

14

0 2000 4000 6000 8000 10000 12000 14000
round

0

100

200

300

400

500

cu
m

ul
at

iv
e

re
gr

et

Neural-LinUCB (2000)
Neural-LinUCB (10000)
Neural-LinUCB (10000, 10000)
Neural-LinUCB (10000, 10000, 10000)

Figure 2: Performance of Neural-LinUCB with different widths on Statlog dataset.

where L is the depth, k = 100, d is the feature dimensions, and m is the width. We conducted587

experiments for the following settings: (1) L = 2, m = 2000, and thus the hidden layer width is588

(2000); (2) L = 2, m = 10000, and thus the hidden layer width is (10000); (3) L = 3, m = 10000,589

and thus the hidden layer width is (10000, 10000); and L = 4, m = 10000, and thus the hidden590

layer width is (10000, 10000, 10000). The results are plotted in Figure A.2. We observe that the591

performance of our Neural-LinUCB algorithm is not negatively impacted by the width of the neural592

network. In fact, Figure A.2 shows improved performance of Neural-LinUCB when the total number593

of hidden nodes increases. This is consistent to the observations in [50] that an overparameterized594

neural network trained by gradient descent does not necessarily lead to overfitting and also aligns595

with our Theorem 4.4 that the regret bound of Neural-LinUCB decreases as the width m increases.596

B More Discussions on Assumption 4.2597

In this section, we are going to show that Assumption 4.2 could be satisfied as long as the feature598

vectors {x} lie in a begin subspace of Rd. Let us start with the case that φ : Rd → Rm is a599

two-layer ReLU neural network with vector output. In particular, we define φ(x; w) as follows600

φ(x; w) = σ(W2σ(W1x)), where w = (vec(W1), vec(W2))>, W1 ∈ Rm×d, W2 ∈ Rd×m, and601

σ is the ReLU activation function applied elementwise. We use u>i to denote the i-th row of W1 and602

thus W1 = (u1, . . . ,um)>, where ui ∈ Rd, ∀i ∈ [m]. Similarly, we have W2 = (v1, . . . ,vd)
>,603

where vj ∈ Rm is the j-th row of W2, ∀j ∈ [d]. Let us denote h as the vector σ(W1x). We thus604

obtain605

h =

1{u
>
1 x ≥ 0}u>1 x

...
1{u>mx ≥ 0}u>mx

 , φ(x; w) =

1{v
>
1 h ≥ 0}v>1 h

...
1{v>d h ≥ 0}v>d h

 .
We use φl(x; w) to denote the l-th entry of vector φ(x; w), for any l ∈ [d]. Then it holds that606

∂φl(x; w)

∂vec(W1)
= 1{v>1 h ≥ 0}

[
v11 1{u>1 x ≥ 0}x>, . . . , vm1 1{u>mx ≥ 0}x>

]
,

for all l ∈ [d], where vi1 is the i-th element in v1, i ∈ [m]. This further implies that607

∂φ(x; w)

∂vec(W1)
=

1{v
>
1 h ≥ 0}

(
v11 1{u>1 x ≥ 0}x>, . . . , vm1 1{u>mx ≥ 0}x>

)
...

1{v>d h ≥ 0}
(
v1d 1{u>1 x ≥ 0}x>, . . . , vmd 1{u>mx ≥ 0}x>

)
 ∈ Rd×md.

15

Similarly, we can compute the gradient of φ(x; w) with respect to W2. In particular, we have608

∂φ1(x; w)

∂vec(v1)
= 1{v>1 h ≥ 0}

[
1{u>1 x ≥ 0}u>1 x, . . . ,1{u>mx ≥ 0}u>mx

]
,

∂φ1(x; w)

∂vec(vj)
= [0, . . . , 0], j 6= 1.

Therefore, the gradient of φ(x; w) with respect to W2 is609

∂φ(x; w)

∂vec(W2)
=


∂φ1(x;w)
∂vec(v1)

. . . 0>

. . .
0> . . . ∂φd(x;w)

∂vec(vd)

 ∈ Rd×md.

Lastly, we have610

∂φ(x; w)

∂w
=
[
∂φ(x;w)
∂vec(W1)

∂φ(x;w)
∂vec(W2)

]
∈ Rd×(md+md).

Therefore, for any two feature vectors x and x′ from {xi,k}i∈[T],k∈[K], if many nodes in the initial611

neural network φ(x; w0) are activated or deactivated at the same time for both x and x′, then the612

spectral norm of the matrix ∂φ(x;w0)
∂w − ∂φ(x′;w0)

∂w would satisfy the condition in Assumption 4.2. A613

more thorough study of this stability condition is out of the scope of this paper, though it would be an614

interesting open direction in the theory of deep neural networks.615

C Proof of the Main Results616

In this section, we provide the proof of the regret bound for Neural-LinUCB. Recall that in neural617

contextual bandits, we do not assume a specific formulation of the underlying reward generating618

function r(·). Instead, we use deep neural networks defined in Section 2.2 to approximate r(·). We619

will first show that the reward generating function r(·) can be approximated by the local linearization620

of the overparameterized neural network near the initialization weight w(0). In particular, we denote621

the gradient of φ(x; w) with respect to w by g(x; w), namely,622

g(x; w) = ∇wφ(x; w), (C.1)

which is a matrix in Rd×p. We define φj(x; w) to be the j-th entry of vector φ(x; w), for any j ∈ [d].623

Then, we can prove the following lemma.624

Lemma C.1. Suppose Assumptions 4.3 hold. Then there exists w∗ ∈ Rp such that ‖w∗−w(0)‖2 ≤625

1/
√
m
√

(r− r̃)>H−1(r− r̃) and it holds that626

r(xt,k) = θ∗>φ(xt,k; wt−1) + θ>0 g(xt,k; w(0))
(
w∗ −w(0)

)
,

for all k ∈ [K] and t = 1, . . . , T .627

Lemma C.1 implies that the reward generating function r(·) at points {xi,k}i∈[T],k∈[K] can be628

approximated by a linear function around the initial point w(0). Note that a similar lemma is also629

proved in Zhou et al. [52] for NeuralUCB.630

The next lemma shows the upper bounds of the output of the neural network φ and its gradient.631

Lemma C.2. Suppose Assumptions 4.1 and 4.3 hold. For any round index t ∈ [T], suppose it is632

in the q-th epoch of Algorithm 2, i.e., t = (q − 1)H + i for some i ∈ [H]. If the step size ηq in633

Algorithm 2 satisfies634

η ≤ C0

d2mnT 5.5L6 log(TK/δ)
,

and the width of the neural network satisfies635

m ≥ max{L log(TK/δ), dL2 log(m/δ), δ−6H18L16 log3(TK)}, (C.2)

16

then, with probability at least 1− δ we have636

‖wt −w(0)‖2 ≤
δ3/2

m1/2Tn9/2L6 log3(m)
,

‖g(xt,k; w(0))‖F ≤ C1

√
dLm,

‖φ(x; wt)‖2 ≤
√
d log(n) log(TK/δ),

for all t ∈ [T], k ∈ [K], where the neural network φ is defined in (2.3) and its gradient is defined637

in (C.1).638

The next lemma shows that the neural network φ(x; w) is close to a linear function in terms of the639

weight w parameter around a small neighborhood of the initialization point w(0).640

Lemma C.3 (Theorems 5 in Cao and Gu [13]). Let w,w′ be in the neighborhood of w0, i.e.,641

w,w′ ∈ B(w0, ω) for some ω > 0. Consider the neural network defined in (2.3), if the width m and642

the radius ω of the neighborhood satisfy643

m ≥ C0 max{dL2 log(m/δ), ω−4/3L−8/3 log(TK) log(m/(ωδ))},
ω ≤ C1L

−5(logm)−3/2,

then for all x ∈ {xt,k}t∈[T],k∈[K], with probability at least 1− δ it holds that644

|φj(x; w)− φ̂j(x; w)| ≤ C2ω
4/3L3d−1/2

√
m logm,

where φ̂j(x; w) is the linearization of φj(x; w) at w′ defined as follow:645

φ̂j(x; w) = φj(x; w′) + 〈∇wφj(x; w′),w −w′〉. (C.3)

Similar results on the local linearization of an overparameterized neural network are also presented in646

Allen-Zhu et al. [4], Cao and Gu [13].647

For the output layer θ∗, we perform a UCB type exploration and thus we need to characterize the648

uncertainty of the estimation. The next lemma shows the confidence bound of the estimate θt in649

Algorithm 1.650

Lemma C.4. Suppose Assumption and 4.3 hold. For any δ ∈ (0, 1), with probability at least 1− δ,651

the distance between the estimated weight vector θt by Algorithm 1 and θ∗ can be bounded as652

follows:653 ∥∥∥∥θt − θ∗ −A−1t

t∑
s=1

φ(xs,as ; ws−1)θ>0 g(xs,as ; w(0))(w∗ −w(0))

∥∥∥∥
At

≤ ν
√

2
(
d log(1 + t(logHK)/λ) + log 1/δ

)
+ λ1/2M,

for any t ∈ [T].654

Note that the confidence bound in Lemma C.4 is different from the standard result for linear contextual655

bandits in Abbasi-Yadkori et al. [1]. The additional term on the left hand side of the confidence bound656

is due to the bias caused by the representation learning using a deep neural network. To deal with this657

extra term, we need the following technical lemma.658

Lemma C.5. Assume that At = λI +
∑t
s=1 φsφ

>
s , where φt ∈ Rd and ‖φt‖2 ≤ G for all t ≥ 1659

and some constants λ,G > 0. Let {ζt}t=1,... be a real-value sequence such that |ζt| ≤ U for some660

constant U > 0. Then we have661 ∥∥∥∥A−1t t∑
s=1

φsζs

∥∥∥∥
2

≤ 2Ud, ∀t = 1, 2, . . .

The next lemma provides some standard bounds on the feature matrix At, which is a combination of662

Lemma 10 and Lemma 11 in Abbasi-Yadkori et al. [1].663

17

Lemma C.6. Let {xt}∞t=1 be a sequence in Rd and λ > 0. Suppose ‖xt‖2 ≤ G and λ ≥664

max{1, G2} for some G > 0. Let At = λI +
∑t
s=1 xtx

>
t . Then we have665

det(At) ≤ (λ+ tG2/d)d, and
T∑
t=1

‖xt‖2A−1
t−1

≤ 2 log
det(AT)

det(λI)
≤ 2d log(1 + TG2/(λd)).

Now we are ready to prove the regret bound of Algorithm 1.666

Proof of Theorem 4.4. For a time horizon T , without loss of generality, we assume T = QH for667

some epoch number Q. By the definition of regret in (4.3), we have668

RT = E
[T∑
t=1

(r̂(xt,a∗t)− r̂(xt,at))
]

= E
[Q∑
q=1

H∑
i=1

(r̂(xqH+i,a∗qH+i
)− r̂(xqH+i,aqH+i

))

]
.

Note that for the simplicity of presentation, we omit the conditional expectation notation of w(0)669

in the rest of the proof when the context is clear. In the second equation, we rewrite the time index670

t = qH + i as the i-th iteration in the q-th epoch.671

By the definition in (3.3), we have E[r̂(xt,k)|xt,k] = r(xt,k) for all t ∈ [T] and k ∈ K. Based on672

the linearization of reward generating function, we can decompose the instaneous regret into different673

parts and upper bound them individually. In particular, by Lemma C.1, there exists a vector w∗ ∈ Rp674

such that we can write the expectation of the reward generating function as a linear function. Then it675

holds that676

r(xt,a∗t)− r(xt,at) = θ>0
[
g
(
xt,a∗t ; w(0)

)
− g

(
xt,at ; w

(0)
)](

w∗ −w(0)
)

+ θ∗>
[
φ
(
xt,a∗t ; wt−1

)
− φ

(
xt,at ; wt−1

)]
= θ>0

[
g
(
xt,a∗t ; w(0)

)
− g

(
xt,at ; w

(0)
)](

w∗ −w(0)
)

+ θ>t−1
[
φ
(
xt,a∗t ; wt−1

)
− φ

(
xt,at ; wt−1

)]
− (θt−1 − θ∗)>

[
φ
(
xt,a∗t ; wt−1

)
− φ

(
xt,at ; wt−1

)]
. (C.4)

The first term in (C.4) can be easily bounded using the first order stability in Assumption 4.2 and the677

distance between w∗ and w(0) in Lemma C.1. The second term in (C.4) is related to the optimistic678

rule of choosing arms in Line 5 of Algorithm 1, which can be bounded using the same technique for679

LinUCB [1]. For the last term in (C.4), we need to prove that the estimate of weight parameter θt−1680

lies in a confidence ball centered at θ∗. For the ease of notation, we define681

Mt = A−1t

t∑
s=1

φ(xs,as ; ws−1)θ>0 g(xs,as ; w(0))(w∗ −w(0)). (C.5)

Then the second term in (C.4) can be bounded in the following way:682

− (θt−1 − θ∗)>
[
φ
(
xt,a∗t ; wt−1

)
− φ

(
xt,at ; wt−1

)]
= −

(
θt−1 − θ∗ −Mt−1

)>
φ
(
xt,a∗t ; wt−1

)
+
(
θt−1 − θ∗ −Mt−1

)>
φ
(
xt,at ; wt−1

)
−M>

t−1
[
φ
(
xt,a∗t ; wt−1

)
− φ

(
xt,at ; wt−1

)]
≤ ‖θt−1 − θ∗ −Mt−1‖At−1 · ‖φ(xt,a∗t ; wt−1)‖A−1

t−1

+ ‖θt−1 − θ∗ −Mt−1‖At−1 · ‖φ(xt,at ; wt−1)‖A−1
t−1

+
∥∥M>

t−1
[
φ
(
xt,a∗t ; wt−1

)
− φ

(
xt,at ; wt−1

)]∥∥
2

≤ αt‖φ(xt,a∗t ; wt−1)‖A−1
t−1

+ αt‖φ(xt,at ; wt−1)‖A−1
t−1

+ ‖Mt−1‖2 · ‖φ
(
xt,a∗t ; wt−1

)
− φ

(
xt,at ; wt−1

)
‖2. (C.6)

18

where the last inequality is due to Lemma C.4 and the choice of αt. Plugging (C.6) back into (C.4)683

yields684

r(xt,a∗t)− r(xt,at) ≤ αt‖φ(xt,at ; wt−1)‖A−1
t−1
− αt‖φ(xt,a∗t ; wt−1)‖A−1

t−1

+ αt‖φ(xt,a∗t ; wt−1)‖A−1
t−1

+ αt‖φ(xt,at ; wt−1)‖A−1
t−1

+ ‖Mt−1‖2 · ‖φ
(
xt,a∗t ; wt−1

)
− φ

(
xt,at ; wt−1

)
‖2

+ ‖θ0‖2 · ‖g(xt,a∗t ; w(0))− g(xt,at ; w
(0))‖F · ‖w∗ −w(0)‖2

≤ 2αt‖φ(xt,at ; wt−1)‖A−1
t−1

+ ‖Mt−1‖2 · ‖φ
(
xt,a∗t ; wt−1

)
− φ

(
xt,at ; wt−1

)
‖2

+ `Lip‖θ0‖2 · ‖xt,a∗t − xt,at‖2 · ‖w∗ −w(0)‖2, (C.7)

where in the first inequality we used the definition of upper confidence bound in Algorithm 1 and the685

second inequality is due to Assumption 4.2. Recall the linearization of φj in Lemma C.3, we have686

φ̂(x; wt−1) = φ(x; w0) + g(x; w0)(wt−1 −w0).

Note that by the initialization, we have φ(x; w0) = 0 for any x ∈ Rd. Thus, it holds that687

φ
(
xt,a∗t ; wt−1

)
− φ

(
xt,at ; wt−1

)
= φ

(
xt,a∗t ; wt−1

)
− φ

(
xt,a∗t ; w0

)
+ φ

(
xt,at ; w0

)
− φ

(
xt,at ; wt−1

)
= φ

(
xt,a∗t ; wt−1

)
− φ̂

(
xt,a∗t ; wt−1

)
+ g(xt,a∗t ; w0)(wt−1 −w0)

+ φ
(
xt,at ; wt−1

)
− φ̂

(
xt,at ; wt−1

)
− g(xt,at ; w0)(wt−1 −w0), (C.8)

which immediately implies that688 ∥∥φ(xt,a∗t ; wt−1
)
− φ

(
xt,at ; wt−1

)∥∥
2

≤
∥∥φ(xt,a∗t ; wt−1

)
− φ̂

(
xt,a∗t ; wt−1

)∥∥
2

+
∥∥φ(xt,at ; wt−1

)
− φ̂

(
xt,at ; wt−1

)∥∥
2

+
∥∥(g(xt,a∗t ; w0)− g(xt,at ; w0)

)
(wt−1 −w0)

∥∥
2

≤ C0ω
4/3L3d1/2

√
m logm+ `Lip‖xt,a∗t − xt,at‖2‖wt−1 −w(0)‖2, (C.9)

where the second inequality is due to Lemma C.3 and Assumption 4.2. Therefore, the instaneous689

regret can be further upper bounded as follows.690

r(xt,a∗t)− r(xt,at)
≤ 2αt‖φ(xt,at ; wt−1)‖A−1

t−1
+ `Lip‖θ0‖2 · ‖xt,a∗t − xt,at‖2 · ‖w∗ −w(0)‖2

+ ‖Mt−1‖2 ·
(
C0ω

4/3L3d1/2
√
m logm+ `Lip‖xt,a∗t − xt,at‖2‖wt−1 −w(0)‖2

)
. (C.10)

By Assumption 4.1 we have ‖xt,a∗t − xt,at‖2 ≤ 2. By Lemma C.1 and Lemma C.2, we have691

‖w∗ −w(0)‖2 ≤
√

1/m(r− r̃)>H−1(r− r̃),

‖wt −w(0)‖2 ≤
δ3/2

m1/2Tn9/2L6 log3(m)
.

(C.11)

In addition, since the entries of θ0 are i.i.d. generated from N(0, 1/d), we have ‖θ0‖2 ≤692

2(2 +
√
d−1 log(1/δ)) with probability at least 1 − δ for any δ > 0. By Lemma C.2, we have693

‖g(xt,at ; w
(0))‖F ≤ C1

√
dm. Therefore,694 ∣∣θ>0 g(xs,as ; w(0))(w∗ −w(0))

∣∣ ≤ C2d
√

log(1/δ)(r− r̃)>H−1(r− r̃).

Then, by the definition of Mt in (C.5) and Lemma C.5, we have695

‖Mt−1‖2 ≤ C3d
2
√

log(1/δ)(r− r̃)>H−1(r− r̃). (C.12)

19

Substituting (C.12) and the above results on ‖xt,at − xt,a∗t ‖2, ‖θ0‖2, ‖w∗ −w(0)‖2 and ‖wt−1 −696

w(0)‖2 back into (C.10) further yields697

r(xt,a∗t)− r(xt,at)

≤ 2αt‖φ(xt,at ; wt−1)‖A−1
t−1

+ C4`Lipm
−1/2

√
log(1/δ)(r− r̃)>H−1(r− r̃)

+

(
C0ω

4/3L3d1/2
√
m logm+

2`Lipδ
3/2

m1/2Tn9/2L6 log3(m)

)
C3d

2
√

log(1/δ)(r− r̃)>H−1(r− r̃).

Note that we have ω = O(m−1/2‖r − r̃‖H−1) by Lemma C.1. Therefore, the regret of the698

Neural-LinUCB is699

RT ≤

√√√√QH max
t∈[T]

α2
t

Q∑
q=1

H∑
i=1

‖φ(xi,ai ; wqH+i)‖2A−1
i

+ C4`Lipm
−1/2T

√
log(1/δ)‖r− r̃‖H−1

+

(
C0TL

3d1/2
√

logm‖r− r̃‖4/3H−1

m1/6
+

2`Lipδ
3/2

m1/2n9/2L6 log3(m)

)
C3d

2
√

log(1/δ)‖r− r̃‖H−1

≤ C5

√
Td log(1 + TG2/(λd))

(
ν
√
d log(1 + T (log TK)/λ) + log 1/δ + λ1/2M

)
+ C6`LipL

3d5/2m−1/6T
√

logm log(1/δ) log(TK/δ)‖r− r̃‖H−1 ,

where the first inequality is due to Cauchy’s inequality, the second inequality comes from the upper700

bound of αt in Lemma C.4 and Lemma C.6. {Cj}j=0,...,6 are absolute constants that are independent701

of problem parameters.702

Proof of Corollary 4.6. It directly follows the result in Theorem 4.4.703

D Proof of Technical Lemmas704

In this section, we provide the proof of technical lemmas used in the regret analysis of Algorithm 1.705

D.1 Proof of Lemma C.1706

Before we prove the lemma, we first present some notations and a supporting lemma for simplification.707

Let β = (θ>,w>)> ∈ Rd+p be the concatenation of the exploration parameter and the hidden layer708

parameter of the neural network f(x;β) = θ>φ(x; w). Note that for any input data vector x ∈ Rd,709

we have710

∂

∂β
f(x;β) =

(
φ(x; w)>,θ>

∂

∂w
φ(x; w)

)>
=
(
φ(x; w)>,θ>g(x; w)

)>
, (D.1)

where g(x; w) is the partial gradient of φ(x; w) with respect to w defined in (C.1), which is a711

matrix in Rd×p. Similar to (4.2), we define HL+1 to be the neural tangent kernel matrix based on all712

L+ 1 layers of the neural network f(x;β). Note that by the definition of H in (4.2), we must have713

HL+1 = H + B for some positive definite matrix B ∈ RTK×TK . The following lemma shows that714

the NTK matrix is close to the matrix defined based on the gradients of the neural network on TK715

data points.716

Lemma D.1 (Theorem 3.1 in Arora et al. [7]). Let ε > 0 and δ ∈ (0, 1). Suppose the activation717

function in (2.2) is ReLU, i.e., σl(x) = max(0, x), and the width of the neural network satisfies718

m ≥ Ω

(
L14

ε4
log

(
L

δ

))
. (D.2)

Then for any x,x′ ∈ Rd with ‖x‖2 = ‖x′‖2 = 1, with probability at least 1− δ over the randomness719

of the initialization of the network weight w it holds that720 ∣∣∣∣〈 1√
m

∂f(β,x)

∂β
,

1√
m

∂f(β,x′)

∂β

〉
−HL+1(x,x′)

∣∣∣∣ ≤ ε.
20

Note that in the above lemma, there is a factor 1/
√
m before the gradient. This is due to the additional721 √

m factor in the definition of the neural network in (2.2), which ensures the value of the neural722

network function evaluated at the initialization is of the order O(1).723

Proof of Lemma C.1. Recall that we renumbered the feature vectors {xt,k}t∈[T],k∈[K] for all arms724

from round 1 to round T as {xi}i=1,...,TK . By concatenating the gradients at different inputs and the725

gradient in (D.1), we define Ψ ∈ RTK×(d+p) as follows.726

Ψ =
1√
m


∂
∂βθ

>φ(x1; w)
...

∂
∂βθ

>φ(xTK ; w)

 =
1√
m


φ(x1; w(0))> θ>0 g(x1; w(0))

...
...

φ(xi; w
(0))> θ>0 g(xi; w

(0))
...

...
φ(xTK ; w(0))> θ>0 g(xTK ; w(0))

 .

By Applying Lemma D.1, we know with probability at least 1− δ it holds that727

|〈Ψj∗,Ψl∗〉 −HL+1(xj ,xl)| ≤ ε
for any ε > 0 as long as the width m satisfies the condition in (D.2). By applying union bound over728

all data points {x1, . . . ,xt, . . . ,xTK}, we further have729

‖ΨΨ> −HL+1‖F ≤ TKε.
Note that H is the neural tangent kernel (NTK) matrix defined in (4.2) and HL+1 is the NTK730

matrix defined based on all L + 1 layers. By Assumption 4.3, H has a minimum eigenvalue731

λ0 > 0, which is defined based on the first L layers of f . Furthermore, by the definition of732

NTK matrix in (4.2), we know that HL+1 = H + B for some semi-positive definite matrix B.733

Therefore, the NTK matrix HL+1 defined based on all L+ 1 layers is also positive definite and its734

minimum eigenvalue is lower bounded by λ0. Let ε = λ0/(2TK). By triangle equality we have735

ΨΨ> � HL+1−‖ΨΨ>−HL+1‖2I � HL+1−‖ΨΨ>−HL+1‖F I � HL+1−λ0/2I � 1/2HL+1,736

which means that Ψ is semi-definite positive and thus rank(Ψ) = TK since m > TK.737

We assume that Ψ can be decomposed as Ψ = PDQ>, where P ∈ RTK×TK is the eigenvectors of738

ΨΨ> and thus PP> = ITK , D ∈ RTK×TK is a diagonal matrix with the square root of eigenvalues739

of ΨΨ>, and Q> ∈ RTK×(d+p) is the eigenvectors of Ψ>Ψ and thus Q>Q = ITK . We use740

Q1 ∈ Rd×TK and Q2 ∈ Rp×TK to denote the two blocks of Q such that Q> = [Q>1 ,Q
>
2]. By741

definition, we have742

Q>Q = [Q>1 ,Q
>
2]

[
Q1

Q2

]
= Q>1 Q1 + Q>2 Q2 = ITK .

Note that the minimum singular value of Q1 ∈ Rd×TK is zero since d is a fixed number and743

TK > d. Therefore, it must hold that rank(Q2) = TK and thus Q>2 Q2 is positive definite. Let744

r = (r(x1), . . . , r(xi), . . . , r(xTK))> ∈ RTK denote the vector of all possible rewards. We further745

define G ∈ RTKd×p and Φ ∈ RTKd as follows746

G =
1√
m


g(x1; w(0))

...
g(xi; w

(0))
...

g(xTK ; w(0))

 , Φ =


φ(x1,1; w0)

...
φ(xt,k; wt−1)

...
φ(xT,K ; wT−1)

 . (D.3)

and Θ,Θ0 ∈ RTK×TKd as follows747

Θ∗ =


θ∗>

. . .
θ∗>

. . .
θ∗>

 , Θ0 =


θ>0

. . .
θ>0

. . .
θ>0

 , (D.4)

21

It can be verified that Ψ = PD[Q>1 ,Q
>
2] and PDQ>2 = Θ0G. Note that we have Q>2 Q2 is positive748

definite by Assumption 4.3, which corresponds to the neural tangent kernel matrix defined on the first749

L layers. Then we can define w∗ as follows750

w∗ = w(0) + 1/
√
mQ2(Q>2 Q2)−1D−1P>(r−Θ∗Φ). (D.5)

We can verify that751

Θ∗Φ +
√
mPDQ>2 (w∗ −w(0)) = r.

On the other hand, we have752

‖w∗ −w(0)‖22 ≤ 1/m(r−Θ∗Φ)>PD−1(Q>2 Q2)−1D−1P>(r−Θ∗Φ)

≤ 1/m(r−Θ∗Φ)>H−1(r−Θ∗Φ),

which completes the proof.753

D.2 Proof of Lemma C.2754

Note that we can view the output of the last hidden layer φ(x; w) defined in (2.3) as a vector-output755

neural network with weight parameter w. The following lemma shows that the output of the neural756

network φ is bounded at the initialization.757

Lemma D.2 (Lemma 4.4 in Cao and Gu [13]). Let δ ∈ (0, 1), and the width of the neural net-758

work satisfy m ≥ C0L log(TKL/δ). Then for all t ∈ [T], k ∈ [K] and j ∈ [d], we have759

|φj(xt,k; w(0))| ≤ C1

√
log(TK/δ) with probability at least 1− δ, where w(0) is the initialization760

of the neural network.761

In addition, in a smaller neighborhood of the initialization, the gradient of the neural network φ is762

uniformly bounded.763

Lemma D.3 (Lemma B.3 in Cao and Gu [13]). Let ω ≤ C0L
−6(logm)−3 and w ∈ B(w0, ω).764

Then for all t ∈ [T], k ∈ [K] and j ∈ [d], the gradient of the neural network φ defined in (2.3)765

satisfies ‖∇wφj(xt,k; w)‖2 ≤ C1

√
Lm with probability at least 1− TKL2 exp(−C2mω

2/3L).766

The next lemma provides an upper bound on the gradient of the squared loss function defined in (3.5).767

Note that our definition of the loss function is slightly different from that in Allen-Zhu et al. [4] due768

to the output layer θi and thus there is an additional term on the upper bound of ‖θi‖2 for all i ∈ [T].769

Lemma D.4 (Theorem 3 in Allen-Zhu et al. [4]). Let ω ≤ C0δ
3/2/(T 9/2L6 log3m). For all770

w ∈ B(w(0), ω), with probability at least 1 − exp(−C1mω
2/3L) over the randomness of w(0), it771

holds that772

‖∇L(w)‖22 ≤
C2TmL(w) supi=1,...,H ‖θi‖22

d
.

Proof of Lemma C.2. Fix the epoch number q and we omit it in the subscripts in the rest of the proof773

when no confusion arises. Recall that w(s) is the s-th iterate in Algorithm 2. Let δ > 0 be any774

constant. Let ω be defined as follows.775

ω = δ3/2m−1/2T−9/2L−6 log−3(m). (D.6)

We will prove by induction that with probability at least 1− δ the following statement holds for all776

s = 0, 1, . . . , n777

φj(x; w(s)) ≤ C0

s∑
h=0

√
log(TK/δ)

h+ 1
, for ∀j ∈ [d]; and ‖w(s)

q −w(0)‖ ≤ ω. (D.7)

First note that (D.7) holds trivially when s = 0 due to Lemma D.2. Now we assume that (D.7) holds778

for all j = 0, . . . , s. The loss function in (3.5) can be bounded as follows.779

L(w(j)) =

qH∑
i=1

(θ>i φ(xi; w
(j))− r̂i)2 ≤

qH∑
i=1

2(‖θi‖22 · ‖φ(xi; w
(j))‖22 + 1).

22

By the update rule of θt, we have780

‖θt‖2 =

∥∥∥∥(λI +

t∑
i=1

φ(xi; wi−1)φ(xi; wi−1)>
)−1 t∑

i=1

φ(xi; wi−1)r̂

∥∥∥∥
2

≤ 2d, (D.8)

where the inequality is due to Lemma C.5, which combined with (D.7) immediately implies781

L(w(j)) ≤ C1Td
3 log(TK/δ)

(j∑
h=0

1

h+ 1

)2

≤ C1Td
3 log(TK/δ) log2 n. (D.9)

Substituting (D.8) and (D.9) into the inequality in Lemma D.4, we also have782 ∥∥∇L(w(j)
)∥∥

2
≤ C2

√
dTmL(w(j)) ≤ C3d

2T log(n)
√
m log(TK/δ). (D.10)

Now we consider w(s+1). By triangle inequality we have783 ∥∥w(s+1) −w(0)
∥∥
2
≤

s∑
j=0

∥∥w(j+1) −w(j)
∥∥
2

=

s∑
j=0

η
∥∥∇L(w(j)

)∥∥
2

≤
s∑
j=0

ηd2T log(n)
√
m log(TK/δ), (D.11)

where the last inequality is due to (D.10). If we choose the step size ηq in the q-th epoch such that784

η ≤ ω

d2Tn log(n)
√
m log(TK/δ)

, (D.12)

then we have ‖w(s+1)
q − w(0)‖2 ≤ ω. Note that the choice of m,ω satisfies the condition in785

Lemma C.3. Thus we know φj(x; w) is almost linear in w, which leads to786

|φj(x; w(s+1))| ≤ |φj(x; w(s)) + 〈∇φj(x; w(s)),w(s+1) −w(s)〉|+ C5ω
4/3L3d−1/2

√
m logm

≤
s∑

h=0

C
√

log(TK/δ)

h+ 1
+ η
√
dm‖∇L(w(s))‖2 + 2C5ω

4/3L3d−1/2
√
m logm

≤
s∑

h=0

C0

√
log(TK/δ)

h+ 1
+ C3η

√
dm
√
CT 2d4m log(TK/δ) log n

+ 2C5ω
4/3L3d−1/2

√
m logm

=

s∑
h=0

C0

√
log(TK/δ)

h+ 1
+
ω
√
dm

n
+ 2C5ω

4/3L3d−1/2
√
m logm, (D.13)

where in the second inequality we used the induction hypothesis (D.7), Cauchy-Schwarz inequality787

and Lemma D.3, and the third inequality is due to (D.10). Note that the definition of ω in (D.6)788

ensures that ω
√
dm < 1/2 and ω4/3L3d−1/2

√
m logm ≤ m−1/6T−6L−5d−1/2

√
logm ≤ 1/n as789

long as m ≥ n6. Plugging these two upper bounds back into (D.13) finishes the proof of (D.7).790

Note that for any t ∈ [T], we have wt = w
(n)
q for some q = 1, 2, Since we have wt ∈ B(w, ω),791

the gradient g(x; w(0)) can be directly bounded by Lemma D.3, which implies ‖g(x; w(0))‖F ≤792

C6

√
dLm. Applying (D.7) with s = n, we have the following bound of the neural network function793

φ(x; w
(n)
q) = φ(x; wt) for all t in the q-th epoch794

‖φ(x; wt)‖2 ≤ C0

√
d log(n) log(TK/δ),

which completes the proof. In this proof, {Cj > 0}j=0,...,6 are constants independent of problem795

parameters.796

23

D.3 Proof of Lemma C.4797

The following lemma characterizes the concentration property of self-normalized martingales.798

Lemma D.5 (Theorem 1 in Abbasi-Yadkori et al. [1]). Let {ξ}∞t=1 be a real-valued stochastic process799

and {xt}∞t=1 be a stochastic process in Rd. Let Ft = σ(x1, . . . ,xt+1, ξ − 1, . . . , ξt) be a σ-algebra800

such that xt and ξt are Ft−1-measurable. Let At = λI +
∑t
s=1 xsx

>
s for some constant λ > 0 and801

St =
∑t
s=1 ξsxi. If we assume ξt is ν-subGaussian conditional on Ft−1, then for any η ∈ (0, 1),802

with probability at least 1− δ, we have803

‖St‖2A−1
t
≤ 2ν2 log

(
det(At)

1/2 det(λI)−1/2

δ

)
.

Proof of Lemma C.4. Let Φt = [φ(x1,a1 ; w0), . . . ,φ(xt,at ; wt−1)] ∈ Rd×t be the collection of804

feature vectors of the chosen arms up to time t and r̂t = (r̂1, . . . , r̂t)
> be the concatenation of all805

received rewards. According to Algorithm 1, we have At = λI + ΦtΦ
>
t and thus806

θt = A−1t bt = (λI + ΦtΦ
>
t)−1Φtr̂t.

By Lemma C.1, the underlying reward generating function rt = r(xt,at) = E[r̂(xt,at)|xt,at] can be807

rewritten as808

rt = 〈θ∗,φ(xt,at ; wt−1)〉+ θ>0 g(xt,at ; w
(0))(w∗ −w(0)).

By the definition of the reward in (3.3) we have r̂t = rt + ξt. Therefore, it holds that809

θt = A−1t ΦtΦ
>
t θ
∗ + A−1t

t∑
s=1

φ(xs,as ; ws−1)(θ>0 g(xs,as ; w(0))(w∗ −w(0)) + ξs)

= θ∗ − λA−1t θ
∗ + A−1t

t∑
s=1

φ(xs,as ; ws−1)(θ>0 g(xs,as ; w(0))(w∗ −w(0)) + ξs).

Note that At is positive definite as long as λ > 0. Therefore ‖ · ‖At
and ‖ · ‖At

are well defined810

norms. Then for any δ ∈ (0, 1) by triangle inequality we have811

‖θt − θ∗ −A−1t ΦtΘtGt(w
∗ −w(0))‖At

≤ λ‖θ∗‖A−1
t

+ ‖Φtξt‖A−1
t

≤ ν

√
2 log

(
det(At)1/2 det(λI)−1/2

δ

)
+ λ1/2M

holds with probability at least 1− δ, where in the last inequality we used Lemma D.5 and the fact812

that ‖θ∗‖A−1
t
≤ λ−1/2‖θ∗‖2 ≤ λ−1/2M by Lemma C.1. Plugging the definition of Φt,Θt and Gt813

and apply Lemma C.6, we further have814 ∥∥∥∥θt − θ∗ −A−1t

t∑
s=1

φ(xs,as ; ws−1)θ>0 g(xs,as ; w(0))(w∗ −w(0))

∥∥∥∥
At

≤ ν
√

2
(
d log(1 + t(logHK)/λ) + log 1/δ

)
+ λ1/2M,

where we used the fact that ‖φ(x; w)‖2 ≤ C
√
d logHK by Lemma C.2.815

D.4 Proof of Lemma C.5816

We now prove the technical lemma that upper bounds ‖A−1t
∑t
s=1 φsζs‖2.817

Proof of Lemma C.5. We first construct auxiliary vectors φ̃t ∈ Rd+1 and matrices Bt ∈818

R(d+1)×(d+1) for all t = 1, . . . in the following way:819

φ̃t =

[
G−1φt√

1−G−2‖φt‖22

]
, Bt =

[
A−1t 0d
0>d 0

]
, (D.14)

24

where 0d ∈ Rd is an all-zero vector. Then by definition we immediately have820 ∥∥∥∥A−1t t∑
s=1

φsζs

∥∥∥∥
2

=

∥∥∥∥Bt

t∑
s=1

φ̃sζs

∥∥∥∥
2

. (D.15)

For all s = 1, 2 . . ., let {βs,j}d+1
j=1 be the coefficients of the decomposition of U−1ζsφ̃s on the natural821

basis. Specifically, let {e1, . . . , ed+1} be the natural basis of Rd+1 such that the entries of ej are all822

zero except the j-th entry which equals 1. Then we have823

U−1ζsφ̃s =

d∑
j=1

βs,jej , ∀s = 1, 2, . . . (D.16)

We can conclude that |βs,j | ≤ 1 since |ζs| ≤ U and ‖φ̃s‖2 ≤ 1. Moreover, it is easy to verify that824

‖φ̃t‖2 = 1 for all t ≥ 1. Therefore, we have825 ∥∥∥∥Bt

t∑
s=1

φ̃sζs

∥∥∥∥
2

=

∥∥∥∥Bt

t∑
s=1

φ̃sφ̃
>
s φ̃sζs

∥∥∥∥
2

=

∥∥∥∥Bt

t∑
s=1

φ̃sφ̃
>
s U

d∑
j=1

βs,jej

∥∥∥∥
2

= U

∥∥∥∥ d∑
j=1

Bt

t∑
s=1

φ̃sφ̃
>
s βs,jej

∥∥∥∥
2

≤ U
d∑
j=1

∥∥∥∥Bt

t∑
s=1

φ̃sφ̃
>
s βs,j

∥∥∥∥
2

= U

d∑
j=1

∥∥∥∥A−1t t∑
s=1

φsφ
>
s βs,j

∥∥∥∥
2

, (D.17)

where the inequality is due to triangle inequality and the last equation is due to the definition of φ̃t826

and Bt in (D.14). For each j = 1, . . . , d+ 1, we have827 ∥∥∥∥A−1t t∑
s=1

φsφ
>
s βs,j

∥∥∥∥
2

=

∥∥∥∥A−1t ∑
s∈[t]:βs,j≥0

φsφ
>
s βs,j + A−1t

∑
s∈[t]:βs,j<0

φsφ
>
s βs,j

∥∥∥∥
2

≤
∥∥∥∥A−1t ∑

s∈[t]:βs,j≥0

φsφ
>
s βs,j

∥∥∥∥
2

+

∥∥∥∥A−1t ∑
s∈[t]:βs,j<0

φsφ
>
s (−βs,j)

∥∥∥∥
2

.

(D.18)
Since we have |βs,j | ≤ 1, it immediately implies828

At = λI +

t∑
s=1

φsφ
>
s �

∑
s∈[t]:βs,j≥0

φsφ
>
s βs,j ,

At = λI +

t∑
s=1

φsφ
>
s �

∑
s∈[t]:βs,j<0

φsφ
>
s (−βs,j).

Further by the fact that ‖A−1B‖2 ≤ 1 for any A � B � 0, combining the above results with (D.18)829

yields830 ∥∥∥∥A−1t t∑
s=1

φsφ
>
s βs,j

∥∥∥∥
2

≤ 2.

Finally, substituting the above results into (D.17) and (D.15) we have831 ∥∥∥∥A−1t t∑
s=1

φsζs

∥∥∥∥
2

≤ 2Ud,

which completes the proof.832

25

	Introduction
	Additional related work

	Preliminaries
	Linear contextual bandits
	Deep neural networks

	Deep Representation and Shallow Exploration
	Main Results
	Experiments
	Conclusions
	Additional Experimental Results
	Computational Efficiency of Neural-LinUCB
	Impact of Large Widths

	More Discussions on Assumption 4.2
	Proof of the Main Results
	Proof of Technical Lemmas
	Proof of Lemma C.1
	Proof of Lemma C.2
	Proof of Lemma C.4
	Proof of Lemma C.5

