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Abstract

We study neural contextual bandits, a general class of contextual bandits, where
each context-action pair is associated with a raw feature vector, but the specific
reward generating function is unknown. We propose a novel learning algorithm
that transforms the raw feature vector using the last hidden layer of a deep ReLU
neural network (deep representation learning), and uses an upper confidence bound
(UCB) approach to explore in the last linear layer (shallow exploration). We prove

that under standard assumptions, our proposed algorithm achieves O(+/T') finite-
time regret, where 7' is the learning time horizon. Compared with existing neural
contextual bandit algorithms, our approach is computationally much more efficient
since it only needs to explore in the last layer of the deep neural network.

1 Introduction

Multi-armed bandits (MAB) [9, 8, 30] are a class of online decision-making problems where an
agent needs to learn to maximize its expected cumulative reward while repeatedly interacting with a
partially known environment. Based on a bandit algorithm (also called a strategy or policy), in each
round, the agent adaptively chooses an arm, and then observes and receives a reward associated with
that arm. Since only the reward of the chosen arm will be observed (bandit information feedback),
a good bandit algorithm has to deal with the exploration-exploitation dilemma: trade-off between
pulling the best arm based on existing knowledge/history data (exploitation) and trying the arms that
have not been fully explored (exploration).

In many real-world applications, the agent will also be able to access detailed contexts associated
with the arms. For example, when a company wants to choose an advertisement to present to a user,
the recommendation will be much more accurate if the company takes into consideration the contents,
specifications, and other features of the advertisements in the arm set as well as the profile of the user.
To encode the contextual information, contextual bandit models and algorithms have been developed,
and widely studied both in theory and in practice [19, 39, 34, 16, 1]. Most existing contextual bandit
algorithms assume that the expected reward of an arm at a context is a linear function in a known
context-action feature vector, which leads to many useful algorithms such as LinUCB [16], OFUL [1],
etc. The representation power of the linear model can be limited in applications such as marketing,
social networking, clinical studies, etc., where the rewards are usually counts or binary variables. The
linear contextual bandit problem has also been extended to richer classes of parametric bandits such
as the generalized linear bandits [24, 35] and kernelised bandits [44, 15].

With the prevalence of deep neural networks (DNNs) and their phenomenal performances in many
machine learning tasks [32, 25], there has emerged a line of work that employs DNNss to increase the
representation power of contextual bandit algorithms [5, 38, 17, 49, 52, 20, 51]. The problems they
solve are usually referred to as neural contextual bandits. For example, Zhou et al. [52] developed
the NeuralUCB algorithm, which can be viewed as a natural extension of LinUCB [16, 1], where they

Submitted to 35th Conference on Neural Information Processing Systems (NeurIPS 2021). Do not distribute.



37
38
39

40
41
42
43
44
45
46
47
48

49
50
51
52
53
54
55
56
57

58

59
60
61
62
63
64
65

66
67
68
69
70
71
72
73

74
75
76

77

78
79
80
81
82
83
84
85
86

87
88
89
90

use the output of a deep neural network with the feature vector as input to approximate the reward.
Zhang et al. [51] adapted neural networks in Thompson Sampling [43, 14, 40] for both exploration
and exploitation and proposed NeuralTS . For a fixed time horizon 7, it has been proved that both

NeuralUCB and NeuralTS achieve a O(d+/T') regret bound, where d is the effective dimension of a
neural tangent kernel matrix which can potentially scale with O(TK) for K-armed bandits. This
high complexity is mainly due to that the exploration is performed over the entire huge neural network
parameter space, which is inefficient and even infeasible when the number of neurons is large. A more
realistic and efficient way of learning neural contextual bandits may be to just explore different arms
using the last layer as the exploration parameter. More specifically, Riquelme et al. [38] provided
an extensive empirical study of benchmark algorithms for contextual-bandits through the lens of
Thompson Sampling, which suggests decoupling representation learning and uncertainty estimation
improves performance.

In this paper, we show that the decoupling of representation learning and the exploration can be
theoretically validated. We study a new neural contextual bandit algorithm, which learns a mapping
to transform the raw features associated with each context-action pair using a deep neural network
(deep representation), and then performs an upper confidence bound (UCB)-type exploration over the
linear output layer of the network (shallow exploration). We prove a sublinear regret of the proposed
algorithm by exploiting the UCB exploration techniques in linear contextual bandits [1] and the
analysis of deep overparameterized neural networks using neural tangent kernels [27]. Our theory
confirms the empirically observed effectiveness of decoupling the deep representation learning and
the UCB exploration in contextual bandits [38, 49].

Contributions we summarize the main contributions of this paper as follows.

e We propose a contextual bandit algorithm, Neural-LinUCB, for solving a general class of con-
textual bandit problems without knowing the specific reward generating function. The proposed
algorithm learns a deep representation to transform the raw feature vectors and performs UCB-type
exploration in the last layer of the neural network, which we refer to as deep representation and
shallow exploration. Compared with LinUCB [34, 16] and neural bandits such as NeuralUCB [52]
and NeuralTS [51], our algorithm enjoys the best of two worlds: strong expressiveness due to the
deep representation and computational efficiency due to the shallow exploration.

e Despite the usage of a DNN as the feature mapping, we prove a O(+/T) regret for the proposed
Neural-LinUCB algorithm, which matches the regret bound of linear contextual bandits [16, 1].
To the best of our knowledge, this is the first work that theoretically shows the convergence of
bandits algorithms under the scheme of deep representation and shallow exploration. It is notable
that a similar scheme called Neural-Linear was proposed by Riquelme et al. [38] for Thompson
sampling algorithms, and they empirically showed that decoupling representation learning and
uncertainty estimation improves the performance. Our work confirms this observation from a
theoretical perspective.

e We conduct experiments on contextual bandit problems based on real-world datasets, demon-
strating a better performance and computational efficiency of Neural-LinUCB over LinUCB and
NeuralUCB, which well aligns with our theory.

1.1 Additional related work

There is a line of related work to ours on the recent advance in the optimization and generalization
analysis of deep neural networks. In particular, Jacot et al. [27] first introduced the neural tangent
kernel (NTK) to characterize the training dynamics of network outputs in the infinite width limit.
From the notion of NTK, a fruitful line of research emerged and showed that loss functions of
deep neural networks trained by (stochastic) gradient descent can converge to the global minimum
[22, 4, 21, 54, 53]. The generalization bounds for overparameterized deep neural networks are also
established in Arora et al. [6, 7], Allen-Zhu et al. [3], Cao and Gu [12, 13]. Recently, the NTK based
analysis is also extended to the study of sequential decision problems including bandits [52, 51], and
reinforcement learning algorithms [11, 36, 45, 47].

Our algorithm is also different from Langford and Zhang [29], Agarwal et al. [2] which reduce the
bandit problem to supervised learning. Moreover, their algorithms need to access an oracle that
returns the optimal policy in a policy class given a sequence of context and reward vectors, whose
regret depends on the VC-dimension of the policy class.
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Notation We use [k] to denote a set {1,...,k}, k € NT. ||x|]2 = V'xTx is the Euclidean norm of
a vector x € RY. For a matrix W € R™*"_ we denote by |[W]|| and ||W]|| its operator norm
and Frobenius norm respectively. For a semi-definite matrix A € R?*? and a vector x € R?, we
denote the Mahalanobis norm as ||x||a = V'xT Ax. Throughout this paper, we reserve the notations
{Ci}i=0,1,... to represent absolute positive constants that are independent of problem parameters such
as dimension, sample size, iteration number, step size, network length and so on. The specific values
of {C’i}izoylv._ can be different in different context. For a parameter of interest 7" and a function

f(T), we use notations such as O(f(T")) and Q(f(T)) to hide constant factors and O(f(T)) to hide
constant and logarithmic dependence of 7.

2 Preliminaries

In this section, we provide the background of contextual bandits and deep neural networks.

2.1 Linear contextual bandits

A contextual bandit is characterized by a tuple (S, A, r), where S is the context (state) space, A is the
arm (action) space, and r encodes the unknown reward generating function at all context-arm pairs.
A learning agent, who knows S and .A but does not know the true reward r (values bounded in (0, 1)
for simplicity), needs to interact with the contextual bandit for 7" rounds. Ateachroundt =1,...,7T,
the agent first observes a context s; € S chosen by the environment; then it needs to adaptively select
an arm a, € A based on its past observations; finally it receives a reward 7 (X5 4,) = 7(Xs,4,) + &t
where x; o € R4 is a known feature vector for context-arm pair (s,a) € S X A, and &; is a random
noise with zero mean. The agent’s objective is to maximize its expected total reward over these T’
rounds, which is equivalent to minimizing the pseudo regret [8]:

T

Rr = E[Z (P(Xsp.02) = T(Xs,a0)) | Q2.1

t=1

where a; € argmax,c 4{r(Xs, o) = E[F(xs,,0)]}. To simplify the exposition, we use x; , to denote
Xs, ,q since it only depends on the round index ¢ in most bandit problems, and we assume A = [K].

In some practical problems, the agent has a prior knowledge that the reward-generating function
r has some specific parametric form. For instance, in linear contextual bandits, the agent knows
that r(xs,,) = xlaa* for some unknown weight vector 8* € R?. One provably sample efficient
algorithm for linear contextual bandits is Linear Upper Confidence Bound (LinUCB) [1]. Specifically,
at each round ¢, LinUCB chooses action by the following strategy

-
a; = argmax {xwet + at||xt’a||A:1} ,
a€[K]
where 6, is a point estimate of 8%, A, = Al + Z§=1 Xi,aixzai with some A > 0 is a matrix
defined based on the historical context-arm pairs, and vy > 0 is a tuning parameter that controls the
exploration rate in LinUCB.

2.2 Deep neural networks

In this paper, we use f(x) to denote a neural network with input data x € R?. Let L be the number
of hidden layers and W; € R™*""-1 be the weight matrices in the [-th layer, where [ =1, ..., L,
mi =...=mp_1 =mand mg = my = d. Then a L-hidden layer neural network is defined as

f(x)=vmO To,(Wrop_1(Wr_1---01(Wix)---)), 2.2)

where o, is an activation function and 8* € R is the weight of the output layer. To simplify the
presentation, we will assume 03 = 09 = ... = o = o is the ReLU activation function, i.e.,
o(r) = max{0,z} for r € R. We denote w = (vec(W1)",...,vec(W)")T, which is the
concatenation of the vectorized weight parameters of all hidden layers of the neural network. We also
write f(x; 0%, w) = f(x) in order to explicitly specify the weight parameters of neural network f. It
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is easy to show that the dimension p of vector w satisfies p = (L — 2)m? + 2md. To simplify the
notation, we define ¢(x; w) as the output of the L-th hidden layer of neural network f.

P(x;w) = vVmo(Wro(Wp_q---a(Wix)---)). (2.3)

Note that ¢(x; w) itself can also be viewed as a neural network with vector-valued outputs.

3 Deep Representation and Shallow Exploration

The linear parametric form in linear contextual bandits might produce biased estimates of the reward
due to the lack of representation power [42, 38]. In contrast, it is well known that deep neural networks
are powerful enough to approximate an arbitrary function [18]. Therefore, a natural extension of
linear contextual bandits is to use a deep neural network to approximate the reward generating
function r(-). Nonetheless, DNNs usually have a prohibitively large dimension for weight parameters,
which makes the exploration in neural networks based UCB algorithm inefficient [28, 52].

In this work, we study a neural contextual bandit algorithm, where the hidden layers of a deep neural
network are used to represent the features and the exploration is only performed in the last layer of the
neural network. In particular, we assume that the reward generating function 7(-) can be expressed as
the inner product between a deep represented feature vector and an exploration weight parameter,
namely, 7(-) = (8*,4(-)), where 8* € R? is some weight parameter and 1(-) is an unknown feature
mapping. This decoupling of the representation and the exploration will achieve the best of both
worlds: efficient exploration in shallow (linear) models and high expressive power of deep models.
To learn the unknown feature mapping, we propose to use a neural network to approximate it. In
what follows, we will describe a neural contextual bandit algorithm that uses the output of the last
hidden layer of a neural network to transform the raw feature vectors (deep representation) and
performs UCB-type exploration in the last layer of the neural network (shallow exploration). Since
the exploration is performed only in the last linear layer, we call this procedure Neural-LinUCB,
which is displayed in Algorithm 1.

Specifically, in round ¢, the agent receives an action set with raw features X; = {Xt,1, . K}
Then the agent chooses an arm a; that maximizes the following upper confidence bound:
ar = argmax { (G (x5 Wi1),01) + arll b ks wi-1)l|a -, b @3.0)
ke[K] et

where 6;_1 is a point estimate of the unknown weight in the last layer, ¢(x; w) is defined as in (2.3),
w;_1 is an estimate of all the weight parameters in the hidden layers of the neural network, a; > 0 is
the algorithmic parameter controlling the exploration, and A is a matrix defined based on historical
transformed features:

t
Ay =M+ d(Xia; Wis1)d(Xia; Wi1) (32)
=1

and A > 0. After pulling arm a,, the agent will observe a noisy reward 7 := 7(x o, ) defined as
P(xe,6) = r(Xex) + & (3.3)

where &, is an independent v-subGaussian random noise for some v > 0 and r(-) is an unknown
reward function. In this paper, we will interchangeably use notation 7; to denote the reward received
at the ¢-th step and an equivalent notation 7(x) to express its dependence on the feature vector x.

Upon receiving the reward 7, the agent updates its estimate 8; of the output layer weight by using
the same ¢2-regularized least-squares estimate in linear contextual bandits [1]. In particular, we have

6; = A; by, (3.4)

where b, = 30| Fi(Xi 0,5 Wi1)-

To save the computation, the neural network ¢(-; w;) will be updated once every H steps. Therefore,
we have W(,_1yg41 = ... = Wq forg = 1,2,.. .. We call the time steps {(¢ —1)H +1,...,qH}
an epoch with length H. At time stept = Hgq, forany ¢ = 1,2, ..., Algorithm 1 will retrain the
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neural network based on all the historical data. In Algorithm 2, our goal is to minimize the following
empirical loss function:

qH

N2
L,(w) = Z (0;¢(xi,ai;w) -7)" (3.5)

i=1
qH
i=(q—1)H+1
from the ¢-th epoch into Algorithm 2 to update the parameter w, which does not hurt the performance
since the historical information has been encoded into the estimate of 8;. In this paper, we will
perform the following gradient descent step

Wés) = W((zs_l) - nqvwﬁq(w(s_l))-

In practice, one can further save computational cost by only feeding data {x; 4,,7;,0;}

for s = 1,...,n, where Wgo) = w9 is chosen as the same random initialization point. We will

discuss more about the initial point w(®) in the next paragraph. Then Algorithm 2 outputs wén) and

we set it as the updated weight parameter w g1 in Algorithm 1. In the next round, the agent will
receive another action set X, with raw feature vectors and repeat the above steps to choose the
sub-optimal arm and update estimation for contextual parameters.

Initialization: Recall that w is the collection of all hidden layer weight parameters of the neural
network. We will follow the same initialization scheme as used in Zhou et al. [52], where each entry
of the weight matrices follows some Gaussian distribution. Specifically, for any ! € {1,...,L — 1},

we set W; = ng ‘%] , where each entry of W follows distribution N (0,4/m) independently; for

W, wesetitas [V —V], where each entry of V follows distribution N (0, 2/m) independently.

Comparison with LinUCB and NeuralUCB: Compared with linear contextual bandits in Sec-
tion 2.1, Algorithm 1 has a distinct feature that it learns a deep neural network to obtain a deep
representation of the raw data vectors and then performs UCB exploration. This deep representa-
tion allows our algorithm to characterize more intrinsic and latent information about the raw data
{%t,k e er) C R?. However, the increased complexity of the feature mapping ¢(-; w) also
introduces great hardness in training. For instance, a recent work by Zhou et al. [52] also stud-
ied the neural contextual bandit problem, but different from (3.1), their algorithm (NeuralUCB)
performs the UCB exploration on the entire network parameter space, which is RP*?, where
p = m + md + (L — 1)m2. Note that in Zhou et al. [52], they need to compute the inverse
of a matrix Z; € RP+)x#+d) which is defined in a similar way to the matrix A, in our paper
except that Z; is defined based on the gradient of the network instead of the output of the last hidden
layer as in (3.2). In sharp contrast, A; in our paper is only of size d x d and thus is much more
efficient and practical in implementation, which will be seen from our experiments in later sections.

We note that there is also a similar algorithm to our Neural-LinUCB presented in Deshmukh et al.
[20], where they studied the self-supervised learning loss in contextual bandits with neural network
representation for computer vision problems. However, no regret analysis has been provided. When
the feature mapping ¢(-; w) is an identity function, the problem reduces to linear contextual bandits
where we directly use x; as the feature vector. In this case, it is easy to see that Algorithm 1 reduces
to LinUCB [16] since we do not need to learn the representation parameter w anymore.

Comparison with Neural-Linear: The high-level idea of decoupling the representation and explo-
ration in our algorithm is also similar to that of the Neural-Linear algorithm [38, 49], which trains a
deep neural network to learn a representation of the raw feature vectors, and then uses a Bayesian
linear regression to estimate the uncertainty in the bandit problem. However, these two algorithms
are significantly different since Neural-Linear [38] is a Thompson sampling based algorithm that
uses posterior sampling to estimate the weight parameter 8* via Bayesian linear regression, whereas
Neural-LinUCB adopts upper confidence bound based techniques to estimate the weight 8*. Never-
theless, both algorithms share the same idea of deep representation and shallow exploration, and we
view our Neural-LinUCB algorithm as one instantiation of the Neural-Linear scheme.

4 Main Results

To analyze the regret bound of Algorithm 1, we first lay down some important assumptions on the
neural contextual bandit model.
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Algorithm 1 Deep Representation and Shallow Exploration (Neural-LinUCB)

1: Imput: regularization parameter A > 0, number of total steps T, episode length H, exploration
parameters {a; > 0}4¢(r)
2: Initialization: Ay = M, by = 0; entries of 8 follow N (0,1/d), and w(®) is initialized as
described in Section 3; ¢ = 1; wg = w(©)
3: fort=1,...,T do
4:  receive feature vectors {x; 1,...,X¢ i }
5: choose arm a; = argmaxc (g 0,1 (X k; Wi_1) +au||@(x¢k; Wi—1)|[ 52, and obtain
reward 7
6: update A; and by as follows:
Ay =Ar 1+ d(Xea; Wio1)P(Xpa s Wio1) T,
b, =bi 1 +Td(X¢a,; We—1),
7:  update 8; = At_lbt
8: if mod(t, H) = 0 then

9: w; < output of Algorithm 2
10: q=q+1

11:  else

12: Wi = Wi_1

13:  endif

14: end for

15: Output wp

Algorithm 2 Update Weight Parameters with Gradient Descent

1: Input: initial point Wflo) =w(®
defined in (3.5).
fors=1,...,ndo

Wt(JS) = W<(Js Y- nqvwﬁq(wés 1))'
end for
Output w "

, maximum iteration number 7, step size 7),, and loss function

Assumption 4.1. For all i > 1 and k € [K], we assume that ||x; |2 = 1 and its entries satisfy
[Xi,kb‘ = [Xj,lc}jﬂz/g.

The assumption that ||x; ;|2 = 1 is not essential and is only imposed for simplicity, which is also
used in Zou and Gu [53], Zhou et al. [52]. Finally, the condition on the entries of x; ;, is also mild

since otherwise we could always construct x; , = [x;,,x;,]T //2 to replace it. An implication of
Assumption 4.1 is that the initialization scheme in Al’goritl;m 1 results in ¢p(x; 1; w(®) = 0 for all
i€ [T)and k € [K].

We assume the following stability condition on the spectral norm of the neural network gradient:
Assumption 4.2. There is a constant /i, > 0 such that it holds

[t

< Luipllx = X[z,

(x;wo) — 71— (x'; wo)
ow 9

ow

for all X, x e {Xijc}ie[T],kG[K]'

The inequality in Assumption 4.2 resembles the Lipschitz condition on the gradient of the neural
network. However, it is essentially different from the smoothness condition since here the gradient
is taken with respect to the neural network weights while the Lipschitz condition is imposed on the
feature parameter x. Similar conditions are widely made in nonconvex optimization [46, 10, 48], in
the name of first-order stability, which is essential to derive the convergence of alternating optimization
algorithms. Furthermore, Assumption 4.2 is only required on the T'K training data points and a
specific weight parameter wy. Therefore, the condition will hold if the raw feature data lie in a
certain subspace of R?. We provided some further discussions in the supplementary material about
this assumption for interested readers.
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In order to analyze the regret bound of Algorithm 1, we need to characterize the properties of the
deep neural network in (2.2) that is used to represent the feature vectors. Following a recent line of
research [27, 12, 7, 52], we define the covariance between two data point X,y € R as follows.

3O0(x,y) = 2O(x,y) =x"y,

T (x,x) T(x,y)

Ny, x) T (y,y)]’

2(1)(){7 y) = 2E(u,v)~N(0,A(l*1)(x,y)) [U(U)U(U)L

Z(l)()g y) = 22(l_1)(x,y)Eu’v[d(u)d(v)] + E(l)(x,y)7 4.1)

AV (x,y) =

where (u,v) ~ N(0, A"~1(x,y)), and &(-) is the derivative of activation function o (-). We denote
the neural tangent kernel (NTK) matrix H € RT%*TK based on all feature vectors {xy,i }re (77, ke[ ]-
Renumbering {x; r }+c[7],ke[k] @S {Xi}i=1,..., 7K then each entry H;; is defined as

1 .~
H; = (3% (xi, %)) + 2P (xi, 7)), 42)
for all 4, j € [T K]. Based on the above definition, we impose the following assumption on H.

Assumption 4.3. The neural tangent kernel defined in (4.2) is positive definite, i.e., Amin (H) > Ag
for some constant \g > 0.

Assumption 4.3 essentially requires the neural tangent kernel matrix H to be non-singular, which is
a mild condition and also imposed in other related work [21, 7, 12, 52]. Moreover, it is shown that
Assumption 4.3 can be easily derived from Assumption 4.1 for two-layer ReLU networks [37, 53].
Therefore, Assumption 4.3 is mild or even negligible given the non-degeneration assumption on the
feature vectors. Also note that matrix H is only defined based on layers [ = 1, ..., L of the neural
network, and does not depend on the output layer 8. It is easy to extend the definition of H to the
NTK matrix defined on all layers including the output layer 8, which would also be positive definite
by Assumption 4.3 and the recursion in (4.2).

Before we present the regret analysis of the neural contextual bandit, we need to modify the regret
defined in (2.1) to account for the randomness of the neural network initialization. For a fixed time
horizon 7', we define the regret of Algorithm [ as follows.

T

RT:E{XNW&M)_ﬂ&MnWW>, (4.3)

t=1

where the expectation is taken over the randomness of the reward noise. Note that 7 defined in (4.3)
is still a random variable since the initialization of Algorithm 2 is randomly generated.

Now we are going to present the regret bound of the proposed algorithm.

Theorem 4.4. Suppose Assumptions 4.1, 4.2 and 4.3 hold. Assume that ||6*|2 < M for some
positive constant M > 0. For any 0 € (0, 1), let us choose o in Neural-LinUCB as

ap = V\/2(dlog(1 + tlog(HK)/A) + log(1/6)) + A2
We choose the step size 7, of Algorithm 2 as
Mg < Co(d*mnT> LS log(TK/6)) ",

and the width of the neural network satisfies m = poly(L, d, 1/6, H,log(T K /d)). With probability
at least 1 — § over the randomness of the initialization of the neural network, it holds that

2 Coliip L2d®/*T | logmlog(1) log(LE) ||r — ¥|55-1
Rr < C1aT\/leog (1 + TG ) i \/ 0 0

Ad ml/6 ’
where {Ci}i:(),m are absolute constants independent of the problem parameters, r =
(r(x1),7(x2),...,7(x7K))" € RT® and ¥ = (f(x1;00,W0),..., f(XrK;07_1,Wwr_1))| €

RTK and |r||a = VrT Ar.
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Remark 4.5. Theorem 4.4 shows that the regret of Algorithm 1 can be bounded by two parts: the
first part is of order O(\/T), which resembles the regret bound of linear contextual bandits [1]; the

second part is of order O(m~1/6T/(r —T) T H-1(r — 1)), which depends on the estimation error
of the neural network f for the reward generating function r and the neural tangent kernel H.

It is worth noting that our theoretical analysis depends on the reward structure assumption that
r(-) = (0,7 (-)). However, the linear structure between 0x* and 1 (-) is not essential. As long as
the deep representation of the feature vector and the uncertainty weight parameter can be decoupled,
Algorithm 1 can be easily extended to settings with milder assumptions on the reward structure
such as generalized linear models [41, 24, 35, 28]. For more general bandit models where no
assumption is imposed to the reward generating function, it is still unclear whether the decoupled
deep representation and shallow exploration would work especially in cases a thorough exploration
may be needed.

Based on the result in Theorem 4.4, we can easily verify the following conclusion:

Corollary 4.6. Under the same conditions of Theorem 4.4, if we choose a sufficiently overpa-
rameterized neural network mapping ¢(-) such that m > T3, then the regret of Algorithm 1 is

Ry = O(WT/(r—%)TH '(r — 1))

Remark 4.7. For the ease of presentation, let us denote £ := ||r —T||g-1. If we have € = O(1), the
total regret in Theorem 4.4 becomes 6(\/T ) which matches the regret of linear contextual bandits
[1]. We remark that there is a similar assumption in [52] where they assume that r"H~1r can be
upper bounded by a constant. They show that this term can be bounded by the RKHS norm of r if
it belongs to the RKHS induced by the neural tangent kernel [6, 7, 33]. In addition, £ here is the

difference between the true reward function and the neural network function, which can also be small
if the deep neural network function well approximates the reward generating function r(-).

5 Experiments

In this section, we provide empirical evaluations of Neural-LinUCB on real-world datasets. As
we have discussed in Section 3, Neural-LinUCB could be viewed as an instantiation of the Neural-
Linear scheme studied in Riquelme et al. [38] except that we use the UCB exploration instead of the
posterior sampling exploration therein. Note that there has been an extensive comparison [38] of the
Neural-Linear methods with many other baselines such as greedy algorithms, Variational Inference,
Expectation-Propagation, Bayesian Non-parametrics and so on. Therefore, we do not seek a thorough
empirical comparison of Neural-LinUCB with all existing bandits algorithms. We refer readers who
are interested in the performance of Neural-Linear methods with deep representation and shallow
exploration compared with a vast of baselines in the literature to the benchmark study by Riquelme
et al. [38]. In this experiment, we only aim to show the advantages of our algorithm over the following
baselines: (1) Neural-Linear [38]; (2) LinUCB [16], which does not have a deep representation of the
feature vectors; and (3) NeuralUCB [52], which performs UCB exploration on all the parameters of
the neural network instead of the shallow exploration used in our paper. All numerical experiments
were run on a workstation with Intel(R) Xeon(R) CPU E5-2637 v4 @ 3.50GHz.

Datasets: we evaluate the performances of all algorithms on bandit problems created from real-world
data. Specifically, following the experimental setting in Zhou et al. [52],we use datasets (Shuttle)
Statlog, Magic and Covertype from UCI machine learning repository [23], and the MINST dataset
from LeCun et al. [31]. The details of these datasets are presented in Table 1. In Table 1, each
instance represents a feature vector x € R4 that is associated with one of the K arms, and dimension
d is the number of attributes in each instance.

Table 1: Specifications of datasets from the UCI machine learning repository used in this paper.

Statlog  Magic  Covertype  MNIST

Number of attributes 9 11 54 784
Number of arms 7 2 7 10
Number of instances 58,000 19,020 581,012 60,000
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Figure 1: The cumulative regrets of LinUCB, NeuralUCB, Neural-Linear and Neural-LinUCB over
15,000 rounds. Experiments are averaged over 10 repetitions.

Implementations: for LinUCB, we follow the setting in Li et al. [34] to use disjoint models
for different arms. For neural network based algorithms such as NeuralUCB, Neural-Linear and
Neural-LinUCB, we use a ReLLU neural network defined as in (2.2) with L = 2 and 2000 for the
UCI datasets (Statlog, Magic, Covertype). Thus the neural network weights are W; € R™*9,
W, € RF¥™ and @ € RF respectively, where £ = 100, m = 2000, and d is the dimension of
features in the corresponding task. Since the problem size of the MNIST dataset is larger, inspired
by Hinton and Salakhutdinov [26], we use a deeper NN and set L = 3, £ = 100 and m = 100,
with weights W; € R™*4 W, € R™*™ W3 € R¥*™ and @ € R*. We set the time horizon
T = 15,000, which is the total number of rounds for each algorithm on each dataset. We use
gradient decent to optimize the network weights, with a step size 1, =1e-5 and maximum iteration
number n = 1,000. To speed up the training process, the network parameter w is updated every
H = 100 rounds starting from round 2000. We also apply early stopping when the loss difference
of two consecutive iterations is smaller than a threshold of 1e-6. We set A = 1 and «; = 0.02
for all algorithms, ¢ € [T]. Following the setting in Riquelme et al. [38], we use round-robin to
independently select each arm for 3 times at the beginning of each algorithm. For NeuralUCB, since
it is computationally unaffordable to perform the original UCB exploration as displayed in Zhou et al.
[52], we follow their experimental setting to replace the matrix Z, € R(4+P)x(4+P) in Zhou et al.
[52] with its diagonal matrix.

Results: we plot the cumulative regret of all algorithms versus round in Figures 1(a), 1(b) and 1(c)
for UCI datasets and in Figure 1(d) for MNIST. The results are reported based on the average of
10 repetitions over different random shuffles of the datasets. It can be seen that algorithms based
on neural network representations (NeuralUCB, Neural-Linear and Neural-LinUCB) consistently
outperform the linear contextual bandit method LinUCB, which shows that linear models may
lack representation power and find biased estimates for the underlying reward generating function.
Furthermore, our proposed Neural-LinUCB achieves a comparable regret with NeuralUCB in all
experiments despite the fact that our algorithm only explores in the output layer of the neural network,
which is more computationally efficient as we will show in the sequel.The results in our experiment
are well aligned with our theory that deep representation and shallow exploration are sufficient to
guarantee a good performance of neural contextual bandit algorithms, which is also consistent with
the findings in existing literature [38] that decoupling the representation learning and uncertainty
estimation improves the performance.

We also conducted experiments to study the effects of different widths of deep neural networks on
the regret performance and to show the computational efficiency of Neural-LinUCB compared with
existing neural bandit algorithms. Due to the space limit, we defer the results to Appendix A.

6 Conclusions

In this paper, we propose a new neural contextual bandit algorithm called Neural-LinUCB, which uses
the hidden layers of a ReLU neural network as a deep representation of the raw feature vectors and
performs UCB type exploration on the last layer of the neural network. By incorporating techniques
in liner contextual bandits and neural tangent kernels, we prove that the proposed algorithm achieves
a sublinear regret when the width of the network is sufficiently large. This is the first regret analysis
of neural contextual bandit algorithms with deep representation and shallow exploration, which have
been observed in practice to work well on many benchmark bandit problems [38]. We also conducted
experiments on real-world datasets to demonstrate the advantage of the proposed algorithm over
LinUCB and existing neural contextual bandit algorithms.
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A Additional Experimental Results

In this section, we provide more experimental results that are omitted in Section 5 due to space limit.

A.1 Computational Efficiency of Neural-LinUCB

Throughout the experiments, our Neural-LinUCB algorithm is much more computationally efficient
than NeuralUCB since we only perform the UCB exploration on the last layer of the neural network,
where the dimension is much lower. In specific, on the Statlog dataset, it takes on average 1.11
seconds for NeuralUCB to finish 100 rounds (one epoch in Algorithm 1) and achieve the regret in
Figure 1(a), while it only takes 0.58 seconds for Neural-LinUCB to finish 100 rounds and achieve
the comparable or even better regret in Figure 1(a). On the Magic dataset, the average runtimes for
100 rounds of NeuralUCB and Neural-LinUCB are 1.32 seconds and 0.81 seconds respectively. On
the Covertype dataset, the runtimes of NeuralUCB and Neural-LinUCB are 1.02 seconds and 0.66
seconds respectively. And on the MNIST dataset, the average runtimes for 100 rounds of NeuralUCB
and Neural-LinUCB are 4.67 seconds and 1.29 seconds respectively. For practical applications in
the real-world with larger problem sizes, we believe that the improvement of our algorithm in terms
of the computational efficiency will be more pronounced.

As we discussed in Section 5 and in the above paragraph as well, the computational efficiency of
Neural-LinUCB mainly stems from the design of shallow exploration. This is because in UCB based
bandit algorithms we need to compute the inverse of matrix A at every time step for arm selection
(Line 5 of Algorithm 1). Due to the large width of the neural network used in practice, the arm
selection operation could be rather time consuming. However, the neural network weight can be
updated periodically (i.e., in our paper it is only updated every H steps). To validate our analysis
on computational efficiency, we further studied the time profiling of the experiments conducted on
MNIST to compared our proposed algorithm with NeuralUCB in more details.

Table 2: Profiling experiment on MNIST for running 100 rounds: runtime (seconds) for different
algorithms on arm selection and network weight update.

Operations NeuralUCB  Neural-LinUCB
Arm selection (Line 5 in Algorithm 1) 3.60 0.28
Network weight update (Line 9 in Algorithm 1) 0.96 0.92

In particular, the setting is the same as that in Section 5 for MNIST experiments. We record the time
cost of the most expensive two subroutines: (1) the operation of arm selection (Line 5 in Algorithm
1); and (2) the operation of updating the neural network weights (Line 9 in Algorithm 1), for H = 100
rounds. The time cost is presented in Table 2. For Neural-LinUCB, the arm selection operation takes
about 0.28 seconds (this is 21.71% of the total time cost by the algorithm in these H = 100 rounds),
among which the matrix inverse step only takes 0.17 seconds. For NeuralUCB, the arm selection
operation takes 3.60 seconds (this is 77.19% of the total time time cost by NeuralUCB for H = 100
rounds). Therefore, the operation of arm selection in NeuralUCB is much (almost 13 times) more
time consuming than that in Neural-LinUCB. Moreover, since the UCB matrix Z; in NeuralUCB
is defined as V f(x; w)V f(x;w) ', it needs to compute the gradients via back-propagation (0.93
seconds) and compute the matrix inverse (1.54 seconds), while our Neural-LinUCB algorithm only
needs to compute the matrix inverse of a small matrix (0.17 seconds). To summarize, our method is
much more computationally efficient.

A.2 Impact of Large Widths

Note that the requirement of width m in our Theorem 4.4 is extremely high. On one hand, our
theory may be too conservative since the current understanding of deep learning is still very limited
in the field. We believe our work is a good starting point towards understanding the behavior
of deep bandits algorithms. On the other hand, we would also like to investigate the impact of
mild overparameterization on the regret performance of Neural-LinUCB in practice. Therefore, we
conducted additional experiments on the Statlog dataset with wider neural networks. In particular,
the neural network parameters are listed as follows

W; € R™4 Wy e R™*™ . W, e RFX™ 9 ¢ RF,
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Figure 2: Performance of Neural-LinUCB with different widths on Statlog dataset.

where L is the depth, & = 100, d is the feature dimensions, and m is the width. We conducted
experiments for the following settings: (1) L = 2, m = 2000, and thus the hidden layer width is
(2000); (2) L = 2, m = 10000, and thus the hidden layer width is (10000); (3) L = 3, m = 10000,
and thus the hidden layer width is (10000, 10000); and L = 4, m = 10000, and thus the hidden
layer width is (10000, 10000, 10000). The results are plotted in Figure A.2. We observe that the
performance of our Neural-LinUCB algorithm is not negatively impacted by the width of the neural
network. In fact, Figure A.2 shows improved performance of Neural-LinUCB when the total number
of hidden nodes increases. This is consistent to the observations in [50] that an overparameterized
neural network trained by gradient descent does not necessarily lead to overfitting and also aligns
with our Theorem 4.4 that the regret bound of Neural-LinUCB decreases as the width m increases.

B More Discussions on Assumption 4.2

In this section, we are going to show that Assumption 4.2 could be satisfied as long as the feature
vectors {x} lie in a begin subspace of R?. Let us start with the case that ¢ : R? — R™ is a
two-layer ReLU neural network with vector output. In particular, we define ¢(x;w) as follows
o(x;w) = 0(Wa0(W1x)), where w = (vec(W1), vec(W3)) T, Wy € R™*4 W, € R¥*™ and
o is the ReLU activation function applied elementwise. We use u; to denote the i-th row of W and
thus Wi = (uy,...,u,,)", where u; € R?, Vi € [m]. Similarly, we have Wy = (vy,...,vg4) ",
where v; € R™ is the j-th row of Wy, Vj € [d]. Let us denote h as the vector 0(Wx). We thus
obtain

1{u x > 0}u x 1{vih >0}v/h

h = : , o(x;w) = :

1{u}x > 0}u,} x 1{vjh>0}v,/h

We use ¢;(x; w) to denote the [-th entry of vector ¢(x; w), for any [ € [d]. Then it holds that

Oy (x;w)

Dvec(Wy) 1{vh > 0}[ol I{u] x > 0}x ..., o7 I{u]x > 0}x"],

for all [ € [d], where v! is the i-th element in vy, i € [m]. This further implies that

1{vih>0}(v] I{ufx > 0}x",..., 07" 1{u) x > 0}x")
= : c Rdxmd.
H{v jh>0}(v1{u/x > 0}x",..., 07 1{u)x > 0}x")

Op(x; w)
Ovec(Wy)
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Similarly, we can compute the gradient of ¢(x; w) with respect to Wy. In particular, we have

0 W

;ifle(cx(vl)) = 1{v{h > 0}[1{ux > O}u;x,..., 1{u,x > O}u,x],
Ipr(x;w) .

W_[O,...,O], 77

Therefore, the gradient of ¢(x; w) with respect to Wy is

%qbl(zc;w)) o’
vec(v o
plxw) | T e R
Ovec(Wy) T  9pu(aw)
0 s Ovec(vq)

Lastly, we have

ow T | Ovec(W1)  Ovec(Wa2)

0p(x;w) D (x;w) 8¢(x;w):| € Rx (md+md).

Therefore, for any two feature vectors x and x" from {x;  }s¢[7],ke[k]. if many nodes in the initial
neural network ¢(x; w) are activated or deactivated at the same time for both x and x’, then the
spectral norm of the matrix ad’((;“jvw‘)) - ad’(g“"',w‘)) would satisfy the condition in Assumption 4.2. A

more thorough study of this stability condition is out of the scope of this paper, though it would be an
interesting open direction in the theory of deep neural networks.

C Proof of the Main Results

In this section, we provide the proof of the regret bound for Neural-LinUCB. Recall that in neural
contextual bandits, we do not assume a specific formulation of the underlying reward generating
function r(-). Instead, we use deep neural networks defined in Section 2.2 to approximate r(-). We
will first show that the reward generating function r(+) can be approximated by the local linearization
of the overparameterized neural network near the initialization weight w(®). In particular, we denote
the gradient of ¢(x; w) with respect to w by g(x; w), namely,

g(x;w) = Vyo(x; w), (C.1)

which is a matrix in R?*?. We define ¢;(x; W) to be the j-th entry of vector ¢(x; w), for any j € [d].
Then, we can prove the following lemma.

Lemma C.1. Suppose Assumptions 4.3 hold. Then there exists w* € R? such that ||w* — w(||, <
1/v/my/(r — ) TH-1(r — 1) and it holds that

r(xe) = 0" T (X Wi1) + 04 g(Xek; w(O))(w* — W(O)),
forallk € [K]andt =1,...,T.

Lemma C.1 implies that the reward generating function 7(-) at points {X; x }ic|7),ke[x] can be
approximated by a linear function around the initial point w(®). Note that a similar lemma is also
proved in Zhou et al. [52] for NeuralUCB.

The next lemma shows the upper bounds of the output of the neural network ¢ and its gradient.

Lemma C.2. Suppose Assumptions 4.1 and 4.3 hold. For any round index ¢ € [T'], suppose it is
in the ¢-th epoch of Algorithm 2, i.e., t = (¢ — 1)H + i for some i € [H]. If the step size 7, in
Algorithm 2 satisfies
Co
n< )
d?>mnT55L8 log(TK/J)

and the width of the neural network satisfies

m > max{Llog(TK/§),dL?log(m/s),s CH¥ L% log®(TK)}, (C.2)
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then, with probability at least 1 — & we have
§3/2
ml/2Tn9/2 L6 log®(m)’
lg(xee; W)l r < CLVdLm,
lp(x; we)l2 < v/dlog(n) log(TK/3),

forall t € [T, k € [K], where the neural network ¢ is defined in (2.3) and its gradient is defined
in (C.1).

lwe = w2 <

The next lemma shows that the neural network ¢ (x; w) is close to a linear function in terms of the
weight w parameter around a small neighborhood of the initialization point w(%).

Lemma C.3 (Theorems 5 in Cao and Gu [13]). Let w, w’ be in the neighborhood of wy, i.e.,
w,w’ € B(wg,w) for some w > 0. Consider the neural network defined in (2.3), if the width m and
the radius w of the neighborhood satisfy

m > Co max{dL?log(m/d8),w 3 L™8/3log(TK) log(m/(wd))},
w < C1L™%(logm) /2,

then for all X € {X¢ r }+c|7],ke[k]» With probability at least 1 — § it holds that

|65 (5 W) — 6 (3 w)| < Cow/2L2d /2 /mlogm,
where ngSj (x; w) is the linearization of ¢;(x; w) at w’ defined as follow:
0j(x:w) = (3 W) + (Vawh (W), w — W), (€3)
Similar results on the local linearization of an overparameterized neural network are also presented in

Allen-Zhu et al. [4], Cao and Gu [13].

For the output layer 8%, we perform a UCB type exploration and thus we need to characterize the
uncertainty of the estimation. The next lemma shows the confidence bound of the estimate 6; in
Algorithm 1.

Lemma C.4. Suppose Assumption and 4.3 hold. For any ¢ € (0, 1), with probability at least 1 — 9,
the distance between the estimated weight vector 8, by Algorithm 1 and 6* can be bounded as
follows:

t
Ht -0 — A;I Z d)(xs,as;wsfl)a(—)rg(xs,as;W(O)>(W* - W(O)>‘

s=1

Ay

< V\/Q(dlog(l +t(log HK)/X) +log1/6) + A2,
forany ¢ € [T).

Note that the confidence bound in Lemma C.4 is different from the standard result for linear contextual
bandits in Abbasi-Yadkori et al. [1]. The additional term on the left hand side of the confidence bound
is due to the bias caused by the representation learning using a deep neural network. To deal with this
extra term, we need the following technical lemma.

Lemma C.5. Assume that A; = AT+ Y.'_, ¢.¢], where ¢, € R? and ||¢p;||s < G forall ¢ > 1
and some constants A\, G > 0. Let {(; }+=1,... be a real-value sequence such that |;| < U for some
constant U > 0. Then we have

t
‘ AT
s=1

The next lemma provides some standard bounds on the feature matrix A, which is a combination of
Lemma 10 and Lemma 11 in Abbasi-Yadkori et al. [1].

<oUd, Vt=1,2,...
2
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Lemma C.6. Let {x,}°, be a sequence in R? and A > 0. Suppose ||x;[]2 < G and A >
max{1, G2} for some G > 0. Let A; = A\l + ZZ=1 x;x, . Then we have

T
det(AT)
< 2 d 2_1 < < 2 )
det(A;) < (A +tG7/d), and ;:1 1%l -1 < 2log FEGYI 2dlog(1 +TG=/(Ad))

Now we are ready to prove the regret bound of Algorithm 1.

Proof of Theorem 4.4. For a time horizon T', without loss of generality, we assume 7" = QH for
some epoch number (). By the definition of regret in (4.3), we have

T Q H
e = | 3 (Fxar) ~ 7(x10)| =B Y (50500~ St )|

t=1 g=1i=1

Note that for the simplicity of presentation, we omit the conditional expectation notation of w(®)
in the rest of the proof when the context is clear. In the second equation, we rewrite the time index
t = qH + 7 as the ¢-th iteration in the ¢-th epoch.

By the definition in (3.3), we have E[F(xy ) |x¢x] = r(x:) forall ¢ € [T] and k € K. Based on
the linearization of reward generating function, we can decompose the instaneous regret into different
parts and upper bound them individually. In particular, by Lemma C.1, there exists a vector w* € RP
such that we can write the expectation of the reward generating function as a linear function. Then it
holds that

T(Xt,at*) - T(Xt,at) = OOT [g (xt,a;‘ 5 W(O)) - g(xt,at 5 W(O))] (W* - W(O))
+6°7 [Q”(Xt,a: ; Wtfl) - ¢(Xt,at;Wt71)}
= 0g [g(xta;; W) — g(xt.0; W) (W = W)
+ 0,1 [(Xt.ar;Wi1) — (X0 Wi—1)]
— (01 — 9*)T [¢(Xt,a;;wt—1) - ¢(Xt,at;wt—1)]- (C4)
The first term in (C.4) can be easily bounded using the first order stability in Assumption 4.2 and the
distance between w* and w(®) in Lemma C.1. The second term in (C.4) is related to the optimistic
rule of choosing arms in Line 5 of Algorithm 1, which can be bounded using the same technique for

LinUCB [1]. For the last term in (C.4), we need to prove that the estimate of weight parameter 6;_;
lies in a confidence ball centered at 8*. For the ease of notation, we define

¢
M, =A;"! Z A(Xs.a0.;Ws 1) 8(Xsa,; W) (W — w®), (C.5)

s=1

Then the second term in (C.4) can be bounded in the following way:

— (01— 0") " [P(xt,a75 Wi—1) — D (X103 Wi—1)]

= —(0e-1 — 0"~ My1) P (%ear;Wio1) + (0m1 — 0" — Mi1) | (xp.0,5We1)
— M/ [P (Xt,ar; Wim1) — D(Xt,a,5 Wi—1)]

1011 — 0" — M;i_1]|a,_, - H¢(Xt,at*§wt—1)||A;11
1001 — 6" = Miafla,, - [9(Xtar; We1)ll a1,
+ HMll [ (Xt,ar;Wio1) — & (Xt.a,; We—1)] Hz

< al|@(Xear; Wi-1)ll a1+ oll@(Kea,s Wi1)l[ o1,

+ [My—1llz - [|@(%t,ar s Wie1) — @ (Xt,a3 We—1) [|2- (C.6)

IN

18



683
684

685
686

687

688

689
690

691

692
693
694

695

where the last inequality is due to Lemma C.4 and the choice of a;. Plugging (C.6) back into (C.4)
yields

r(Xta;) = r(Xta,) < il @Kt 0, Wi1)ll a1, — arll@(Xear; wia) a2,
+ agllP(Xt,az; Wtfl)HAt—_ll + all (Xt Wtfl)”At—_ll
+ [Mi—tl2 - | (xt.ars Wee1) — @ (Xtars We—1) ]2
+1160ll2 - llgtet,a;; w) = g(xpa,; W )|p - [[w* — w2
< 20| p(Xpa,5 Wi—1)l[ o1, + M2 - [ (Xt.az5We-1) — D (X005 We—1) |2
+ Cuipll@ollz - [1%t0; = Xt,a,ll2 - [w* = w5, (C.7)

where in the first inequality we used the definition of upper confidence bound in Algorithm | and the
second inequality is due to Assumption 4.2. Recall the linearization of ¢; in Lemma C.3, we have

~

d(x;wi—1) = @(x;Wo) + g(X; Wo) (We—1 — Wo).
Note that by the initialization, we have ¢(x; wg) = O for any x € R<. Thus, it holds that
& (Xt,a75Wi—1) — P(Xta,; Wi—1)
= ¢(Xt,a;f;Wt—1) - ¢(Xt,a;;W0) + (b(xt,at;WO) - ¢(Xt,a,,;Wt—1)
= ¢ (Xtar;Wio1) — $(Xt,a;;wt—1) + g(Xt,a:3 Wo) (W1 — Wo)
+ ¢ (Xt,a0; Wi—1) — ¢A>(Xt,at;Wt—1) — 8(Xt,a,5 Wo)(Wi—1 — Wo), (C.8)
which immediately implies that
H‘f)(xt,aj;wt—l) - ¢(Xt,at;wt—1>”2
< H¢(Xt,a;‘;wt—1) - a(xaaz;wt—l)HQ + H¢(Xt,at§wt—1) - a(xt,aﬁwt—l)HQ
+[[(8(%t.ar5Wo) — 8(Xt.0,5Wo)) (Wit — wo) |,
< Cow'PLPdY?/mlogm + luiplxta; — X, allwe—1 — w2, (C9)

where the second inequality is due to Lemma C.3 and Assumption 4.2. Therefore, the instaneous
regret can be further upper bounded as follows.

7(Xt,ar) = 7(Xt,a,)
< 2at”¢(xt7at;wt—l)||A;jl + gl Ooll2 - 1%t 0r — Xt,a, |2 - [[WF — w(® |,
+ M1 Iz - (CowPL3dM2\/mlogm + lip||X¢t.ar — Xe.a, |2 Wi—1 — w(V[2). (C.10)

By Assumption 4.1 we have ||X; 45 — X¢,4,[l2 < 2. By Lemma C.1 and Lemma C.2, we have

[w* = w2 < /1/m(r ~HTH1(r — F),

3/2 (C1n
[we —w@ |, < o .
m/2Tn9/2 L6 1log” (m)

In addition, since the entries of 6y are i.i.d. generated from N(0,1/d), we have |02 <
2(2 + \/d—'log(1/6)) with probability at least 1 — § for any § > 0. By Lemma C.2, we have
Hg(xt,at;w(o))HF < Cyv/dm. Therefore,

165 8(%u.as W) (w" — wO)| < Cady flog(1/6)(x — F)TH (x — F).

Then, by the definition of M, in (C.5) and Lemma C.5, we have

IMe_i |2 < Csd®log(1/6)(r — ) TH-(x 7). (C.12)
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2. [|60]|2. [|[w* — W[y and [jw;_q —

e96 Substituting (C.12) and the above results on ||x; 4, — X¢,a;
ss7 w(® ||, back into (C.10) further yields

T(Xt,af) - T(Xt,at)
< 2at‘|¢(xt,at;wt71)”At—_11 + C4£Lipm_1/2 \/log(l/é)(r -7)TH 1 (r —71)

20130°/?
m1/2Tn9/2 L6 log®(m)

+ (Cow4/3L3d1/2 mlogm + )C3d2 \/log(l/é)(r -7)TH 1(r — 7).

s9s Note that we have w = O(m~'/?||r — T|g-1) by Lemma C.1. Therefore, the regret of the
699 Neural-LinUCB is

Q
Rr < \|QHmaxa? Y > " ¢(xia,; Warr+i)4 1 + Cabripm™"/*T/log(1/5)||r — Fllu -

te(T]

g=1i=1
CoTL3 a2 Togimllr — 7L S )
+ + Csd?+/log(1/8)|Ir — T|lgz-
( ml/6 m1/2n9/2L6log3(m) 3 m“ ||H 1

< Os5\/Tdlog(1 + TG?/(A\d))(vy/dlog(1 + T(log TK)/\) +log 1/ + A2 M)
+ Clrip L3d®*m=/°T \/log m1og(1/6) log(T K /8)||r — ||z,

700 where the first inequality is due to Cauchy’s inequality, the second inequality comes from the upper
701 bound of «; in Lemma C.4 and Lemma C.6. {Cj } j=0,...,6 are absolute constants that are independent
702 of problem parameters. O

703 Proof of Corollary 4.6. 1t directly follows the result in Theorem 4.4. O

70« D Proof of Technical Lemmas

705 In this section, we provide the proof of technical lemmas used in the regret analysis of Algorithm 1.

706 D.1 Proof of Lemma C.1

707 Before we prove the lemma, we first present some notations and a supporting lemma for simplification.
708 LetB3=(0",w')" € RI*P be the concatenation of the exploration parameter and the hidden layer
700 parameter of the neural network f(x; 3) = 07 ¢(x; w). Note that for any input data vector x € R,
710 we have

0 7] i T

55l = (05w 7,07 L ptaw)) = (obxiw)T0Tg0xw) . @D
711 where g(x;w) is the partial gradient of ¢(x; w) with respect to w defined in (C.1), which is a
712 matrix in R?P_ Similar to (4.2), we define H; . to be the neural tangent kernel matrix based on all
713 L + 1 layers of the neural network f(x;3). Note that by the definition of H in (4.2), we must have
714 Hp,1 = H 4+ B for some positive definite matrix B € RTX*TX _The following lemma shows that
715 the NTK matrix is close to the matrix defined based on the gradients of the neural network on T K
716 data points.

717 Lemma D.1 (Theorem 3.1 in Arora et al. [7]). Lete > 0 and § € (0,1). Suppose the activation
718 function in (2.2) is ReLU, i.e., 0;(z) = max(0, ), and the width of the neural network satisfies

L L

719 Then for any x,x’ € R? with [|x||o = ||x’||2 = 1, with probability at least 1 — & over the randomness
720  of the initialization of the network weight w it holds that

‘<\/1ﬁ 6f(a% 2, % af(aﬂﬁ’xl) > ~Hp i (x,%)

m

Vv

<e.
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Note that in the above lemma, there is a factor 1/1/m before the gradient. This is due to the additional
v/m factor in the definition of the neural network in (2.2), which ensures the value of the neural
network function evaluated at the initialization is of the order O(1).

Proof of Lemma C.1. Recall that we renumbered the feature vectors {X; i }+e[r),ke[k] for all arms

from round 1 to round 7" as {xi}i:L,_,T . By concatenating the gradients at different inputs and the
gradient in (D.1), we define ¥ € RTEX(d+P) a5 follows.

o(x1; W(O))T Hng(xl; W(O))
%GT(p(Xl ; W) : :
T= : = | dlxiw®)T 6l glxiw®)
Vi g ol vim . e
350 P(xrK;W)

dxri;w) T 0] g(xri; w®)
By Applying Lemma D.1, we know with probability at least 1 — ¢ it holds that
(W, W) — Hpga (x5, %)) < €

for any € > 0 as long as the width m satisfies the condition in (D.2). By applying union bound over
all data points {x1,...,X¢,...,XTK }, we further have

|P®" —H; ,||r < TKe.

Note that H is the neural tangent kernel (NTK) matrix defined in (4.2) and Hyy; is the NTK
matrix defined based on all L + 1 layers. By Assumption 4.3, H has a minimum eigenvalue
Ao > 0, which is defined based on the first L layers of f. Furthermore, by the definition of
NTK matrix in (4.2), we know that Hy,; = H + B for some semi-positive definite matrix B.
Therefore, the NTK matrix Hy; defined based on all L + 1 layers is also positive definite and its
minimum eigenvalue is lower bounded by Ag. Let € = \g/(2TK). By triangle equality we have
oo - HL+1—||‘I"I’T—HL+1 ||QI - HL+1_ “‘I"I’T—HL+1 HFI - HL+1_)\O/2I - 1/2HL+1’
which means that ¥ is semi-definite positive and thus rank(¥) = T'K since m > TK.

We assume that ¥ can be decomposed as ¥ = PDQ T, where P € RTEXTK ig the eigenvectors of
YW and thus PP = Ipg, D € RTEXTK jg 3 diagonal matrix with the square root of eigenvalues
of W' and QT € RTEx(d+1) is the eigenvectors of ¥ W and thus Q' Q = Iyx. We use
Q; € R™TK and Q, € RP*XTX to denote the two blocks of Q such that QT = [Q/],Q, |. By
definition, we have

Q'Q=1Q/.Q;] {8;] =Q/ Qi +Q; Qe =TIrx.

Note that the minimum singular value of Q; € R¥*TK is zero since d is a fixed number and
TK > d. Therefore, it must hold that rank(Qz) = TK and thus Q] Qo is positive definite. Let

r=(r(x1),...,7(xi),...,7(xrx)) " € RTK denote the vector of all possible rewards. We further
define G € RTKdxP and & € RTK a5 follows
g(x1; w®) ¢(x1,1; Wo)
1 WO :
G = N gxi;w®) | @=| (xpp; Wiy |- (D.3)
g(XTK;W(O)) ¢(XT,K§WT71>
and ©, @ € RTEXTKd 55 follows
O*T 03’
o — 07 Y- oF , (D.4)
B*T OOT
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It can be verified that ¥ = PD[Q{ , QJ ] and PDQ, = ©®,G. Note that we have Q4 Qs is positive
definite by Assumption 4.3, which corresponds to the neural tangent kernel matrix defined on the first
L layers. Then we can define w* as follows

w* =w® +1/V/mQ(Q] Q2) " 'D P (r — ©*®). (D.5)
We can verify that
0*® + /mPDQ, (w* —w®) =r.
On the other hand, we have
[w* — w2 <1/m(r-©*®)"PD Q) Q) 'D'P(r — ©*®)
<1/m(r—©*®) ' H (r - 0*®),

which completes the proof. O

D.2 Proof of Lemma C.2

Note that we can view the output of the last hidden layer ¢(x; w) defined in (2.3) as a vector-output
neural network with weight parameter w. The following lemma shows that the output of the neural
network ¢ is bounded at the initialization.

Lemma D.2 (Lemma 4.4 in Cao and Gu [13]). Let § € (0,1), and the width of the neural net-
work satisfy m > CyoLlog(TKL/§). Then for all ¢ € [T], k € [K] and j € [d], we have
|95 (x¢ 13 WwO)| < C1/log(TK/§) with probability at least 1 — &, where w(®) is the initialization
of the neural network.

In addition, in a smaller neighborhood of the initialization, the gradient of the neural network ¢ is
uniformly bounded.

Lemma D.3 (Lemma B.3 in Cao and Gu [13]). Let w < CoL~%(logm)™3 and w € B(wo,w).
Then for all ¢t € [T], k € [K] and j € [d], the gradient of the neural network ¢ defined in (2.3)
satisfies || Vw; (X113 W)||2 < C1v/Lm with probability at least 1 — TK L? exp(—Comw?/3L).

The next lemma provides an upper bound on the gradient of the squared loss function defined in (3.5).
Note that our definition of the loss function is slightly different from that in Allen-Zhu et al. [4] due
to the output layer 8; and thus there is an additional term on the upper bound of ||0; |2 for all ¢ € [T].
Lemma D.4 (Theorem 3 in Allen-Zhu et al. [4]). Let w < Co6°/2/(T%2L8log® m). For all
w € B(w(®,w), with probability at least 1 — exp(—Cymw?/3L) over the randomness of w(®), it
holds that

CoTmL(w) SUP;=1,..H ||01||§

2
<
VL3 < :

Proof of Lemma C.2. Fix the epoch number ¢ and we omit it in the subscripts in the rest of the proof
when no confusion arises. Recall that w(®) is the s-th iterate in Algorithm 2. Let § > 0 be any
constant. Let w be defined as follows.

w = 6% 2m= Y292 [ 761073 (m). (D.6)

We will prove by induction that with probability at least 1 — § the following statement holds for all
s=0,1,...,n

V0og(TK/$)
;i (x; w®) <cz O§+1/ . forVj € [d]; and [w) — wO[| < w. D.7)

First note that (D.7) holds trivially when s = 0 due to Lemma D.2. Now we assume that (D.7) holds

forall 5 =0,...,s. The loss function in (3.5) can be bounded as follows.
qH qH
LwD) =307 plxss W) =7)% <> 21645 - [doxis w15 +1).
i=1 i=1
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7e0 By the update rule of 8, we have

t “1
1612 = H (AI + Z¢(xi;wi1)¢(xiiwi1)T> > b(xiswi1)F
i=1 i=1

< 2d, (D.8)
2
781 where the inequality is due to Lemma C.5, which combined with (D.7) immediately implies
_ J 1 2
L(wP) < C1Td®log(TK/6) ( > h+1) < C1Td?log(TK /) log? n. (D.9)
h=0

782 Substituting (D.8) and (D.9) into the inequality in Lemma D.4, we also have

(7) j 2
< Cyy/ < . .
VLW, < Car/dTmL(w)) < C3d*T log(n)/mlog(TK/5) (D.10)

783 Now we consider w(**1), By triangle inequality we have

w1 — W], < Z [wG+D) — W

= Z”ch (J)
< anQTlog(n)\/mlog(TK/é), (D.11)

§=0
784 where the last inequality is due to (D.10). If we choose the step size 7, in the g-th epoch such that

w
< b
1= 2Tnlog(n)/mlog(TK/d)

(D.12)

785 then we have Hw((fﬂ) — w(®]l; < w. Note that the choice of m,w satisfies the condition in

786 Lemma C.3. Thus we know ¢;(x; w) is almost linear in w, which leads to
(3w < s (3 W) + (Vo (x; w®), wt ) — w4 O3 L3d=12\/mlogm
|¢]( ) J J ) ’ g

V/10g(TK/9)
ZC o8(TK/0) +Vdm||VLw®) |2 + 20502 L3d~ 2\ /mlogm

h+1

l (TK

+20Fw4/3L3d 1/2\/@
log(TK
_ZCO\/Og—/(S) wr+20 4/3L3d_1/2\/m3 (D.13)

h+1

787 where in the second inequality we used the induction hypothesis (D.7), Cauchy-Schwarz inequality
788 and Lemma D.3, and the third inequality is due to (D.10). Note that the definition of w in (D.6)
780 ensures that wy/dm < 1/2 and w*/3L3d~/2\/mlogm < m~Y/ST-SL=54~1/2\/logm < 1/n as
790 long as m > nS. Plugging these two upper bounds back into (D.13) finishes the proof of (D.7).

791 Note that for any ¢ € [T'], we have w; = w,g") for some ¢ = 1,2, .. .. Since we have w; € B(w,w),

792 the gradient g(x; w(®)) can be directly bounded by Lemma D.3, which implies ||g(x; w(©)||r <
793 CgvVdLm. Applying (D.7) with s = n, we have the following bound of the neural network function
790 (x;wi) = p(x;w,) for all ¢ in the g-th epoch

lp(x; w)||2 < Cov/dlog(n) log(TK/9),

795 which completes the proof. In this proof, {C; > 0};—¢ ... ¢ are constants independent of problem
796 parameters. O
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D.3 Proof of Lemma C.4

The following lemma characterizes the concentration property of self-normalized martingales.

Lemma D.5 (Theorem 1 in Abbasi-Yadkori et al. [1]). Let {£}$2, be a real-valued stochastic process
and {x;}$°; be a stochastic process in R%. Let F; = o(x1,...,X¢41,& — 1,...,&) be a o-algebra
such that x; and &; are F;_;-measurable. Let A; = A\I + Zi:l XSXST for some constant A > 0 and

Sy = 22:1 &sx;. If we assume & is v-subGaussian conditional on F;_1, then for any n € (0, 1),
with probability at least 1 — J, we have

det(A4)1/? det(/\I)_l/2>

IS0]% 1 < 207 log ( ¢

Proof of Lemma C.4. Let ®; = [¢(X1,4,5W0), -+, P(Xt,a,; Wi—1)] € R¥*? be the collection of
feature vectors of the chosen arms up to time ¢ and ¥; = (71,...,7;) ' be the concatenation of all
received rewards. According to Algorithm 1, we have A; = A\ + ®;®, and thus

0,=A;'b, = NI+ &) '®7T,.

By Lemma C.1, the underlying reward generating function r, = (Xy,q,) = E[F(X¢,q4, )|[X¢,4,] can be
rewritten as

Ty = (07, ¢(Xt,at;wt—1)> + Ong(Xt,at%W(O))(W* - W(O))-
By the definition of the reward in (3.3) we have 7; = r; + &;. Therefore, it holds that

t
0, =AD"+ A Z ¢(Xs,as§ws—1)(90Tg(Xs,as ; W(O))(W* - W(O)) +&)
s=1

¢
= 0" —AATIO + AT (X0, Won1) (00 8(%s,a s W) (W — W) £ ).
s=1
Note that A, is positive definite as long as A > 0. Therefore || - ||, and || - || a, are well defined
norms. Then for any 6 € (0, 1) by triangle inequality we have

16: — 6" — A, '@,0,Gi(w* = w V) |a, < N[0 51 + [ @e&illo

A,)1/2 1)-1/2
-, \/ng(det( ) ?etm )+)\1/2M

holds with probability at least 1 — §, where in the last inequality we used Lemma D.5 and the fact
that [|0%]| y -1 < A~1/2||0*||, < A=Y/2M by Lemma C.1. Plugging the definition of ®;, ©®; and G,
and apply Lemma C.6, we further have

t
B — 0"~ AT B(es0r: Wam1)0] B0 0s W) (W w<0>>‘

s=1

Ay

< vy/2(dlog(1 + t(log HE)/) + log 1/8) + /20,

where we used the fact that ||¢(x; w)||2 < C+/dlog HK by Lemma C.2. O

D.4 Proof of Lemma C.5

We now prove the technical lemma that upper bounds [|A; 3" _, ¢.Cl|o.

Proof of Lemma C.5. We first construct auxiliary vectors Zﬁt € R4 and matrices B, €
R(4+1)x(d+1) for all t = 1, . . . in the following way:

o G 'y _[A7Y 04
N o e i 4D
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832

where 04 € R? is an all-zero vector. Then by definition we immediately have

t t
ATy b = HBt RN
s=1 s=1

Foralls =1,2... let {f;, }f;r} be the coefficients of the decomposition of U ~1(, (;NSS on the natural

basis. Specifically, let {e1, ..., eq1} be the natural basis of R4*! such that the entries of e; are all
zero except the j-th entry which equals 1. Then we have

(D.15)

2

d
U'apa =) Bajej, Vs=12,... (D.16)
j=1

We can conclude that |3, ;| < 1 since |(s| < U and l|@s|l2 < 1. Moreover, it is easy to verify that
|[@¢|l2 = 1 for all ¢ > 1. Therefore, we have

t
oy o -
s=1 2

o d
= HBthmZUZﬁs,jej

s=1 i=1

d t ~]~
ZBt Z(bs(p;rﬂs,jej

j=1 s=1

d
<UY.
j=1
d
= UZ
j=1

where the inequality is due to triangle inequality and the last equation is due to the definition of qgt
and B; in (D.14). Foreach j = 1,...,d + 1, we have

2

t
Bt Z (;s (’ﬁ;r (Zs Cs
s=1

2

=U

2

2

t
Bt Z 585263,]‘
s=1

t
AN b0l B

s=1

, (D.17)
2

t
‘AZIZ%%T&J ZHAZI Z Gs) Bsj + A7 Z G Bs.j
=1 2 s€[t]:Ba ;>0 s€[t]:B. ;<0 2
SHA;l S $.0] B +‘A;1 > ¢S¢Z<6s,j>‘
s€[t]:Bs,;20 2 s€E[t]:Bs,;<0 2
(D.18)

Since we have |3, ;| < 1, it immediately implies

t
A=+ ¢.p] - D ¢! Bay

s=1 s€(t]:Bs,;2>0

¢
Av=2I+) ¢d] = > dud] (—Bsj)
s=1 s€[t]:Bs,;<0
Further by the fact that ||A~'B||; < 1 for any A = B = 0, combining the above results with (D.18)
yields

t
ATy Bedl By <2
Finally, substituting the above results into &(lz)l 17) and (D.15) we have
’Atl Etj ¢sCs|| <2Ud,
o 2
which completes the proof. 1 O
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