Interference-Aware Edge Runtime Prediction with Conformal Matrix Completion

A ARTIFACT APPENDIX

Our artifact implements the interference-aware confor-
mal prediction algorithm described in this paper, and can
be found at https://github.com/wiseLabCMU/
pitot. The implementation is GPU-accelerated and par-
allelized using Jax, and includes a poetry lock file to in-
stall dependencies. The artifact provided includes code
to (1) generate train/val/test splits, (2) train the exper-
iments described in the paper, (3) summarize these ex-
periments into key performance metrics, and (4) repro-
duce the figures shown in the paper. We also include
our dataset, which is packaged with the repository. Fi-
nally, in addition to an archived copy of our repository, our
splits, results, and summary metrics are also archived at
https://zenodo.org/records/14977004.

A.1 Artifact check-list (meta-information)

* Algorithm: matrix completion for program runtime predic-
tion + extension for interference + extension for conformal
prediction

* Run-time environment: linux, cuda, python/conda, poetry

e Hardware: Nvidia GPU, 24GB VRAM

¢ How much disk space required (approximately): <5GB
and a conda environment

* How much time is needed to prepare workflow (approxi-
mately)?: < 10 minutes

¢ How much time is needed to complete experiments (ap-

proximately)?: =~ 6-12 hours using a RTX 4090

Publicly available?: yes

Code licenses (if publicly available)?: MIT

Data licenses (if publicly available)?: MIT

Archived (provide DOI)?: 10.5281/zenodo.14977004

A.2 Description

How to access. Our code, data, and installation instruc-
tions can be found at our project repository: https:
//github.com/wiseLabCMU/pitot. Minimal disk
space is required for the repository (< 5GB after generating
all outputs), though considerably more may be consumed
by the python environment after installing dependencies if
they are not already present.

Hardware dependencies. While our implementation
should run on any platform which is compatible with Jax,
our implementation is tuned for (and tested on) 24GB Nvidia
GPUs, e.g. the RTX 3090 or 4090.

Software dependencies. Our implementation assumes a
linux operating system, a conda environment, and poetry
for installing from the provided lockfile.

Datasets Our dataset consists of aggregated benchmark-
ing data collected from our heterogeneous cluster; all bench-
mark data is included with the repository.

The benchmarks used to collect our dataset are also open
source, and can be found at https://github.com/
silverLineFramework/benchmarks.

A.3 Installation

All dependencies can be installed with conda and
poetry; see the included README for details.

A4 Experiment workflow

The experiment workflow consists of three stages: training
(and split generation), evaluation, and analysis. The exact
commands used for each phase can be found in the provided
Makefile.

A.5 Evaluation and expected result

The output of each stage (splits, results, summary) can be
found on Zenodo (https://zenodo.org/records/
14977004); note that the results may not necessarily be
numerically identical, for example due to floating point
discrepancies.

B GLOSSARY OF NOTATION

We provide a glossary of the symbols used in this paper for
convenience in Table 1.

C ADDITIONAL METHOD DETAILS

In this section, we provide details regarding the architec-
ture, training, calibration, and implementation of Pitot. Our
code and dataset are also open source, and can be found
athttps://github.com/wiseLabCMU/pitot;an
archival copy is also available at https://zenodo.
org/records/14977004.

C.1 Linear Scaling Baseline

In this section, we provide a brief sketch of how we learn the
parameters of the baseline model. We refer to this model as
the Linear Scaling Baseline since it corresponds to common
benchmarking practice where (geometric) mean benchmark-
ing scores are used to estimate a linear relationship between
platforms. Note that the linear scaling baseline is only
learned from data collected with no interfering workloads
running in the background.

Proposition 1. Since the log-loss (Eq. 1) is convex for m;
and p;, we can efficiently learn the linear scaling model

log(Cij) = w; + p; from C; by alternating minimization
over w; and p; using the update rule
s — Zi,jeA log(cz*J) - pj
1 T)
Zi, jeA 1

(14)

https://github.com/wiseLabCMU/pitot
https://github.com/wiseLabCMU/pitot
https://zenodo.org/records/14977004
https://github.com/wiseLabCMU/pitot
https://github.com/wiseLabCMU/pitot
https://github.com/silverLineFramework/benchmarks
https://github.com/silverLineFramework/benchmarks
https://zenodo.org/records/14977004
https://zenodo.org/records/14977004
https://github.com/wiseLabCMU/pitot
https://zenodo.org/records/14977004
https://zenodo.org/records/14977004

Interference-Aware Edge Runtime Prediction with Conformal Matrix Completion

Table 1. Glossary of notation used in this paper.

Symbol Description Notes
Nuw,Np Unique workloads, platforms N, = 249, N, = 231 in our dataset.
i, 7 Workload, platform index 1<i< Nyandl <j <N,
k Set of interfering workloads Viek:1<I[< N,. Wesometimes abuse notation and use k as an index when
k is a singleton.
A Dataset Contains all observed (workload, platform, interference) tuples.
ik Actual runtime
C’i]—k Predicted runtime Non-interference-aware predictions are abbreviated C’U
oy Baseline prediction Linear scaling baseline predicted runtime.
W, Pj Baseline parameters Log workload “difficulty” and platform “speed”
Lo Workload features Log opcode counts.
T, Platform features CPU architecture, WebAssembly runtime information.
w;, Pj Learned embeddings Dimensionality » = 128 workload, platform embeddings.
w, [p Embedding networks Generates workload and platform embeddings
ws Op Embedding network weights
cpi?, cpff) Extra learned features Has dimension ¢ = 1.
F; Interference matrix We never explicitly compute F}.
'vgt) Interference susceptibility Associated with a platform j and interference type ¢t (1 <t < s = 2).
'vét) Interference magnitude Associated with a platform j and interference type ¢t (1 <t < s = 2).
@ Interference activation Activation function (Leaky ReLU) for multiple interfering workloads
€ Target miscoverage rate For conformal regression.
I3 Target quantile For quantile regression.

with a similar rule applying for p;.

Convexity can easily be verified by noting that the loss
(Eq. 1) is the sum of convex quadratics (with respect to m;
and p; individually). The update rule (Eq. 14) then follows
by differentiating and solving for 9L/0m; = 0, with the
update rule for p; being symmetric to 1m;.

C.2 Quantile Selection

In (one-sided) conformalized quantile regression, using the
same target quantile as the desired miscoverage ratio (i.e.
& = ¢) can be significantly less than optimal. Figure 8
shows an illustrative example with replicates trained on
50% of the dataset for prediction without interference, with
a miscoverage ratio of ¢ = 0.05. For each replicate, the
optimal quantile regression target quantile which results in
the narrowest overprovisioning margin after calibration is
between 80% and 90%.

In our experiments, we also observe that small changes in £
have a larger impact on the resulting overprovisioning mar-
gin closer to £ = 100%. As such, we train target quantiles
of {50%, 60%, 70%, 80%, 90%, 95%, 98%, 99%}, with
more target quantiles close to 100%.

C.3 Model Training

Multi-objective Optimization Pitot uses several different
optimization objectives:

¢ Interference mode: in order to balance the influence
of prediction with and without interference and better

12.00%

11.50% A

11.00% A

10.50% A

Bound Tightness

10.00% A

50% 60% 70% 80% 90% 95% 98% 99%
Quantile regression target quantile §

Figure 8. Bound tightness (overprovisioning margin) resulting
from different quantile regression target quantiles & for 5 different
replicates. The optimal target quantile is between 80% and 90%,
compared to the calibration target miscoverage ratio of 95%.

utilize GPU acceleration (Appendix C.3), each inter-
ference mode (without interference and with 2, 3, and
4 simultaneously running workloads) is treated as a
different objective.

* Quantile regression: for each interference mode, each
target quantile is also a different optimization objective
(Section 3.5).

In order to define a single optimization objective for gradient
descent, we assign a weight to each objective:

* To account for the increased difficulty and randomness
of interference, and thus the “higher quality” of data
collected without interfering workloads, we assign a
higher weight to prediction without interference (Ap-

Interference-Aware Edge Runtime Prediction with Conformal Matrix Completion

pendix E.2).

* Each quantile regression output is given equal weight.

Training Details Pitot (and all of our baselines) were
trained using the AdaMax optimizer (i.e. the [, variant
of Adam) with default hyperparameters (learning rate =
0.001, B1 = 0.9, B2 = 0.999) and a batch size of 2048 (split
equally across non-interference, 2, 3, and 4-way interference
objectives).

Each model was trained for 20,000 steps, which we found
was enough for convergence in all cases. During training,
we evaluated each model every 200 steps, and returned the
checkpoint which had the lowest validation loss for testing.

Implementation Our algorithm is implemented in JAX
(Bradbury et al., 2018). While our dataset contains many
(N = 410970) data points, each data point uses a small
amount of memory, consisting only of platform, workload,
and interfering workload indices, which point to shared plat-
form (IV,, = 231) and workload (N,, = 249) features. As
such, we make a number of optimizations in our implemen-
tation which target this data regime:

* All data is stored in GPU memory at all times.

» Since our batch size (2048) is relatively large com-
pared to our matrix (231 platforms, 249 workloads),
we always compute all module and device embeddings
w; and p;, and index the ones that we need.

As an additional optimization, when training on data with
interference, each additional source of interference adds
additional nodes to the compute graph that are only used
when interference is present. As such, we separately sample
fixed-sized batches of 512 samples from each degree of in-
terference instead of randomly drawing a batch of 2048 data
points from the entire dataset at once in order to maximize
GPU parallelism (i.e. allowing all operations to have a fixed
dimension across batches) while avoiding wasted compute
(i.e. if the results of unused computations are ignored).

With these optimizations, our method is very cheap to train,
and has a median per-replicate training time of 11.5 seconds
(or 12.1 seconds for the multi-objective quantile regression
version) on a RTX 4090 GPU across 45 different runs.

C.4 Baseline Details

Common settings To make our baselines more compet-
itive, each baseline was also trained to predict runtime in
the log domain. The baselines were also trained in the same
way as Pitot (20,000 steps with batch size 2048, etc).

Matrix Factorization Our matrix factorization baseline
uses the same number of features (r = 32) as we found to
be optimal for Pitot, and can be thought of as Pitot without

our log-residual objective, workload or platform features, in-
terference modeling, and uncertainty quantification method.

Neural Network The neural network baseline uses two
neural networks with two hidden layers of 256 units and the
GELU activation (twice as large as Pitot):

(1) The “base” network concatenates the workload and
platform features of each data point as input, and pre-
dicts a single interference-blind runtime which is used
on workloads running in isolation.

(2) The “interference” network concatenates two sets of
workload features (current workload and interfering
workload) and one set of platform features as an input,
and predicts an interference multiplier.

The interference network computes an interference multi-
plier for each interfering workload; the base prediction is
multiplied by each interference multiplier to generate the
final interference-aware runtime prediction.

Attention The attention network uses a (single-headed)
attention mechanism to predict the interference generated
by a set of interfering workloads instead of assuming a
simple multiplicative relationship between pairs of work-
loads. Like the neural network baseline, a neural network
with two hidden layers of 256 units and GELU activation
is used to generate a “base” prediction. To add an attention
mechanism, this network also generates a query vector.

To model interference, a second embedding network (also
with two hidden layers of 256 units and GELU activation)
generates key and value vectors. The query vector is used
to index the weight of the value vector across each interfer-
ing workload according (key, query) product, and an output
network with a single hidden layer produces the final inter-
ference multiplier. We tuned the key/query vector dimension
and output network hidden layer size, arriving at a vector
dimension of 8 and an output hidden layer of 32.

D DATASET

Using our heterogeneous cluster (Figure 3), we collected a
large dataset which includes a range of different workloads,
compute platforms, and varying levels of interference. In
this section, we describe the workloads, compute platforms,
data collection procedures, and collected data.

D.1 Platforms

Each platform in our dataset consists of a (device, runtime)
tuple. While datasets could conceivably include additional
platform dimensions such as the operating system, sched-
uler, and CPU frequency governor, we chose to study hard-
ware devices and WebAssembly runtimes since these are

Interference-Aware Edge Runtime Prediction with Conformal Matrix Completion

Table 2. Cluster devices with the CPU vendor, model, and microarchitecture.

Model CPU Architecture Model CPU Architecture
NUC 8 Intel 17-8650U Skylake RPi4 Rev 1.2 Broadcom BCM2711 Cortex-A72
NUC 4 Intel i3-4010U Haswell RPi3B+Rev 1.3 Broadcom BCM2837B0 Cortex-A53
Generic ITX Intel 17-4770TE Haswell Banana Pi M5 Amlogic S905X3 Cortex-AS55
Compute Stick Intel x5-78330 Silvermont Le Potato Amlogic S905X Cortex-AS53
NUC 11 Intel 15-1145G7 Tiger Lake Odroid C4 Amlogic S905X3 Cortex-AS5
NUC 11 Intel 17-1165G7 Tiger Lake RockPro64 RockChip RK3399 Cortex-A72
Mini PC Intel N4020 Goldmont Plus Rock Pi 4b RockChip RK3399 Cortex-A72
EliteDesk 805 G§ ~AMD R5-5650G Zen 3 Renegade RockChip RK3328 Cortex-AS53
Mini PC AMD R5-4500U Zen 2 Orange Pi 3 Allwinner H6 Cortex-A53
Mini PC AMD R3-3200U Zen 1 Starfive VF2 SiFive U74 RISC-V
Mini PC AMD A6-1450 Jaguar Nucleo-F767Z1 STMicro STM23F767Z1 Cortex-M7

Table 3. WebAssembly runtimes used. WAMR (the WebAssembly
Micro Runtime) is also commonly referred to as “iwasm”.

Runtime Runtime Type
Wasm3 Interpreter
WAMR Interpreter, LLVM AOT
WasmEdge Interpreter
Wasmtime Cranelift AOT, Cranelift JIT
Wasmer Singlepass JIT, Cranelift JIT, Cranelift

AOT, LLVM AOT

most relevant to the WebAssembly community.

Devices Our cluster (shown in Figure 3) includes 24 de-
vices from 9 different vendors (Intel, AMD, SiFive, Broad-
com, NXP, Amlogic, RockChip, Allwinner, STMicroelec-
tronics) across 14 different microarchitectures (Table 2).
Notable devices include the RISC-V-based Starfive VF2 and
the Cortex-M7-based Nucleo-F767Z1.

Runtimes For each device, we ran 5 different WebAssem-
bly runtimes with a total of 10 different configurations, in-
cluding interpreted, ahead-of-time compiled (AOT), and
just-in-time compiled (JIT) runtimes (Table 3). Each run-
time was run on each device except where not supported:
only AOT WAMR runs on the cortex M7, and only WAMR
and wasm3 run on the RISC-V device. Ahead-of-time-
compiled WAMR was also excluded from Cortex A-72-
based platforms due to a code generation bug which can
randomly cause illegal instruction errors.

D.2 Side Information

Workload Features In order to collect the “opcode count”
(the number of times each opcode was executed) for each
workload, we instrumented the WebAssembly Micro Run-
time (WAMR) fast interpreter (Xu et al., 2021) to increment
an opcode counter table each time each instruction was ex-
ecuted. Due to several order-of-magnitude differences in
opcode counts between short and long benchmarks as well

as rare and common instructions, we transform the opcode
counts by the log-frequency f(n) = log(n + 1) (so that
f(0) = 0). We also exclude opcodes which are not used by
any of the workloads from the dataset.

While it is possible to reduce this profiling overhead through
an instrumentation-based opcode counting approach, pro-
filing of any kind at this level of detail will be expensive
relative to execution without any profiling. However, pro-
filing does not need to be performed on the edge: opcode
frequency does not depend on the underlying hardware and
only needs to be performed once. As such, profiling can
use a fast computer before a workload is to be deployed or
is observed for the first time, and does not need to be run
during deployment (in the case of edge orchestration) or on
a highly-constrained candidate edge device (in the case of
system design).

Platform Features In addition to a one-hot encoding of
the WebAssembly runtime used, we recorded a number of
features via linux cpuinfo and meminfo:

* CPU microarchitecture (e.g. znver3, cortex-a72,
tigerlake), which is one-hot encoded.

* Nominal CPU Frequency (i.e. differently clocked
CPUs with the same microarchitecture). Note that
clock frequency governors (e.g. ondemand) may set
the CPU frequency on-the-fly in a highly dynamic man-
ner, which we cannot easily record.

¢ Memory architecture: L1d / L1i cache sizes, L2 size,
L2 line size and associativity, L3 size, and main mem-
ory size. Cache sizes are passed as a log size, while
line size and associativity are provided as one-hot fea-
tures. Each cache feature is augmented with an indi-
cator feature to account for cases where a given level
in the memory hierarchy is not present (e.g. the ARM
Cortex-A72 architecture does not have a L3 cache).

Interference-Aware Edge Runtime Prediction with Conformal Matrix Completion

Without Interference With Interference

K1 —4— All Features
25% 1 30% 1 Platform Features Only
\ 5% ¢+ Workload Features Only

20% 1 °1 —¥- No Features

15% 4 20% A

10% 15% 12
o .

Mean Absolute Percent Error

59 10% 1
b 4

T T T T T T T T
20% 40% 60% 80% 20% 40% 60% 80%
Training Data Training Data

Without Interference With Interference

.
g 100% AI —— Pitot

u“; 80% \ 150% ‘\ Neural Network

g ’ 3 ---§- Attention

§ 9 \ —F - Matrix Factorization
I 00%1 ' 100% - 2N

2 -

2 9 * e e o
ﬁ 40% A \,

< 50% -

c 20% {m

© i

()

=

T T T T
20% 40% 60% 80%
Training Data

T T T T
20% 40% 60% 80%
Training Data

(a) Uncropped version of Figure 4b; removing both workload and (b) Uncropped version of Figure 6a; the Matrix Factorization base-

platform features from Pitot leads to much higher error when only a
small amount of data is observed.

line performs an order of magnitude worse with less training data
and predicting interference (since it is not interference-aware).

Figure 9. Uncropped versions of figures where the y-axis was cropped for clarity.

D.3 Collected Data

Benchmarks in Isolation We ran each benchmark on
each of our (device, runtime) platforms where supported. In
total, we collected 53,637 observations of valid (workload,
platform) pairs, and recorded the wall clock execution time
for each, averaged over up to 50 repeated executions over a
maximum of 30 seconds. While we attempted to execute ev-
ery possible (workload, platform) pair, some combinations
resulted in errors or crashes, which we omit from the dataset.
Notable omissions include some WebAssembly runtimes
lacking full ARM and RISC-V support at present, inter-
preted runtimes struggling to complete large benchmarks
before being timed out (especially on slower devices), and
various implementation bugs on some combinations of run-
times, platforms, and benchmarks.

Interference Dataset To evaluate our interference model,
we also ran up to 4 benchmarks simultaneously. Each bench-
mark was run continuously in a loop, resulting in random
program alignments. In total, we collected 357,333 us-
able observations, which includes 98,957 observations with
two simultaneously running workloads, 139,208 with three
simultaneously running, and 119,168 with three simultane-
ously running.

During interference data collection, we ran 250 random sets
of 2, 3, and 4 workloads on each platform (for a total of
750 sets). Each workload was run repeatedly for 30 seconds.
If any of the workloads in a set crashed or otherwise ter-
minated before the end of the 30-second period, that entire
set was excluded. Workloads which timed out and failed
to complete by the end of the 30-second period but did not
crash were also excluded, though other simultaneously run-
ning workloads in that set were still included in the dataset
since timed-out workloads still cause interference.

E ADDITIONAL RESULTS
E.1 Uncropped Figures

Figure 4b and figure 6a were cropped in the y-axis for clar-
ity; we provide uncropped versions of these figures in Fig-
ure 9a and Figure 9b, respectively.

E.2 Hyperparameter Ablations

We conducted ablation studies on four key hyperparameters
for our method, and ran an exponential spread of 5 different
values for each (Figure 10). Our method is not sensitive
to the parameters selected, and will perform close to op-
timally as long as the model embeddings have sufficient
dimensionality and thus representational power.

Number of Learned Features ¢ Learned features in Pitot
are feature vectors associated with each platform and work-
load, which are jointly trained with the embedding network
parameters using gradient descent. There is a significant
decrease in error in all categories after introducing just one
additional learned feature, indicating the necessity of this
aspect of Pitot. However, adding additional features does
not make a significant impact on model performance. We
select ¢ = 1 for our experiments; in general, any small value
of ¢ should be sufficient, though higher ¢ may be beneficial
for larger datasets.

Embedding Dimension » The embedding dimension is
the output dimensionality of Pitot’s workload and platform
embedding networks, and acts as the rank constraint for ma-
trix factorization. In our ablations, we can see a significant
improvement in error as the dimensionality increases up to
32 dimensions, after which the error no longer improves.
We select » = 32; in general, r only needs to be sufficiently
large, with no significant prediction error downside to an
overly large r.

Interference-Aware Edge Runtime Prediction with Conformal Matrix Completion

No Interference 2-way Interference 3-way Interference 4-way Interference
12%
o/
11% 4% 12% 1 12% 13% - - g=0
0 *1E 12% - g=1
10% A % A -
5 11% 11% - 129% 4 ~F- g=2
- -
© 9% 11% A 11% 4 ¥ g=4
w ° -F- q=8
E 8% - 10% A 10% 4 11% A
c 10% -
P o/ o 100 -
5 7%) % 10% 4
p 6% 9% A 9%
9% 1 9% 9%
5% : : : :
20% 40% 60% 80%
14% 14% 4 15% A “F- r=4
12% 1 -F r=8
13% 1 13% - 14% 1% F- r=16
o o | “‘. _
8 I I II 129% 1§
R-J—. 11% 11% A -
g o : 11% -
10% 10%
o 10% A
0 9% 9% 1 9%
20% 40% 60% 80% 20% 40% 60% 80% 20% 40% 60% 80% 20% 40% 60% 80%
14%
14% “F- s=1
mll%- 13% 4 . 14% 1 . 3 s5=2
2 10% 4 13% E 2 -F s=4
. 12% A 13% 1% ¥ s=8
o % -
g 9% 119 12% 12% A -F- s=16
(] 4
s 1% 11% A
T 7% 10%)
E 6w 9% 1 10%1 10% 1
5% 8% 9% 7 9% -
T T T T o T T T T T T T T T T T T
20% 40% 60% 80% 20% 40% 60% 80% 20% 40% 60% 80% 20% 40% 60% 80%
11% 12% 13% ¥ B=0.1
=
< 12% 4% : “F B=02
© 10% - 12% 14 —+ B=05
[} o =u.
% 9% - 11% 4 11% -§- B=1.0
b 8% 11% A ¥ B=20
£ 10% A
o/ o -
% 7% 10% 10% A
2 6% 9%
so4 9% 9%
5 -

20% 40% 60% 80% 20% 40% 60% 80% 20% 40% 60% 80% 20% 40% 60% 80%

Figure 10. Hyperparameter ablations for the number of learned features, embedding dimension, interference types, and interference
objective weight, with mean absolute percent error on the y-axis, and the proportion of observed data on the x-axis. We split our results in
each column depending on the number of simultaneously running workloads due to the increased prediction error (and intrinsic problem
difficulty) associated with more interfering workloads. In each plot, the solid line indicates the selected hyperparameter value; error bars
indicate 2 standard errors.

Interference-Aware Edge Runtime Prediction with Conformal Matrix Completion

10% Train Split 20% Train Split 30% Train Split

10% Train Split 20% Train Split 30% Train Split

80% A

o
P ~ z
-

60% a | 50%
r-I“

40% =
27| 30% o
FF ° ™

60% - 40% A =

40% 1 :
e

20% 1

o

80% 1 I—-r‘ll re 60% -
raaEE 60% _,.‘—{f A ({tf
— 50% -
60% ot
’ & 40% =
A 40% = x
40% 1 == 30% | =355

T
s3EEET

=
==

zo%«:‘:::;/

20% g sarate ="
10% ._,_..'-’“{I

20%

i,..-“/

zo%~:‘_‘_'__r‘,/

==
20% ::_:"/

T T T T T
0.1 0.08 0.06 0.04 0.02

T T T T T
0.1 0.08 0.06 0.04 0.02

T T T T T
0.1 0.08 0.06 0.04 0.02

T T T T T
0.1 0.08 0.06 0.04 0.02

T T T T T
0.1 0.08 0.06 0.04 0.02

T T T T T
0.1 0.08 0.06 0.04 0.02

40% Train Split 50% Train Split 60% Train Split

40% Train Split 50% Train Split 60% Train Split

40%

50% | 40% 1 -
s / /}
; A

40% / /

o ,{1‘1 30% | 1{ 30% A 7
30% “_x‘/t,t = & ‘s;,}'
i 20% 1 g =T 20%‘::/-::3131’

2 i

10%«_,_,..—-—"/ 10%«___,./ 10‘%,«'_‘_',,,‘—4"/z

60% 4 }/ 60% - /,/ 60% /,/
SO%AM""(‘} 50%‘.“"'“" 50%~M-_,,/
40% -l 40% = 40% >
ad = =
30% 1 = 30% - 30% ==

£3 =" =X
b

o d . =
20%‘::::,‘»/ 20%‘:_:::_// zo%:_:::./

T T T T T
0.1 0.08 0.06 0.04 0.02

90% Train Split

T T T T T T T T T T
0.1 0.08 0.06 0.04 0.02 0.1 0.08 0.06 0.04 0.02

70% Train Split 80% Train Split

T T T T T
0.1 0.08 0.06 0.04 0.02

90% Train Split

T T T T T
0.1 0.08 0.06 0.04 0.02

80% Train Split

T T T T T
0.1 0.08 0.06 0.04 0.02

70% Train Split

30% 1 30% 7 30%
#

20%

PN g rr‘_,.z
10% 10%

*F
20% 4 =¥
=

r-"‘"
10% A,//{I

4 20% 15

60% | 7] 60% 1 77| 0% 7
50% B 50% 1 P 50% 1 et
je - -
40% 1 3 a0% T = a0% {7 ¥
=3 x 3 3
30% 1 % 30% 1 e 30% A o

PINZRE S

= A
ZO%T::::""'/ 20%‘:::.::/

T T T T T T T T T T T T T T T
0.1 0.08 0.06 0.04 0.02 0.1 0.08 0.06 0.04 0.02 0.1 0.08 0.06 0.04 0.02

—4— Pitot Neural Network --§- Attention =~ —f- Matrix Factorization

(a) Bounds for prediction without interference

T T T T T T T T T T T T T T T
0.1 0.08 0.06 0.04 0.02 0.1 0.08 0.06 0.04 0.02 0.1 0.08 0.06 0.04 0.02

—f— Pitot Neural Network --§- Attention ~ —f- Matrix Factorization

(b) Bounds for interference prediction

Figure 11. Full bound tightness comparison between Pitot and baselines for the conformal prediction task across varying amounts of
training data; each plot shows the bound tightness (with £2 standard errors) for a given training split size and varying miscoverage rates.

Interference Types s We find that using s = 2 interfer-
ence types is sufficient to obtain optimal performance. Our
model is slightly sensitive to s, with a slight increase in error
as s increases for some evaluation settings.

Note that the choice of s does not impact the error of Pitot
when predicting the runtime of workloads without any back-
ground interference, which is expected, since the interfer-
ence susceptibility and magnitude embeddings v, v, are
ignored when no interference is present.

Interference Weight § Since Pitot solves a multi-
objective optimization problem (even before considering
quantile regression), the weight of each objective can im-
pact its error. We assign a constant weight of 1.0 to objec-
tives predicting runtime without interfering workloads, and
a weight of 3 to interference prediction, split equally across
2, 3, and 4-way interference.

Increasing the interference objective weight 3 reduces in-
terference prediction error at the cost of increasing error
for prediction without interference, with a similar effect
in reverse. We choose 8 = 0.5 as a compromise which
does not significantly increase the prediction error for either
objective.

E.3 Bound Tightness Comparisons

Figure 11 provides an expanded version of Figure 6b show-
ing miscoverage rate-bound tightness curves for each train-
ing split size. Pitot performs far better than all of our base-
lines in each setting, while the attention baseline performs
slightly better on predicting interference as the neural net-
work baseline. The matrix factorization baseline performs
far worse in most settings, except when predicting runtime
without interference when a large proportion of the dataset
is observed.

E.4 Embedding Visualizations

Unlike black-box models, Pitot learns embedding vectors
for each workload and platform which can be interpreted,
and potentially used as inputs for downstream tasks such as
anomaly detection. To demonstrate the information value of
these learned embeddings, we visualized them by projecting
them to two dimensions (Fig. 12a-12c). We also analyze
our learned interference representation as a sanity check on
our interference model (Fig. 12d).

Workload Features To analyze embedding features
(Fig. 12a), we project them to 2 dimensions using a t-
distributed stochastic neighbor embedding (t-SNE), which
maps similar workloads to nearby locations in a 2-
dimensional scatter plot, though distances and units do not

Interference-Aware Edge Runtime Prediction with Conformal Matrix Completion

e Cortex *
- ¥ %
Mibench
v Polybench s f*
x SDVBS Tor
+ Libsodium NI A
b4 X
* Python T x
. A
Y [] A A
v r s &° X N *:*J. A A
vy ¥ £ x # ol
¥V *
- ;Y,,* °® ;X% e
YYYTF'I' X9 X ¢ apat
rY r Xixx X ;lAA})f
Y r Ao T
LR N Py 2%
Y Y ke X
Yy (X]
Yy lrr Yy Ar %
A A %
r LT £
Y YYyy
Tre v
A

¥

¥ oo &
— +¥H‘
= ;
' .I-
* _ ||I] 'i'
= A +
* = |1 e *
¥ = S
N - ,||| o WAMR (interpreted)

WasmEdge (interpreted)
Wasm3 (interpreted)
WAMR (LLVM AOT)
Wasmtime (Cranelift AOT)
Wasmtime (Cranelift JIT)
Wasmer (LLVM AOT)
Wasmer (Cranelift AOT)
Wasmer (Cranelift JIT)

» Wasmer (Singlepass JIT)

et

ot
1 - % +

(a) Workload features (t-SNE) sorted by benchmark suite

e AMD x86 ®
Intel x86 S ° e o
+ ARM A-class : o e
v RISCV . . ;
+ B
% ARM M-class > e f :H(."
% o %% v
+ * 1 X
% *If ith
+ ? A
d ¥
I
W
: LA +*
R ++'$-
o, K

(c) Platform features (t-SNE) sorted by CPU microarchitecture

(b) Platform features (t-SNE) sorted by WebAssembly runtime

+
g 100% . 4 i
$X, . ¥
S + iq- +2X %8 f&
3 . * o o
5 . PR
n + e
Y ot o4 %y *
S + +':’#, +
g 10% 4 . #+
= + * + 4
g oy o KT+ +oe
£ +o*+ +
c # 8.
o + ++ e
s + 4+ + !- + o+ e AMD x86
3 . +o ¢ Intel x86
> 1% . + ARM Aclass
i + L + RISCV
= v + ARM M-class
10t

Learned £[||Fjl|2]

(d) Measured and learned interference

Figure 12. Full-size visualizations of Pitot’s learned embeddings. Figure 12a-12¢ show t-SNE embeddings of the learned workload and
platform features, while Figure 12d shows the l2 norm of the learned interference matrix compared with the observed mean interference,

sorted by CPU microarchitecture.

have any particular meaning. Relatively homogenous bench-
mark suites such as Polybench, Libsodium, and our Python
benchmarks form clear clusters, while more diverse bench-
mark suites (Mibench, SDVBS, Cortex) are largely mixed.

Platform Features We also projected platform features
using a 2-dimension t-SNE. Sorting platforms by We-
bAssembly runtime (Fig. 12b), we see that most runtimes
form clear clusters. Notably, the three interpreted runtimes
in our dataset (WAMR, WasmEdge, Wasm3) form nearbly
clusters, while different configurations of Wasmtime and
Wasmer are also respectively clustered together.

Alternatively, organizing platform embeddings by CPU mi-
croarchitecture (Fig. 12¢), we also see clear clusters of each
microarchitecture category within the larger clusters associ-
ated with each type of runtime.

Interference Matrix The interference matrix F}; allows
us to gain insight into the interference characteristics of each

platform. Specifically, consider the spectral norm || F||2,

IE5|15 = sup
[lwill2=1,||wk||2=1

wiTFjwk. (15)

This can be interpreted as the maximum possible interfer-
ence between two workloads w;, wy. Figure 12d shows
the spectral norm of F}; (trained on the 90% data split and
average over the 5 replicates) plotted against mean interfer-
ence on each platform. We observe a positive correlation
between || F;||, and measured interference on each device,
as we would expect from our interpretation.

