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ABSTRACT
Notions of counterfactual invariance (CI) have proven essential for predictors that
are fair, robust, and generalizable in the real world. We propose graphical criteria
that yield a sufficient condition for a predictor to be counterfactually invariant in
terms of a conditional independence in the observational distribution. In order to
learn such predictors, we propose a model-agnostic framework, called Counter-
factually Invariant Prediction (CIP), building on the Hilbert-Schmidt Conditional
Independence Criterion (HSCIC), a kernel-based conditional dependence measure.
Our experimental results demonstrate the effectiveness of CIP in enforcing counter-
factual invariance across various simulated and real-world datasets including scalar
and multi-variate settings.

1 INTRODUCTION
Invariance, or equivariance to certain data transformations, has proven essential in numerous applica-
tions of machine learning (ML), since it can lead to better generalization capabilities (Arjovsky et al.,
2019; Chen et al., 2020; Bloem-Reddy & Teh, 2020). For instance, in image recognition, predictions
ought to remain unchanged under scaling, translation, or rotation of the input image. Data augmen-
tation, an early heuristic to promote such invariances, has become indispensable for successfully
training deep neural networks (DNNs) (Shorten & Khoshgoftaar, 2019; Xie et al., 2020). Well-known
examples of “invariance by design” include convolutional neural networks (CNNs) for translation
invariance (Krizhevsky et al., 2012), group equivariant NNs for general group transformations (Cohen
& Welling, 2016), recurrent neural networks (RNNs) and transformers for sequential data (Vaswani
et al., 2017), DeepSet (Zaheer et al., 2017) for sets, and graph neural networks (GNNs) for different
types of geometric structures (Battaglia et al., 2018).

Many applications in modern ML, however, call for arguably stronger notions of invariance based
on causality. This case has been made for image classification, algorithmic fairness (Hardt et al.,
2016; Mitchell et al., 2021), robustness (Bühlmann, 2020), and out-of-distribution generalization
(Lu et al., 2021). The goal is invariance with respect to hypothetical manipulations of the data
generating process (DGP). Various works develop methods that assume observational distributions
(across environments or between training and test) to be governed by shared causal mechanisms,
but differ due to various types of distribution shifts encoded by the causal model (Peters et al.,
2016; Heinze-Deml et al., 2018; Rojas-Carulla et al., 2018; Arjovsky et al., 2019; Bühlmann, 2020;
Subbaswamy et al., 2022; Yi et al., 2022; Makar et al., 2022). Typical goals include to train predictors
invariant to such shifts, to learn about causal mechanisms and to improve robustness against spurious
correlations or out of distribution generalization. The term “counterfactual invariance” has also been
used in other out of distribution learning contexts unrelated to our task, e.g., to denote invariance to
certain symmetry transformations (Mouli & Ribeiro, 2022).

While we share the broader motivation, these works are orthogonal to ours, because even though
counterfactual distributions are also generated from the same causal model, they are fundamentally
different from such shifts (Peters et al., 2017). Intuitively, counterfactuals are about events that
did not, but could have happened had circumstances been different in a controlled way. A formal
discussion of what we mean by counterfactuals is required to properly position our work in the
existing literature and describe our contributions.

2 PROBLEM SETTING AND RELATED WORK

2.1 PRELIMINARIES AND TERMINOLOGY

Definition 2.1 (Structural causal model (SCM)). A structural causal model is a tuple S =
(U,V, F,PU) such that U is a set of background variables that are exogenous to the model; V
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is a set of observable (endogenous) variables; F = {fV }V ∈V is a set of functions from (the do-
mains of) pa(V ) ∪ UV to (the domain of) V , where UV ⊂ U and pa(V ) ⊆ V \ {V } such that
V = fV (pa(V ), UV ); PU is a probability distribution over the domain of U. Further, the subsets
pa(V ) ⊆ V \ {V } are chosen such that the graph G over V where the edge V ′ → V is in G if and
only if V ′ ∈ pa(V ) is a directed acyclic graph (DAG).

Observational distribution. An SCM implies a unique observational distribution over V, which
can be thought of as being generated by transforming the distribution over PU via the deterministic
functions in F iteratively to obtain a distribution over V.1

Interventions. Given a variable A ∈ V, an intervention A ← a amounts to replacing fA in F
with the constant function setting A to a. This yields a new SCM, which induces the interventional
distribution under intervention A← a.2 Similarly, we can intervene on multiple variables V ⊇ A←
a. For an outcome (or prediction target) variable Y ⊂ V, we then write Y∗

a for the outcome in the
intervened SCM, also called potential outcome. Note that the interventional distribution PY∗

a
(y)

differs in general from the conditional distribution PY|A(y | a).3 This is typically the case when
Y and A have a shared ancestor, i.e., they are confounded. In interventional distributions, potential
outcomes are random variables via the exogenous variables u, i.e., Y ∗

a (u) where u ∼ PU. Hence,
interventions capture “population level” properties, i.e., the action is performed for all units u.

Counterfactuals. Counterfactuals capture what happens under interventions for a “subset” of
possible units u that are compatible with observations W = w for a subset of observed variables
W ⊆ V. This can be described in a three step procedure. (i) Abduction: We restrict our attention
to units compatible with the observations, i.e., consider the new SCM Sw = (U,V, F,PU|W=w).
(ii) Intervention: Within Sw, perform an intervention A ← a on some variables A (which need
not be disjoint from W). (iii) Prediction: Finally, we are typically interested in the outcome Y in
an interventional distribution of Sw, which we denote by PY∗

a |W=w(y) and call a counterfactual
distribution: “Given that we have observed W = w, what would Y have been had we set A← a,
instead of the value A has actually taken?” Counterfactuals capture properties of a “subpopulation”
u ∼ PU|W=w compatible with the observations.4 Even for granular W, there may be multiple units
u in the support of this distribution. In contrast, “unit level counterfactuals” often considered in
philosophy contrast Y∗

a(u) with Y∗
a′(u) for a single unit u. Such unit level counterfactuals are too

fine-grained in our setting. Hence, our used definition of counterfactual invariance is:

Definition 2.2 (Counterfactual invariance). Let A, W be (not necessarily disjoint) sets of nodes in a
given SCM. Then, Y is counterfactually invariant in A w.r.t. W if PY∗

a |W=w(y) = PY∗
a′ |W=w(y)

almost surely, for all a,a′ in the domain of A and all w in the domain of W.5

Predictors in SCMs. Ultimately, we aim at learning a predictor Ŷ for the outcome Y. Originally, the
predictor Ŷ is not part of the DGP, because we get to learn fŶ from data. Using supervised learning,
the predictor fŶ depends both on the chosen inputs X ⊂ V as well as the target Y. However, once
fŶ is fixed, it is a deterministic function with arguments X ⊂ V, so (U,V ∪ {Ŷ}, F ∪ {fŶ},PU)

is a valid SCM and we can consider Ŷ an observed variable with incoming arrows from only X.
Hence, the definition of counterfactual invariance can be applied to the predictor Ŷ.

Kernel mean embeddings (KME). Our method relies on kernel mean embeddings (KMEs). We
describe the main concepts pertaining KMEs and refer the reader to Smola et al. (2007); Schölkopf
et al. (2002); Berlinet & Thomas-Agnan (2011); Muandet et al. (2017) for details. Fix a measurable
space Y with respect to a σ-algebraFY , and consider a probability measure P on the space (Y ,FY ).
Let H be a reproducing kernel Hilbert space (RKHS) with a bounded kernel kY : Y × Y → R,
i.e., kY is such that supy∈Y k(y,y) < ∞. The kernel mean embedding µP of P is defined as the
expected value of the function k( · ,y) with respect to y, i.e., µP := E [k( · ,y)]. The definition

1Note that all randomness stems from PU. The observational distribution is well-defined and unique,
essentially because every DAG allows for a topological order.

2The observational distribution in an intervened SCM is called interventional distribution of the base SCM.
3We use P for distributions (common in the kernel literature) and Y∗

a instead of the do notation.
4Note that conditioning in an interventional distribution is different from a counterfactual and our notation is

quite subtle here PY∗
a
(y | W = w) ̸= PY∗

a |W=w(y).
5With an abuse of notation, if W = ∅ then the requirement of conditional counterfactual invariance becomes

PYa(y) = PYa′ (y) almost surely, for all a,a′ in the domain of A.
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of KMEs can be extended to conditional distributions (Fukumizu et al., 2013; Grünewälder et al.,
2012; Song et al., 2009; 2013). Consider two random variables Y, S, and denote with (ΩY,FY) and
(ΩS,FS) the respective measurable spaces. These random variables induce a probability measure
PY,S in the product space ΩY × ΩS. Let HY be a RKHS with a bounded kernel kY(·, ·) on ΩY.
We define the KME of a conditional distribution PY|S(· | s) via µY|S=s := E [kY( · ,y) | S = s].
Here, the expected value is taken over y. KMEs of conditional measures can be estimated from
samples (Grünewälder et al., 2012).Pogodin et al. (2022) recently proposed an efficient kernel-
based regularizer for learning features of input data that allow for estimating a target while being
conditionally independent of a distractor given the target. Since CIP ultimately enforces conditional
independence (see Theorem 3.2), we believe it could further benefit from leveraging the efficiency
and convergence properties of their technique, which we leave for future work.

2.2 RELATED WORK AND CONTRIBUTIONS

While we focus on counterfactuals in the SCM framework (Pearl, 2000; Peters et al., 2016), there are
different incompatible frameworks to describe counterfactuals (von Kügelgen et al., 2022; Dorr, 2016;
Woodward, 2021), which may give rise to orthogonal notions of counterfactual invariance.

Research on algorithmic fairness has explored a plethora of causal “invariance” notions with the goal
of achieving fair predictors (Loftus et al., 2018; Carey & Wu, 2022; Plecko & Bareinboim, 2022).
Kilbertus et al. (2017) conceptually introduce a notion based on group-level interventions, which has
been refined to take into account more granular context by Salimi et al. (2019); Galhotra et al. (2022),
who then obtain fair predictors by viewing it as a database repair problem or a causal feature selection
problem, respectively. A counterfactual-level definition was proposed by Kusner et al. (2017) and
followed up by path-specific counterfactual notions (Nabi & Shpitser, 2018; Chiappa, 2019), where
the protected attribute may take different values along different paths to the outcome. Recently, Dutta
et al. (2021) developed an information theoretic framework to decompose the overall causal influence
allowing for exempted variables and properly dealing with synergies across different paths.

Our focus is on counterfactuals because they are fundamentally more expressive than mere interven-
tions (Pearl, 2000; Bareinboim et al., 2022), but do not require a fine-grained path- or variable-level
judgment of “allowed” and “disallowed” paths or variables, which may be challenging to devise in
practice. Since CI already requires strong assumptions, we leave path-specific counterfactuals—even
more challenging in terms of identifiability (Avin et al., 2005)—for future work. While our Defini-
tion 2.2 requires equality in distribution, Veitch et al. (2021) suggest a definition of a counterfactually
invariant predictor fŶ which requires almost sure equality of Ŷ∗

a and Ŷ∗
a′ , where we view Ŷ as an

observed variable in the SCM as described above. Fawkes & Evans (2023) recently shed light on the
connection between almost sure CI (a.s.-CI), distributional CI (D-CI) as in Definition 2.2, and CI
of predictors (F-CI) showing that fŶ being F-CI is equivalent to Ŷ being D-CI conditioned on X,
rendering it also equivalent to counterfactual fairness (Kusner et al., 2017).

Inspired by problems in natural language processing (NLP), Veitch et al. (2021) aim at “stress-
testing” models for spurious correlations. It differs from our work in that they (i) focus only on
two specific graphs, and (ii) provide a necessary but not sufficient criterion for CI in terms of a
conditional independence. Their method enforces the conditional independence via maximum mean
discrepancy (MMD) (in discrete settings only). However, enforcing a consequence of CI, does not
necessarily improve CI. Indeed, Fawkes & Evans (2023, Prop. 4.4) show that while a.s.-CI implies
certain conditional independencies, no set of conditional independencies implies any bounds on the
difference in counterfactuals. On the contrary, the weaker notion of D-CI in Definition 2.2 can in fact
be equivalent to conditional independencies in the observational distribution (Fawkes & Evans, 2023,
Lem. A.3). Albeit only proved for special cases where the counterfactual distribution is identifiable,
this opens the possibility for sufficient graphical criteria for distributional CI in any graph.

Contributions. We provide such a sufficient graphical criterion for D-CI under an injectivity
condition of a structural equation. Depending on the assumed causal graph, this can also come at the
cost of requiring certain variables to be observed. As our main contribution, we propose a model-
agnostic learning framework, called Counterfactually Invariant Prediction (CIP), using a kernel-based
conditional dependence measure that also works for mixed categorical and continuous, multivariate
variables. We evaluate CIP extensively in (semi-)synthetic settings and demonstrate its efficacy in
enforcing counterfactual invariance even when the strict assumptions may be violated.
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Figure 1: (a) Exemplary graph in which a predictor Ŷ with Ŷ ⊥⊥ A ∪X | S is CI in A w.r.t. X.
(b)-(c) Causal and anti-causal structure from Veitch et al. (2021) where X⊥

A is not causally influenced
by A, X⊥

Y does not causally influence Y, and X∧ is both influenced by A and influences Y. (d)
Assumed causal structure for the synthetic experiments, see Section 4.1 and Appendix F for details.
(e) Assumed causal graph for the UCI Adult dataset (Section 4.3), where A = {‘gender’, ‘age’}.
(f) Causal structure for our semi-synthetic image experiments (Section 4.2), where A = {Pos.X},
U = {Scale}, C = {Shape, Pos.Y}, X = {Color,Orientation}, and Y = {Outcome}.

3 COUNTERFACTUALLY INVARIANT PREDICTION (CIP)

3.1 SUFFICIENT CRITERION FOR COUNTERFACTUAL INVARIANCE

We will now establish a sufficient graphical criterion to express CI as conditional independence in the
observational distribution, rendering it estimable from data. First, we need some terminology.

Graph terminology. Consider a path π (a sequence of distinct adjacent nodes) in a DAG G. A set of
nodes S is said to block π, if π contains a triple of consecutive nodes A,B,C such that one of the
following hold: (i) A → B → C or A ← B ← C or A ← B → C and B ∈ S; (ii) A → B ← C
and neither B nor any descendent of B is in S. Further, we call π a causal path between sets of nodes
A,B, when it is a directed path from a node in A to a node in B. A causal path π is a proper causal
path if it only intersects A at the first node in π. Finally, we denote with GA the graph obtained by
removing from G all incoming arrows into nodes in A. We now define the notion of valid adjustment
sets (Shpitser et al., 2010, Def. 5), which our graphical criterion for CI relies on.

Definition 3.1 (valid adjustment set). Let G be a causal graph and let X, Y be disjoint (sets of) nodes
in G. A set of nodes S is a valid adjustment set for (X,Y), if (i) no element in S is a descendant
in GX of any node W /∈ X which lies on a proper causal path from X to Y, and (ii) S blocks all
non-causal paths from X to Y in G.

The sufficient graphical criterion that renders CI equivalent to a conditional independence then reads
as follows. (The proof is deferred to Appendix A.)

Theorem 3.2. Let G be a causal graph, A, W be two (not necessarily disjoint) sets of nodes in
G, such that (A ∪W) ∩ Y = ∅, let S be a valid adjustment set for (A ∪W,Y). Further, for
X := W \A assume that X = g(X,A,UX) (which implies pa(V ) ∈ X ∪A for all V ∈ X ∪A)
with g injective in UX for all values of A and X. Then, in all SCMs compatible with G, if a predictor
Ŷ satisfies Ŷ ⊥⊥ A ∪W | S, then Ŷ is counterfactually invariant in A with respect to W.

Assumptions. First, we note that assuming the causal graph to be known is a standard assumption
widely made in the causality literature, even though it is a strong one (Cartwright, 2007). Fawkes &
Evans (2023, Prop. A.3) shows that CI cannot be decided from the observational distribution (and the
causal graph) unless strong assumptions are made—they consider a case in which counterfactuals
are identified. A strong assumption of Theorem 3.2, is on the arguments and injectivity of g, which
ensures that any given observation (x,a) of X and A puts a point mass on a single u for UX during
abduction. While this is an untestable and admittedly strong, we highlight that this is not a limitation
of our works specifically, but at least comparably strong assumptions are provably required for
any method that claims to guarantee CI from observational data. Therefore, we complement our
theoretical results by extensive experimental evaluation demonstrating CIPS’s efficacy even when
some assumptions are violated. Finally, we do not assume the full SCM to be known.
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3.2 EXAMPLE USE-CASES OF COUNTERFACTUALLY INVARIANT PREDICTION

Fig. 1(a) shows an exemplary graph in which the outcome Y is affected by (disjoint) sets A (in which
we want to be CI) and X (inputs to fŶ). There may be confounders S between X and Y and we
consider W = X ∪A ∪ S. Here we aim to achieve Ŷ ⊥⊥ A ∪X | S to obtain CI in A w.r.t. X. In
our synthetic experiments, we also allow S to affect A, see Fig. 1(d). Let us further illustrate concrete
potential applications of CI, which we later also study in our experiments.

Counterfactual fairness. Counterfactual fairness (Kusner et al., 2017) informally challenges a
consequential decision: “Would I have gotten the same outcome had my gender, race, or age been
different with all else being equal?”. Here Y ⊂ V denotes the outcome and A ⊂ V \ Y the
protected attributes such as gender, race, or age—protected under anti-discrimination laws (Barocas
& Selbst, 2016)—by A ⊆ V \Y. Collecting all remaining observed covariates into W := V \Y
counterfactual fairness reduces to counterfactual invariance. In experiments, we build a semi-synthetic
DGP assuming the graph in Fig. 1(e) for the UCI adult dataset (Kohavi & Becker, 1996).

Robustness. CI serves as a strong notion of robustness in settings such as image classification:
“Would the truck have been classified correctly had it been winter in this situation instead of summer?”
For concrete demonstration, we use the dSprites dataset (Matthey et al., 2017) consisting of simple
black and white images of different shapes (squares, ellipses, . . . ), sizes, orientations, and locations.
We devise a DGP for this dataset with the graph depicted in Fig. 1(f).

Text classification. Veitch et al. (2021) motivate the importance of counterfactual invariance in text
classification tasks. Specifically, they consider the causal and anti-causal structures depicted in Veitch
et al. (2021, Fig. 1), which we replicate in Fig. 1(b,c). Both diagrams consist of protected attributes
A, observed covariates X, and outcomes Y. To apply our sufficient criterion to their settings, we
must assume that A and Y are unconfounded. We show in Appendix G.1 that CIP still performs on
par with Veitch et al. (2021) even when this assumption is violated.

Theorem 3.2 provides a sufficient condition for CI (Definition 2.2) in terms of the conditional
independence Ŷ ⊥⊥ A ∪W | S. We next develop an operator HSCIC(Ŷ,A ∪W | S) that is (a)
efficiently estimable from data, (b) differentiable, (c) a monotonic measure of conditional dependence,
and (d) is zero if and only if Ŷ ⊥⊥ A∪W | S. Hence, it is a practical objective to enforce CI.

3.3 HSCIC FOR CONDITIONAL INDEPENDENCE

Consider two sets of random variables Y and A ∪ W, and denote with (ΩY,FY) and
(ΩA∪W,FA∪W) the respective measurable spaces. Suppose that we are given two RKHSs HY,
HA∪W over the support of Y and A ∪W respectively. The tensor product spaceHY ⊗HA∪W is
defined as the space of functions of the form (f ⊗ g)(y, [a,w]) := f(y)g([a,w]), for all f ∈ HY

and g ∈ HA∪W. The tensor product space yields a natural RKHS structure, with kernel k defined
by k(y⊗ [a,w],y′ ⊗ [a′,w′]) := kY(y,y′)kA∪W([a,w], [a′,w′]). We refer the reader to Szabó &
Sriperumbudur (2017) for more details on tensor product spaces.
Definition 3.3 (HSCIC). For (sets of) random variables Y, A ∪W, S, the HSCIC between
Y and A ∪W given S is defined as the real-valued random variable HSCIC(Y,A ∪W |
S) = HY,A∪W|S ◦ S where HY,A∪W|S is a real-valued deterministic function, defined as
HY,A∪W|S(s) := ∥µY,A∪W|S=s − µY|S=s ⊗ µA∪W|S=s∥ with ∥·∥ the norm induced by the inner
product of the tensor product spaceHX ⊗HA∪W.
Our Definition 3.3 is motivated by, but differs slightly from Park & Muandet (2020, Def. 5.3), which
relies on the Bochner conditional expected value. While it is functionally equivalent (with the same
implementation, see Eq. (2)), ours has the benefit of bypassing some technical assumptions required
by Park & Muandet (2020) (see Appendices C and D for details). The HSCIC has the following
important property, proved in Appendix B.
Theorem 3.4 (Theorem 5.4 by Park & Muandet (2020)). If the kernel k of HX ⊗ HA∪W is
characteristic6, HSCIC(Y,A ∪W | S) = 0 almost surely if and only if Y ⊥⊥ A ∪W | S.

Because “most interesting” kernels such as the Gaussian and Laplacian kernels are characteristic,
and the tensor product of translation-invariant characteristic kernels is characteristic again (Szabó &
Sriperumbudur, 2017), this natural assumption is non-restrictive in practice. Combining Theorems 3.2
and 3.4, we can now use HSCIC to reliably achieve counterfactual invariance.

6The tensor product kernel k is characteristic if PY,A∪W 7→ Ey,[a,w] [k( · ,y ⊗ [a,w])] is injective.
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Corollary 3.5. Under the assumptions of Theorem 3.2, if HSCIC(Ŷ,A∪W | S) = 0 almost surely,
then Ŷ is counterfactually invariant in A with respect to W.

In addition, since HSCIC is defined in terms of the MMD (Definition 3.3 and Park & Muandet (2020,
Def. 5.3)), it inherits the weak convergence property, i.e., if HSCIC(Ŷ,A ∪W | S) converges to
zero, then the counterfactual distributions (for different intervention values a) weakly converge to
the same distribution. We refer to Simon-Gabriel & Schölkopf (2018); Simon-Gabriel et al. (2020)
for a precise characterization. Hence, as HSCIC decreases, the predictor approaches counterfactual
invariance and we need not drive HSCIC all the way to zero to obtain meaningful results.

3.4 LEARNING COUNTERFACTUALLY INVARIANT PREDICTORS (CIP)
Corollary 3.5 justifies our proposed objective, namely to minimize the following loss

LCIP(Ŷ) = L(Ŷ) + γ · HSCIC(Ŷ,A ∪W | S) , [CIP loss] (1)

where L(Ŷ) is a task-dependent loss function (e.g., cross-entropy for classification, or mean squared
error for regression) and γ ≥ 0 is a parameter that regulates the trade-off between predictive
performance and counterfactual invariance.

The meaning of γ and how to choose it. The second term in Eq. (1) amounts to the additional objec-
tive of CI, which is typically at odds with predictive performance within the observational distribution
L. In practice, driving HSCIC to zero, i.e., viewing our task as a constrained optimization problem,
typically deteriorates predictive performance too much to be useful for prediction—especially in
small data settings.7 As the choice of γ amounts to choosing an operating point between predictive
performance and CI, it cannot be selected in a data-driven fashion. As different settings call for
different tradeoffs, we advocate for employing the following procedure: (i) Train an unconstrained
predictor for a base predictive performance (e.g., 92% accuracy or 0.21 MSE). (ii) Fix a tolerance
level α, indicating the maximally tolerable loss in predictive performance (e.g., at most 5% drop
in accuracy or at most 10% increase in MSE). (iii) Perform a log-spaced binary search on γ (e.g.,
on [1e− 4, 1e4]) to find the largest γ such that the predictive performance of the resulting predictor
achieves predictive performance within the tolerance α—see Appendix F.6 for an illustration.

Estimating the HSCIC from samples. The key benefit of HSCIC as a conditional independence
measure is that it does not require parametric assumptions on the underlying probability distributions,
and it is applicable for any mixed, multi-dimensional data modalities, as long as we can define
positive definite kernels on them. Given n samples {(ŷi,ai,wi, si)}ni=1, denote with K̂Ŷ the kernel
matrix with entries [K̂Ŷ]i,j := kŶ(ŷi, ŷj), and let K̂A∪W be the kernel matrix for A ∪W. We
estimate the HŶ,A∪W|S ≡ HŶ,A∪W|S(·) as

Ĥ2
Ŷ,A∪W|S = ŵT

Ŷ,A∪W|S

(
K̂Ŷ ⊙ K̂A∪W

)
ŵŶ,A∪W|S (2)

− 2
(
ŵT

Ŷ|SK̂YŵŶ,A∪W|S

)(
ŵT

A∪W|SK̂A∪WŵŶ,A∪W|S

)
+
(
ŵT

Ŷ|SK̂ŶŵŶ|S

)(
ŵT

A∪W|SK̂A∪WŵA∪W|S

)
,

where ⊙ is element-wise multiplication. The functions ŵŶ|S ≡ ŵŶ|S(·), ŵA∪W|S ≡ ŵA∪W|S(·),
and ŵŶ,A∪W|S ≡ ŵŶ,A∪W|S(·) are found via kernel ridge regression. Caponnetto & Vito (2007)

provide the convergence rates of the estimand Ĥ2
Ŷ,A∪W|S under mild conditions. In practice,

computing the HSCIC approximation by the formula in Eq. (2) can be computationally expensive.
To speed it up, we can use random Fourier features to approximate K̂Ŷ and K̂A∪W (Rahimi & Recht,
2007; Avron et al., 2017). We emphasize that Eq. (2) allows us to consistently estimate the HSCIC
from observational i.i.d. samples, without prior knowledge of the counterfactual distributions.

3.5 MEASURING COUNTERFACTUAL INVARIANCE.
Besides predictive performance, e.g., mean squared error (MSE) for regression or accuracy for
classification, our key metric of interest is the level of counterfactual invariance achieved by the

7In particular, HSCIC does not regularize an ill-posed problem, i.e., it does not merely break ties between
predictors with equal L(Ŷ). Hence it also need not decay to zero as the sample size increases.
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Figure 2: Results on synthetic data (see Appendix F.1 and Appendix F.2). Left: trade-off between
MSE and counterfactual invariance (VCF). Middle: strong correspondence between HSCIC and
VCF. Right: performance of CIP against baselines CF1 and CF2 and the naive baseline. As γ
increases, CIP traces out a frontier characterizing the trade-off between MSE and CI. CF2 and the
naive baseline are Pareto-dominated by CIP, i.e., we can pick γ to outperform CF2 in both MSE and
VCF simultaneously. CF1 has zero VCF by design, but worse predictive performance than CIP at
near zero VCF. Error bars are standard errors over 10 seeds.

predictor Ŷ. First, we emphasize again that counterfactual distributions are generally not identified
from the observational distribution (i.e., from available data) meaning that CI is generally untestable
in practice from observational data. We can thus only evaluate CI in (semi-)synthetic settings where
we have access to the full SCM and thus all counterfactual distributions.

A measure for CI must capture how the distribution of Ŷ∗
a′ changes for different values of a′ across

all conditioning values w (which may include an observed value A = a). We propose the Variance
of CounterFactuals (VCF) as a metric of CI

VCF(Ŷ) := Ew∼PW

[
vara′∼PA

[
EŶ∗

a′ |W=w[ŷ]
]]
. (3)

That is, we quantify how the average outcome varies with the interventional value a′ at conditioning
value w and average this variance over w. For deterministic predictors (point estimators), which
we use in all our experiments, the prediction is a fixed value for each input EŶ∗

a′ |W=w[ŷ] = ŷ) and
we can drop the inner expectation of Eq. (3). In this case, the variance term in Eq. (3) is zero if and
only if PŶ∗

a |W=w(y) = PŶ∗
a′ |W=w(y) almost surely. Since the variance is non-negative, the outer

expectation is zero if and only if the variance term is zero almost surely, yielding the following result.

Corollary 3.6. For point-estimators, Ŷ is counterfactually invariant in A w.r.t. W if and only if
VCF(Ŷ) = 0 almost surely.

Estimating VCF in practice requires access to the DGP to generate counterfactuals. Given d
i.i.d. examples (wi)

d
i=1 from a fixed observational dataset we sample k intervention values from

the marginal PA and compute corresponding predictions. The inner expectation is simply the
deterministic predictor output, and we compute the empirical expectation over the d observed w
values and empirical variances over the k sampled interventional values (for each w). Since the
required counterfactuals are by their very nature unavailable in practice, our analysis of VCF is limited
to (semi-)synthetic settings. Notably, the proposed procedure for choosing γ does not require VCF.
Our experiments corroborate the weak convergence property of HSCIC—small HSCIC implies
small VCF. Hence, HSCIC may serve as a strong proxy for VCF and thus CI in practice.

4 EXPERIMENTS

Baselines. As many existing methods focus on cruder purely observational or interventional
invariances (see Section 2.2), our choice of baselines for true counterfactual invariance is highly
limited. First, we compare CIP to Veitch et al. (2021) in their two limited settings (Fig. 6(b-c)) in
Appendix G.1, showing that our method performs on par with theirs. Next, we compare to two
methods proposed by Kusner et al. (2017) in settings where they apply. CF1 (their ‘Level 1’) consists
of only using non-descendants of A as inputs to fŶ. CF2 (their ‘Level 2’) assumes an additive noise
model and uses the residuals of descendants of A after regression on A together with non-descendants
of A as inputs to fŶ. We refer to these two baselines as CF1 and CF2 respectively. We also compare
CIP to the ‘naive baseline’ which consists in training a predictor ignoring A. In settings where A is
binary, we also compare to Chiappa (2019), devised for path-wise counterfactual fairness. Finally, we
develop heuristics based on data augmentation as further possible baselines in Appendix G.2.
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Figure 3: MSE and VCF for synthetic data (Appendix F.3) with 10- and 50-dimensional A for
different γ and 15 random seeds per box. CIP reliably achieves CI as γ increases.

4.1 SYNTHETIC EXPERIMENTS

First, we generate various synthetic datasets following the causal graph in Fig. 1(d). They contain (i)
the prediction targets Y, (ii) variable(s) we want to be CI in A, (iii) covariates X mediating effects
from A on Y, and (iv) confounding variables S. The goal is to learn a predictor Ŷ that is CI in A
w.r.t. W := A ∪X ∪ S. The datasets cover different dimensions for the observed variables and their
correlations and are described in detail in Appendix F.

Model choices and parameters. For all synthetic experiments, we train fully connected neural
networks (MLPs) with MSE loss LMSE(Ŷ) as the predictive loss L in Eq. (1) for continuous outcomes
Y. We generate 10k samples from the observational distribution in each setting and use an 80 to 20
train-test split. All metrics reported are on the test set. We perform hyper-parameter tuning for MLP
hyperparameters based on a random strategy (see Appendix F for details). The HSCIC(Ŷ,A ∪W |
S) term is computed as in Eq. (2) using a Gaussian kernel with amplitude 1.0 and length scale
0.1. The regularization parameter λ for the ridge regression coefficients is set to λ = 0.01. We set
d = 1000 and k = 500 in the estimation of VCF.

Model performance. We first study the effect of the HSCIC on accuracy and counterfactual
invariance on the simulated dataset in Appendix F.1. Fig. 2 (left) depicts the expected trade-off
between MSE and VCF for varying γ, whereas Fig. 2 (middle) highlights that HSCIC (estimable
from observational data) is a strong proxy of counterfactual invariance measured by VCF (see
discussion after Eq. (3)). Figure 2 (right) compares CIP to baselines for a simulated non-additive
noise model in Appendix F.2. For a suitable choice of γ, CIP outperforms the baseline CF2 and the
naive baseline in both MSE and VCF simultaneously. While CF1 achieves perfect CI by construction
(VCF = 0), its MSE is higher than CIP at almost perfect CI (VCF near zero). To conclude, our
method flexibly and realiably trades predictive performance for counterfactual invariance via a single
parameter γ and Pareto-dominates existing methods. In Appendix F.2 we present extensive results on
further simulated settings and compare CIP to other heuristic methods in Appendix G.2.
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Figure 4: On the dSprites image dataset, CIP trades
off MSE for VCF and achieves almost full CI as γ
increases. Boxes are for 8 random seeds.

Effect of dimensionality of A. A key
advantage of CIP is that it can deal with
multi-dimensional A. We consider simulated
datasets described in Appendix F.3, where
we gradually increase the dimension of A.
The results in Fig. 3 for different trade-off
parameters γ and different dimensions of A
demonstrate that CIP effectively enforces CI
also for multi-dimensional A.8 Further re-
sults are shown in Appendix F.3.

4.2 IMAGE EXPERIMENTS

We consider an image classification task on the dSprites dataset (Matthey et al., 2017), with a causal
model as depicted in Fig. 1(f). The full structural equations are provided in Appendix F.4. This
experiment is particularly challenging due to the mixed categorical and continuous variables in
C (shape, y-pos) and X (color, orientation), with continuous A (x-pos). We seek a

8In all boxplots, boxes represent the interquartile range, the horizontal line is the median, and whiskers show
minimum and maximum values, excluding outliers (dots).
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predictor Ŷ that is CI in the x-position w.r.t. all other observed variables. Following Theorem 3.2,
we achieve Ŷ ⊥⊥ {x-pos,scale,color,orientation} | {shape,y-pos} via the HSCIC
operator. To accommodate the mixed input types, we first extract features from the images via a
CNN and from other inputs via an MLP. We then use an MLP on all concatenated features for Ŷ.
Fig. 4 shows that CIP gradually enforces CI as γ increases and illustrates the inevitable increase of
MSE.

4.3 FAIRNESS WITH CONTINUOUS PROTECTED ATTRIBUTES
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Figure 5: Accuracy and VCF on the Adult dataset. CIP
achieves better VCF than CF2 and the naive baseline
(NB), improved in accuracy compared to PSCF and is
on par with CF1 in accuracy at VCF ≈ 0.

Finally, we apply CIP to the widely-used
UCI Adult dataset (Kohavi & Becker, 1996)
and compare it against a ‘naive baseline’
which simply ignores A, CF1, CF2, and
path-specific counterfactual fairness (PSCF)
(Chiappa, 2019). We explicitly acknowl-
edge the shortcomings of this dataset to rea-
son about social justice (Ding et al., 2021).
Instead, we chose it due to previous in-
vestigations into plausible causal structures
based on domain knowledge (Zhang et al.,
2017). The task is to predict whether an in-
dividual’s income is above a threshold based
on demographic information, including pro-
tected attributes. We follow Nabi & Shpitser (2018); Chiappa (2019), where a causal structure is
assumed for a subset of the variables as in Fig. 1(e) (see Appendix F.5 and Fig. 8 for details). We
choose gender and age as the protected attributes A, collect marital status, level of education, occupa-
tion, working hours per week, and work class into X, and combine the remaining observed attributes
in C. Our aim is to learn a predictor Ŷ that is CI in A w.r.t. W = C∪X. Achieving (causal) fairness
for (mixed categorical and) continuous protected attributes is under active investigation (Mary et al.,
2019; Chiappa & Pacchiano, 2021), but directly supported by CIP.

We use an MLP with binary cross-entropy loss for Ŷ. Since this experiment is based on real data,
the true counterfactual distribution cannot be known. Following Chiappa & Pacchiano (2021) we
estimate a possible SCM by inferring the posterior distribution over the unobserved variables using
variational autoencoders (Kingma & Welling, 2014). Figure 5 shows that CIP gradually achieves
CI and even manages to keep a constant accuracy after an initial drop. It Pareto-dominates CF2 and
PSCF and achieves comparable accuracy to CF1 when reaching VCF ≈ 0. The naive baselines is
more accurate than CIP for γ ≥ 5 while CIP can achieve better VCF.

5 DISCUSSION AND FUTURE WORK

We developed CIP, a method to learn counterfactually invariant predictors Ŷ. First, we presented a
sufficient graphical criterion to characterize counterfactual invariance and reduced it to conditional
independence in the observational distribution under an injectivity assumption of a causal mechanism.
We then built on kernel mean embeddings and the Hilbert-Schmidt Conditional Independence Crite-
rion to devise an efficiently estimable, differentiable, model-agnostic objective to train CI predictors
for mixed continuous/categorical, multi-dimensional variables. We demonstrated the efficacy of CIP
in extensive empirical evaluations on various regression and classification tasks.

A key limitation of our work, shared by all studies in this domain, is the assumption that the causal
graph is known. Guaranteeing CI necessarily requires strong untestable additional assumptions, but
we demonstrated that CIP performs well empirically even when these are violated. Moreover, the
computational cost of estimating HSCIC may limit the scalability of CIP to very high-dimensional
settings even when using efficient random Fourier features. While the increased robustness of
counterfactually invariant predictors are certainly desirable in many contexts, this presupposes the
validity of our assumptions. Thus, an important direction for future work is to assess the sensitivity
of CIP to misspecifications of the causal graph or insufficient knowledge of the required adjustment
set. Lastly, we envision our graphical criterion and KME-based objective to be useful also for causal
representation learning to isolate causally relevant, autonomous factors underlying the data.
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REPRODUCIBILITY STATEMENT

The reproducibility of our work is ensured through several means. For the theoretical components,
complete proofs of the stated theorems are provided in Appendix A and Appendix B. In terms of our
experimental findings, Appendix F offers a detailed description of the hyperparameters and models.
Moreover, to facilitate practical replication, the corresponding code is available in the supplementary
material.
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Figure 6: (a) A causal graph G, which embeds information for the random variables of the model in
the pre-interventional world. (b) The corresponding graph G′ for the set W = {A,X}. The variables
A and X are copies of A and X respectively. (c) The post-interventional graph G′a. By construction,
any intervention of the form A← a does not affect the group W = {A,X}.

A PROOF OF THEOREM 3.2

A.1 OVERVIEW OF THE PROOF TECHNIQUES

We restate the main theorem for completeness.

Theorem 3.2. Let G be a causal graph, A, W be two (not necessarily disjoint) sets of nodes in
G, such that (A ∪W) ∩ Y = ∅, let S be a valid adjustment set for (A ∪W,Y). Further, for
X := W \A assume that X = g(X,A,UX) (which implies pa(V ) ∈ X ∪A for all V ∈ X ∪A)
with g injective in UX for all values of A and X. Then, in all SCMs compatible with G, if a predictor
Ŷ satisfies Ŷ ⊥⊥ A ∪W | S, then Ŷ is counterfactually invariant in A with respect to W.

Our proof technique generalizes the work of Shpitser & Pearl (2009). To understand the proof
technique, note that conditional counterfactual distributions of the form PY∗

a |W(y | w) involve
quantities from two different worlds. The variables W belong to the pre-interventional world, and the
interventional variable Y∗

a belongs to the world after performing the intervention A← a. Hence, we
study the identification of conditional counterfactual distributions using a diagram that embeds the
causal relationships between the pre- and the post-interventional world. After defining this diagram,
we prove that some conditional measures in this new model provide an estimate for PY∗

a |W(y | w).
We then combine this result with the properties of Z to prove the desired result.

A.2 IDENTIFIABILITY OF COUNTERFACTUAL DISTRIBUTIONS

In this section, we discuss a well-known criterion for the identifiability of conditional distributions,
which we will then use to prove Theorem 3.2. To this end, we use the notions of a blocked path and
valid adjustment set, which we restate for clarity.

Definition A.1. Consider a path π of causal graph G. A set of nodes Z blocks π, if π contains a triple
of consecutive nodes connected in one of the following ways: Ni → Z → Nj , Ni ← Z → Nj , with
Ni, Nj /∈ Z, Z ∈ Z, or Ni →M ← Nj and neither M nor any descendent of M is in Z.

Using this definition, we define the concept of a valid adjustment set.

Definition 3.1 (valid adjustment set). Let G be a causal graph and let X, Y be disjoint (sets of) nodes
in G. A set of nodes S is a valid adjustment set for (X,Y), if (i) no element in S is a descendant
in GX of any node W /∈ X which lies on a proper causal path from X to Y, and (ii) S blocks all
non-causal paths from X to Y in G.

Definition 3.1 is a useful graphical criterion for the identifiability of counterfactual distributions. In
fact, following Corollary 1 by Shpitser et al. (2010), if S satisfies the adjustment criterion relative to
(A,Y), then it holds

PY∗
a
(y) =

∫
PY|A,S(y | a, s)dPS. (4)

Furthermore, this identifiability criterion is complete. That is, consider any graph G and a set of nodes
S that do not fulfill the valid adjustment criterion with respect to (A,Y). Then, there exists a model
inducing G such that Eq. (4) does not hold (see Theorem 3 by Shpitser et al. (2010)).
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A.3 d-SEPARATION AND CONDITIONAL INDEPENDENCE

In this section, we discuss a well-known criterion for conditional independence, which we will then
use to prove Theorem 3.2. We use the notion of a blocked path, as in Definition A.2 and the concept
of d-separation as follows.

Definition A.2 (d-Separation). Consider a causal graph G. Two sets of nodes X and Y of G are said
to be d-separated by a third set S if every path from any node of X to any node of Y is blocked by S.

We use the notation X ⊥⊥G Y | S to indicate that X and Y are d-separated by S in G. We use
Definition A.2 as a graphical criterion for conditional independence (Pearl, 2000).

Lemma A.3 (Markov Property). Consider a causal graph G, and suppose that two sets of nodes X
and Y of G are d-separated by S. Then, X is independent of Y given S in any model induced by the
graph G.

The Markov Property is also referred to as d-separation property. We use the notation X ⊥⊥G Y | S
to indicate that X and Y are d-separated by S in G.

A.4 A GRAPHICAL CHARACTERIZATION OF COUNTERFACTUAL DISTRIBUTIONS

We study the relationships between the pre-interventional model corresponding to a causal diagram G
and the post-interventional model, inducing a diagram Ga after an intervention A← a. A natural
way to study this relationship is to use the counterfactual graph (Shpitser & Pearl, 2008). However,
the construction of the counterfactual graph is rather intricate. For our purposes it is sufficient to
consider a simpler construction, generalizing the work by Shpitser & Pearl (2009).

Consider an SGM with causal graph G, and fix a set of observed random variables of interest W.
Denote with de(A) all descendants of A in G. Furthermore, for each node N of G, denote with
an(N) the set of all its ancestral variables. We define the corresponding graph G′A∪W in the following
steps:

1. Define G′A∪W to be the same graph as G.

2. For each node N ∈ A ∪W, add a new duplicate node N to G′A∪W.

3. For each node N ∈ A ∪W and for each ancestral variable P ∈ an(N) \ (A ∪W) such
that P ∈ de((A ∪W)), add a new duplicate node P to G′A∪W.

4. For each duplicate node N and for each parent P ∈ pa(N), if a duplicate node P was added
in steps 2-3, then add an edge P → N ; otherwise add an edge P → N . The last part of
this condition may be removed. In fact, assuming that it holds pa(N) ⊆ A ∪W, then a
duplicate node P was added in the previous steps, for any parent P ∈ pa(N).

5. For each duplicate node N , add an edge UN → N .

An illustration of this graph is presented in Fig. 6. We denote with H the set of duplicate nodes that
were added to G′A∪W. We can naturally define structural equations for the new variables N as

N = fN (pa(N), UN ),

with fN the structural equation for N in the original model, and pa(N) the parents of N in the newly
define graph G′A∪W. Note that each random variable N is a copy of the corresponding N , in the
sense that N = N almost surely. Importantly, the following lemma holds.

Lemma A.4. Suppose that a set of nodes S satisfies the adjustment criterion relative to (A∪W,Y)
in G. Then, S satisfies the adjustment criterion relative to (A ∪W,Y) in G′A∪W.

Proof. We prove the claim, by showing that all non-causal paths in G′A∪W from A ∪W to Y are
blocked by S. Indeed, if S satisfies the adjustment criterion relative to (A ∪W,Y) in G, then
condition (i) of the adjustment criterion Definition 3.1 relative to (A ∪W,Y) in G′A∪W is satisfied.
Let π be any such non-causal path in G′A∪W from A ∪W to Y. If π does not cross any duplicate
node, then it is blocked by S. Otherwise, without loss of generality, we can decompose π in three
paths, which we refer to as π1, π2, and π3. The path π1 starts from a node in A ∪W of G, and it
terminates in H. The path π2 only contains nodes in a node in H, and the path π3 starts from a node
of H, and it terminates in Y. The paths π1 and π3 necessarily contain paths of the form N ← P
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or N ← UN → N , with N ∈H, P and N nodes of G, and UP a latent variable. By construction,
no node N ∈H belongs to the adjustment set S. Hence, the path π contains a fork of three nodes,
with the central node, or any descendants of the central node, are included in S. Hence, the path π is
blocked.

We further prove the following lemma.

Lemma A.5 (Following Theorem 4 by Shpitser et al. (2010)). Define the sets X = W \A and
X = W \A. Suppose that a set of nodes S satisfies the adjustment criterion relative to (A ∪W,Y)
in G. Then, it holds Y∗

a′,x′ ⊥⊥ A,X | S for any intervention intervention A,X← a′,x′.

Proof. By Lemma A.4, if S satisfies the adjustment criterion relative to (A ∪W,Y) in G, then it is
also satisfies it in G′A∪W. Equivalently, S satisfies the adjustment criterion relative to (A ∪X,Y) in
G′A∪W. Hence, by the sufficiency of the adjustment criterion (Theorem 4 by Shpitser et al. (2010)),
it hold Y ⊥⊥ A,X | S in the graph (G′A∪W)a′,x′ , which is obtained from G′A∪W by performing an
intervention A,X← a′,x′. By definition, the group of random variables A and X in (G′A∪W)a′,x′

are copies of the pre-interventional variables A, X in (G′A∪W)a′,x′ . It follows that Y ⊥⊥ A,X | S
in the graph (G′A∪W)a′,x′ or, equivalently, that Y∗

a′,x′ ⊥⊥ A,X | S, as claimed.

A.5 PROOF OF THEOREM 3.2
We can identify conditional counterfactual distributions in G, by identifying distributions on G′. We
can combine this observation with the notion of a valid adjustment set to derive a closed formula for
the identification of the distributions of interest.

Before discussing the proof of Theorem 3.2, we prove an additional auxiliary result.

Lemma A.6. Define the sets X = W \A and X = W \A. Then, for any intervention A ← a′

and observational values a,x, there exist an intervention X← x′ such that

PY∗
a′,x′ |A=a,X=x(y) = PY∗

a′ |A=a,X=x(y)

Proof. Suppose that the following statement holds:

there exist a point x′ such that PXa′ |X=x,A=a(x
′) = 1. (5)

then our claim follows. In fact, for this point x′ it holds

PY∗
a′,x′ |A=a,X=x,Xa′=x′(y) = PY∗

a′ |A=a,X=x,Xa′=x′(y) (6)

Then, it holds

PY∗
a′,x′ |A=a,X=x(y) =

∫
PY∗

a′,x′ |A=a,X=x,Xa′=x′(y)dPXa′ |A=a,X=x(x
′) (by Eq. (5))

=

∫
PY∗

a′ |A=a,X=x,Xa′=x′(y)dPXa′ |A=a,X=x(x
′) (by Eq. (6))

= PY∗
a′ |A=a,X=x(y). (by Eq. (5))

Hence, the claim follows by showing that Eq. (5) holds.

To conclude the proof, we show that (5) holds. By our assumption, there exists a function g such that
for each pair x,a there exist a unique point u in the support of UX such that x = g(x,a,u). By
construction, it holds X = g(X,A,UX), from which it follows that for each pair x,a there exist
a unique point u in the support of UX such that x = g(x,a,u). Hence, for this point u it holds
PUX|A=a,X=x(u) = 1. It follows that it holds

PXa′ |A=a,X=x(x
′) = 1 with x′ := g(x,a′,u).

Hence, (5) holds.
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We now prove our main result.

Proof of Theorem 3.2. Following the notation of Lemma A.5, define the sets X = W \A, X =
W \A, and let G′A∪W be the augmented graph obtained by adding duplicate nodes. Note that, using
this notation, the assumption that Y ⊥⊥ A,W | S can be written as Y ⊥⊥ A,X | S. Denote with P
the induced measure on G′A∪W. Suppose that it holds

PY∗
a′,x′ |A=a,X=x(y) =

∫
PY|A=a′,X=x′,S=s(y)dPS|A=a,X=x(s) (7)

for any intervention A,X ← a′,x′, and for any possible value w attained by W. Assuming that
Eq. (7) holds, we have that

PY∗
a′,x′ |A=a,X=x(y) =

∫
PY|A=a′,X=x′,S=s(y)dPS|A=a,X=x(z) (assuming Eq. (7))

=

∫
PY|A=a,X=x,S=s(y)dPS|A=a,X=x(s) (Y ⊥⊥ A,X | S)

= PY∗
a,x′′ |A=a,X=x(y), (assuming Eq. (7)) (8)

for any intervention X ← x′′. To conclude, define the set T = A \W. It follows that

PY∗
a′,x′ |W=w(y) =

∫
PY∗

a′,x′ |A=a,X=x(y)dPT|W=w(t) (by conditioning)

=

∫
PY∗

a,x′′ |A=a,X=x(y)dPT|W=w(t) (by Eq. (8))

= PY∗
a,x′′ |W=w(y). (by unconditioning) (9)

Since X ⊆W, from the inequalities above it holds

PY∗
a′ |A=a,X=x(y) = PY∗

a′,x′ |A=a,X=x(y) = PY∗
a,x′′ |A=a,X=x(y) = PY∗

a |A=a,X=x(y),

where the first and last inequality use Lemma A.6 for suitable values x′,x′′, and the equation in the
middle follows from (9). The proof of Theorem 3.2 thus boils down to proving Eq. (7). To this end,
we use the valid adjustment property of S. Note that by Lemma A.5 it holds Y∗

a′,x′ ⊥⊥ A,X | S.
Hence,

PY∗
a′,x′ |A=a,X=x(y)

=

∫
PY∗

a′,x′ |A=a,X=a,S=s(y)dPS|A=a,X=a(s) (by conditioning)

=

∫
PY∗

a′,x′ |S=s(y)dPS|A=a,X=x(s) (Y∗
a′,x′ ⊥⊥ A,X | S)

=

∫
PY|A=a′,X=x′,S=s(y)dPS|A=a,X=x(s), (by Lemma A.4)

and Eq. (7) follows.

B PROOF OF THEOREM 3.4
We prove that the HSCIC can be used to promote conditional independence, using a similar technique
as Park & Muandet (2020). The following theorem holds.
Theorem 3.4 (Theorem 5.4 by Park & Muandet (2020)). If the kernel k of HX ⊗ HA∪W is
characteristic9, HSCIC(Y,A ∪W | S) = 0 almost surely if and only if Y ⊥⊥ A ∪W | S.

Proof. By definition, we can write HSCIC(Y,A ∪W | S) = HY,A∪W|S ◦ S, where HY,A∪W|S
is a real-valued deterministic function. Hence, the HSCIC is a real-valued random variable, defined
over the same domain ΩS of the random variable X.

9The tensor product kernel k is characteristic if PY,A∪W 7→ Ey,[a,w] [k( · ,y ⊗ [a,w])] is injective.
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We first prove that if HSCIC(Y,A ∪W | S) = 0 almost surely, then it holds Y ⊥⊥ A ∪W |
S. To this end, consider an event Ω′ ⊆ ΩX that occurs almost surely, and such that it holds
(HY,A∪W|X ◦X)(ω) = 0 for all ω ∈ Ω′. Fix a sample ω ∈ Ω′, and consider the corresponding
value sω = S(ω), in the support of S. It holds∫

k(y ⊗ [a,w], · )dPY,A∪W|S=sω = µY,A∪W|S=sω (by definition)

= µY|S=sω ⊗ µA∪W|S=sω (since ω ∈ Ω′)

=

∫
kY(y, · )dPY|S=sω ⊗

∫
kA∪W([a,w], · )dPA∪W|S=sω (by definition )

=

∫
kY(y, · )⊗ kA∪W([a,w], · )dPY|S=sωPA∪W∪W|S=sω , (by Fubini’s Theorem)

with kY and kA∪W the kernels of HY and HA∪W respectively. Since the kernel k of the tensor
product spaceHY ⊗HA∪W is characteristic, then the kernels kY and kA∪W are also characteristic.
Hence, it holds PY,A|S=sω = PY|S=sωPA|S=sω for all ω ∈ Ω′. Since the event Ω′ occurs almost
surely, then PY,A|S=sω = PY|S=sωPA|S=sω almost surely, that is Y ⊥⊥ A ∪W | S.

Assume now that Y ⊥⊥ A ∪W | S. By definition there exists an event Ω′′ ⊆ ΩS such that
PY,A∪W|S=sω = PY|S=sωPA∪W|S=sω for all samples ω ∈ Ω′′, with sω = S(ω). It holds

µY,A∪W|S=sω =

∫
k(y ⊗ [a,w], · )dPY,A∪W|S=sω (by definition)

=

∫
k(y ⊗ [a,w], · )dPY|S=sωPA∪W|S=sω (since ω ∈ Ω′)

=

∫
kY(y, · )kA∪W([a,w], · )dPY|S=sωPA∪W|S=sω (by definition of k)

=

∫
kY(y, · )dPY|S=sω ⊗

∫
kA∪W([a,w], · )dPA∪W|S=sω (by Fubini’s Theorem)

= µY|S=sω ⊗ µA∪W|S=sω . (by definition)

The claim follows.

C CONDITIONAL KERNEL MEAN EMBEDDINGS AND THE HSCIC
The notion of conditional kernel mean embeddings has already been studied in the literature. We show
that, under stronger assumptions, our definition is equivalent to the definition by Park & Muandet
(2020). In this section, without loss of generality we will assume that W = ∅ and we will refer to the
conditioning set as Z.

C.1 CONDITIONAL KERNEL MEAN EMBEDDINGS AND CONDITIONAL INDEPENDENCE

We show that, under stronger assumptions, the HSCIC can be defined using the Bochner conditional
expected value. The Bochner conditional expected value is defined as follows.
Definition C.1. Fix two random variables Y, Z taking value in a Banach spaceH, and denote with
(Ω,F ,P) their joint probability space. Then, the Bochner conditional expectation of Y given Z is
anyH-valued random variable X such that∫

E

YdP =

∫
E

XdP

for all E ∈ σ(Z) ⊆ F , with σ(Z) the σ-algebra generated by Z. We denote with E [Y | Z] the
Bochner expected value. Any random variable X as above is a version of E [Y | Z].
The existence and almost sure uniqueness of the conditional expectation are shown in Dinculeanu
(2000). Given a RKHSH with kernel k over the support of Y, Park & Muandet (2020) define the
corresponding conditional kernel mean embedding as

µY|Z := E [k(·,y) | Z] .
Note that, according to this definition, µY|Z is anH-valued random variable, not a single point ofH.
Park & Muandet (2020) use this notion to define the HSCIC as follows.
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Definition C.2 (The HSCIC according to Park & Muandet (2020)). Consider (sets of) random
variables Y, A, Z, and consider two RKHSHY,HA over the support of Y and A respectively. The
HSCIC between Y and A given Z is defined as the real-valued random variable

ω 7→
∥∥µY,A|Z(ω)− µY|Z(ω)⊗ µA|Z(ω)

∥∥ ,
for all samples ω in the domain ΩZ of Z. Here, ∥·∥ the metric induced by the inner product of the
tensor product spaceHY ⊗HZ.
We show that, under more restrictive assumptions, Definition C.2 can be used to promote conditional
independence. To this end, we use the notion of a regular version.
Definition C.3 (Regular Version, following Definition 2.4 by Çinlar & ðCınlar (2011)). Consider two
random variables Y, Z, and consider the induced measurable spaces (ΩY,FY) and (ΩZ,FZ). A
regular version Q for PY|Z is a mapping Q : ΩZ ×FY → [0,+∞] : (ω,y) 7→ Qω(y) such that: (i)
the map ω 7→ Qω(x) is FA-measurable for all y; (ii) the map y 7→ Qω(y) is a measure on (ΩY,FY)
for all ω; (iii) the function Qω(y) is a version for E

[
1{Y=y} | Z

]
.

The following theorem shows that the random variable as in Definition C.2 can be used to promote
conditional independence.
Theorem C.4 (Theorem 5.4 by Park & Muandet (2020)). With the notation introduced above, suppose
that the kernel k of the tensor product spaceHX ⊗HA is characteristic. Furthermore, suppose that
PY,A|X admits a regular version. Then,

∥∥µY,A|Z(ω)− µY|Z(ω)⊗ µA|Z(ω)
∥∥ = 0 almost surely if

and only if Y ⊥⊥ A | Z.

Note that the assumption of the existence of a regular version is essential in Theorem C.4. In this
work, HSCIC is not used for conditional independence testing but as a conditional independence
measure.

C.2 EQUIVALENCE WITH OUR APPROACH

The following theorem shows that under the existence of a regular version, conditional kernel mean
embeddings can be defined using the Bochner conditional expected value. To this end, we use the
following theorem.
Theorem C.5 (Following Proposition 2.5 by Çinlar & ðCınlar (2011)). Following the notation
introduced in Definition C.3, suppose that PY|Z(· | Z) admits a regular version Qω(y). Consider a
kernel k over the support of Y. Then, the mapping

ω 7→
∫
k(·,y)dQω(y)

is a version of E [k(·,y) | Z].
As a consequence of Theorem C.5, we prove the following result.
Lemma C.6. Fix two random variables Y, Z. Suppose that PY|Z admits a regular version. Denote
with ΩZ the domain of Z. Then, there exists a subset Ω ⊆ ΩZ that occurs almost surely, such that
µY|Z(ω) = µY|Z=Z(ω) for all ω ∈ Ω. Here, µY|Z=Z(ω) is the embedding of conditional measures
as in Section 2.

Proof. Let Qω(y) be a regular version of PY|Z. Without loss of generality we may assume that it
holds PY|Z(y | {Z = Z(ω)}) = Qω(y). By Theorem C.5 there exists an event Ω ⊆ ΩZ that occurs
almost surely such that

µY|Z(ω) = E[k(y, · ) | Z](ω) =
∫
k(y, · )dQω(y), (10)

for all ω ∈ Ω. Then, for all ω ∈ Ω it holds

µY|Z(ω) =

∫
k(x, · )dQω(x) (it follows from Eq. (10))

=

∫
k(x, · )dPX|A(x | {A = A(ω)}) (Qω(y) = PY|Z(y | {Z = Z(ω)}))

= µX|{A=A(ω)}, (by definition as in Section 2)

as claimed.
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As a consequence of Lemma C.6, we can prove that the definition of the HSCIC by Park & Muandet
(2020) is equivalent to ours. The following corollary holds.
Corollary C.7. Consider (sets of) random variables Y, A, Z, and consider two RKHS HY, HA

over the support of Y and A respectively. Suppose that PY,A|Z(· | Z) admits a regular version.
Then, there exists a set Ω ⊆ ΩA that occurs almost surely, such that∥∥µX,A|Z(ω)− µX|Z(ω)⊗ µA|Z(ω)

∥∥ = (HY,A|Z ◦ Z)(ω).
Here, HY,A|Z is a real-valued deterministic function, defined as

HY,A|Z(z) :=
∥∥µY,A|Z=z − µY|Z=z ⊗ µA|Z=z

∥∥ ,
and ∥·∥ is the metric induced by the inner product of the tensor product spaceHX ⊗HA.

We remark that the assumption of the existence of a regular version is essential in Corol-
lary C.7.

D THE CROSS-COVARIANCE OPERATOR

In this section, we show that under additional assumptions, our definition of conditional KMEs is
equivalent to the definition based on the cross-covariance operator, under more restrictive assumptions.
The definition of KMEs based on the cross-covariance operator requires the use of the following
well-known result.
Lemma D.1. Fix two RKHS HX and HZ, and let {φi}∞i=1 and {ψj}∞j=1 be orthonormal bases of
HX andHZ respectively. Denote with HS(HX,HZ) the set of Hilbert-Schmidt operators between
HX andHZ. There is an isometric isomorphism between the tensor product spaceHX ⊗HZ and
HS(HX,HZ), given by the map

T :

∞∑
i=1

∞∑
j=1

ci,jφi ⊗ ψj 7→
∞∑
i=1

∞∑
j=1

ci,j⟨ · , φi⟩HX
ψj .

For proof of this result see i.e., Park & Muandet (2020). This lemma allows us to define the
cross-covariance operator between two random variables, using the operator T .
Definition D.2 (Cross-Covariance Oprator). Consider two random variables X, Z. Consider corre-
sponding mean embeddings µX,Z, µX and µZ, as defined in Section 3. The cross-covariance operator
is defined as ΣX,Z := T (µX,Z − µX ⊗ µZ). Here, T is the isometric isomorphism as in Lemma D.1.
It is well-known that the cross-covariance operator can be decomposed into the covariance of the
marginals and the correlation. That is, there exists a unique bounded operator ΛY,Z such that

ΣY,Z = Σ
1/2
Y,Y ◦ ΛY,Z ◦ Σ1/2

Z,Z

Using this notation, we define the normalized conditional cross-covariance operator. Given three
random variables Y, A, Z and corresponding kernel mean embeddings, this operator is defined
as

ΛY,A|Z := ΛY,A − ΛY,Z ◦ ΛZ,A. (11)
This operator was introduced by Fukumizu et al. (2007). The normalized conditional cross-covariance
can be used to promote statistical independence, as shown in the following theorem.
Theorem D.3 (Theorem 3 by Fukumizu et al. (2007)). Following the notation introduced above,
define the random variable Ä := (A,Z). Let PZ be the distribution of the random variable Z, and
denote with L2(PZ) the space of the square integrable functions with probability PZ. Suppose that
the tensor product kernel kY ⊗ kA ⊗ kZ is characteristic. Furthermore, suppose that HZ + R is
dense in L2(PZ). Then, it holds

ΛY,Ä|Z = 0 if and only if Y ⊥⊥ A | Z.

Here, ΛY,Ä|Z is an operator defined as in Eq. (11).

By Theorem D.3, the operator ΛY,Ä|Z can also be used to promote conditional independence.
However, CIP is more straightforward since it requires less assumptions. In fact, Theorem D.3
requires to embed the variable Z in an RKHS. In contrast, CIP only requires the embedding of the
variables Y and A.
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E RANDOM FOURIER FEATURES

Random Fourier features is an approach to scaling up kernel methods for shift-invariant kernels
(Rahimi & Recht, 2007). Recall that a shift-invariant kernel is a kernel of the form k(z, z′) =
hk(z− z′), with hk a positive definite function.

Fourier features are defined via the following well-known theorem.
Theorem E.1 (Bochner’s Theorem). For every shift-invariant kernel of the form k(z, z′) = hk(z−z′)
with hk(0) = 1, there exists a probability probability density function Pk(η) such that

k(z, z′) =

∫
e−2πiηT (z−z′)dPk.

Since both the kernel k and the probability distribution Pk are real-valued functions, the integrand
in Theorem E.1 ca be replaced by the function cosηT (z − z′), and we obtain the following for-
mula

k(z, z′) =

∫
cosηT (z− z′)dPk = E

[
cosηT (z− z′)

]
, (12)

where the expected value is taken with respect to the distributionPk(η). This equation allows to
approximate the kernel k(z, z′), via the empirical mean of points η1, . . . ,ηl sampled independently
according to Pk. In fact, it is possible to prove exponentially fast convergence of an empirical estimate
for E

[
cosηT (z− z′)

]
, as shown in the following theorem.

Theorem E.2 (Uniform Convergence of Fourier Features, Claim 1 by Rahimi & Recht (2007)).
Following the notation introduced above, fix any compact subset Ω in the domain of k, and consider
points η1, . . . ,ηl sampled independent according to the distribution Pk. Define the function

k̂(z, z′) :=
1

l

l∑
j=1

cosηT
j (z− z′),

for all (z, z′) ∈ Ω. Then, it holds

P

(
sup
z,z′

∣∣∣k̂(z, z′)− k(z, z′)∣∣∣ ≥ ε) ≤ 28σk
diam(Ω)

ε
exp

{
− ε2l

4(d+ 1)

}
.

Here σ2
k is the second moment of the Fourier transform of the kernel k, and d is the dimension of the

arrays z and z′.

By Theorem E.2, the estimated kernel k̂ is a good approximation of the true kernel k on the set
Ω.

Similarly, we can approximate the Kernel matrix using Random Fourier features. Following the
notation introduced above, define the function

ζk,l(z) :=
1√
l

[
cosηT

1 z, . . . , cosη
T
l z

]
(13)

with η1, . . . ,ηl sampled independent according to the distribution Pk.

We can approximate the Kernel matrix using the functions defined as in Eq. (13). Consider n samples
z1, . . . , zn, and denote with Z the n× l matrix whose i-th row is given by ζk,l(zi). Similarly, denote
with Z∗ the l × n matrix whose i-th column is given by ζ∗k,l(zi). Then, we can approximate the
kernel matrix as K̂Z ≈ ZZ∗.

We can also use this approximation to compute the kernel ridge regression parameters as in Section 3
using the formula ŵY|Z(·) ≈ (ZZ∗ − nλI)−1 [ kZ(·, z1), · · · , kZ(·, zn) ]

T . Avron et al. (2017)
argue that the approximate kernel ridge regression, as defined above, is an accurate estimate of the true
distribution. Their argument is based on proving that the matrix ZZ∗ − nλI is a good approximation
of K̂Z − nλI . The notion of good approximation is clarified by the following definition.
Definition E.3. Fix two Hermitian matrices A and B of the same size. We say that a matrix A is
a γ-spectral approximation of another matrix B, if it holds (1− γ)B ⪯ A ⪯ (1 + γ)B. Here, the
⪯ symbol means that A − (1 − γ)B is positive semi-definite, and that (1 + γ)B − A is positive
semi-definite.
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Avron et al. (2017) prove that ZZ∗ − nλI is a γ- approximation of K̂Z − nεI , if the number of
samples η1, . . . ,ηl is sufficiently large.

Theorem E.4 (Theorem 7 by Avron et al. (2017)). Fix a constant γ ≤ 1/2. Consider n samples
z1, . . . , zn, and denote with K̂Z the corresponding kernel matrix. Suppose that it holds ∥K̂Z∥2 ≥ nλ
for a constant λ > 0. Fix η1, . . . ,ηl samples with

l ≥ 8

3γ2λ
ln

16 trλ(K̂Z)

γ

Then, the matrix ZZ∗ − nλI is a γ- approximation of K̂Z − nλI with probability at least 1− γ, for
all γ ∈ (0, 1). Here, trλ(K̂Z) is defined as the trace of the matrix K̂Z(K̂Z + nλI)−1.

We conclude this section by illustrating the use of random Fourier features to approximate a simple
Gaussian kernel. Suppose that we are given a kernel of the form

k(z, z′) := exp

{
−1

2
σ∥z− z′∥22

}
.

Then, k(z, z′) can be estimated as in Theorem E.2, with η1, . . . ,ηl ∼ N (0,Σ), with Σ := σ−1I ,
with I the identity matrix. The functions ζk,l(z) can be defined accordingly.

F ADDITIONAL EXPERIMENTS AND SETTINGS

This section contains detailed information on the experiments and additional results.

F.1 DATASET FOR MODEL PERFORMANCE WITH THE USE OF THE HSCIC

The data-generating mechanism corresponding to the results in Fig. 2 is the following:

Z ∼ N (0, 1) A = Z2 + εA

X = exp

{
−1

2
A2

}
sin (2A) + 2Z

1

5
εX

Y =
1

2
exp {−XZ} · sin (2XZ) + 5A+

1

5
εY,

where εA ∼ N (0, 1) and εY, εX
i.i.d.∼ N (0, 0.1).

In the first experiment, Fig. 2 shows the results of feed-forward neural networks consisting of 8
hidden layers with 20 nodes each, connected with a rectified linear activation function (ReLU) and a
linear final layer. Mini-batch size of 256 and the Adam optimizer with a learning rate of 10−3 for
1000 epochs were used.

F.2 DATASETS AND RESULTS FOR COMPARISON WITH BASELINES

The comparison of our method CIP with the CF1 and CF2 is done on different simulated datasets.
These will be referred to as Scenario 1 and Scenario 2. The data generating mechanism corresponding
to the results in Fig. 2 (right) is the following:

Z ∼ N (0, 1) A = exp

{
1

2
Z2

}
· sin (2Z) + εA

X = (A+ 0.1Z) · εX

Y = A+X+ 0.1 · sin (Z)
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Table 1: Performance of the HSCIC against baselines CF1 and CF2 on two synthetic datasets.
Notably, in both scenarios it is possible to select γ values for which CIP outperforms CF2 in MSE
and VCF simultaneously.

Scenario 1 Scenario 2
MSE ×106 HSCIC ×103 VCF×103 MSE×103 HSCIC ×102 VCF×102

γ = 0.001 12± 9 45.38± 0.41 54.93± 7.50 0.0006±0.0002 35.64± 0.32 5.60± 0.03
γ = 0.01 16± 12 45.35± 0.41 54.57± 7.18 0.0019±0.0003 35.44± 0.33 5.50± 0.03
γ = 0.1 32± 20 45.11± 0.43 54.16± 7.58 0.11± 0.006 33.47± 0.36 4.46± 0.04
γ = 0.2 81± 14 44.78± 0.47 53.59± 7.90 0.42± 0.02 31.38± 0.38 3.52± 0.04
γ = 0.3 192± 33 43.92± 0.52 52.92± 7.54 0.82± 0.04 29.75± 0.34 2.50± 0.04
γ = 0.4 384± 58 43.88± 0.57 52.06± 7.25 1.21± 0.05 28.63± 0.33 1.79± 0.03
γ = 0.5 685± 133 43.26± 0.65 51.64± 7.40 1.56± 0.08 27.81± 0.26 1.1± 0.01
γ = 0.6 1117± 165 42.47± 0.73 50.96± 7.36 1.84± 0.11 26.87± 0.22 0.79± 0.01
γ = 0.7 1655± 223 42.11± 0.80 50.31± 7.44 2.11± 0.14 26.08± 0.20 0.49± 0.01
γ = 0.8 2225± 296 41.87± 0.84 49.76± 7.25 2.37± 0.15 25.27± 0.18 0.31± 0.01
γ = 0.9 2832± 372 41.52± 0.92 49.17± 7.41 2.58± 0.17 24.64± 0.16 0.21± 0.01
γ = 1.0 3472± 422 38.37± 0.97 48.71± 7.55 2.77± 0.19 24.21± 0.15 0.14± 0.01
CF1 10321± 72 41.37± 0.58 0± 0.00 4.59± 0.4478 25.01± 0.25 0± 0.00
CF2 2728± 272 41.37± 0.92 59.50± 10.35 3.97± 0.3479 27.03± 0.35 2.62± 0.81

where εA, εX
i.i.d.∼ N (0, 1) and εY

i.i.d.∼ N (0, 0.1). This is referred to as Scenario 1. The data
generating mechanism for Scenario 2 is the following:

Z ∼ N (0, 1) A = exp

{
1

2
Z2

}
· sin (2Z) + εA

X = exp

{
−1

2
A2

}
· εX + 2Z

Y =
1

2
sin (ZX) · exp {−ZX}+ 1

5
εY,

where εA, εX
i.i.d.∼ N (0, 1) and εY

i.i.d.∼ N (0, 0.1). Fig. 2 (right) and Table 1 present the average
and standard deviation resulting from 9 random seeds runs. For CIP, the same hyperparameters as
in the previous setting are used. The MLPs implemented in CF1 and CF2 used for the prediction
of Ŷ and the one used for the prediction of the X residuals in CF2 are all designed with similar
architecture and training method. The MLP models consist of 8 hidden layers with 20 nodes each,
connected with a rectified linear activation function (ReLU) and a linear final layer. During training,
mini-batch size of 64 and the Adam optimizer with a learning rate of 10−3 for 200 epochs were used.

F.3 DATASETS AND RESULTS FOR MULTI-DIMENSIONAL VARIABLES EXPERIMENTS

The data-generating mechanisms for the multi-dimensional settings of Fig. 3 are now shown. Given
dimA = D1 ≥ 2, the datasets were generated from:

Z ∼ N (0, 1) Ai = Z2 + εiA for i ∈ {1, D1}

X = exp

{
−1

2
A1

}
+

D1∑
i=1

Ai · sin(Z) + 0.1 · εX

Y = exp

{
−1

2
A2

}
·

D1∑
i=1

Ai +XZ+ 0.1 · εY,

where εX, εY
i.i.d∼ N (0, 0.1) and ε1A, ..., ε

D1

A
i.i.d∼ N (0, 1). In this experiment, the mini-batch size

chosen is 512 and the same hyperparameters are used as in the previous settings. The neural network
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Figure 7: MSE , HSCIC, VCF for increasing dimension of A on synthetic data from Appendix F.3
with dimA = 20 (left) and dimA = 100 (right). All other variables are one-dimensional.

Table 2: Architecture of the convolutional neural network used for the image dataset, as described in
Appendix F.4.

layer # filters kernel size stride size padding size
convolution 16 5 2 2
max pooling 1 3 2 0
convolution 64 5 1 2
max pooling 1 1 2 0
convolution 64 5 1 2
max pooling 1 2 1 0
convolution 16 5 1 3
max pooling 1 2 2 0

architecture is trained for 800 epochs. Fig. 7 present the results corresponding to 10 random seeds
with different values of the trade-off parameter γ corresponding to different values of dimA among
{15, 100}. In all of the box plots, it is evident that there exists a trade-off between the accuracy
and counterfactual invariance of the predictor. As the value of γ increases, there is a consistent
trend of augmenting counterfactual invariance (as evidenced by the decrease in the VCF metric).
Similarly to the previous boxplots visualizations, the boxes represent the interquartile range (IQR),
the horizontal line is the median, and whiskers show the minimum and maximum values, excluding
the outliers (determined as a function of the inter-quartile range). Outliers are represented in the plot
as dots.

F.4 IMAGE DATASET

The simulation procedure for the results shown in Section 4.2 is the following.

shape ∼ P(shape)

y-pos ∼ P(y-pos)

color ∼ P(color)

orientation ∼ P(orientation)

x-pos = round(x), where x ∼ N (shape+ y-pos, 1)

scale = round
((x-pos

24
+
y-pos

24

)
· shape+ ϵS

)
Y = eshape · x-pos+ scale2 · sin(y-pos) + ϵY ,

where ϵS ∼ N (0, 1) and ϵY ∼ N (0, 0.01). The data has been generated via a matching procedure
on the original dSprites dataset.

In Table 2, the hyperparameters of the layers of the convolutional neural network are presented. Each
of the convolutional groups also has a ReLU activation function and a dropout layer. Two MLP
architectures have been used. The former takes as input the observed tabular features. It is composed
by two hidden layers of 16 and 8 nodes respectively, connected with ReLU activation functions and
dropout layers. The latter takes as input the concatenated outcomes of the CNN and the other MLP. It
consists of three hidden layers of 8, 8 and 16 nodes, respectively.
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F.5 FAIRNESS WITH CONTINUOUS PROTECTED ATTRIBUTES

The pre-processing of the UCI Adult dataset was based upon the work of Chiappa & Pacchiano
(2021). Referring to the causal graph in Fig. 8, a variational autoencoder (Kingma & Welling, 2014)
was trained for each of the unobserved variables Hm, Hl and Hr. The prior distribution of these
latent variables is assumed to be standard Gaussian. The posterior distributions P(Hm|V ), P(Hr|V ),
P(Hl|V ) are modeled as 10-dimensional Gaussian distributions, whose means and variances are the
outputs of the encoder.

The encoder architecture consists of a hidden layer of 20 hidden nodes with hyperbolic tangent
activation functions, followed by a linear layer. The decoders have two linear layers with a hyperbolic
tangent activation function. The training loss of the variational autoencoder consists of a recon-
struction term (Mean-Squared Error for continuous variables and Cross-Entropy Loss for binary
ones) and the Kullback–Leibler divergence between the posterior and the prior distribution of the
latent variables. For training, we used the Adam optimizer with learning rate of 10−2, 100 epochs,
mini-batch size 128.

The predictor Ŷ is the output of a feed-forward neural network consisting of a hidden layer with
a hyperbolic tangent activation function and a linear final layer. In the training we used the Adam
optimizer with learning rate 10−3, mini-batch size 128, and trained for 100 epochs. The choice of
the network architecture is based on the work of Chiappa & Pacchiano (2021).

The estimation of counterfactual outcomes is based on a Monte Carlo approach. Given a data point,
500 values of the unobserved variables are sampled from the estimated posterior distribution. Given
an interventional value for A, a counterfactual outcome is estimated for each of the sampled unob-
served values. The final counterfactual outcome is estimated as the average of these counterfactual
predictions. In this experimental setting, we have k = 100 and d = 1000.

In the causal graph presented in Fig. 8, A includes the variables age and gender, C includes nationality
and race, M marital status, L level of education, R the set of the working class, occupation, and
hours per week and Y the income class. Compared to Chiappa & Pacchiano (2021), we include the
race variable in the dataset as part of the baseline features C. The loss function is the same as Eq. (1)
but Binary Cross-Entropy loss (LBCE) is used instead of Mean-Squared Error loss:

LCIP(Ŷ) = LBCE(Ŷ)+ γ ·HSCIC
(
Ŷ, {age, gender,marital status, education,work}

∣∣∣S) , (14)

where the set S = {Race,Nationality} blocks all the non-causal paths from W ∪A to Y. In this
example we have W = {C ∪M ∪ L ∪ R}. The results in Fig. 5 (right) refer to one run with
conditioning set S = {Race,Nationality}. The results correspond to 4 random seeds.

F.6 ILLUSTRATING THE CHOICE OF γ

In Section 3.4, we propose to choose γ to obtain a maximal level of CI within a given tolerance
on predictive performance. Here, we illustrate results from running the proposed procedure that
dynamically selects γ, adjusted to different predefined accuracy thresholds in a classification setting.
Specifically, the algorithm chooses the largest γ value that yields an accuracy equal to or better
than the threshold. As described the algorithm operates on γ values on a logarithmic scale, thereby

A M L R Y

Hm Hl HrC

Figure 8: Assumed causal graph for the Adult dataset, as in Chiappa & Pacchiano (2021). The
variables Hm, Hl, Hr are unobserved, and jointly trained with the predictor Ŷ.
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Table 3: Results of MSE and VCF (all times 102 for readability) on synthetic data of CIP with
trade-off parameters depending on the chosen accuracy threshold.

VCF ×102 HSCIC ×102

90% accuracy 3.14± 0.92 4.51± 0.72
70% accuracy 3.01± 0.80 4.44± 0.65
1% accuracy 2.91± 0.92 4.39± 0.42

ensuring a fine-grained search over a wide range of potential trade-off points. Table 3 shows the found
trade-offs for tolerated accuracies of 90%, 70%, and 1% in the same setting as Appendix F.1.

G COMPARISON WITH ADDITIONAL BASELINES

In this section, we compare CIP with additional baselines. These include Veitch et al. (2021) and
different heuristic methods.

G.1 BASELINE EXPERIMENTS (VEITCH ET AL., 2021)
We provide an experimental comparison against the method by Veitch et al. (2021). To this end, we
consider the following data-generating mechanism for the causal structure (see Fig. 1(b)):

Z ∼ N (0, 1) A = sin (0.1Z) + εA

X = exp

{
−1

2
A

}
sin (A) +

1

10
εX

Y =
1

10
exp {−X} · sin (2XZ) +AA+

1

10
εY,

where εX, εA
i.i.d∼ N (0, 1) and εY

i.i.d∼ N (0, 0.1). The data-generating mechanism of the anti-
causal structure is the following (see Fig. 1(c)):

Z ∼ N (0, 1) A =
1

5
sin (Z) + εA

Y =
1

10
sin (Z) + εY

X = A+Y +
1

10
εX

where εY, εA
i.i.d∼ N (0, 0.1) and εX

i.i.d∼ N (0, 1). We compare our method (CIP) against the
method by Veitch et al. (2021) using different values for the trade-off parameter γ. In Fig. 1(b-c) the
causal and anti-causal graphical settings proposed by Veitch et al. (2021) are presented. In both of
these settings there is an unobserved confounder Z between A and Y. The graphical assumptions
outlined in Theorem 3.2 of the CIP are not met in the graphical structures under examination, as the
confounding path is not effectively blocked by an observed variable (Z is unobserved). In light of this,
it is assumed in our implementation that there is no unobserved confounder. In the graphical structure
Fig. 1(b), CIP enforces HSIC(Ŷ,A∪X) to become small, gradually enforcing Ŷ ⊥⊥ A∪X. HSIC
is the Hilbert-Schmidt Independence Criterion, which is commonly used to promote independence
(see, i.e., Gretton et al. (2005); Fukumizu et al. (2007)). Veitch et al. (2021) enforces as independence
criterion HSIC(Ŷ,A), which is implied by the independence enforced in CIP. In the anti-causal
graphical setting presented in Fig. 1(c), the objective term used in CIP is HSCIC(Ŷ,A | X), while
in the method of Veitch et al. (2021) is HSCIC(Ŷ,A | Y). In Table 4, the results of accuracy and
VCF are presented.

In the experiments, the predictor Ŷ is a feed-forward neural network consisting of 8 hidden layers
with 20 nodes each, connected with a rectified linear activation function (ReLU) and a linear final
layer. Mini-batch size of 256 and the Adam optimizer with a learning rate of 10−4 for 500 epochs
were used.
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Table 4: Results of the MSE, VCF of CIP and the baseline (Veitch et al., 2021) applied to the
causal and anti-causal structure in Fig. 1(b-c). Although the graphical assumptions are not satisfied,
CIP shows an overall decrease of VCF in both of the graphical structures, performing on par with the
baseline Veitch et al. (2021) in terms of accuracy and counterfactual invariance.

CIP Veitch et al. (2021)
MSE ×102 VCF MSE×102 VCF

γ = 0.5 4.58± 0.31 0.19± 0.02 4.50± 0.40 0.19± 0.02
γ = 1.0 5.60± 0.36 0.18± 0.01 5.45± 0.41 0.18± 0.02

CIP Veitch et al. (2021)
MSE ×102 VCF MSE×102 VCF

γ = 0.5 1.16± 0.01 1.69± 0.16 1.01± 0.01 1.71± 0.26
γ = 1.0 1.37± 0.02 1.48± 0.19 0.99± 0.01 1.88± 0.28

Table 5: Results of MSE and VCF (all times 102 for readability) on synthetic data of CIP with trade-
off parameters γ = 0.5 and γ = 1 with the heuristic methods data augmentation and causal-based
data augmentation and naive prediction.

VCF ×103 MSE ×103

data augmentation 3.12± 0.16 0.03± 0.01
causal-based data augmentation 3.04± 0.16 0.13± 0.12
CIP (γ = 0.5) 1.05± 0.13 1.64± 0.22
CIP (γ = 1.0) 0.35± 0.19 2.50± 0.72
naive prediction (ignore A) 9.01± 0.02 3.01± 0.91

G.2 COMPARISON BASELINES HEURISTIC METHODS

We provide an experimental comparison of the proposed method (CIP) with some heuristic methods,
specifically data-augmentation-based methods. We consider the same data-generating procedure
and causal structure as presented in Appendix F.1. The heuristic methods considered are data
augmentation and causal-based data augmentation. In the former, data augmentation is performed by
generating N = 50 samples for every data-point by sampling new values of A as a1, ..., aN

i.i.d∼ PA

and leaving Z,X,Y unchanged. Differently, in the latter causal-based data augmentation method,
we also take into account the causal structure given by the known DAG. Indeed, when manipulating
the variable A, its descendants (in this example X) will also change. In this experiment, a predictor for
X as X̂ = fθ(A,Z) is trained on 80% of the original dataset. In the data augmentation mechanism,
for every data-point {a, x, z, y}, N = 50 samples are generated by sampling new values of A as
a1, ..., aN

i.i.d∼ PA, estimating the values of X as x1 = fθ(a1, z), ..., xN = fθ(aN , z), while leaving
the values of Z and Y unchanged. Heuristic methods such as data-augmentation methods do not
theoretically guarantee to provide counterfactually invariant predictors. The results of an empirical
comparison are shown in Table 5 with the average and standard deviations after 5 random seeds.
It can be shown that these theoretical insights are supported by experimental results, as the VCF
metric measure counterfactual invariance is lower in both of the two settings of the CIP (γ = 1

2 and
γ = 1).

A dataset of n = 3000 is used, along with k = 500 and d = 500. The architecture for predicting X
and Y are feed-forward neural networks consisting of 8 hidden layers with 20 nodes each, connected
with a rectified linear activation function (ReLU) and linear final layer. Mini-batch size of 256 and
the Adam optimizer with a learning rate of 10−3 for 100 epochs were used.
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